]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/clk/bcm/clk-bcm2835.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / drivers / clk / bcm / clk-bcm2835.c
1 /*
2 * Copyright (C) 2010,2015 Broadcom
3 * Copyright (C) 2012 Stephen Warren
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 */
16
17 /**
18 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
19 *
20 * The clock tree on the 2835 has several levels. There's a root
21 * oscillator running at 19.2Mhz. After the oscillator there are 5
22 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
23 * and "HDMI displays". Those 5 PLLs each can divide their output to
24 * produce up to 4 channels. Finally, there is the level of clocks to
25 * be consumed by other hardware components (like "H264" or "HDMI
26 * state machine"), which divide off of some subset of the PLL
27 * channels.
28 *
29 * All of the clocks in the tree are exposed in the DT, because the DT
30 * may want to make assignments of the final layer of clocks to the
31 * PLL channels, and some components of the hardware will actually
32 * skip layers of the tree (for example, the pixel clock comes
33 * directly from the PLLH PIX channel without using a CM_*CTL clock
34 * generator).
35 */
36
37 #include <linux/clk-provider.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk.h>
40 #include <linux/clk/bcm2835.h>
41 #include <linux/debugfs.h>
42 #include <linux/module.h>
43 #include <linux/of.h>
44 #include <linux/platform_device.h>
45 #include <linux/slab.h>
46 #include <dt-bindings/clock/bcm2835.h>
47
48 #define CM_PASSWORD 0x5a000000
49
50 #define CM_GNRICCTL 0x000
51 #define CM_GNRICDIV 0x004
52 # define CM_DIV_FRAC_BITS 12
53 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
54
55 #define CM_VPUCTL 0x008
56 #define CM_VPUDIV 0x00c
57 #define CM_SYSCTL 0x010
58 #define CM_SYSDIV 0x014
59 #define CM_PERIACTL 0x018
60 #define CM_PERIADIV 0x01c
61 #define CM_PERIICTL 0x020
62 #define CM_PERIIDIV 0x024
63 #define CM_H264CTL 0x028
64 #define CM_H264DIV 0x02c
65 #define CM_ISPCTL 0x030
66 #define CM_ISPDIV 0x034
67 #define CM_V3DCTL 0x038
68 #define CM_V3DDIV 0x03c
69 #define CM_CAM0CTL 0x040
70 #define CM_CAM0DIV 0x044
71 #define CM_CAM1CTL 0x048
72 #define CM_CAM1DIV 0x04c
73 #define CM_CCP2CTL 0x050
74 #define CM_CCP2DIV 0x054
75 #define CM_DSI0ECTL 0x058
76 #define CM_DSI0EDIV 0x05c
77 #define CM_DSI0PCTL 0x060
78 #define CM_DSI0PDIV 0x064
79 #define CM_DPICTL 0x068
80 #define CM_DPIDIV 0x06c
81 #define CM_GP0CTL 0x070
82 #define CM_GP0DIV 0x074
83 #define CM_GP1CTL 0x078
84 #define CM_GP1DIV 0x07c
85 #define CM_GP2CTL 0x080
86 #define CM_GP2DIV 0x084
87 #define CM_HSMCTL 0x088
88 #define CM_HSMDIV 0x08c
89 #define CM_OTPCTL 0x090
90 #define CM_OTPDIV 0x094
91 #define CM_PCMCTL 0x098
92 #define CM_PCMDIV 0x09c
93 #define CM_PWMCTL 0x0a0
94 #define CM_PWMDIV 0x0a4
95 #define CM_SLIMCTL 0x0a8
96 #define CM_SLIMDIV 0x0ac
97 #define CM_SMICTL 0x0b0
98 #define CM_SMIDIV 0x0b4
99 /* no definition for 0x0b8 and 0x0bc */
100 #define CM_TCNTCTL 0x0c0
101 #define CM_TCNTDIV 0x0c4
102 #define CM_TECCTL 0x0c8
103 #define CM_TECDIV 0x0cc
104 #define CM_TD0CTL 0x0d0
105 #define CM_TD0DIV 0x0d4
106 #define CM_TD1CTL 0x0d8
107 #define CM_TD1DIV 0x0dc
108 #define CM_TSENSCTL 0x0e0
109 #define CM_TSENSDIV 0x0e4
110 #define CM_TIMERCTL 0x0e8
111 #define CM_TIMERDIV 0x0ec
112 #define CM_UARTCTL 0x0f0
113 #define CM_UARTDIV 0x0f4
114 #define CM_VECCTL 0x0f8
115 #define CM_VECDIV 0x0fc
116 #define CM_PULSECTL 0x190
117 #define CM_PULSEDIV 0x194
118 #define CM_SDCCTL 0x1a8
119 #define CM_SDCDIV 0x1ac
120 #define CM_ARMCTL 0x1b0
121 #define CM_AVEOCTL 0x1b8
122 #define CM_AVEODIV 0x1bc
123 #define CM_EMMCCTL 0x1c0
124 #define CM_EMMCDIV 0x1c4
125
126 /* General bits for the CM_*CTL regs */
127 # define CM_ENABLE BIT(4)
128 # define CM_KILL BIT(5)
129 # define CM_GATE_BIT 6
130 # define CM_GATE BIT(CM_GATE_BIT)
131 # define CM_BUSY BIT(7)
132 # define CM_BUSYD BIT(8)
133 # define CM_FRAC BIT(9)
134 # define CM_SRC_SHIFT 0
135 # define CM_SRC_BITS 4
136 # define CM_SRC_MASK 0xf
137 # define CM_SRC_GND 0
138 # define CM_SRC_OSC 1
139 # define CM_SRC_TESTDEBUG0 2
140 # define CM_SRC_TESTDEBUG1 3
141 # define CM_SRC_PLLA_CORE 4
142 # define CM_SRC_PLLA_PER 4
143 # define CM_SRC_PLLC_CORE0 5
144 # define CM_SRC_PLLC_PER 5
145 # define CM_SRC_PLLC_CORE1 8
146 # define CM_SRC_PLLD_CORE 6
147 # define CM_SRC_PLLD_PER 6
148 # define CM_SRC_PLLH_AUX 7
149 # define CM_SRC_PLLC_CORE1 8
150 # define CM_SRC_PLLC_CORE2 9
151
152 #define CM_OSCCOUNT 0x100
153
154 #define CM_PLLA 0x104
155 # define CM_PLL_ANARST BIT(8)
156 # define CM_PLLA_HOLDPER BIT(7)
157 # define CM_PLLA_LOADPER BIT(6)
158 # define CM_PLLA_HOLDCORE BIT(5)
159 # define CM_PLLA_LOADCORE BIT(4)
160 # define CM_PLLA_HOLDCCP2 BIT(3)
161 # define CM_PLLA_LOADCCP2 BIT(2)
162 # define CM_PLLA_HOLDDSI0 BIT(1)
163 # define CM_PLLA_LOADDSI0 BIT(0)
164
165 #define CM_PLLC 0x108
166 # define CM_PLLC_HOLDPER BIT(7)
167 # define CM_PLLC_LOADPER BIT(6)
168 # define CM_PLLC_HOLDCORE2 BIT(5)
169 # define CM_PLLC_LOADCORE2 BIT(4)
170 # define CM_PLLC_HOLDCORE1 BIT(3)
171 # define CM_PLLC_LOADCORE1 BIT(2)
172 # define CM_PLLC_HOLDCORE0 BIT(1)
173 # define CM_PLLC_LOADCORE0 BIT(0)
174
175 #define CM_PLLD 0x10c
176 # define CM_PLLD_HOLDPER BIT(7)
177 # define CM_PLLD_LOADPER BIT(6)
178 # define CM_PLLD_HOLDCORE BIT(5)
179 # define CM_PLLD_LOADCORE BIT(4)
180 # define CM_PLLD_HOLDDSI1 BIT(3)
181 # define CM_PLLD_LOADDSI1 BIT(2)
182 # define CM_PLLD_HOLDDSI0 BIT(1)
183 # define CM_PLLD_LOADDSI0 BIT(0)
184
185 #define CM_PLLH 0x110
186 # define CM_PLLH_LOADRCAL BIT(2)
187 # define CM_PLLH_LOADAUX BIT(1)
188 # define CM_PLLH_LOADPIX BIT(0)
189
190 #define CM_LOCK 0x114
191 # define CM_LOCK_FLOCKH BIT(12)
192 # define CM_LOCK_FLOCKD BIT(11)
193 # define CM_LOCK_FLOCKC BIT(10)
194 # define CM_LOCK_FLOCKB BIT(9)
195 # define CM_LOCK_FLOCKA BIT(8)
196
197 #define CM_EVENT 0x118
198 #define CM_DSI1ECTL 0x158
199 #define CM_DSI1EDIV 0x15c
200 #define CM_DSI1PCTL 0x160
201 #define CM_DSI1PDIV 0x164
202 #define CM_DFTCTL 0x168
203 #define CM_DFTDIV 0x16c
204
205 #define CM_PLLB 0x170
206 # define CM_PLLB_HOLDARM BIT(1)
207 # define CM_PLLB_LOADARM BIT(0)
208
209 #define A2W_PLLA_CTRL 0x1100
210 #define A2W_PLLC_CTRL 0x1120
211 #define A2W_PLLD_CTRL 0x1140
212 #define A2W_PLLH_CTRL 0x1160
213 #define A2W_PLLB_CTRL 0x11e0
214 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
215 # define A2W_PLL_CTRL_PWRDN BIT(16)
216 # define A2W_PLL_CTRL_PDIV_MASK 0x000007000
217 # define A2W_PLL_CTRL_PDIV_SHIFT 12
218 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
219 # define A2W_PLL_CTRL_NDIV_SHIFT 0
220
221 #define A2W_PLLA_ANA0 0x1010
222 #define A2W_PLLC_ANA0 0x1030
223 #define A2W_PLLD_ANA0 0x1050
224 #define A2W_PLLH_ANA0 0x1070
225 #define A2W_PLLB_ANA0 0x10f0
226
227 #define A2W_PLL_KA_SHIFT 7
228 #define A2W_PLL_KA_MASK GENMASK(9, 7)
229 #define A2W_PLL_KI_SHIFT 19
230 #define A2W_PLL_KI_MASK GENMASK(21, 19)
231 #define A2W_PLL_KP_SHIFT 15
232 #define A2W_PLL_KP_MASK GENMASK(18, 15)
233
234 #define A2W_PLLH_KA_SHIFT 19
235 #define A2W_PLLH_KA_MASK GENMASK(21, 19)
236 #define A2W_PLLH_KI_LOW_SHIFT 22
237 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
238 #define A2W_PLLH_KI_HIGH_SHIFT 0
239 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
240 #define A2W_PLLH_KP_SHIFT 1
241 #define A2W_PLLH_KP_MASK GENMASK(4, 1)
242
243 #define A2W_XOSC_CTRL 0x1190
244 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
245 # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
246 # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
247 # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
248 # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
249 # define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
250 # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
251 # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
252
253 #define A2W_PLLA_FRAC 0x1200
254 #define A2W_PLLC_FRAC 0x1220
255 #define A2W_PLLD_FRAC 0x1240
256 #define A2W_PLLH_FRAC 0x1260
257 #define A2W_PLLB_FRAC 0x12e0
258 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
259 # define A2W_PLL_FRAC_BITS 20
260
261 #define A2W_PLL_CHANNEL_DISABLE BIT(8)
262 #define A2W_PLL_DIV_BITS 8
263 #define A2W_PLL_DIV_SHIFT 0
264
265 #define A2W_PLLA_DSI0 0x1300
266 #define A2W_PLLA_CORE 0x1400
267 #define A2W_PLLA_PER 0x1500
268 #define A2W_PLLA_CCP2 0x1600
269
270 #define A2W_PLLC_CORE2 0x1320
271 #define A2W_PLLC_CORE1 0x1420
272 #define A2W_PLLC_PER 0x1520
273 #define A2W_PLLC_CORE0 0x1620
274
275 #define A2W_PLLD_DSI0 0x1340
276 #define A2W_PLLD_CORE 0x1440
277 #define A2W_PLLD_PER 0x1540
278 #define A2W_PLLD_DSI1 0x1640
279
280 #define A2W_PLLH_AUX 0x1360
281 #define A2W_PLLH_RCAL 0x1460
282 #define A2W_PLLH_PIX 0x1560
283 #define A2W_PLLH_STS 0x1660
284
285 #define A2W_PLLH_CTRLR 0x1960
286 #define A2W_PLLH_FRACR 0x1a60
287 #define A2W_PLLH_AUXR 0x1b60
288 #define A2W_PLLH_RCALR 0x1c60
289 #define A2W_PLLH_PIXR 0x1d60
290 #define A2W_PLLH_STSR 0x1e60
291
292 #define A2W_PLLB_ARM 0x13e0
293 #define A2W_PLLB_SP0 0x14e0
294 #define A2W_PLLB_SP1 0x15e0
295 #define A2W_PLLB_SP2 0x16e0
296
297 #define LOCK_TIMEOUT_NS 100000000
298 #define BCM2835_MAX_FB_RATE 1750000000u
299
300 struct bcm2835_cprman {
301 struct device *dev;
302 void __iomem *regs;
303 spinlock_t regs_lock; /* spinlock for all clocks */
304 const char *osc_name;
305
306 /* Must be last */
307 struct clk_hw_onecell_data onecell;
308 };
309
310 static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
311 {
312 writel(CM_PASSWORD | val, cprman->regs + reg);
313 }
314
315 static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
316 {
317 return readl(cprman->regs + reg);
318 }
319
320 static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
321 struct debugfs_reg32 *regs, size_t nregs,
322 struct dentry *dentry)
323 {
324 struct dentry *regdump;
325 struct debugfs_regset32 *regset;
326
327 regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
328 if (!regset)
329 return -ENOMEM;
330
331 regset->regs = regs;
332 regset->nregs = nregs;
333 regset->base = cprman->regs + base;
334
335 regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
336 regset);
337
338 return regdump ? 0 : -ENOMEM;
339 }
340
341 /*
342 * These are fixed clocks. They're probably not all root clocks and it may
343 * be possible to turn them on and off but until this is mapped out better
344 * it's the only way they can be used.
345 */
346 void __init bcm2835_init_clocks(void)
347 {
348 struct clk_hw *hw;
349 int ret;
350
351 hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
352 if (IS_ERR(hw))
353 pr_err("apb_pclk not registered\n");
354
355 hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
356 if (IS_ERR(hw))
357 pr_err("uart0_pclk not registered\n");
358 ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
359 if (ret)
360 pr_err("uart0_pclk alias not registered\n");
361
362 hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
363 if (IS_ERR(hw))
364 pr_err("uart1_pclk not registered\n");
365 ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
366 if (ret)
367 pr_err("uart1_pclk alias not registered\n");
368 }
369
370 struct bcm2835_pll_data {
371 const char *name;
372 u32 cm_ctrl_reg;
373 u32 a2w_ctrl_reg;
374 u32 frac_reg;
375 u32 ana_reg_base;
376 u32 reference_enable_mask;
377 /* Bit in CM_LOCK to indicate when the PLL has locked. */
378 u32 lock_mask;
379
380 const struct bcm2835_pll_ana_bits *ana;
381
382 unsigned long min_rate;
383 unsigned long max_rate;
384 /*
385 * Highest rate for the VCO before we have to use the
386 * pre-divide-by-2.
387 */
388 unsigned long max_fb_rate;
389 };
390
391 struct bcm2835_pll_ana_bits {
392 u32 mask0;
393 u32 set0;
394 u32 mask1;
395 u32 set1;
396 u32 mask3;
397 u32 set3;
398 u32 fb_prediv_mask;
399 };
400
401 static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
402 .mask0 = 0,
403 .set0 = 0,
404 .mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
405 .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
406 .mask3 = (u32)~A2W_PLL_KA_MASK,
407 .set3 = (2 << A2W_PLL_KA_SHIFT),
408 .fb_prediv_mask = BIT(14),
409 };
410
411 static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
412 .mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
413 .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
414 .mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
415 .set1 = (6 << A2W_PLLH_KP_SHIFT),
416 .mask3 = 0,
417 .set3 = 0,
418 .fb_prediv_mask = BIT(11),
419 };
420
421 struct bcm2835_pll_divider_data {
422 const char *name;
423 const char *source_pll;
424
425 u32 cm_reg;
426 u32 a2w_reg;
427
428 u32 load_mask;
429 u32 hold_mask;
430 u32 fixed_divider;
431 };
432
433 struct bcm2835_clock_data {
434 const char *name;
435
436 const char *const *parents;
437 int num_mux_parents;
438
439 /* Bitmap encoding which parents accept rate change propagation. */
440 unsigned int set_rate_parent;
441
442 u32 ctl_reg;
443 u32 div_reg;
444
445 /* Number of integer bits in the divider */
446 u32 int_bits;
447 /* Number of fractional bits in the divider */
448 u32 frac_bits;
449
450 u32 flags;
451
452 bool is_vpu_clock;
453 bool is_mash_clock;
454 };
455
456 struct bcm2835_gate_data {
457 const char *name;
458 const char *parent;
459
460 u32 ctl_reg;
461 };
462
463 struct bcm2835_pll {
464 struct clk_hw hw;
465 struct bcm2835_cprman *cprman;
466 const struct bcm2835_pll_data *data;
467 };
468
469 static int bcm2835_pll_is_on(struct clk_hw *hw)
470 {
471 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
472 struct bcm2835_cprman *cprman = pll->cprman;
473 const struct bcm2835_pll_data *data = pll->data;
474
475 return cprman_read(cprman, data->a2w_ctrl_reg) &
476 A2W_PLL_CTRL_PRST_DISABLE;
477 }
478
479 static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
480 unsigned long parent_rate,
481 u32 *ndiv, u32 *fdiv)
482 {
483 u64 div;
484
485 div = (u64)rate << A2W_PLL_FRAC_BITS;
486 do_div(div, parent_rate);
487
488 *ndiv = div >> A2W_PLL_FRAC_BITS;
489 *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
490 }
491
492 static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
493 u32 ndiv, u32 fdiv, u32 pdiv)
494 {
495 u64 rate;
496
497 if (pdiv == 0)
498 return 0;
499
500 rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
501 do_div(rate, pdiv);
502 return rate >> A2W_PLL_FRAC_BITS;
503 }
504
505 static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
506 unsigned long *parent_rate)
507 {
508 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
509 const struct bcm2835_pll_data *data = pll->data;
510 u32 ndiv, fdiv;
511
512 rate = clamp(rate, data->min_rate, data->max_rate);
513
514 bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
515
516 return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
517 }
518
519 static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
520 unsigned long parent_rate)
521 {
522 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
523 struct bcm2835_cprman *cprman = pll->cprman;
524 const struct bcm2835_pll_data *data = pll->data;
525 u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
526 u32 ndiv, pdiv, fdiv;
527 bool using_prediv;
528
529 if (parent_rate == 0)
530 return 0;
531
532 fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
533 ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
534 pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
535 using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
536 data->ana->fb_prediv_mask;
537
538 if (using_prediv)
539 ndiv *= 2;
540
541 return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
542 }
543
544 static void bcm2835_pll_off(struct clk_hw *hw)
545 {
546 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
547 struct bcm2835_cprman *cprman = pll->cprman;
548 const struct bcm2835_pll_data *data = pll->data;
549
550 spin_lock(&cprman->regs_lock);
551 cprman_write(cprman, data->cm_ctrl_reg,
552 cprman_read(cprman, data->cm_ctrl_reg) |
553 CM_PLL_ANARST);
554 cprman_write(cprman, data->a2w_ctrl_reg,
555 cprman_read(cprman, data->a2w_ctrl_reg) |
556 A2W_PLL_CTRL_PWRDN);
557 spin_unlock(&cprman->regs_lock);
558 }
559
560 static int bcm2835_pll_on(struct clk_hw *hw)
561 {
562 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
563 struct bcm2835_cprman *cprman = pll->cprman;
564 const struct bcm2835_pll_data *data = pll->data;
565 ktime_t timeout;
566
567 cprman_write(cprman, data->a2w_ctrl_reg,
568 cprman_read(cprman, data->a2w_ctrl_reg) &
569 ~A2W_PLL_CTRL_PWRDN);
570
571 /* Take the PLL out of reset. */
572 cprman_write(cprman, data->cm_ctrl_reg,
573 cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
574
575 /* Wait for the PLL to lock. */
576 timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
577 while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
578 if (ktime_after(ktime_get(), timeout)) {
579 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
580 clk_hw_get_name(hw));
581 return -ETIMEDOUT;
582 }
583
584 cpu_relax();
585 }
586
587 return 0;
588 }
589
590 static void
591 bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
592 {
593 int i;
594
595 /*
596 * ANA register setup is done as a series of writes to
597 * ANA3-ANA0, in that order. This lets us write all 4
598 * registers as a single cycle of the serdes interface (taking
599 * 100 xosc clocks), whereas if we were to update ana0, 1, and
600 * 3 individually through their partial-write registers, each
601 * would be their own serdes cycle.
602 */
603 for (i = 3; i >= 0; i--)
604 cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
605 }
606
607 static int bcm2835_pll_set_rate(struct clk_hw *hw,
608 unsigned long rate, unsigned long parent_rate)
609 {
610 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
611 struct bcm2835_cprman *cprman = pll->cprman;
612 const struct bcm2835_pll_data *data = pll->data;
613 bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
614 u32 ndiv, fdiv, a2w_ctl;
615 u32 ana[4];
616 int i;
617
618 if (rate > data->max_fb_rate) {
619 use_fb_prediv = true;
620 rate /= 2;
621 } else {
622 use_fb_prediv = false;
623 }
624
625 bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
626
627 for (i = 3; i >= 0; i--)
628 ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
629
630 was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
631
632 ana[0] &= ~data->ana->mask0;
633 ana[0] |= data->ana->set0;
634 ana[1] &= ~data->ana->mask1;
635 ana[1] |= data->ana->set1;
636 ana[3] &= ~data->ana->mask3;
637 ana[3] |= data->ana->set3;
638
639 if (was_using_prediv && !use_fb_prediv) {
640 ana[1] &= ~data->ana->fb_prediv_mask;
641 do_ana_setup_first = true;
642 } else if (!was_using_prediv && use_fb_prediv) {
643 ana[1] |= data->ana->fb_prediv_mask;
644 do_ana_setup_first = false;
645 } else {
646 do_ana_setup_first = true;
647 }
648
649 /* Unmask the reference clock from the oscillator. */
650 cprman_write(cprman, A2W_XOSC_CTRL,
651 cprman_read(cprman, A2W_XOSC_CTRL) |
652 data->reference_enable_mask);
653
654 if (do_ana_setup_first)
655 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
656
657 /* Set the PLL multiplier from the oscillator. */
658 cprman_write(cprman, data->frac_reg, fdiv);
659
660 a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
661 a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
662 a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
663 a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
664 a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
665 cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
666
667 if (!do_ana_setup_first)
668 bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
669
670 return 0;
671 }
672
673 static int bcm2835_pll_debug_init(struct clk_hw *hw,
674 struct dentry *dentry)
675 {
676 struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
677 struct bcm2835_cprman *cprman = pll->cprman;
678 const struct bcm2835_pll_data *data = pll->data;
679 struct debugfs_reg32 *regs;
680
681 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
682 if (!regs)
683 return -ENOMEM;
684
685 regs[0].name = "cm_ctrl";
686 regs[0].offset = data->cm_ctrl_reg;
687 regs[1].name = "a2w_ctrl";
688 regs[1].offset = data->a2w_ctrl_reg;
689 regs[2].name = "frac";
690 regs[2].offset = data->frac_reg;
691 regs[3].name = "ana0";
692 regs[3].offset = data->ana_reg_base + 0 * 4;
693 regs[4].name = "ana1";
694 regs[4].offset = data->ana_reg_base + 1 * 4;
695 regs[5].name = "ana2";
696 regs[5].offset = data->ana_reg_base + 2 * 4;
697 regs[6].name = "ana3";
698 regs[6].offset = data->ana_reg_base + 3 * 4;
699
700 return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
701 }
702
703 static const struct clk_ops bcm2835_pll_clk_ops = {
704 .is_prepared = bcm2835_pll_is_on,
705 .prepare = bcm2835_pll_on,
706 .unprepare = bcm2835_pll_off,
707 .recalc_rate = bcm2835_pll_get_rate,
708 .set_rate = bcm2835_pll_set_rate,
709 .round_rate = bcm2835_pll_round_rate,
710 .debug_init = bcm2835_pll_debug_init,
711 };
712
713 struct bcm2835_pll_divider {
714 struct clk_divider div;
715 struct bcm2835_cprman *cprman;
716 const struct bcm2835_pll_divider_data *data;
717 };
718
719 static struct bcm2835_pll_divider *
720 bcm2835_pll_divider_from_hw(struct clk_hw *hw)
721 {
722 return container_of(hw, struct bcm2835_pll_divider, div.hw);
723 }
724
725 static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
726 {
727 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
728 struct bcm2835_cprman *cprman = divider->cprman;
729 const struct bcm2835_pll_divider_data *data = divider->data;
730
731 return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
732 }
733
734 static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
735 unsigned long rate,
736 unsigned long *parent_rate)
737 {
738 return clk_divider_ops.round_rate(hw, rate, parent_rate);
739 }
740
741 static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
742 unsigned long parent_rate)
743 {
744 return clk_divider_ops.recalc_rate(hw, parent_rate);
745 }
746
747 static void bcm2835_pll_divider_off(struct clk_hw *hw)
748 {
749 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
750 struct bcm2835_cprman *cprman = divider->cprman;
751 const struct bcm2835_pll_divider_data *data = divider->data;
752
753 spin_lock(&cprman->regs_lock);
754 cprman_write(cprman, data->cm_reg,
755 (cprman_read(cprman, data->cm_reg) &
756 ~data->load_mask) | data->hold_mask);
757 cprman_write(cprman, data->a2w_reg,
758 cprman_read(cprman, data->a2w_reg) |
759 A2W_PLL_CHANNEL_DISABLE);
760 spin_unlock(&cprman->regs_lock);
761 }
762
763 static int bcm2835_pll_divider_on(struct clk_hw *hw)
764 {
765 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
766 struct bcm2835_cprman *cprman = divider->cprman;
767 const struct bcm2835_pll_divider_data *data = divider->data;
768
769 spin_lock(&cprman->regs_lock);
770 cprman_write(cprman, data->a2w_reg,
771 cprman_read(cprman, data->a2w_reg) &
772 ~A2W_PLL_CHANNEL_DISABLE);
773
774 cprman_write(cprman, data->cm_reg,
775 cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
776 spin_unlock(&cprman->regs_lock);
777
778 return 0;
779 }
780
781 static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
782 unsigned long rate,
783 unsigned long parent_rate)
784 {
785 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
786 struct bcm2835_cprman *cprman = divider->cprman;
787 const struct bcm2835_pll_divider_data *data = divider->data;
788 u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
789
790 div = DIV_ROUND_UP_ULL(parent_rate, rate);
791
792 div = min(div, max_div);
793 if (div == max_div)
794 div = 0;
795
796 cprman_write(cprman, data->a2w_reg, div);
797 cm = cprman_read(cprman, data->cm_reg);
798 cprman_write(cprman, data->cm_reg, cm | data->load_mask);
799 cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
800
801 return 0;
802 }
803
804 static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
805 struct dentry *dentry)
806 {
807 struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
808 struct bcm2835_cprman *cprman = divider->cprman;
809 const struct bcm2835_pll_divider_data *data = divider->data;
810 struct debugfs_reg32 *regs;
811
812 regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
813 if (!regs)
814 return -ENOMEM;
815
816 regs[0].name = "cm";
817 regs[0].offset = data->cm_reg;
818 regs[1].name = "a2w";
819 regs[1].offset = data->a2w_reg;
820
821 return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
822 }
823
824 static const struct clk_ops bcm2835_pll_divider_clk_ops = {
825 .is_prepared = bcm2835_pll_divider_is_on,
826 .prepare = bcm2835_pll_divider_on,
827 .unprepare = bcm2835_pll_divider_off,
828 .recalc_rate = bcm2835_pll_divider_get_rate,
829 .set_rate = bcm2835_pll_divider_set_rate,
830 .round_rate = bcm2835_pll_divider_round_rate,
831 .debug_init = bcm2835_pll_divider_debug_init,
832 };
833
834 /*
835 * The CM dividers do fixed-point division, so we can't use the
836 * generic integer divider code like the PLL dividers do (and we can't
837 * fake it by having some fixed shifts preceding it in the clock tree,
838 * because we'd run out of bits in a 32-bit unsigned long).
839 */
840 struct bcm2835_clock {
841 struct clk_hw hw;
842 struct bcm2835_cprman *cprman;
843 const struct bcm2835_clock_data *data;
844 };
845
846 static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
847 {
848 return container_of(hw, struct bcm2835_clock, hw);
849 }
850
851 static int bcm2835_clock_is_on(struct clk_hw *hw)
852 {
853 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
854 struct bcm2835_cprman *cprman = clock->cprman;
855 const struct bcm2835_clock_data *data = clock->data;
856
857 return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
858 }
859
860 static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
861 unsigned long rate,
862 unsigned long parent_rate,
863 bool round_up)
864 {
865 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
866 const struct bcm2835_clock_data *data = clock->data;
867 u32 unused_frac_mask =
868 GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
869 u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
870 u64 rem;
871 u32 div, mindiv, maxdiv;
872
873 rem = do_div(temp, rate);
874 div = temp;
875
876 /* Round up and mask off the unused bits */
877 if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
878 div += unused_frac_mask + 1;
879 div &= ~unused_frac_mask;
880
881 /* different clamping limits apply for a mash clock */
882 if (data->is_mash_clock) {
883 /* clamp to min divider of 2 */
884 mindiv = 2 << CM_DIV_FRAC_BITS;
885 /* clamp to the highest possible integer divider */
886 maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
887 } else {
888 /* clamp to min divider of 1 */
889 mindiv = 1 << CM_DIV_FRAC_BITS;
890 /* clamp to the highest possible fractional divider */
891 maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
892 CM_DIV_FRAC_BITS - data->frac_bits);
893 }
894
895 /* apply the clamping limits */
896 div = max_t(u32, div, mindiv);
897 div = min_t(u32, div, maxdiv);
898
899 return div;
900 }
901
902 static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
903 unsigned long parent_rate,
904 u32 div)
905 {
906 const struct bcm2835_clock_data *data = clock->data;
907 u64 temp;
908
909 /*
910 * The divisor is a 12.12 fixed point field, but only some of
911 * the bits are populated in any given clock.
912 */
913 div >>= CM_DIV_FRAC_BITS - data->frac_bits;
914 div &= (1 << (data->int_bits + data->frac_bits)) - 1;
915
916 if (div == 0)
917 return 0;
918
919 temp = (u64)parent_rate << data->frac_bits;
920
921 do_div(temp, div);
922
923 return temp;
924 }
925
926 static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
927 unsigned long parent_rate)
928 {
929 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
930 struct bcm2835_cprman *cprman = clock->cprman;
931 const struct bcm2835_clock_data *data = clock->data;
932 u32 div = cprman_read(cprman, data->div_reg);
933
934 return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
935 }
936
937 static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
938 {
939 struct bcm2835_cprman *cprman = clock->cprman;
940 const struct bcm2835_clock_data *data = clock->data;
941 ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
942
943 while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
944 if (ktime_after(ktime_get(), timeout)) {
945 dev_err(cprman->dev, "%s: couldn't lock PLL\n",
946 clk_hw_get_name(&clock->hw));
947 return;
948 }
949 cpu_relax();
950 }
951 }
952
953 static void bcm2835_clock_off(struct clk_hw *hw)
954 {
955 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
956 struct bcm2835_cprman *cprman = clock->cprman;
957 const struct bcm2835_clock_data *data = clock->data;
958
959 spin_lock(&cprman->regs_lock);
960 cprman_write(cprman, data->ctl_reg,
961 cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
962 spin_unlock(&cprman->regs_lock);
963
964 /* BUSY will remain high until the divider completes its cycle. */
965 bcm2835_clock_wait_busy(clock);
966 }
967
968 static int bcm2835_clock_on(struct clk_hw *hw)
969 {
970 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
971 struct bcm2835_cprman *cprman = clock->cprman;
972 const struct bcm2835_clock_data *data = clock->data;
973
974 spin_lock(&cprman->regs_lock);
975 cprman_write(cprman, data->ctl_reg,
976 cprman_read(cprman, data->ctl_reg) |
977 CM_ENABLE |
978 CM_GATE);
979 spin_unlock(&cprman->regs_lock);
980
981 return 0;
982 }
983
984 static int bcm2835_clock_set_rate(struct clk_hw *hw,
985 unsigned long rate, unsigned long parent_rate)
986 {
987 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
988 struct bcm2835_cprman *cprman = clock->cprman;
989 const struct bcm2835_clock_data *data = clock->data;
990 u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
991 u32 ctl;
992
993 spin_lock(&cprman->regs_lock);
994
995 /*
996 * Setting up frac support
997 *
998 * In principle it is recommended to stop/start the clock first,
999 * but as we set CLK_SET_RATE_GATE during registration of the
1000 * clock this requirement should be take care of by the
1001 * clk-framework.
1002 */
1003 ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1004 ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1005 cprman_write(cprman, data->ctl_reg, ctl);
1006
1007 cprman_write(cprman, data->div_reg, div);
1008
1009 spin_unlock(&cprman->regs_lock);
1010
1011 return 0;
1012 }
1013
1014 static bool
1015 bcm2835_clk_is_pllc(struct clk_hw *hw)
1016 {
1017 if (!hw)
1018 return false;
1019
1020 return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1021 }
1022
1023 static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1024 int parent_idx,
1025 unsigned long rate,
1026 u32 *div,
1027 unsigned long *prate)
1028 {
1029 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1030 struct bcm2835_cprman *cprman = clock->cprman;
1031 const struct bcm2835_clock_data *data = clock->data;
1032 unsigned long best_rate = 0;
1033 u32 curdiv, mindiv, maxdiv;
1034 struct clk_hw *parent;
1035
1036 parent = clk_hw_get_parent_by_index(hw, parent_idx);
1037
1038 if (!(BIT(parent_idx) & data->set_rate_parent)) {
1039 *prate = clk_hw_get_rate(parent);
1040 *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1041
1042 return bcm2835_clock_rate_from_divisor(clock, *prate,
1043 *div);
1044 }
1045
1046 if (data->frac_bits)
1047 dev_warn(cprman->dev,
1048 "frac bits are not used when propagating rate change");
1049
1050 /* clamp to min divider of 2 if we're dealing with a mash clock */
1051 mindiv = data->is_mash_clock ? 2 : 1;
1052 maxdiv = BIT(data->int_bits) - 1;
1053
1054 /* TODO: Be smart, and only test a subset of the available divisors. */
1055 for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1056 unsigned long tmp_rate;
1057
1058 tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1059 tmp_rate /= curdiv;
1060 if (curdiv == mindiv ||
1061 (tmp_rate > best_rate && tmp_rate <= rate))
1062 best_rate = tmp_rate;
1063
1064 if (best_rate == rate)
1065 break;
1066 }
1067
1068 *div = curdiv << CM_DIV_FRAC_BITS;
1069 *prate = curdiv * best_rate;
1070
1071 return best_rate;
1072 }
1073
1074 static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1075 struct clk_rate_request *req)
1076 {
1077 struct clk_hw *parent, *best_parent = NULL;
1078 bool current_parent_is_pllc;
1079 unsigned long rate, best_rate = 0;
1080 unsigned long prate, best_prate = 0;
1081 size_t i;
1082 u32 div;
1083
1084 current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1085
1086 /*
1087 * Select parent clock that results in the closest but lower rate
1088 */
1089 for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1090 parent = clk_hw_get_parent_by_index(hw, i);
1091 if (!parent)
1092 continue;
1093
1094 /*
1095 * Don't choose a PLLC-derived clock as our parent
1096 * unless it had been manually set that way. PLLC's
1097 * frequency gets adjusted by the firmware due to
1098 * over-temp or under-voltage conditions, without
1099 * prior notification to our clock consumer.
1100 */
1101 if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1102 continue;
1103
1104 rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1105 &div, &prate);
1106 if (rate > best_rate && rate <= req->rate) {
1107 best_parent = parent;
1108 best_prate = prate;
1109 best_rate = rate;
1110 }
1111 }
1112
1113 if (!best_parent)
1114 return -EINVAL;
1115
1116 req->best_parent_hw = best_parent;
1117 req->best_parent_rate = best_prate;
1118
1119 req->rate = best_rate;
1120
1121 return 0;
1122 }
1123
1124 static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1125 {
1126 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1127 struct bcm2835_cprman *cprman = clock->cprman;
1128 const struct bcm2835_clock_data *data = clock->data;
1129 u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1130
1131 cprman_write(cprman, data->ctl_reg, src);
1132 return 0;
1133 }
1134
1135 static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1136 {
1137 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1138 struct bcm2835_cprman *cprman = clock->cprman;
1139 const struct bcm2835_clock_data *data = clock->data;
1140 u32 src = cprman_read(cprman, data->ctl_reg);
1141
1142 return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1143 }
1144
1145 static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1146 {
1147 .name = "ctl",
1148 .offset = 0,
1149 },
1150 {
1151 .name = "div",
1152 .offset = 4,
1153 },
1154 };
1155
1156 static int bcm2835_clock_debug_init(struct clk_hw *hw,
1157 struct dentry *dentry)
1158 {
1159 struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1160 struct bcm2835_cprman *cprman = clock->cprman;
1161 const struct bcm2835_clock_data *data = clock->data;
1162
1163 return bcm2835_debugfs_regset(
1164 cprman, data->ctl_reg,
1165 bcm2835_debugfs_clock_reg32,
1166 ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1167 dentry);
1168 }
1169
1170 static const struct clk_ops bcm2835_clock_clk_ops = {
1171 .is_prepared = bcm2835_clock_is_on,
1172 .prepare = bcm2835_clock_on,
1173 .unprepare = bcm2835_clock_off,
1174 .recalc_rate = bcm2835_clock_get_rate,
1175 .set_rate = bcm2835_clock_set_rate,
1176 .determine_rate = bcm2835_clock_determine_rate,
1177 .set_parent = bcm2835_clock_set_parent,
1178 .get_parent = bcm2835_clock_get_parent,
1179 .debug_init = bcm2835_clock_debug_init,
1180 };
1181
1182 static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1183 {
1184 return true;
1185 }
1186
1187 /*
1188 * The VPU clock can never be disabled (it doesn't have an ENABLE
1189 * bit), so it gets its own set of clock ops.
1190 */
1191 static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1192 .is_prepared = bcm2835_vpu_clock_is_on,
1193 .recalc_rate = bcm2835_clock_get_rate,
1194 .set_rate = bcm2835_clock_set_rate,
1195 .determine_rate = bcm2835_clock_determine_rate,
1196 .set_parent = bcm2835_clock_set_parent,
1197 .get_parent = bcm2835_clock_get_parent,
1198 .debug_init = bcm2835_clock_debug_init,
1199 };
1200
1201 static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1202 const struct bcm2835_pll_data *data)
1203 {
1204 struct bcm2835_pll *pll;
1205 struct clk_init_data init;
1206 int ret;
1207
1208 memset(&init, 0, sizeof(init));
1209
1210 /* All of the PLLs derive from the external oscillator. */
1211 init.parent_names = &cprman->osc_name;
1212 init.num_parents = 1;
1213 init.name = data->name;
1214 init.ops = &bcm2835_pll_clk_ops;
1215 init.flags = CLK_IGNORE_UNUSED;
1216
1217 pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1218 if (!pll)
1219 return NULL;
1220
1221 pll->cprman = cprman;
1222 pll->data = data;
1223 pll->hw.init = &init;
1224
1225 ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1226 if (ret)
1227 return NULL;
1228 return &pll->hw;
1229 }
1230
1231 static struct clk_hw *
1232 bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1233 const struct bcm2835_pll_divider_data *data)
1234 {
1235 struct bcm2835_pll_divider *divider;
1236 struct clk_init_data init;
1237 const char *divider_name;
1238 int ret;
1239
1240 if (data->fixed_divider != 1) {
1241 divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1242 "%s_prediv", data->name);
1243 if (!divider_name)
1244 return NULL;
1245 } else {
1246 divider_name = data->name;
1247 }
1248
1249 memset(&init, 0, sizeof(init));
1250
1251 init.parent_names = &data->source_pll;
1252 init.num_parents = 1;
1253 init.name = divider_name;
1254 init.ops = &bcm2835_pll_divider_clk_ops;
1255 init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED;
1256
1257 divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1258 if (!divider)
1259 return NULL;
1260
1261 divider->div.reg = cprman->regs + data->a2w_reg;
1262 divider->div.shift = A2W_PLL_DIV_SHIFT;
1263 divider->div.width = A2W_PLL_DIV_BITS;
1264 divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1265 divider->div.lock = &cprman->regs_lock;
1266 divider->div.hw.init = &init;
1267 divider->div.table = NULL;
1268
1269 divider->cprman = cprman;
1270 divider->data = data;
1271
1272 ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1273 if (ret)
1274 return ERR_PTR(ret);
1275
1276 /*
1277 * PLLH's channels have a fixed divide by 10 afterwards, which
1278 * is what our consumers are actually using.
1279 */
1280 if (data->fixed_divider != 1) {
1281 return clk_hw_register_fixed_factor(cprman->dev, data->name,
1282 divider_name,
1283 CLK_SET_RATE_PARENT,
1284 1,
1285 data->fixed_divider);
1286 }
1287
1288 return &divider->div.hw;
1289 }
1290
1291 static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1292 const struct bcm2835_clock_data *data)
1293 {
1294 struct bcm2835_clock *clock;
1295 struct clk_init_data init;
1296 const char *parents[1 << CM_SRC_BITS];
1297 size_t i;
1298 int ret;
1299
1300 /*
1301 * Replace our "xosc" references with the oscillator's
1302 * actual name.
1303 */
1304 for (i = 0; i < data->num_mux_parents; i++) {
1305 if (strcmp(data->parents[i], "xosc") == 0)
1306 parents[i] = cprman->osc_name;
1307 else
1308 parents[i] = data->parents[i];
1309 }
1310
1311 memset(&init, 0, sizeof(init));
1312 init.parent_names = parents;
1313 init.num_parents = data->num_mux_parents;
1314 init.name = data->name;
1315 init.flags = data->flags | CLK_IGNORE_UNUSED;
1316
1317 /*
1318 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1319 * rate changes on at least of the parents.
1320 */
1321 if (data->set_rate_parent)
1322 init.flags |= CLK_SET_RATE_PARENT;
1323
1324 if (data->is_vpu_clock) {
1325 init.ops = &bcm2835_vpu_clock_clk_ops;
1326 } else {
1327 init.ops = &bcm2835_clock_clk_ops;
1328 init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1329
1330 /* If the clock wasn't actually enabled at boot, it's not
1331 * critical.
1332 */
1333 if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1334 init.flags &= ~CLK_IS_CRITICAL;
1335 }
1336
1337 clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1338 if (!clock)
1339 return NULL;
1340
1341 clock->cprman = cprman;
1342 clock->data = data;
1343 clock->hw.init = &init;
1344
1345 ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1346 if (ret)
1347 return ERR_PTR(ret);
1348 return &clock->hw;
1349 }
1350
1351 static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1352 const struct bcm2835_gate_data *data)
1353 {
1354 return clk_register_gate(cprman->dev, data->name, data->parent,
1355 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1356 cprman->regs + data->ctl_reg,
1357 CM_GATE_BIT, 0, &cprman->regs_lock);
1358 }
1359
1360 typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1361 const void *data);
1362 struct bcm2835_clk_desc {
1363 bcm2835_clk_register clk_register;
1364 const void *data;
1365 };
1366
1367 /* assignment helper macros for different clock types */
1368 #define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
1369 .data = __VA_ARGS__ }
1370 #define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
1371 &(struct bcm2835_pll_data) \
1372 {__VA_ARGS__})
1373 #define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
1374 &(struct bcm2835_pll_divider_data) \
1375 {__VA_ARGS__})
1376 #define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
1377 &(struct bcm2835_clock_data) \
1378 {__VA_ARGS__})
1379 #define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
1380 &(struct bcm2835_gate_data) \
1381 {__VA_ARGS__})
1382
1383 /* parent mux arrays plus helper macros */
1384
1385 /* main oscillator parent mux */
1386 static const char *const bcm2835_clock_osc_parents[] = {
1387 "gnd",
1388 "xosc",
1389 "testdebug0",
1390 "testdebug1"
1391 };
1392
1393 #define REGISTER_OSC_CLK(...) REGISTER_CLK( \
1394 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
1395 .parents = bcm2835_clock_osc_parents, \
1396 __VA_ARGS__)
1397
1398 /* main peripherial parent mux */
1399 static const char *const bcm2835_clock_per_parents[] = {
1400 "gnd",
1401 "xosc",
1402 "testdebug0",
1403 "testdebug1",
1404 "plla_per",
1405 "pllc_per",
1406 "plld_per",
1407 "pllh_aux",
1408 };
1409
1410 #define REGISTER_PER_CLK(...) REGISTER_CLK( \
1411 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
1412 .parents = bcm2835_clock_per_parents, \
1413 __VA_ARGS__)
1414
1415 /* main vpu parent mux */
1416 static const char *const bcm2835_clock_vpu_parents[] = {
1417 "gnd",
1418 "xosc",
1419 "testdebug0",
1420 "testdebug1",
1421 "plla_core",
1422 "pllc_core0",
1423 "plld_core",
1424 "pllh_aux",
1425 "pllc_core1",
1426 "pllc_core2",
1427 };
1428
1429 #define REGISTER_VPU_CLK(...) REGISTER_CLK( \
1430 .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
1431 .parents = bcm2835_clock_vpu_parents, \
1432 __VA_ARGS__)
1433
1434 /*
1435 * the real definition of all the pll, pll_dividers and clocks
1436 * these make use of the above REGISTER_* macros
1437 */
1438 static const struct bcm2835_clk_desc clk_desc_array[] = {
1439 /* the PLL + PLL dividers */
1440
1441 /*
1442 * PLLA is the auxiliary PLL, used to drive the CCP2
1443 * (Compact Camera Port 2) transmitter clock.
1444 *
1445 * It is in the PX LDO power domain, which is on when the
1446 * AUDIO domain is on.
1447 */
1448 [BCM2835_PLLA] = REGISTER_PLL(
1449 .name = "plla",
1450 .cm_ctrl_reg = CM_PLLA,
1451 .a2w_ctrl_reg = A2W_PLLA_CTRL,
1452 .frac_reg = A2W_PLLA_FRAC,
1453 .ana_reg_base = A2W_PLLA_ANA0,
1454 .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1455 .lock_mask = CM_LOCK_FLOCKA,
1456
1457 .ana = &bcm2835_ana_default,
1458
1459 .min_rate = 600000000u,
1460 .max_rate = 2400000000u,
1461 .max_fb_rate = BCM2835_MAX_FB_RATE),
1462 [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
1463 .name = "plla_core",
1464 .source_pll = "plla",
1465 .cm_reg = CM_PLLA,
1466 .a2w_reg = A2W_PLLA_CORE,
1467 .load_mask = CM_PLLA_LOADCORE,
1468 .hold_mask = CM_PLLA_HOLDCORE,
1469 .fixed_divider = 1),
1470 [BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
1471 .name = "plla_per",
1472 .source_pll = "plla",
1473 .cm_reg = CM_PLLA,
1474 .a2w_reg = A2W_PLLA_PER,
1475 .load_mask = CM_PLLA_LOADPER,
1476 .hold_mask = CM_PLLA_HOLDPER,
1477 .fixed_divider = 1),
1478 [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
1479 .name = "plla_dsi0",
1480 .source_pll = "plla",
1481 .cm_reg = CM_PLLA,
1482 .a2w_reg = A2W_PLLA_DSI0,
1483 .load_mask = CM_PLLA_LOADDSI0,
1484 .hold_mask = CM_PLLA_HOLDDSI0,
1485 .fixed_divider = 1),
1486 [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
1487 .name = "plla_ccp2",
1488 .source_pll = "plla",
1489 .cm_reg = CM_PLLA,
1490 .a2w_reg = A2W_PLLA_CCP2,
1491 .load_mask = CM_PLLA_LOADCCP2,
1492 .hold_mask = CM_PLLA_HOLDCCP2,
1493 .fixed_divider = 1),
1494
1495 /* PLLB is used for the ARM's clock. */
1496 [BCM2835_PLLB] = REGISTER_PLL(
1497 .name = "pllb",
1498 .cm_ctrl_reg = CM_PLLB,
1499 .a2w_ctrl_reg = A2W_PLLB_CTRL,
1500 .frac_reg = A2W_PLLB_FRAC,
1501 .ana_reg_base = A2W_PLLB_ANA0,
1502 .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1503 .lock_mask = CM_LOCK_FLOCKB,
1504
1505 .ana = &bcm2835_ana_default,
1506
1507 .min_rate = 600000000u,
1508 .max_rate = 3000000000u,
1509 .max_fb_rate = BCM2835_MAX_FB_RATE),
1510 [BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
1511 .name = "pllb_arm",
1512 .source_pll = "pllb",
1513 .cm_reg = CM_PLLB,
1514 .a2w_reg = A2W_PLLB_ARM,
1515 .load_mask = CM_PLLB_LOADARM,
1516 .hold_mask = CM_PLLB_HOLDARM,
1517 .fixed_divider = 1),
1518
1519 /*
1520 * PLLC is the core PLL, used to drive the core VPU clock.
1521 *
1522 * It is in the PX LDO power domain, which is on when the
1523 * AUDIO domain is on.
1524 */
1525 [BCM2835_PLLC] = REGISTER_PLL(
1526 .name = "pllc",
1527 .cm_ctrl_reg = CM_PLLC,
1528 .a2w_ctrl_reg = A2W_PLLC_CTRL,
1529 .frac_reg = A2W_PLLC_FRAC,
1530 .ana_reg_base = A2W_PLLC_ANA0,
1531 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1532 .lock_mask = CM_LOCK_FLOCKC,
1533
1534 .ana = &bcm2835_ana_default,
1535
1536 .min_rate = 600000000u,
1537 .max_rate = 3000000000u,
1538 .max_fb_rate = BCM2835_MAX_FB_RATE),
1539 [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
1540 .name = "pllc_core0",
1541 .source_pll = "pllc",
1542 .cm_reg = CM_PLLC,
1543 .a2w_reg = A2W_PLLC_CORE0,
1544 .load_mask = CM_PLLC_LOADCORE0,
1545 .hold_mask = CM_PLLC_HOLDCORE0,
1546 .fixed_divider = 1),
1547 [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
1548 .name = "pllc_core1",
1549 .source_pll = "pllc",
1550 .cm_reg = CM_PLLC,
1551 .a2w_reg = A2W_PLLC_CORE1,
1552 .load_mask = CM_PLLC_LOADCORE1,
1553 .hold_mask = CM_PLLC_HOLDCORE1,
1554 .fixed_divider = 1),
1555 [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
1556 .name = "pllc_core2",
1557 .source_pll = "pllc",
1558 .cm_reg = CM_PLLC,
1559 .a2w_reg = A2W_PLLC_CORE2,
1560 .load_mask = CM_PLLC_LOADCORE2,
1561 .hold_mask = CM_PLLC_HOLDCORE2,
1562 .fixed_divider = 1),
1563 [BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
1564 .name = "pllc_per",
1565 .source_pll = "pllc",
1566 .cm_reg = CM_PLLC,
1567 .a2w_reg = A2W_PLLC_PER,
1568 .load_mask = CM_PLLC_LOADPER,
1569 .hold_mask = CM_PLLC_HOLDPER,
1570 .fixed_divider = 1),
1571
1572 /*
1573 * PLLD is the display PLL, used to drive DSI display panels.
1574 *
1575 * It is in the PX LDO power domain, which is on when the
1576 * AUDIO domain is on.
1577 */
1578 [BCM2835_PLLD] = REGISTER_PLL(
1579 .name = "plld",
1580 .cm_ctrl_reg = CM_PLLD,
1581 .a2w_ctrl_reg = A2W_PLLD_CTRL,
1582 .frac_reg = A2W_PLLD_FRAC,
1583 .ana_reg_base = A2W_PLLD_ANA0,
1584 .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1585 .lock_mask = CM_LOCK_FLOCKD,
1586
1587 .ana = &bcm2835_ana_default,
1588
1589 .min_rate = 600000000u,
1590 .max_rate = 2400000000u,
1591 .max_fb_rate = BCM2835_MAX_FB_RATE),
1592 [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
1593 .name = "plld_core",
1594 .source_pll = "plld",
1595 .cm_reg = CM_PLLD,
1596 .a2w_reg = A2W_PLLD_CORE,
1597 .load_mask = CM_PLLD_LOADCORE,
1598 .hold_mask = CM_PLLD_HOLDCORE,
1599 .fixed_divider = 1),
1600 [BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
1601 .name = "plld_per",
1602 .source_pll = "plld",
1603 .cm_reg = CM_PLLD,
1604 .a2w_reg = A2W_PLLD_PER,
1605 .load_mask = CM_PLLD_LOADPER,
1606 .hold_mask = CM_PLLD_HOLDPER,
1607 .fixed_divider = 1),
1608 [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
1609 .name = "plld_dsi0",
1610 .source_pll = "plld",
1611 .cm_reg = CM_PLLD,
1612 .a2w_reg = A2W_PLLD_DSI0,
1613 .load_mask = CM_PLLD_LOADDSI0,
1614 .hold_mask = CM_PLLD_HOLDDSI0,
1615 .fixed_divider = 1),
1616 [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
1617 .name = "plld_dsi1",
1618 .source_pll = "plld",
1619 .cm_reg = CM_PLLD,
1620 .a2w_reg = A2W_PLLD_DSI1,
1621 .load_mask = CM_PLLD_LOADDSI1,
1622 .hold_mask = CM_PLLD_HOLDDSI1,
1623 .fixed_divider = 1),
1624
1625 /*
1626 * PLLH is used to supply the pixel clock or the AUX clock for the
1627 * TV encoder.
1628 *
1629 * It is in the HDMI power domain.
1630 */
1631 [BCM2835_PLLH] = REGISTER_PLL(
1632 "pllh",
1633 .cm_ctrl_reg = CM_PLLH,
1634 .a2w_ctrl_reg = A2W_PLLH_CTRL,
1635 .frac_reg = A2W_PLLH_FRAC,
1636 .ana_reg_base = A2W_PLLH_ANA0,
1637 .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1638 .lock_mask = CM_LOCK_FLOCKH,
1639
1640 .ana = &bcm2835_ana_pllh,
1641
1642 .min_rate = 600000000u,
1643 .max_rate = 3000000000u,
1644 .max_fb_rate = BCM2835_MAX_FB_RATE),
1645 [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
1646 .name = "pllh_rcal",
1647 .source_pll = "pllh",
1648 .cm_reg = CM_PLLH,
1649 .a2w_reg = A2W_PLLH_RCAL,
1650 .load_mask = CM_PLLH_LOADRCAL,
1651 .hold_mask = 0,
1652 .fixed_divider = 10),
1653 [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
1654 .name = "pllh_aux",
1655 .source_pll = "pllh",
1656 .cm_reg = CM_PLLH,
1657 .a2w_reg = A2W_PLLH_AUX,
1658 .load_mask = CM_PLLH_LOADAUX,
1659 .hold_mask = 0,
1660 .fixed_divider = 1),
1661 [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
1662 .name = "pllh_pix",
1663 .source_pll = "pllh",
1664 .cm_reg = CM_PLLH,
1665 .a2w_reg = A2W_PLLH_PIX,
1666 .load_mask = CM_PLLH_LOADPIX,
1667 .hold_mask = 0,
1668 .fixed_divider = 10),
1669
1670 /* the clocks */
1671
1672 /* clocks with oscillator parent mux */
1673
1674 /* One Time Programmable Memory clock. Maximum 10Mhz. */
1675 [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
1676 .name = "otp",
1677 .ctl_reg = CM_OTPCTL,
1678 .div_reg = CM_OTPDIV,
1679 .int_bits = 4,
1680 .frac_bits = 0),
1681 /*
1682 * Used for a 1Mhz clock for the system clocksource, and also used
1683 * bythe watchdog timer and the camera pulse generator.
1684 */
1685 [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
1686 .name = "timer",
1687 .ctl_reg = CM_TIMERCTL,
1688 .div_reg = CM_TIMERDIV,
1689 .int_bits = 6,
1690 .frac_bits = 12),
1691 /*
1692 * Clock for the temperature sensor.
1693 * Generally run at 2Mhz, max 5Mhz.
1694 */
1695 [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
1696 .name = "tsens",
1697 .ctl_reg = CM_TSENSCTL,
1698 .div_reg = CM_TSENSDIV,
1699 .int_bits = 5,
1700 .frac_bits = 0),
1701 [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
1702 .name = "tec",
1703 .ctl_reg = CM_TECCTL,
1704 .div_reg = CM_TECDIV,
1705 .int_bits = 6,
1706 .frac_bits = 0),
1707
1708 /* clocks with vpu parent mux */
1709 [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
1710 .name = "h264",
1711 .ctl_reg = CM_H264CTL,
1712 .div_reg = CM_H264DIV,
1713 .int_bits = 4,
1714 .frac_bits = 8),
1715 [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
1716 .name = "isp",
1717 .ctl_reg = CM_ISPCTL,
1718 .div_reg = CM_ISPDIV,
1719 .int_bits = 4,
1720 .frac_bits = 8),
1721
1722 /*
1723 * Secondary SDRAM clock. Used for low-voltage modes when the PLL
1724 * in the SDRAM controller can't be used.
1725 */
1726 [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
1727 .name = "sdram",
1728 .ctl_reg = CM_SDCCTL,
1729 .div_reg = CM_SDCDIV,
1730 .int_bits = 6,
1731 .frac_bits = 0),
1732 [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
1733 .name = "v3d",
1734 .ctl_reg = CM_V3DCTL,
1735 .div_reg = CM_V3DDIV,
1736 .int_bits = 4,
1737 .frac_bits = 8),
1738 /*
1739 * VPU clock. This doesn't have an enable bit, since it drives
1740 * the bus for everything else, and is special so it doesn't need
1741 * to be gated for rate changes. It is also known as "clk_audio"
1742 * in various hardware documentation.
1743 */
1744 [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
1745 .name = "vpu",
1746 .ctl_reg = CM_VPUCTL,
1747 .div_reg = CM_VPUDIV,
1748 .int_bits = 12,
1749 .frac_bits = 8,
1750 .flags = CLK_IS_CRITICAL,
1751 .is_vpu_clock = true),
1752
1753 /* clocks with per parent mux */
1754 [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
1755 .name = "aveo",
1756 .ctl_reg = CM_AVEOCTL,
1757 .div_reg = CM_AVEODIV,
1758 .int_bits = 4,
1759 .frac_bits = 0),
1760 [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
1761 .name = "cam0",
1762 .ctl_reg = CM_CAM0CTL,
1763 .div_reg = CM_CAM0DIV,
1764 .int_bits = 4,
1765 .frac_bits = 8),
1766 [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
1767 .name = "cam1",
1768 .ctl_reg = CM_CAM1CTL,
1769 .div_reg = CM_CAM1DIV,
1770 .int_bits = 4,
1771 .frac_bits = 8),
1772 [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
1773 .name = "dft",
1774 .ctl_reg = CM_DFTCTL,
1775 .div_reg = CM_DFTDIV,
1776 .int_bits = 5,
1777 .frac_bits = 0),
1778 [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
1779 .name = "dpi",
1780 .ctl_reg = CM_DPICTL,
1781 .div_reg = CM_DPIDIV,
1782 .int_bits = 4,
1783 .frac_bits = 8),
1784
1785 /* Arasan EMMC clock */
1786 [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
1787 .name = "emmc",
1788 .ctl_reg = CM_EMMCCTL,
1789 .div_reg = CM_EMMCDIV,
1790 .int_bits = 4,
1791 .frac_bits = 8),
1792
1793 /* General purpose (GPIO) clocks */
1794 [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
1795 .name = "gp0",
1796 .ctl_reg = CM_GP0CTL,
1797 .div_reg = CM_GP0DIV,
1798 .int_bits = 12,
1799 .frac_bits = 12,
1800 .is_mash_clock = true),
1801 [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
1802 .name = "gp1",
1803 .ctl_reg = CM_GP1CTL,
1804 .div_reg = CM_GP1DIV,
1805 .int_bits = 12,
1806 .frac_bits = 12,
1807 .flags = CLK_IS_CRITICAL,
1808 .is_mash_clock = true),
1809 [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
1810 .name = "gp2",
1811 .ctl_reg = CM_GP2CTL,
1812 .div_reg = CM_GP2DIV,
1813 .int_bits = 12,
1814 .frac_bits = 12,
1815 .flags = CLK_IS_CRITICAL),
1816
1817 /* HDMI state machine */
1818 [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
1819 .name = "hsm",
1820 .ctl_reg = CM_HSMCTL,
1821 .div_reg = CM_HSMDIV,
1822 .int_bits = 4,
1823 .frac_bits = 8),
1824 [BCM2835_CLOCK_PCM] = REGISTER_PER_CLK(
1825 .name = "pcm",
1826 .ctl_reg = CM_PCMCTL,
1827 .div_reg = CM_PCMDIV,
1828 .int_bits = 12,
1829 .frac_bits = 12,
1830 .is_mash_clock = true),
1831 [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
1832 .name = "pwm",
1833 .ctl_reg = CM_PWMCTL,
1834 .div_reg = CM_PWMDIV,
1835 .int_bits = 12,
1836 .frac_bits = 12,
1837 .is_mash_clock = true),
1838 [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
1839 .name = "slim",
1840 .ctl_reg = CM_SLIMCTL,
1841 .div_reg = CM_SLIMDIV,
1842 .int_bits = 12,
1843 .frac_bits = 12,
1844 .is_mash_clock = true),
1845 [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
1846 .name = "smi",
1847 .ctl_reg = CM_SMICTL,
1848 .div_reg = CM_SMIDIV,
1849 .int_bits = 4,
1850 .frac_bits = 8),
1851 [BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
1852 .name = "uart",
1853 .ctl_reg = CM_UARTCTL,
1854 .div_reg = CM_UARTDIV,
1855 .int_bits = 10,
1856 .frac_bits = 12),
1857
1858 /* TV encoder clock. Only operating frequency is 108Mhz. */
1859 [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
1860 .name = "vec",
1861 .ctl_reg = CM_VECCTL,
1862 .div_reg = CM_VECDIV,
1863 .int_bits = 4,
1864 .frac_bits = 0,
1865 /*
1866 * Allow rate change propagation only on PLLH_AUX which is
1867 * assigned index 7 in the parent array.
1868 */
1869 .set_rate_parent = BIT(7)),
1870
1871 /* dsi clocks */
1872 [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
1873 .name = "dsi0e",
1874 .ctl_reg = CM_DSI0ECTL,
1875 .div_reg = CM_DSI0EDIV,
1876 .int_bits = 4,
1877 .frac_bits = 8),
1878 [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
1879 .name = "dsi1e",
1880 .ctl_reg = CM_DSI1ECTL,
1881 .div_reg = CM_DSI1EDIV,
1882 .int_bits = 4,
1883 .frac_bits = 8),
1884
1885 /* the gates */
1886
1887 /*
1888 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
1889 * you have the debug bit set in the power manager, which we
1890 * don't bother exposing) are individual gates off of the
1891 * non-stop vpu clock.
1892 */
1893 [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
1894 .name = "peri_image",
1895 .parent = "vpu",
1896 .ctl_reg = CM_PERIICTL),
1897 };
1898
1899 /*
1900 * Permanently take a reference on the parent of the SDRAM clock.
1901 *
1902 * While the SDRAM is being driven by its dedicated PLL most of the
1903 * time, there is a little loop running in the firmware that
1904 * periodically switches the SDRAM to using our CM clock to do PVT
1905 * recalibration, with the assumption that the previously configured
1906 * SDRAM parent is still enabled and running.
1907 */
1908 static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
1909 {
1910 struct clk *parent = clk_get_parent(sdc);
1911
1912 if (IS_ERR(parent))
1913 return PTR_ERR(parent);
1914
1915 return clk_prepare_enable(parent);
1916 }
1917
1918 static int bcm2835_clk_probe(struct platform_device *pdev)
1919 {
1920 struct device *dev = &pdev->dev;
1921 struct clk_hw **hws;
1922 struct bcm2835_cprman *cprman;
1923 struct resource *res;
1924 const struct bcm2835_clk_desc *desc;
1925 const size_t asize = ARRAY_SIZE(clk_desc_array);
1926 size_t i;
1927 int ret;
1928
1929 cprman = devm_kzalloc(dev, sizeof(*cprman) +
1930 sizeof(*cprman->onecell.hws) * asize,
1931 GFP_KERNEL);
1932 if (!cprman)
1933 return -ENOMEM;
1934
1935 spin_lock_init(&cprman->regs_lock);
1936 cprman->dev = dev;
1937 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1938 cprman->regs = devm_ioremap_resource(dev, res);
1939 if (IS_ERR(cprman->regs))
1940 return PTR_ERR(cprman->regs);
1941
1942 cprman->osc_name = of_clk_get_parent_name(dev->of_node, 0);
1943 if (!cprman->osc_name)
1944 return -ENODEV;
1945
1946 platform_set_drvdata(pdev, cprman);
1947
1948 cprman->onecell.num = asize;
1949 hws = cprman->onecell.hws;
1950
1951 for (i = 0; i < asize; i++) {
1952 desc = &clk_desc_array[i];
1953 if (desc->clk_register && desc->data)
1954 hws[i] = desc->clk_register(cprman, desc->data);
1955 }
1956
1957 ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
1958 if (ret)
1959 return ret;
1960
1961 return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
1962 &cprman->onecell);
1963 }
1964
1965 static const struct of_device_id bcm2835_clk_of_match[] = {
1966 { .compatible = "brcm,bcm2835-cprman", },
1967 {}
1968 };
1969 MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
1970
1971 static struct platform_driver bcm2835_clk_driver = {
1972 .driver = {
1973 .name = "bcm2835-clk",
1974 .of_match_table = bcm2835_clk_of_match,
1975 },
1976 .probe = bcm2835_clk_probe,
1977 };
1978
1979 builtin_platform_driver(bcm2835_clk_driver);
1980
1981 MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
1982 MODULE_DESCRIPTION("BCM2835 clock driver");
1983 MODULE_LICENSE("GPL v2");