]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/clk/clk-versaclock5.c
Merge tag 'for-linus-5.16-1' of https://github.com/cminyard/linux-ipmi
[mirror_ubuntu-kernels.git] / drivers / clk / clk-versaclock5.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for IDT Versaclock 5
4 *
5 * Copyright (C) 2017 Marek Vasut <marek.vasut@gmail.com>
6 */
7
8 /*
9 * Possible optimizations:
10 * - Use spread spectrum
11 * - Use integer divider in FOD if applicable
12 */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/i2c.h>
18 #include <linux/interrupt.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_platform.h>
23 #include <linux/rational.h>
24 #include <linux/regmap.h>
25 #include <linux/slab.h>
26
27 #include <dt-bindings/clk/versaclock.h>
28
29 /* VersaClock5 registers */
30 #define VC5_OTP_CONTROL 0x00
31
32 /* Factory-reserved register block */
33 #define VC5_RSVD_DEVICE_ID 0x01
34 #define VC5_RSVD_ADC_GAIN_7_0 0x02
35 #define VC5_RSVD_ADC_GAIN_15_8 0x03
36 #define VC5_RSVD_ADC_OFFSET_7_0 0x04
37 #define VC5_RSVD_ADC_OFFSET_15_8 0x05
38 #define VC5_RSVD_TEMPY 0x06
39 #define VC5_RSVD_OFFSET_TBIN 0x07
40 #define VC5_RSVD_GAIN 0x08
41 #define VC5_RSVD_TEST_NP 0x09
42 #define VC5_RSVD_UNUSED 0x0a
43 #define VC5_RSVD_BANDGAP_TRIM_UP 0x0b
44 #define VC5_RSVD_BANDGAP_TRIM_DN 0x0c
45 #define VC5_RSVD_CLK_R_12_CLK_AMP_4 0x0d
46 #define VC5_RSVD_CLK_R_34_CLK_AMP_4 0x0e
47 #define VC5_RSVD_CLK_AMP_123 0x0f
48
49 /* Configuration register block */
50 #define VC5_PRIM_SRC_SHDN 0x10
51 #define VC5_PRIM_SRC_SHDN_EN_XTAL BIT(7)
52 #define VC5_PRIM_SRC_SHDN_EN_CLKIN BIT(6)
53 #define VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ BIT(3)
54 #define VC5_PRIM_SRC_SHDN_SP BIT(1)
55 #define VC5_PRIM_SRC_SHDN_EN_GBL_SHDN BIT(0)
56
57 #define VC5_VCO_BAND 0x11
58 #define VC5_XTAL_X1_LOAD_CAP 0x12
59 #define VC5_XTAL_X2_LOAD_CAP 0x13
60 #define VC5_REF_DIVIDER 0x15
61 #define VC5_REF_DIVIDER_SEL_PREDIV2 BIT(7)
62 #define VC5_REF_DIVIDER_REF_DIV(n) ((n) & 0x3f)
63
64 #define VC5_VCO_CTRL_AND_PREDIV 0x16
65 #define VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV BIT(7)
66
67 #define VC5_FEEDBACK_INT_DIV 0x17
68 #define VC5_FEEDBACK_INT_DIV_BITS 0x18
69 #define VC5_FEEDBACK_FRAC_DIV(n) (0x19 + (n))
70 #define VC5_RC_CONTROL0 0x1e
71 #define VC5_RC_CONTROL1 0x1f
72
73 /* These registers are named "Unused Factory Reserved Registers" */
74 #define VC5_RESERVED_X0(idx) (0x20 + ((idx) * 0x10))
75 #define VC5_RESERVED_X0_BYPASS_SYNC BIT(7) /* bypass_sync<idx> bit */
76
77 /* Output divider control for divider 1,2,3,4 */
78 #define VC5_OUT_DIV_CONTROL(idx) (0x21 + ((idx) * 0x10))
79 #define VC5_OUT_DIV_CONTROL_RESET BIT(7)
80 #define VC5_OUT_DIV_CONTROL_SELB_NORM BIT(3)
81 #define VC5_OUT_DIV_CONTROL_SEL_EXT BIT(2)
82 #define VC5_OUT_DIV_CONTROL_INT_MODE BIT(1)
83 #define VC5_OUT_DIV_CONTROL_EN_FOD BIT(0)
84
85 #define VC5_OUT_DIV_FRAC(idx, n) (0x22 + ((idx) * 0x10) + (n))
86 #define VC5_OUT_DIV_FRAC4_OD_SCEE BIT(1)
87
88 #define VC5_OUT_DIV_STEP_SPREAD(idx, n) (0x26 + ((idx) * 0x10) + (n))
89 #define VC5_OUT_DIV_SPREAD_MOD(idx, n) (0x29 + ((idx) * 0x10) + (n))
90 #define VC5_OUT_DIV_SKEW_INT(idx, n) (0x2b + ((idx) * 0x10) + (n))
91 #define VC5_OUT_DIV_INT(idx, n) (0x2d + ((idx) * 0x10) + (n))
92 #define VC5_OUT_DIV_SKEW_FRAC(idx) (0x2f + ((idx) * 0x10))
93
94 /* Clock control register for clock 1,2 */
95 #define VC5_CLK_OUTPUT_CFG(idx, n) (0x60 + ((idx) * 0x2) + (n))
96 #define VC5_CLK_OUTPUT_CFG0_CFG_SHIFT 5
97 #define VC5_CLK_OUTPUT_CFG0_CFG_MASK GENMASK(7, VC5_CLK_OUTPUT_CFG0_CFG_SHIFT)
98
99 #define VC5_CLK_OUTPUT_CFG0_CFG_LVPECL (VC5_LVPECL)
100 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS (VC5_CMOS)
101 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL33 (VC5_HCSL33)
102 #define VC5_CLK_OUTPUT_CFG0_CFG_LVDS (VC5_LVDS)
103 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOS2 (VC5_CMOS2)
104 #define VC5_CLK_OUTPUT_CFG0_CFG_CMOSD (VC5_CMOSD)
105 #define VC5_CLK_OUTPUT_CFG0_CFG_HCSL25 (VC5_HCSL25)
106
107 #define VC5_CLK_OUTPUT_CFG0_PWR_SHIFT 3
108 #define VC5_CLK_OUTPUT_CFG0_PWR_MASK GENMASK(4, VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
109 #define VC5_CLK_OUTPUT_CFG0_PWR_18 (0<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
110 #define VC5_CLK_OUTPUT_CFG0_PWR_25 (2<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
111 #define VC5_CLK_OUTPUT_CFG0_PWR_33 (3<<VC5_CLK_OUTPUT_CFG0_PWR_SHIFT)
112 #define VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT 0
113 #define VC5_CLK_OUTPUT_CFG0_SLEW_MASK GENMASK(1, VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
114 #define VC5_CLK_OUTPUT_CFG0_SLEW_80 (0<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
115 #define VC5_CLK_OUTPUT_CFG0_SLEW_85 (1<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
116 #define VC5_CLK_OUTPUT_CFG0_SLEW_90 (2<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
117 #define VC5_CLK_OUTPUT_CFG0_SLEW_100 (3<<VC5_CLK_OUTPUT_CFG0_SLEW_SHIFT)
118 #define VC5_CLK_OUTPUT_CFG1_EN_CLKBUF BIT(0)
119
120 #define VC5_CLK_OE_SHDN 0x68
121 #define VC5_CLK_OS_SHDN 0x69
122
123 #define VC5_GLOBAL_REGISTER 0x76
124 #define VC5_GLOBAL_REGISTER_GLOBAL_RESET BIT(5)
125
126 /* PLL/VCO runs between 2.5 GHz and 3.0 GHz */
127 #define VC5_PLL_VCO_MIN 2500000000UL
128 #define VC5_PLL_VCO_MAX 3000000000UL
129
130 /* VC5 Input mux settings */
131 #define VC5_MUX_IN_XIN BIT(0)
132 #define VC5_MUX_IN_CLKIN BIT(1)
133
134 /* Maximum number of clk_out supported by this driver */
135 #define VC5_MAX_CLK_OUT_NUM 5
136
137 /* Maximum number of FODs supported by this driver */
138 #define VC5_MAX_FOD_NUM 4
139
140 /* flags to describe chip features */
141 /* chip has built-in oscilator */
142 #define VC5_HAS_INTERNAL_XTAL BIT(0)
143 /* chip has PFD requency doubler */
144 #define VC5_HAS_PFD_FREQ_DBL BIT(1)
145 /* chip has bits to disable FOD sync */
146 #define VC5_HAS_BYPASS_SYNC_BIT BIT(2)
147
148 /* Supported IDT VC5 models. */
149 enum vc5_model {
150 IDT_VC5_5P49V5923,
151 IDT_VC5_5P49V5925,
152 IDT_VC5_5P49V5933,
153 IDT_VC5_5P49V5935,
154 IDT_VC6_5P49V6901,
155 IDT_VC6_5P49V6965,
156 };
157
158 /* Structure to describe features of a particular VC5 model */
159 struct vc5_chip_info {
160 const enum vc5_model model;
161 const unsigned int clk_fod_cnt;
162 const unsigned int clk_out_cnt;
163 const u32 flags;
164 };
165
166 struct vc5_driver_data;
167
168 struct vc5_hw_data {
169 struct clk_hw hw;
170 struct vc5_driver_data *vc5;
171 u32 div_int;
172 u32 div_frc;
173 unsigned int num;
174 };
175
176 struct vc5_out_data {
177 struct clk_hw hw;
178 struct vc5_driver_data *vc5;
179 unsigned int num;
180 unsigned int clk_output_cfg0;
181 unsigned int clk_output_cfg0_mask;
182 };
183
184 struct vc5_driver_data {
185 struct i2c_client *client;
186 struct regmap *regmap;
187 const struct vc5_chip_info *chip_info;
188
189 struct clk *pin_xin;
190 struct clk *pin_clkin;
191 unsigned char clk_mux_ins;
192 struct clk_hw clk_mux;
193 struct clk_hw clk_mul;
194 struct clk_hw clk_pfd;
195 struct vc5_hw_data clk_pll;
196 struct vc5_hw_data clk_fod[VC5_MAX_FOD_NUM];
197 struct vc5_out_data clk_out[VC5_MAX_CLK_OUT_NUM];
198 };
199
200 /*
201 * VersaClock5 i2c regmap
202 */
203 static bool vc5_regmap_is_writeable(struct device *dev, unsigned int reg)
204 {
205 /* Factory reserved regs, make them read-only */
206 if (reg <= 0xf)
207 return false;
208
209 /* Factory reserved regs, make them read-only */
210 if (reg == 0x14 || reg == 0x1c || reg == 0x1d)
211 return false;
212
213 return true;
214 }
215
216 static const struct regmap_config vc5_regmap_config = {
217 .reg_bits = 8,
218 .val_bits = 8,
219 .cache_type = REGCACHE_RBTREE,
220 .max_register = 0x76,
221 .writeable_reg = vc5_regmap_is_writeable,
222 };
223
224 /*
225 * VersaClock5 input multiplexer between XTAL and CLKIN divider
226 */
227 static unsigned char vc5_mux_get_parent(struct clk_hw *hw)
228 {
229 struct vc5_driver_data *vc5 =
230 container_of(hw, struct vc5_driver_data, clk_mux);
231 const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
232 unsigned int src;
233
234 regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &src);
235 src &= mask;
236
237 if (src == VC5_PRIM_SRC_SHDN_EN_XTAL)
238 return 0;
239
240 if (src == VC5_PRIM_SRC_SHDN_EN_CLKIN)
241 return 1;
242
243 dev_warn(&vc5->client->dev,
244 "Invalid clock input configuration (%02x)\n", src);
245 return 0;
246 }
247
248 static int vc5_mux_set_parent(struct clk_hw *hw, u8 index)
249 {
250 struct vc5_driver_data *vc5 =
251 container_of(hw, struct vc5_driver_data, clk_mux);
252 const u8 mask = VC5_PRIM_SRC_SHDN_EN_XTAL | VC5_PRIM_SRC_SHDN_EN_CLKIN;
253 u8 src;
254
255 if ((index > 1) || !vc5->clk_mux_ins)
256 return -EINVAL;
257
258 if (vc5->clk_mux_ins == (VC5_MUX_IN_CLKIN | VC5_MUX_IN_XIN)) {
259 if (index == 0)
260 src = VC5_PRIM_SRC_SHDN_EN_XTAL;
261 if (index == 1)
262 src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
263 } else {
264 if (index != 0)
265 return -EINVAL;
266
267 if (vc5->clk_mux_ins == VC5_MUX_IN_XIN)
268 src = VC5_PRIM_SRC_SHDN_EN_XTAL;
269 else if (vc5->clk_mux_ins == VC5_MUX_IN_CLKIN)
270 src = VC5_PRIM_SRC_SHDN_EN_CLKIN;
271 else /* Invalid; should have been caught by vc5_probe() */
272 return -EINVAL;
273 }
274
275 return regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, mask, src);
276 }
277
278 static const struct clk_ops vc5_mux_ops = {
279 .set_parent = vc5_mux_set_parent,
280 .get_parent = vc5_mux_get_parent,
281 };
282
283 static unsigned long vc5_dbl_recalc_rate(struct clk_hw *hw,
284 unsigned long parent_rate)
285 {
286 struct vc5_driver_data *vc5 =
287 container_of(hw, struct vc5_driver_data, clk_mul);
288 unsigned int premul;
289
290 regmap_read(vc5->regmap, VC5_PRIM_SRC_SHDN, &premul);
291 if (premul & VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ)
292 parent_rate *= 2;
293
294 return parent_rate;
295 }
296
297 static long vc5_dbl_round_rate(struct clk_hw *hw, unsigned long rate,
298 unsigned long *parent_rate)
299 {
300 if ((*parent_rate == rate) || ((*parent_rate * 2) == rate))
301 return rate;
302 else
303 return -EINVAL;
304 }
305
306 static int vc5_dbl_set_rate(struct clk_hw *hw, unsigned long rate,
307 unsigned long parent_rate)
308 {
309 struct vc5_driver_data *vc5 =
310 container_of(hw, struct vc5_driver_data, clk_mul);
311 u32 mask;
312
313 if ((parent_rate * 2) == rate)
314 mask = VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ;
315 else
316 mask = 0;
317
318 regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN,
319 VC5_PRIM_SRC_SHDN_EN_DOUBLE_XTAL_FREQ,
320 mask);
321
322 return 0;
323 }
324
325 static const struct clk_ops vc5_dbl_ops = {
326 .recalc_rate = vc5_dbl_recalc_rate,
327 .round_rate = vc5_dbl_round_rate,
328 .set_rate = vc5_dbl_set_rate,
329 };
330
331 static unsigned long vc5_pfd_recalc_rate(struct clk_hw *hw,
332 unsigned long parent_rate)
333 {
334 struct vc5_driver_data *vc5 =
335 container_of(hw, struct vc5_driver_data, clk_pfd);
336 unsigned int prediv, div;
337
338 regmap_read(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV, &prediv);
339
340 /* The bypass_prediv is set, PLL fed from Ref_in directly. */
341 if (prediv & VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV)
342 return parent_rate;
343
344 regmap_read(vc5->regmap, VC5_REF_DIVIDER, &div);
345
346 /* The Sel_prediv2 is set, PLL fed from prediv2 (Ref_in / 2) */
347 if (div & VC5_REF_DIVIDER_SEL_PREDIV2)
348 return parent_rate / 2;
349 else
350 return parent_rate / VC5_REF_DIVIDER_REF_DIV(div);
351 }
352
353 static long vc5_pfd_round_rate(struct clk_hw *hw, unsigned long rate,
354 unsigned long *parent_rate)
355 {
356 unsigned long idiv;
357
358 /* PLL cannot operate with input clock above 50 MHz. */
359 if (rate > 50000000)
360 return -EINVAL;
361
362 /* CLKIN within range of PLL input, feed directly to PLL. */
363 if (*parent_rate <= 50000000)
364 return *parent_rate;
365
366 idiv = DIV_ROUND_UP(*parent_rate, rate);
367 if (idiv > 127)
368 return -EINVAL;
369
370 return *parent_rate / idiv;
371 }
372
373 static int vc5_pfd_set_rate(struct clk_hw *hw, unsigned long rate,
374 unsigned long parent_rate)
375 {
376 struct vc5_driver_data *vc5 =
377 container_of(hw, struct vc5_driver_data, clk_pfd);
378 unsigned long idiv;
379 u8 div;
380
381 /* CLKIN within range of PLL input, feed directly to PLL. */
382 if (parent_rate <= 50000000) {
383 regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
384 VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV,
385 VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV);
386 regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, 0x00);
387 return 0;
388 }
389
390 idiv = DIV_ROUND_UP(parent_rate, rate);
391
392 /* We have dedicated div-2 predivider. */
393 if (idiv == 2)
394 div = VC5_REF_DIVIDER_SEL_PREDIV2;
395 else
396 div = VC5_REF_DIVIDER_REF_DIV(idiv);
397
398 regmap_update_bits(vc5->regmap, VC5_REF_DIVIDER, 0xff, div);
399 regmap_update_bits(vc5->regmap, VC5_VCO_CTRL_AND_PREDIV,
400 VC5_VCO_CTRL_AND_PREDIV_BYPASS_PREDIV, 0);
401
402 return 0;
403 }
404
405 static const struct clk_ops vc5_pfd_ops = {
406 .recalc_rate = vc5_pfd_recalc_rate,
407 .round_rate = vc5_pfd_round_rate,
408 .set_rate = vc5_pfd_set_rate,
409 };
410
411 /*
412 * VersaClock5 PLL/VCO
413 */
414 static unsigned long vc5_pll_recalc_rate(struct clk_hw *hw,
415 unsigned long parent_rate)
416 {
417 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
418 struct vc5_driver_data *vc5 = hwdata->vc5;
419 u32 div_int, div_frc;
420 u8 fb[5];
421
422 regmap_bulk_read(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
423
424 div_int = (fb[0] << 4) | (fb[1] >> 4);
425 div_frc = (fb[2] << 16) | (fb[3] << 8) | fb[4];
426
427 /* The PLL divider has 12 integer bits and 24 fractional bits */
428 return (parent_rate * div_int) + ((parent_rate * div_frc) >> 24);
429 }
430
431 static long vc5_pll_round_rate(struct clk_hw *hw, unsigned long rate,
432 unsigned long *parent_rate)
433 {
434 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
435 u32 div_int;
436 u64 div_frc;
437
438 if (rate < VC5_PLL_VCO_MIN)
439 rate = VC5_PLL_VCO_MIN;
440 if (rate > VC5_PLL_VCO_MAX)
441 rate = VC5_PLL_VCO_MAX;
442
443 /* Determine integer part, which is 12 bit wide */
444 div_int = rate / *parent_rate;
445 if (div_int > 0xfff)
446 rate = *parent_rate * 0xfff;
447
448 /* Determine best fractional part, which is 24 bit wide */
449 div_frc = rate % *parent_rate;
450 div_frc *= BIT(24) - 1;
451 do_div(div_frc, *parent_rate);
452
453 hwdata->div_int = div_int;
454 hwdata->div_frc = (u32)div_frc;
455
456 return (*parent_rate * div_int) + ((*parent_rate * div_frc) >> 24);
457 }
458
459 static int vc5_pll_set_rate(struct clk_hw *hw, unsigned long rate,
460 unsigned long parent_rate)
461 {
462 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
463 struct vc5_driver_data *vc5 = hwdata->vc5;
464 u8 fb[5];
465
466 fb[0] = hwdata->div_int >> 4;
467 fb[1] = hwdata->div_int << 4;
468 fb[2] = hwdata->div_frc >> 16;
469 fb[3] = hwdata->div_frc >> 8;
470 fb[4] = hwdata->div_frc;
471
472 return regmap_bulk_write(vc5->regmap, VC5_FEEDBACK_INT_DIV, fb, 5);
473 }
474
475 static const struct clk_ops vc5_pll_ops = {
476 .recalc_rate = vc5_pll_recalc_rate,
477 .round_rate = vc5_pll_round_rate,
478 .set_rate = vc5_pll_set_rate,
479 };
480
481 static unsigned long vc5_fod_recalc_rate(struct clk_hw *hw,
482 unsigned long parent_rate)
483 {
484 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
485 struct vc5_driver_data *vc5 = hwdata->vc5;
486 /* VCO frequency is divided by two before entering FOD */
487 u32 f_in = parent_rate / 2;
488 u32 div_int, div_frc;
489 u8 od_int[2];
490 u8 od_frc[4];
491
492 regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_INT(hwdata->num, 0),
493 od_int, 2);
494 regmap_bulk_read(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
495 od_frc, 4);
496
497 div_int = (od_int[0] << 4) | (od_int[1] >> 4);
498 div_frc = (od_frc[0] << 22) | (od_frc[1] << 14) |
499 (od_frc[2] << 6) | (od_frc[3] >> 2);
500
501 /* Avoid division by zero if the output is not configured. */
502 if (div_int == 0 && div_frc == 0)
503 return 0;
504
505 /* The PLL divider has 12 integer bits and 30 fractional bits */
506 return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
507 }
508
509 static long vc5_fod_round_rate(struct clk_hw *hw, unsigned long rate,
510 unsigned long *parent_rate)
511 {
512 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
513 /* VCO frequency is divided by two before entering FOD */
514 u32 f_in = *parent_rate / 2;
515 u32 div_int;
516 u64 div_frc;
517
518 /* Determine integer part, which is 12 bit wide */
519 div_int = f_in / rate;
520 /*
521 * WARNING: The clock chip does not output signal if the integer part
522 * of the divider is 0xfff and fractional part is non-zero.
523 * Clamp the divider at 0xffe to keep the code simple.
524 */
525 if (div_int > 0xffe) {
526 div_int = 0xffe;
527 rate = f_in / div_int;
528 }
529
530 /* Determine best fractional part, which is 30 bit wide */
531 div_frc = f_in % rate;
532 div_frc <<= 24;
533 do_div(div_frc, rate);
534
535 hwdata->div_int = div_int;
536 hwdata->div_frc = (u32)div_frc;
537
538 return div64_u64((u64)f_in << 24ULL, ((u64)div_int << 24ULL) + div_frc);
539 }
540
541 static int vc5_fod_set_rate(struct clk_hw *hw, unsigned long rate,
542 unsigned long parent_rate)
543 {
544 struct vc5_hw_data *hwdata = container_of(hw, struct vc5_hw_data, hw);
545 struct vc5_driver_data *vc5 = hwdata->vc5;
546 u8 data[14] = {
547 hwdata->div_frc >> 22, hwdata->div_frc >> 14,
548 hwdata->div_frc >> 6, hwdata->div_frc << 2,
549 0, 0, 0, 0, 0,
550 0, 0,
551 hwdata->div_int >> 4, hwdata->div_int << 4,
552 0
553 };
554
555 regmap_bulk_write(vc5->regmap, VC5_OUT_DIV_FRAC(hwdata->num, 0),
556 data, 14);
557
558 /*
559 * Toggle magic bit in undocumented register for unknown reason.
560 * This is what the IDT timing commander tool does and the chip
561 * datasheet somewhat implies this is needed, but the register
562 * and the bit is not documented.
563 */
564 regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
565 VC5_GLOBAL_REGISTER_GLOBAL_RESET, 0);
566 regmap_update_bits(vc5->regmap, VC5_GLOBAL_REGISTER,
567 VC5_GLOBAL_REGISTER_GLOBAL_RESET,
568 VC5_GLOBAL_REGISTER_GLOBAL_RESET);
569 return 0;
570 }
571
572 static const struct clk_ops vc5_fod_ops = {
573 .recalc_rate = vc5_fod_recalc_rate,
574 .round_rate = vc5_fod_round_rate,
575 .set_rate = vc5_fod_set_rate,
576 };
577
578 static int vc5_clk_out_prepare(struct clk_hw *hw)
579 {
580 struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
581 struct vc5_driver_data *vc5 = hwdata->vc5;
582 const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
583 VC5_OUT_DIV_CONTROL_SEL_EXT |
584 VC5_OUT_DIV_CONTROL_EN_FOD;
585 unsigned int src;
586 int ret;
587
588 /*
589 * When enabling a FOD, all currently enabled FODs are briefly
590 * stopped in order to synchronize all of them. This causes a clock
591 * disruption to any unrelated chips that might be already using
592 * other clock outputs. Bypass the sync feature to avoid the issue,
593 * which is possible on the VersaClock 6E family via reserved
594 * registers.
595 */
596 if (vc5->chip_info->flags & VC5_HAS_BYPASS_SYNC_BIT) {
597 ret = regmap_update_bits(vc5->regmap,
598 VC5_RESERVED_X0(hwdata->num),
599 VC5_RESERVED_X0_BYPASS_SYNC,
600 VC5_RESERVED_X0_BYPASS_SYNC);
601 if (ret)
602 return ret;
603 }
604
605 /*
606 * If the input mux is disabled, enable it first and
607 * select source from matching FOD.
608 */
609 regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
610 if ((src & mask) == 0) {
611 src = VC5_OUT_DIV_CONTROL_RESET | VC5_OUT_DIV_CONTROL_EN_FOD;
612 ret = regmap_update_bits(vc5->regmap,
613 VC5_OUT_DIV_CONTROL(hwdata->num),
614 mask | VC5_OUT_DIV_CONTROL_RESET, src);
615 if (ret)
616 return ret;
617 }
618
619 /* Enable the clock buffer */
620 regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
621 VC5_CLK_OUTPUT_CFG1_EN_CLKBUF,
622 VC5_CLK_OUTPUT_CFG1_EN_CLKBUF);
623 if (hwdata->clk_output_cfg0_mask) {
624 dev_dbg(&vc5->client->dev, "Update output %d mask 0x%0X val 0x%0X\n",
625 hwdata->num, hwdata->clk_output_cfg0_mask,
626 hwdata->clk_output_cfg0);
627
628 regmap_update_bits(vc5->regmap,
629 VC5_CLK_OUTPUT_CFG(hwdata->num, 0),
630 hwdata->clk_output_cfg0_mask,
631 hwdata->clk_output_cfg0);
632 }
633
634 return 0;
635 }
636
637 static void vc5_clk_out_unprepare(struct clk_hw *hw)
638 {
639 struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
640 struct vc5_driver_data *vc5 = hwdata->vc5;
641
642 /* Disable the clock buffer */
643 regmap_update_bits(vc5->regmap, VC5_CLK_OUTPUT_CFG(hwdata->num, 1),
644 VC5_CLK_OUTPUT_CFG1_EN_CLKBUF, 0);
645 }
646
647 static unsigned char vc5_clk_out_get_parent(struct clk_hw *hw)
648 {
649 struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
650 struct vc5_driver_data *vc5 = hwdata->vc5;
651 const u8 mask = VC5_OUT_DIV_CONTROL_SELB_NORM |
652 VC5_OUT_DIV_CONTROL_SEL_EXT |
653 VC5_OUT_DIV_CONTROL_EN_FOD;
654 const u8 fodclkmask = VC5_OUT_DIV_CONTROL_SELB_NORM |
655 VC5_OUT_DIV_CONTROL_EN_FOD;
656 const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
657 VC5_OUT_DIV_CONTROL_SEL_EXT;
658 unsigned int src;
659
660 regmap_read(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num), &src);
661 src &= mask;
662
663 if (src == 0) /* Input mux set to DISABLED */
664 return 0;
665
666 if ((src & fodclkmask) == VC5_OUT_DIV_CONTROL_EN_FOD)
667 return 0;
668
669 if (src == extclk)
670 return 1;
671
672 dev_warn(&vc5->client->dev,
673 "Invalid clock output configuration (%02x)\n", src);
674 return 0;
675 }
676
677 static int vc5_clk_out_set_parent(struct clk_hw *hw, u8 index)
678 {
679 struct vc5_out_data *hwdata = container_of(hw, struct vc5_out_data, hw);
680 struct vc5_driver_data *vc5 = hwdata->vc5;
681 const u8 mask = VC5_OUT_DIV_CONTROL_RESET |
682 VC5_OUT_DIV_CONTROL_SELB_NORM |
683 VC5_OUT_DIV_CONTROL_SEL_EXT |
684 VC5_OUT_DIV_CONTROL_EN_FOD;
685 const u8 extclk = VC5_OUT_DIV_CONTROL_SELB_NORM |
686 VC5_OUT_DIV_CONTROL_SEL_EXT;
687 u8 src = VC5_OUT_DIV_CONTROL_RESET;
688
689 if (index == 0)
690 src |= VC5_OUT_DIV_CONTROL_EN_FOD;
691 else
692 src |= extclk;
693
694 return regmap_update_bits(vc5->regmap, VC5_OUT_DIV_CONTROL(hwdata->num),
695 mask, src);
696 }
697
698 static const struct clk_ops vc5_clk_out_ops = {
699 .prepare = vc5_clk_out_prepare,
700 .unprepare = vc5_clk_out_unprepare,
701 .set_parent = vc5_clk_out_set_parent,
702 .get_parent = vc5_clk_out_get_parent,
703 };
704
705 static struct clk_hw *vc5_of_clk_get(struct of_phandle_args *clkspec,
706 void *data)
707 {
708 struct vc5_driver_data *vc5 = data;
709 unsigned int idx = clkspec->args[0];
710
711 if (idx >= vc5->chip_info->clk_out_cnt)
712 return ERR_PTR(-EINVAL);
713
714 return &vc5->clk_out[idx].hw;
715 }
716
717 static int vc5_map_index_to_output(const enum vc5_model model,
718 const unsigned int n)
719 {
720 switch (model) {
721 case IDT_VC5_5P49V5933:
722 return (n == 0) ? 0 : 3;
723 case IDT_VC5_5P49V5923:
724 case IDT_VC5_5P49V5925:
725 case IDT_VC5_5P49V5935:
726 case IDT_VC6_5P49V6901:
727 case IDT_VC6_5P49V6965:
728 default:
729 return n;
730 }
731 }
732
733 static int vc5_update_mode(struct device_node *np_output,
734 struct vc5_out_data *clk_out)
735 {
736 u32 value;
737
738 if (!of_property_read_u32(np_output, "idt,mode", &value)) {
739 clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_CFG_MASK;
740 switch (value) {
741 case VC5_CLK_OUTPUT_CFG0_CFG_LVPECL:
742 case VC5_CLK_OUTPUT_CFG0_CFG_CMOS:
743 case VC5_CLK_OUTPUT_CFG0_CFG_HCSL33:
744 case VC5_CLK_OUTPUT_CFG0_CFG_LVDS:
745 case VC5_CLK_OUTPUT_CFG0_CFG_CMOS2:
746 case VC5_CLK_OUTPUT_CFG0_CFG_CMOSD:
747 case VC5_CLK_OUTPUT_CFG0_CFG_HCSL25:
748 clk_out->clk_output_cfg0 |=
749 value << VC5_CLK_OUTPUT_CFG0_CFG_SHIFT;
750 break;
751 default:
752 return -EINVAL;
753 }
754 }
755 return 0;
756 }
757
758 static int vc5_update_power(struct device_node *np_output,
759 struct vc5_out_data *clk_out)
760 {
761 u32 value;
762
763 if (!of_property_read_u32(np_output, "idt,voltage-microvolt",
764 &value)) {
765 clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_PWR_MASK;
766 switch (value) {
767 case 1800000:
768 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_18;
769 break;
770 case 2500000:
771 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_25;
772 break;
773 case 3300000:
774 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_PWR_33;
775 break;
776 default:
777 return -EINVAL;
778 }
779 }
780 return 0;
781 }
782
783 static int vc5_map_cap_value(u32 femtofarads)
784 {
785 int mapped_value;
786
787 /*
788 * The datasheet explicitly states 9000 - 25000 with 0.5pF
789 * steps, but the Programmer's guide shows the steps are 0.430pF.
790 * After getting feedback from Renesas, the .5pF steps were the
791 * goal, but 430nF was the actual values.
792 * Because of this, the actual range goes to 22760 instead of 25000
793 */
794 if (femtofarads < 9000 || femtofarads > 22760)
795 return -EINVAL;
796
797 /*
798 * The Programmer's guide shows XTAL[5:0] but in reality,
799 * XTAL[0] and XTAL[1] are both LSB which makes the math
800 * strange. With clarfication from Renesas, setting the
801 * values should be simpler by ignoring XTAL[0]
802 */
803 mapped_value = DIV_ROUND_CLOSEST(femtofarads - 9000, 430);
804
805 /*
806 * Since the calculation ignores XTAL[0], there is one
807 * special case where mapped_value = 32. In reality, this means
808 * the real mapped value should be 111111b. In other cases,
809 * the mapped_value needs to be shifted 1 to the left.
810 */
811 if (mapped_value > 31)
812 mapped_value = 0x3f;
813 else
814 mapped_value <<= 1;
815
816 return mapped_value;
817 }
818 static int vc5_update_cap_load(struct device_node *node, struct vc5_driver_data *vc5)
819 {
820 u32 value;
821 int mapped_value;
822
823 if (!of_property_read_u32(node, "idt,xtal-load-femtofarads", &value)) {
824 mapped_value = vc5_map_cap_value(value);
825 if (mapped_value < 0)
826 return mapped_value;
827
828 /*
829 * The mapped_value is really the high 6 bits of
830 * VC5_XTAL_X1_LOAD_CAP and VC5_XTAL_X2_LOAD_CAP, so
831 * shift the value 2 places.
832 */
833 regmap_update_bits(vc5->regmap, VC5_XTAL_X1_LOAD_CAP, ~0x03, mapped_value << 2);
834 regmap_update_bits(vc5->regmap, VC5_XTAL_X2_LOAD_CAP, ~0x03, mapped_value << 2);
835 }
836
837 return 0;
838 }
839
840 static int vc5_update_slew(struct device_node *np_output,
841 struct vc5_out_data *clk_out)
842 {
843 u32 value;
844
845 if (!of_property_read_u32(np_output, "idt,slew-percent", &value)) {
846 clk_out->clk_output_cfg0_mask |= VC5_CLK_OUTPUT_CFG0_SLEW_MASK;
847 switch (value) {
848 case 80:
849 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_80;
850 break;
851 case 85:
852 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_85;
853 break;
854 case 90:
855 clk_out->clk_output_cfg0 |= VC5_CLK_OUTPUT_CFG0_SLEW_90;
856 break;
857 case 100:
858 clk_out->clk_output_cfg0 |=
859 VC5_CLK_OUTPUT_CFG0_SLEW_100;
860 break;
861 default:
862 return -EINVAL;
863 }
864 }
865 return 0;
866 }
867
868 static int vc5_get_output_config(struct i2c_client *client,
869 struct vc5_out_data *clk_out)
870 {
871 struct device_node *np_output;
872 char *child_name;
873 int ret = 0;
874
875 child_name = kasprintf(GFP_KERNEL, "OUT%d", clk_out->num + 1);
876 if (!child_name)
877 return -ENOMEM;
878
879 np_output = of_get_child_by_name(client->dev.of_node, child_name);
880 kfree(child_name);
881 if (!np_output)
882 return 0;
883
884 ret = vc5_update_mode(np_output, clk_out);
885 if (ret)
886 goto output_error;
887
888 ret = vc5_update_power(np_output, clk_out);
889 if (ret)
890 goto output_error;
891
892 ret = vc5_update_slew(np_output, clk_out);
893
894 output_error:
895 if (ret) {
896 dev_err(&client->dev,
897 "Invalid clock output configuration OUT%d\n",
898 clk_out->num + 1);
899 }
900
901 of_node_put(np_output);
902
903 return ret;
904 }
905
906 static const struct of_device_id clk_vc5_of_match[];
907
908 static int vc5_probe(struct i2c_client *client, const struct i2c_device_id *id)
909 {
910 unsigned int oe, sd, src_mask = 0, src_val = 0;
911 struct vc5_driver_data *vc5;
912 struct clk_init_data init;
913 const char *parent_names[2];
914 unsigned int n, idx = 0;
915 int ret;
916
917 vc5 = devm_kzalloc(&client->dev, sizeof(*vc5), GFP_KERNEL);
918 if (!vc5)
919 return -ENOMEM;
920
921 i2c_set_clientdata(client, vc5);
922 vc5->client = client;
923 vc5->chip_info = of_device_get_match_data(&client->dev);
924
925 vc5->pin_xin = devm_clk_get(&client->dev, "xin");
926 if (PTR_ERR(vc5->pin_xin) == -EPROBE_DEFER)
927 return -EPROBE_DEFER;
928
929 vc5->pin_clkin = devm_clk_get(&client->dev, "clkin");
930 if (PTR_ERR(vc5->pin_clkin) == -EPROBE_DEFER)
931 return -EPROBE_DEFER;
932
933 vc5->regmap = devm_regmap_init_i2c(client, &vc5_regmap_config);
934 if (IS_ERR(vc5->regmap))
935 return dev_err_probe(&client->dev, PTR_ERR(vc5->regmap),
936 "failed to allocate register map\n");
937
938 ret = of_property_read_u32(client->dev.of_node, "idt,shutdown", &sd);
939 if (!ret) {
940 src_mask |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
941 if (sd)
942 src_val |= VC5_PRIM_SRC_SHDN_EN_GBL_SHDN;
943 } else if (ret != -EINVAL) {
944 return dev_err_probe(&client->dev, ret,
945 "could not read idt,shutdown\n");
946 }
947
948 ret = of_property_read_u32(client->dev.of_node,
949 "idt,output-enable-active", &oe);
950 if (!ret) {
951 src_mask |= VC5_PRIM_SRC_SHDN_SP;
952 if (oe)
953 src_val |= VC5_PRIM_SRC_SHDN_SP;
954 } else if (ret != -EINVAL) {
955 return dev_err_probe(&client->dev, ret,
956 "could not read idt,output-enable-active\n");
957 }
958
959 regmap_update_bits(vc5->regmap, VC5_PRIM_SRC_SHDN, src_mask, src_val);
960
961 /* Register clock input mux */
962 memset(&init, 0, sizeof(init));
963
964 if (!IS_ERR(vc5->pin_xin)) {
965 vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
966 parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
967 } else if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL) {
968 vc5->pin_xin = clk_register_fixed_rate(&client->dev,
969 "internal-xtal", NULL,
970 0, 25000000);
971 if (IS_ERR(vc5->pin_xin))
972 return PTR_ERR(vc5->pin_xin);
973 vc5->clk_mux_ins |= VC5_MUX_IN_XIN;
974 parent_names[init.num_parents++] = __clk_get_name(vc5->pin_xin);
975 }
976
977 if (!IS_ERR(vc5->pin_clkin)) {
978 vc5->clk_mux_ins |= VC5_MUX_IN_CLKIN;
979 parent_names[init.num_parents++] =
980 __clk_get_name(vc5->pin_clkin);
981 }
982
983 if (!init.num_parents)
984 return dev_err_probe(&client->dev, -EINVAL,
985 "no input clock specified!\n");
986
987 /* Configure Optional Loading Capacitance for external XTAL */
988 if (!(vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)) {
989 ret = vc5_update_cap_load(client->dev.of_node, vc5);
990 if (ret)
991 goto err_clk_register;
992 }
993
994 init.name = kasprintf(GFP_KERNEL, "%pOFn.mux", client->dev.of_node);
995 init.ops = &vc5_mux_ops;
996 init.flags = 0;
997 init.parent_names = parent_names;
998 vc5->clk_mux.init = &init;
999 ret = devm_clk_hw_register(&client->dev, &vc5->clk_mux);
1000 if (ret)
1001 goto err_clk_register;
1002 kfree(init.name); /* clock framework made a copy of the name */
1003
1004 if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL) {
1005 /* Register frequency doubler */
1006 memset(&init, 0, sizeof(init));
1007 init.name = kasprintf(GFP_KERNEL, "%pOFn.dbl",
1008 client->dev.of_node);
1009 init.ops = &vc5_dbl_ops;
1010 init.flags = CLK_SET_RATE_PARENT;
1011 init.parent_names = parent_names;
1012 parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1013 init.num_parents = 1;
1014 vc5->clk_mul.init = &init;
1015 ret = devm_clk_hw_register(&client->dev, &vc5->clk_mul);
1016 if (ret)
1017 goto err_clk_register;
1018 kfree(init.name); /* clock framework made a copy of the name */
1019 }
1020
1021 /* Register PFD */
1022 memset(&init, 0, sizeof(init));
1023 init.name = kasprintf(GFP_KERNEL, "%pOFn.pfd", client->dev.of_node);
1024 init.ops = &vc5_pfd_ops;
1025 init.flags = CLK_SET_RATE_PARENT;
1026 init.parent_names = parent_names;
1027 if (vc5->chip_info->flags & VC5_HAS_PFD_FREQ_DBL)
1028 parent_names[0] = clk_hw_get_name(&vc5->clk_mul);
1029 else
1030 parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1031 init.num_parents = 1;
1032 vc5->clk_pfd.init = &init;
1033 ret = devm_clk_hw_register(&client->dev, &vc5->clk_pfd);
1034 if (ret)
1035 goto err_clk_register;
1036 kfree(init.name); /* clock framework made a copy of the name */
1037
1038 /* Register PLL */
1039 memset(&init, 0, sizeof(init));
1040 init.name = kasprintf(GFP_KERNEL, "%pOFn.pll", client->dev.of_node);
1041 init.ops = &vc5_pll_ops;
1042 init.flags = CLK_SET_RATE_PARENT;
1043 init.parent_names = parent_names;
1044 parent_names[0] = clk_hw_get_name(&vc5->clk_pfd);
1045 init.num_parents = 1;
1046 vc5->clk_pll.num = 0;
1047 vc5->clk_pll.vc5 = vc5;
1048 vc5->clk_pll.hw.init = &init;
1049 ret = devm_clk_hw_register(&client->dev, &vc5->clk_pll.hw);
1050 if (ret)
1051 goto err_clk_register;
1052 kfree(init.name); /* clock framework made a copy of the name */
1053
1054 /* Register FODs */
1055 for (n = 0; n < vc5->chip_info->clk_fod_cnt; n++) {
1056 idx = vc5_map_index_to_output(vc5->chip_info->model, n);
1057 memset(&init, 0, sizeof(init));
1058 init.name = kasprintf(GFP_KERNEL, "%pOFn.fod%d",
1059 client->dev.of_node, idx);
1060 init.ops = &vc5_fod_ops;
1061 init.flags = CLK_SET_RATE_PARENT;
1062 init.parent_names = parent_names;
1063 parent_names[0] = clk_hw_get_name(&vc5->clk_pll.hw);
1064 init.num_parents = 1;
1065 vc5->clk_fod[n].num = idx;
1066 vc5->clk_fod[n].vc5 = vc5;
1067 vc5->clk_fod[n].hw.init = &init;
1068 ret = devm_clk_hw_register(&client->dev, &vc5->clk_fod[n].hw);
1069 if (ret)
1070 goto err_clk_register;
1071 kfree(init.name); /* clock framework made a copy of the name */
1072 }
1073
1074 /* Register MUX-connected OUT0_I2C_SELB output */
1075 memset(&init, 0, sizeof(init));
1076 init.name = kasprintf(GFP_KERNEL, "%pOFn.out0_sel_i2cb",
1077 client->dev.of_node);
1078 init.ops = &vc5_clk_out_ops;
1079 init.flags = CLK_SET_RATE_PARENT;
1080 init.parent_names = parent_names;
1081 parent_names[0] = clk_hw_get_name(&vc5->clk_mux);
1082 init.num_parents = 1;
1083 vc5->clk_out[0].num = idx;
1084 vc5->clk_out[0].vc5 = vc5;
1085 vc5->clk_out[0].hw.init = &init;
1086 ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[0].hw);
1087 if (ret)
1088 goto err_clk_register;
1089 kfree(init.name); /* clock framework made a copy of the name */
1090
1091 /* Register FOD-connected OUTx outputs */
1092 for (n = 1; n < vc5->chip_info->clk_out_cnt; n++) {
1093 idx = vc5_map_index_to_output(vc5->chip_info->model, n - 1);
1094 parent_names[0] = clk_hw_get_name(&vc5->clk_fod[idx].hw);
1095 if (n == 1)
1096 parent_names[1] = clk_hw_get_name(&vc5->clk_mux);
1097 else
1098 parent_names[1] =
1099 clk_hw_get_name(&vc5->clk_out[n - 1].hw);
1100
1101 memset(&init, 0, sizeof(init));
1102 init.name = kasprintf(GFP_KERNEL, "%pOFn.out%d",
1103 client->dev.of_node, idx + 1);
1104 init.ops = &vc5_clk_out_ops;
1105 init.flags = CLK_SET_RATE_PARENT;
1106 init.parent_names = parent_names;
1107 init.num_parents = 2;
1108 vc5->clk_out[n].num = idx;
1109 vc5->clk_out[n].vc5 = vc5;
1110 vc5->clk_out[n].hw.init = &init;
1111 ret = devm_clk_hw_register(&client->dev, &vc5->clk_out[n].hw);
1112 if (ret)
1113 goto err_clk_register;
1114 kfree(init.name); /* clock framework made a copy of the name */
1115
1116 /* Fetch Clock Output configuration from DT (if specified) */
1117 ret = vc5_get_output_config(client, &vc5->clk_out[n]);
1118 if (ret)
1119 goto err_clk;
1120 }
1121
1122 ret = of_clk_add_hw_provider(client->dev.of_node, vc5_of_clk_get, vc5);
1123 if (ret) {
1124 dev_err_probe(&client->dev, ret,
1125 "unable to add clk provider\n");
1126 goto err_clk;
1127 }
1128
1129 return 0;
1130
1131 err_clk_register:
1132 dev_err_probe(&client->dev, ret,
1133 "unable to register %s\n", init.name);
1134 kfree(init.name); /* clock framework made a copy of the name */
1135 err_clk:
1136 if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1137 clk_unregister_fixed_rate(vc5->pin_xin);
1138 return ret;
1139 }
1140
1141 static int vc5_remove(struct i2c_client *client)
1142 {
1143 struct vc5_driver_data *vc5 = i2c_get_clientdata(client);
1144
1145 of_clk_del_provider(client->dev.of_node);
1146
1147 if (vc5->chip_info->flags & VC5_HAS_INTERNAL_XTAL)
1148 clk_unregister_fixed_rate(vc5->pin_xin);
1149
1150 return 0;
1151 }
1152
1153 static int __maybe_unused vc5_suspend(struct device *dev)
1154 {
1155 struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1156
1157 regcache_cache_only(vc5->regmap, true);
1158 regcache_mark_dirty(vc5->regmap);
1159
1160 return 0;
1161 }
1162
1163 static int __maybe_unused vc5_resume(struct device *dev)
1164 {
1165 struct vc5_driver_data *vc5 = dev_get_drvdata(dev);
1166 int ret;
1167
1168 regcache_cache_only(vc5->regmap, false);
1169 ret = regcache_sync(vc5->regmap);
1170 if (ret)
1171 dev_err(dev, "Failed to restore register map: %d\n", ret);
1172 return ret;
1173 }
1174
1175 static const struct vc5_chip_info idt_5p49v5923_info = {
1176 .model = IDT_VC5_5P49V5923,
1177 .clk_fod_cnt = 2,
1178 .clk_out_cnt = 3,
1179 .flags = 0,
1180 };
1181
1182 static const struct vc5_chip_info idt_5p49v5925_info = {
1183 .model = IDT_VC5_5P49V5925,
1184 .clk_fod_cnt = 4,
1185 .clk_out_cnt = 5,
1186 .flags = 0,
1187 };
1188
1189 static const struct vc5_chip_info idt_5p49v5933_info = {
1190 .model = IDT_VC5_5P49V5933,
1191 .clk_fod_cnt = 2,
1192 .clk_out_cnt = 3,
1193 .flags = VC5_HAS_INTERNAL_XTAL,
1194 };
1195
1196 static const struct vc5_chip_info idt_5p49v5935_info = {
1197 .model = IDT_VC5_5P49V5935,
1198 .clk_fod_cnt = 4,
1199 .clk_out_cnt = 5,
1200 .flags = VC5_HAS_INTERNAL_XTAL,
1201 };
1202
1203 static const struct vc5_chip_info idt_5p49v6901_info = {
1204 .model = IDT_VC6_5P49V6901,
1205 .clk_fod_cnt = 4,
1206 .clk_out_cnt = 5,
1207 .flags = VC5_HAS_PFD_FREQ_DBL,
1208 };
1209
1210 static const struct vc5_chip_info idt_5p49v6965_info = {
1211 .model = IDT_VC6_5P49V6965,
1212 .clk_fod_cnt = 4,
1213 .clk_out_cnt = 5,
1214 .flags = VC5_HAS_BYPASS_SYNC_BIT,
1215 };
1216
1217 static const struct i2c_device_id vc5_id[] = {
1218 { "5p49v5923", .driver_data = IDT_VC5_5P49V5923 },
1219 { "5p49v5925", .driver_data = IDT_VC5_5P49V5925 },
1220 { "5p49v5933", .driver_data = IDT_VC5_5P49V5933 },
1221 { "5p49v5935", .driver_data = IDT_VC5_5P49V5935 },
1222 { "5p49v6901", .driver_data = IDT_VC6_5P49V6901 },
1223 { "5p49v6965", .driver_data = IDT_VC6_5P49V6965 },
1224 { }
1225 };
1226 MODULE_DEVICE_TABLE(i2c, vc5_id);
1227
1228 static const struct of_device_id clk_vc5_of_match[] = {
1229 { .compatible = "idt,5p49v5923", .data = &idt_5p49v5923_info },
1230 { .compatible = "idt,5p49v5925", .data = &idt_5p49v5925_info },
1231 { .compatible = "idt,5p49v5933", .data = &idt_5p49v5933_info },
1232 { .compatible = "idt,5p49v5935", .data = &idt_5p49v5935_info },
1233 { .compatible = "idt,5p49v6901", .data = &idt_5p49v6901_info },
1234 { .compatible = "idt,5p49v6965", .data = &idt_5p49v6965_info },
1235 { },
1236 };
1237 MODULE_DEVICE_TABLE(of, clk_vc5_of_match);
1238
1239 static SIMPLE_DEV_PM_OPS(vc5_pm_ops, vc5_suspend, vc5_resume);
1240
1241 static struct i2c_driver vc5_driver = {
1242 .driver = {
1243 .name = "vc5",
1244 .pm = &vc5_pm_ops,
1245 .of_match_table = clk_vc5_of_match,
1246 },
1247 .probe = vc5_probe,
1248 .remove = vc5_remove,
1249 .id_table = vc5_id,
1250 };
1251 module_i2c_driver(vc5_driver);
1252
1253 MODULE_AUTHOR("Marek Vasut <marek.vasut@gmail.com>");
1254 MODULE_DESCRIPTION("IDT VersaClock 5 driver");
1255 MODULE_LICENSE("GPL");