]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/clk/clk.c
Merge branches 'x86/amd', 'x86/vt-d', 'arm/rockchip', 'arm/omap', 'arm/mediatek'...
[mirror_ubuntu-hirsute-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27 #include <linux/stringify.h>
28
29 #include "clk.h"
30
31 static DEFINE_SPINLOCK(enable_lock);
32 static DEFINE_MUTEX(prepare_lock);
33
34 static struct task_struct *prepare_owner;
35 static struct task_struct *enable_owner;
36
37 static int prepare_refcnt;
38 static int enable_refcnt;
39
40 static HLIST_HEAD(clk_root_list);
41 static HLIST_HEAD(clk_orphan_list);
42 static LIST_HEAD(clk_notifier_list);
43
44 /*** private data structures ***/
45
46 struct clk_core {
47 const char *name;
48 const struct clk_ops *ops;
49 struct clk_hw *hw;
50 struct module *owner;
51 struct device *dev;
52 struct clk_core *parent;
53 const char **parent_names;
54 struct clk_core **parents;
55 u8 num_parents;
56 u8 new_parent_index;
57 unsigned long rate;
58 unsigned long req_rate;
59 unsigned long new_rate;
60 struct clk_core *new_parent;
61 struct clk_core *new_child;
62 unsigned long flags;
63 bool orphan;
64 unsigned int enable_count;
65 unsigned int prepare_count;
66 unsigned int protect_count;
67 unsigned long min_rate;
68 unsigned long max_rate;
69 unsigned long accuracy;
70 int phase;
71 struct hlist_head children;
72 struct hlist_node child_node;
73 struct hlist_head clks;
74 unsigned int notifier_count;
75 #ifdef CONFIG_DEBUG_FS
76 struct dentry *dentry;
77 struct hlist_node debug_node;
78 #endif
79 struct kref ref;
80 };
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/clk.h>
84
85 struct clk {
86 struct clk_core *core;
87 const char *dev_id;
88 const char *con_id;
89 unsigned long min_rate;
90 unsigned long max_rate;
91 unsigned int exclusive_count;
92 struct hlist_node clks_node;
93 };
94
95 /*** runtime pm ***/
96 static int clk_pm_runtime_get(struct clk_core *core)
97 {
98 int ret = 0;
99
100 if (!core->dev)
101 return 0;
102
103 ret = pm_runtime_get_sync(core->dev);
104 return ret < 0 ? ret : 0;
105 }
106
107 static void clk_pm_runtime_put(struct clk_core *core)
108 {
109 if (!core->dev)
110 return;
111
112 pm_runtime_put_sync(core->dev);
113 }
114
115 /*** locking ***/
116 static void clk_prepare_lock(void)
117 {
118 if (!mutex_trylock(&prepare_lock)) {
119 if (prepare_owner == current) {
120 prepare_refcnt++;
121 return;
122 }
123 mutex_lock(&prepare_lock);
124 }
125 WARN_ON_ONCE(prepare_owner != NULL);
126 WARN_ON_ONCE(prepare_refcnt != 0);
127 prepare_owner = current;
128 prepare_refcnt = 1;
129 }
130
131 static void clk_prepare_unlock(void)
132 {
133 WARN_ON_ONCE(prepare_owner != current);
134 WARN_ON_ONCE(prepare_refcnt == 0);
135
136 if (--prepare_refcnt)
137 return;
138 prepare_owner = NULL;
139 mutex_unlock(&prepare_lock);
140 }
141
142 static unsigned long clk_enable_lock(void)
143 __acquires(enable_lock)
144 {
145 unsigned long flags;
146
147 /*
148 * On UP systems, spin_trylock_irqsave() always returns true, even if
149 * we already hold the lock. So, in that case, we rely only on
150 * reference counting.
151 */
152 if (!IS_ENABLED(CONFIG_SMP) ||
153 !spin_trylock_irqsave(&enable_lock, flags)) {
154 if (enable_owner == current) {
155 enable_refcnt++;
156 __acquire(enable_lock);
157 if (!IS_ENABLED(CONFIG_SMP))
158 local_save_flags(flags);
159 return flags;
160 }
161 spin_lock_irqsave(&enable_lock, flags);
162 }
163 WARN_ON_ONCE(enable_owner != NULL);
164 WARN_ON_ONCE(enable_refcnt != 0);
165 enable_owner = current;
166 enable_refcnt = 1;
167 return flags;
168 }
169
170 static void clk_enable_unlock(unsigned long flags)
171 __releases(enable_lock)
172 {
173 WARN_ON_ONCE(enable_owner != current);
174 WARN_ON_ONCE(enable_refcnt == 0);
175
176 if (--enable_refcnt) {
177 __release(enable_lock);
178 return;
179 }
180 enable_owner = NULL;
181 spin_unlock_irqrestore(&enable_lock, flags);
182 }
183
184 static bool clk_core_rate_is_protected(struct clk_core *core)
185 {
186 return core->protect_count;
187 }
188
189 static bool clk_core_is_prepared(struct clk_core *core)
190 {
191 bool ret = false;
192
193 /*
194 * .is_prepared is optional for clocks that can prepare
195 * fall back to software usage counter if it is missing
196 */
197 if (!core->ops->is_prepared)
198 return core->prepare_count;
199
200 if (!clk_pm_runtime_get(core)) {
201 ret = core->ops->is_prepared(core->hw);
202 clk_pm_runtime_put(core);
203 }
204
205 return ret;
206 }
207
208 static bool clk_core_is_enabled(struct clk_core *core)
209 {
210 bool ret = false;
211
212 /*
213 * .is_enabled is only mandatory for clocks that gate
214 * fall back to software usage counter if .is_enabled is missing
215 */
216 if (!core->ops->is_enabled)
217 return core->enable_count;
218
219 /*
220 * Check if clock controller's device is runtime active before
221 * calling .is_enabled callback. If not, assume that clock is
222 * disabled, because we might be called from atomic context, from
223 * which pm_runtime_get() is not allowed.
224 * This function is called mainly from clk_disable_unused_subtree,
225 * which ensures proper runtime pm activation of controller before
226 * taking enable spinlock, but the below check is needed if one tries
227 * to call it from other places.
228 */
229 if (core->dev) {
230 pm_runtime_get_noresume(core->dev);
231 if (!pm_runtime_active(core->dev)) {
232 ret = false;
233 goto done;
234 }
235 }
236
237 ret = core->ops->is_enabled(core->hw);
238 done:
239 if (core->dev)
240 pm_runtime_put(core->dev);
241
242 return ret;
243 }
244
245 /*** helper functions ***/
246
247 const char *__clk_get_name(const struct clk *clk)
248 {
249 return !clk ? NULL : clk->core->name;
250 }
251 EXPORT_SYMBOL_GPL(__clk_get_name);
252
253 const char *clk_hw_get_name(const struct clk_hw *hw)
254 {
255 return hw->core->name;
256 }
257 EXPORT_SYMBOL_GPL(clk_hw_get_name);
258
259 struct clk_hw *__clk_get_hw(struct clk *clk)
260 {
261 return !clk ? NULL : clk->core->hw;
262 }
263 EXPORT_SYMBOL_GPL(__clk_get_hw);
264
265 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
266 {
267 return hw->core->num_parents;
268 }
269 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
270
271 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
272 {
273 return hw->core->parent ? hw->core->parent->hw : NULL;
274 }
275 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
276
277 static struct clk_core *__clk_lookup_subtree(const char *name,
278 struct clk_core *core)
279 {
280 struct clk_core *child;
281 struct clk_core *ret;
282
283 if (!strcmp(core->name, name))
284 return core;
285
286 hlist_for_each_entry(child, &core->children, child_node) {
287 ret = __clk_lookup_subtree(name, child);
288 if (ret)
289 return ret;
290 }
291
292 return NULL;
293 }
294
295 static struct clk_core *clk_core_lookup(const char *name)
296 {
297 struct clk_core *root_clk;
298 struct clk_core *ret;
299
300 if (!name)
301 return NULL;
302
303 /* search the 'proper' clk tree first */
304 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
305 ret = __clk_lookup_subtree(name, root_clk);
306 if (ret)
307 return ret;
308 }
309
310 /* if not found, then search the orphan tree */
311 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
312 ret = __clk_lookup_subtree(name, root_clk);
313 if (ret)
314 return ret;
315 }
316
317 return NULL;
318 }
319
320 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
321 u8 index)
322 {
323 if (!core || index >= core->num_parents)
324 return NULL;
325
326 if (!core->parents[index])
327 core->parents[index] =
328 clk_core_lookup(core->parent_names[index]);
329
330 return core->parents[index];
331 }
332
333 struct clk_hw *
334 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
335 {
336 struct clk_core *parent;
337
338 parent = clk_core_get_parent_by_index(hw->core, index);
339
340 return !parent ? NULL : parent->hw;
341 }
342 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
343
344 unsigned int __clk_get_enable_count(struct clk *clk)
345 {
346 return !clk ? 0 : clk->core->enable_count;
347 }
348
349 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
350 {
351 unsigned long ret;
352
353 if (!core) {
354 ret = 0;
355 goto out;
356 }
357
358 ret = core->rate;
359
360 if (!core->num_parents)
361 goto out;
362
363 if (!core->parent)
364 ret = 0;
365
366 out:
367 return ret;
368 }
369
370 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
371 {
372 return clk_core_get_rate_nolock(hw->core);
373 }
374 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
375
376 static unsigned long __clk_get_accuracy(struct clk_core *core)
377 {
378 if (!core)
379 return 0;
380
381 return core->accuracy;
382 }
383
384 unsigned long __clk_get_flags(struct clk *clk)
385 {
386 return !clk ? 0 : clk->core->flags;
387 }
388 EXPORT_SYMBOL_GPL(__clk_get_flags);
389
390 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
391 {
392 return hw->core->flags;
393 }
394 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
395
396 bool clk_hw_is_prepared(const struct clk_hw *hw)
397 {
398 return clk_core_is_prepared(hw->core);
399 }
400
401 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
402 {
403 return clk_core_rate_is_protected(hw->core);
404 }
405
406 bool clk_hw_is_enabled(const struct clk_hw *hw)
407 {
408 return clk_core_is_enabled(hw->core);
409 }
410
411 bool __clk_is_enabled(struct clk *clk)
412 {
413 if (!clk)
414 return false;
415
416 return clk_core_is_enabled(clk->core);
417 }
418 EXPORT_SYMBOL_GPL(__clk_is_enabled);
419
420 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
421 unsigned long best, unsigned long flags)
422 {
423 if (flags & CLK_MUX_ROUND_CLOSEST)
424 return abs(now - rate) < abs(best - rate);
425
426 return now <= rate && now > best;
427 }
428
429 static int
430 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
431 unsigned long flags)
432 {
433 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
434 int i, num_parents, ret;
435 unsigned long best = 0;
436 struct clk_rate_request parent_req = *req;
437
438 /* if NO_REPARENT flag set, pass through to current parent */
439 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
440 parent = core->parent;
441 if (core->flags & CLK_SET_RATE_PARENT) {
442 ret = __clk_determine_rate(parent ? parent->hw : NULL,
443 &parent_req);
444 if (ret)
445 return ret;
446
447 best = parent_req.rate;
448 } else if (parent) {
449 best = clk_core_get_rate_nolock(parent);
450 } else {
451 best = clk_core_get_rate_nolock(core);
452 }
453
454 goto out;
455 }
456
457 /* find the parent that can provide the fastest rate <= rate */
458 num_parents = core->num_parents;
459 for (i = 0; i < num_parents; i++) {
460 parent = clk_core_get_parent_by_index(core, i);
461 if (!parent)
462 continue;
463
464 if (core->flags & CLK_SET_RATE_PARENT) {
465 parent_req = *req;
466 ret = __clk_determine_rate(parent->hw, &parent_req);
467 if (ret)
468 continue;
469 } else {
470 parent_req.rate = clk_core_get_rate_nolock(parent);
471 }
472
473 if (mux_is_better_rate(req->rate, parent_req.rate,
474 best, flags)) {
475 best_parent = parent;
476 best = parent_req.rate;
477 }
478 }
479
480 if (!best_parent)
481 return -EINVAL;
482
483 out:
484 if (best_parent)
485 req->best_parent_hw = best_parent->hw;
486 req->best_parent_rate = best;
487 req->rate = best;
488
489 return 0;
490 }
491
492 struct clk *__clk_lookup(const char *name)
493 {
494 struct clk_core *core = clk_core_lookup(name);
495
496 return !core ? NULL : core->hw->clk;
497 }
498
499 static void clk_core_get_boundaries(struct clk_core *core,
500 unsigned long *min_rate,
501 unsigned long *max_rate)
502 {
503 struct clk *clk_user;
504
505 *min_rate = core->min_rate;
506 *max_rate = core->max_rate;
507
508 hlist_for_each_entry(clk_user, &core->clks, clks_node)
509 *min_rate = max(*min_rate, clk_user->min_rate);
510
511 hlist_for_each_entry(clk_user, &core->clks, clks_node)
512 *max_rate = min(*max_rate, clk_user->max_rate);
513 }
514
515 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
516 unsigned long max_rate)
517 {
518 hw->core->min_rate = min_rate;
519 hw->core->max_rate = max_rate;
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
522
523 /*
524 * Helper for finding best parent to provide a given frequency. This can be used
525 * directly as a determine_rate callback (e.g. for a mux), or from a more
526 * complex clock that may combine a mux with other operations.
527 */
528 int __clk_mux_determine_rate(struct clk_hw *hw,
529 struct clk_rate_request *req)
530 {
531 return clk_mux_determine_rate_flags(hw, req, 0);
532 }
533 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
534
535 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
536 struct clk_rate_request *req)
537 {
538 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
539 }
540 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
541
542 /*** clk api ***/
543
544 static void clk_core_rate_unprotect(struct clk_core *core)
545 {
546 lockdep_assert_held(&prepare_lock);
547
548 if (!core)
549 return;
550
551 if (WARN_ON(core->protect_count == 0))
552 return;
553
554 if (--core->protect_count > 0)
555 return;
556
557 clk_core_rate_unprotect(core->parent);
558 }
559
560 static int clk_core_rate_nuke_protect(struct clk_core *core)
561 {
562 int ret;
563
564 lockdep_assert_held(&prepare_lock);
565
566 if (!core)
567 return -EINVAL;
568
569 if (core->protect_count == 0)
570 return 0;
571
572 ret = core->protect_count;
573 core->protect_count = 1;
574 clk_core_rate_unprotect(core);
575
576 return ret;
577 }
578
579 /**
580 * clk_rate_exclusive_put - release exclusivity over clock rate control
581 * @clk: the clk over which the exclusivity is released
582 *
583 * clk_rate_exclusive_put() completes a critical section during which a clock
584 * consumer cannot tolerate any other consumer making any operation on the
585 * clock which could result in a rate change or rate glitch. Exclusive clocks
586 * cannot have their rate changed, either directly or indirectly due to changes
587 * further up the parent chain of clocks. As a result, clocks up parent chain
588 * also get under exclusive control of the calling consumer.
589 *
590 * If exlusivity is claimed more than once on clock, even by the same consumer,
591 * the rate effectively gets locked as exclusivity can't be preempted.
592 *
593 * Calls to clk_rate_exclusive_put() must be balanced with calls to
594 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
595 * error status.
596 */
597 void clk_rate_exclusive_put(struct clk *clk)
598 {
599 if (!clk)
600 return;
601
602 clk_prepare_lock();
603
604 /*
605 * if there is something wrong with this consumer protect count, stop
606 * here before messing with the provider
607 */
608 if (WARN_ON(clk->exclusive_count <= 0))
609 goto out;
610
611 clk_core_rate_unprotect(clk->core);
612 clk->exclusive_count--;
613 out:
614 clk_prepare_unlock();
615 }
616 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
617
618 static void clk_core_rate_protect(struct clk_core *core)
619 {
620 lockdep_assert_held(&prepare_lock);
621
622 if (!core)
623 return;
624
625 if (core->protect_count == 0)
626 clk_core_rate_protect(core->parent);
627
628 core->protect_count++;
629 }
630
631 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
632 {
633 lockdep_assert_held(&prepare_lock);
634
635 if (!core)
636 return;
637
638 if (count == 0)
639 return;
640
641 clk_core_rate_protect(core);
642 core->protect_count = count;
643 }
644
645 /**
646 * clk_rate_exclusive_get - get exclusivity over the clk rate control
647 * @clk: the clk over which the exclusity of rate control is requested
648 *
649 * clk_rate_exlusive_get() begins a critical section during which a clock
650 * consumer cannot tolerate any other consumer making any operation on the
651 * clock which could result in a rate change or rate glitch. Exclusive clocks
652 * cannot have their rate changed, either directly or indirectly due to changes
653 * further up the parent chain of clocks. As a result, clocks up parent chain
654 * also get under exclusive control of the calling consumer.
655 *
656 * If exlusivity is claimed more than once on clock, even by the same consumer,
657 * the rate effectively gets locked as exclusivity can't be preempted.
658 *
659 * Calls to clk_rate_exclusive_get() should be balanced with calls to
660 * clk_rate_exclusive_put(). Calls to this function may sleep.
661 * Returns 0 on success, -EERROR otherwise
662 */
663 int clk_rate_exclusive_get(struct clk *clk)
664 {
665 if (!clk)
666 return 0;
667
668 clk_prepare_lock();
669 clk_core_rate_protect(clk->core);
670 clk->exclusive_count++;
671 clk_prepare_unlock();
672
673 return 0;
674 }
675 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
676
677 static void clk_core_unprepare(struct clk_core *core)
678 {
679 lockdep_assert_held(&prepare_lock);
680
681 if (!core)
682 return;
683
684 if (WARN_ON(core->prepare_count == 0))
685 return;
686
687 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
688 return;
689
690 if (--core->prepare_count > 0)
691 return;
692
693 WARN_ON(core->enable_count > 0);
694
695 trace_clk_unprepare(core);
696
697 if (core->ops->unprepare)
698 core->ops->unprepare(core->hw);
699
700 clk_pm_runtime_put(core);
701
702 trace_clk_unprepare_complete(core);
703 clk_core_unprepare(core->parent);
704 }
705
706 static void clk_core_unprepare_lock(struct clk_core *core)
707 {
708 clk_prepare_lock();
709 clk_core_unprepare(core);
710 clk_prepare_unlock();
711 }
712
713 /**
714 * clk_unprepare - undo preparation of a clock source
715 * @clk: the clk being unprepared
716 *
717 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
718 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
719 * if the operation may sleep. One example is a clk which is accessed over
720 * I2c. In the complex case a clk gate operation may require a fast and a slow
721 * part. It is this reason that clk_unprepare and clk_disable are not mutually
722 * exclusive. In fact clk_disable must be called before clk_unprepare.
723 */
724 void clk_unprepare(struct clk *clk)
725 {
726 if (IS_ERR_OR_NULL(clk))
727 return;
728
729 clk_core_unprepare_lock(clk->core);
730 }
731 EXPORT_SYMBOL_GPL(clk_unprepare);
732
733 static int clk_core_prepare(struct clk_core *core)
734 {
735 int ret = 0;
736
737 lockdep_assert_held(&prepare_lock);
738
739 if (!core)
740 return 0;
741
742 if (core->prepare_count == 0) {
743 ret = clk_pm_runtime_get(core);
744 if (ret)
745 return ret;
746
747 ret = clk_core_prepare(core->parent);
748 if (ret)
749 goto runtime_put;
750
751 trace_clk_prepare(core);
752
753 if (core->ops->prepare)
754 ret = core->ops->prepare(core->hw);
755
756 trace_clk_prepare_complete(core);
757
758 if (ret)
759 goto unprepare;
760 }
761
762 core->prepare_count++;
763
764 return 0;
765 unprepare:
766 clk_core_unprepare(core->parent);
767 runtime_put:
768 clk_pm_runtime_put(core);
769 return ret;
770 }
771
772 static int clk_core_prepare_lock(struct clk_core *core)
773 {
774 int ret;
775
776 clk_prepare_lock();
777 ret = clk_core_prepare(core);
778 clk_prepare_unlock();
779
780 return ret;
781 }
782
783 /**
784 * clk_prepare - prepare a clock source
785 * @clk: the clk being prepared
786 *
787 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
788 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
789 * operation may sleep. One example is a clk which is accessed over I2c. In
790 * the complex case a clk ungate operation may require a fast and a slow part.
791 * It is this reason that clk_prepare and clk_enable are not mutually
792 * exclusive. In fact clk_prepare must be called before clk_enable.
793 * Returns 0 on success, -EERROR otherwise.
794 */
795 int clk_prepare(struct clk *clk)
796 {
797 if (!clk)
798 return 0;
799
800 return clk_core_prepare_lock(clk->core);
801 }
802 EXPORT_SYMBOL_GPL(clk_prepare);
803
804 static void clk_core_disable(struct clk_core *core)
805 {
806 lockdep_assert_held(&enable_lock);
807
808 if (!core)
809 return;
810
811 if (WARN_ON(core->enable_count == 0))
812 return;
813
814 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
815 return;
816
817 if (--core->enable_count > 0)
818 return;
819
820 trace_clk_disable_rcuidle(core);
821
822 if (core->ops->disable)
823 core->ops->disable(core->hw);
824
825 trace_clk_disable_complete_rcuidle(core);
826
827 clk_core_disable(core->parent);
828 }
829
830 static void clk_core_disable_lock(struct clk_core *core)
831 {
832 unsigned long flags;
833
834 flags = clk_enable_lock();
835 clk_core_disable(core);
836 clk_enable_unlock(flags);
837 }
838
839 /**
840 * clk_disable - gate a clock
841 * @clk: the clk being gated
842 *
843 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
844 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
845 * clk if the operation is fast and will never sleep. One example is a
846 * SoC-internal clk which is controlled via simple register writes. In the
847 * complex case a clk gate operation may require a fast and a slow part. It is
848 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
849 * In fact clk_disable must be called before clk_unprepare.
850 */
851 void clk_disable(struct clk *clk)
852 {
853 if (IS_ERR_OR_NULL(clk))
854 return;
855
856 clk_core_disable_lock(clk->core);
857 }
858 EXPORT_SYMBOL_GPL(clk_disable);
859
860 static int clk_core_enable(struct clk_core *core)
861 {
862 int ret = 0;
863
864 lockdep_assert_held(&enable_lock);
865
866 if (!core)
867 return 0;
868
869 if (WARN_ON(core->prepare_count == 0))
870 return -ESHUTDOWN;
871
872 if (core->enable_count == 0) {
873 ret = clk_core_enable(core->parent);
874
875 if (ret)
876 return ret;
877
878 trace_clk_enable_rcuidle(core);
879
880 if (core->ops->enable)
881 ret = core->ops->enable(core->hw);
882
883 trace_clk_enable_complete_rcuidle(core);
884
885 if (ret) {
886 clk_core_disable(core->parent);
887 return ret;
888 }
889 }
890
891 core->enable_count++;
892 return 0;
893 }
894
895 static int clk_core_enable_lock(struct clk_core *core)
896 {
897 unsigned long flags;
898 int ret;
899
900 flags = clk_enable_lock();
901 ret = clk_core_enable(core);
902 clk_enable_unlock(flags);
903
904 return ret;
905 }
906
907 /**
908 * clk_enable - ungate a clock
909 * @clk: the clk being ungated
910 *
911 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
912 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
913 * if the operation will never sleep. One example is a SoC-internal clk which
914 * is controlled via simple register writes. In the complex case a clk ungate
915 * operation may require a fast and a slow part. It is this reason that
916 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
917 * must be called before clk_enable. Returns 0 on success, -EERROR
918 * otherwise.
919 */
920 int clk_enable(struct clk *clk)
921 {
922 if (!clk)
923 return 0;
924
925 return clk_core_enable_lock(clk->core);
926 }
927 EXPORT_SYMBOL_GPL(clk_enable);
928
929 static int clk_core_prepare_enable(struct clk_core *core)
930 {
931 int ret;
932
933 ret = clk_core_prepare_lock(core);
934 if (ret)
935 return ret;
936
937 ret = clk_core_enable_lock(core);
938 if (ret)
939 clk_core_unprepare_lock(core);
940
941 return ret;
942 }
943
944 static void clk_core_disable_unprepare(struct clk_core *core)
945 {
946 clk_core_disable_lock(core);
947 clk_core_unprepare_lock(core);
948 }
949
950 static void clk_unprepare_unused_subtree(struct clk_core *core)
951 {
952 struct clk_core *child;
953
954 lockdep_assert_held(&prepare_lock);
955
956 hlist_for_each_entry(child, &core->children, child_node)
957 clk_unprepare_unused_subtree(child);
958
959 if (core->prepare_count)
960 return;
961
962 if (core->flags & CLK_IGNORE_UNUSED)
963 return;
964
965 if (clk_pm_runtime_get(core))
966 return;
967
968 if (clk_core_is_prepared(core)) {
969 trace_clk_unprepare(core);
970 if (core->ops->unprepare_unused)
971 core->ops->unprepare_unused(core->hw);
972 else if (core->ops->unprepare)
973 core->ops->unprepare(core->hw);
974 trace_clk_unprepare_complete(core);
975 }
976
977 clk_pm_runtime_put(core);
978 }
979
980 static void clk_disable_unused_subtree(struct clk_core *core)
981 {
982 struct clk_core *child;
983 unsigned long flags;
984
985 lockdep_assert_held(&prepare_lock);
986
987 hlist_for_each_entry(child, &core->children, child_node)
988 clk_disable_unused_subtree(child);
989
990 if (core->flags & CLK_OPS_PARENT_ENABLE)
991 clk_core_prepare_enable(core->parent);
992
993 if (clk_pm_runtime_get(core))
994 goto unprepare_out;
995
996 flags = clk_enable_lock();
997
998 if (core->enable_count)
999 goto unlock_out;
1000
1001 if (core->flags & CLK_IGNORE_UNUSED)
1002 goto unlock_out;
1003
1004 /*
1005 * some gate clocks have special needs during the disable-unused
1006 * sequence. call .disable_unused if available, otherwise fall
1007 * back to .disable
1008 */
1009 if (clk_core_is_enabled(core)) {
1010 trace_clk_disable(core);
1011 if (core->ops->disable_unused)
1012 core->ops->disable_unused(core->hw);
1013 else if (core->ops->disable)
1014 core->ops->disable(core->hw);
1015 trace_clk_disable_complete(core);
1016 }
1017
1018 unlock_out:
1019 clk_enable_unlock(flags);
1020 clk_pm_runtime_put(core);
1021 unprepare_out:
1022 if (core->flags & CLK_OPS_PARENT_ENABLE)
1023 clk_core_disable_unprepare(core->parent);
1024 }
1025
1026 static bool clk_ignore_unused;
1027 static int __init clk_ignore_unused_setup(char *__unused)
1028 {
1029 clk_ignore_unused = true;
1030 return 1;
1031 }
1032 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1033
1034 static int clk_disable_unused(void)
1035 {
1036 struct clk_core *core;
1037
1038 if (clk_ignore_unused) {
1039 pr_warn("clk: Not disabling unused clocks\n");
1040 return 0;
1041 }
1042
1043 clk_prepare_lock();
1044
1045 hlist_for_each_entry(core, &clk_root_list, child_node)
1046 clk_disable_unused_subtree(core);
1047
1048 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1049 clk_disable_unused_subtree(core);
1050
1051 hlist_for_each_entry(core, &clk_root_list, child_node)
1052 clk_unprepare_unused_subtree(core);
1053
1054 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1055 clk_unprepare_unused_subtree(core);
1056
1057 clk_prepare_unlock();
1058
1059 return 0;
1060 }
1061 late_initcall_sync(clk_disable_unused);
1062
1063 static int clk_core_determine_round_nolock(struct clk_core *core,
1064 struct clk_rate_request *req)
1065 {
1066 long rate;
1067
1068 lockdep_assert_held(&prepare_lock);
1069
1070 if (!core)
1071 return 0;
1072
1073 /*
1074 * At this point, core protection will be disabled if
1075 * - if the provider is not protected at all
1076 * - if the calling consumer is the only one which has exclusivity
1077 * over the provider
1078 */
1079 if (clk_core_rate_is_protected(core)) {
1080 req->rate = core->rate;
1081 } else if (core->ops->determine_rate) {
1082 return core->ops->determine_rate(core->hw, req);
1083 } else if (core->ops->round_rate) {
1084 rate = core->ops->round_rate(core->hw, req->rate,
1085 &req->best_parent_rate);
1086 if (rate < 0)
1087 return rate;
1088
1089 req->rate = rate;
1090 } else {
1091 return -EINVAL;
1092 }
1093
1094 return 0;
1095 }
1096
1097 static void clk_core_init_rate_req(struct clk_core * const core,
1098 struct clk_rate_request *req)
1099 {
1100 struct clk_core *parent;
1101
1102 if (WARN_ON(!core || !req))
1103 return;
1104
1105 parent = core->parent;
1106 if (parent) {
1107 req->best_parent_hw = parent->hw;
1108 req->best_parent_rate = parent->rate;
1109 } else {
1110 req->best_parent_hw = NULL;
1111 req->best_parent_rate = 0;
1112 }
1113 }
1114
1115 static bool clk_core_can_round(struct clk_core * const core)
1116 {
1117 if (core->ops->determine_rate || core->ops->round_rate)
1118 return true;
1119
1120 return false;
1121 }
1122
1123 static int clk_core_round_rate_nolock(struct clk_core *core,
1124 struct clk_rate_request *req)
1125 {
1126 lockdep_assert_held(&prepare_lock);
1127
1128 if (!core) {
1129 req->rate = 0;
1130 return 0;
1131 }
1132
1133 clk_core_init_rate_req(core, req);
1134
1135 if (clk_core_can_round(core))
1136 return clk_core_determine_round_nolock(core, req);
1137 else if (core->flags & CLK_SET_RATE_PARENT)
1138 return clk_core_round_rate_nolock(core->parent, req);
1139
1140 req->rate = core->rate;
1141 return 0;
1142 }
1143
1144 /**
1145 * __clk_determine_rate - get the closest rate actually supported by a clock
1146 * @hw: determine the rate of this clock
1147 * @req: target rate request
1148 *
1149 * Useful for clk_ops such as .set_rate and .determine_rate.
1150 */
1151 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1152 {
1153 if (!hw) {
1154 req->rate = 0;
1155 return 0;
1156 }
1157
1158 return clk_core_round_rate_nolock(hw->core, req);
1159 }
1160 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1161
1162 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1163 {
1164 int ret;
1165 struct clk_rate_request req;
1166
1167 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1168 req.rate = rate;
1169
1170 ret = clk_core_round_rate_nolock(hw->core, &req);
1171 if (ret)
1172 return 0;
1173
1174 return req.rate;
1175 }
1176 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1177
1178 /**
1179 * clk_round_rate - round the given rate for a clk
1180 * @clk: the clk for which we are rounding a rate
1181 * @rate: the rate which is to be rounded
1182 *
1183 * Takes in a rate as input and rounds it to a rate that the clk can actually
1184 * use which is then returned. If clk doesn't support round_rate operation
1185 * then the parent rate is returned.
1186 */
1187 long clk_round_rate(struct clk *clk, unsigned long rate)
1188 {
1189 struct clk_rate_request req;
1190 int ret;
1191
1192 if (!clk)
1193 return 0;
1194
1195 clk_prepare_lock();
1196
1197 if (clk->exclusive_count)
1198 clk_core_rate_unprotect(clk->core);
1199
1200 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1201 req.rate = rate;
1202
1203 ret = clk_core_round_rate_nolock(clk->core, &req);
1204
1205 if (clk->exclusive_count)
1206 clk_core_rate_protect(clk->core);
1207
1208 clk_prepare_unlock();
1209
1210 if (ret)
1211 return ret;
1212
1213 return req.rate;
1214 }
1215 EXPORT_SYMBOL_GPL(clk_round_rate);
1216
1217 /**
1218 * __clk_notify - call clk notifier chain
1219 * @core: clk that is changing rate
1220 * @msg: clk notifier type (see include/linux/clk.h)
1221 * @old_rate: old clk rate
1222 * @new_rate: new clk rate
1223 *
1224 * Triggers a notifier call chain on the clk rate-change notification
1225 * for 'clk'. Passes a pointer to the struct clk and the previous
1226 * and current rates to the notifier callback. Intended to be called by
1227 * internal clock code only. Returns NOTIFY_DONE from the last driver
1228 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1229 * a driver returns that.
1230 */
1231 static int __clk_notify(struct clk_core *core, unsigned long msg,
1232 unsigned long old_rate, unsigned long new_rate)
1233 {
1234 struct clk_notifier *cn;
1235 struct clk_notifier_data cnd;
1236 int ret = NOTIFY_DONE;
1237
1238 cnd.old_rate = old_rate;
1239 cnd.new_rate = new_rate;
1240
1241 list_for_each_entry(cn, &clk_notifier_list, node) {
1242 if (cn->clk->core == core) {
1243 cnd.clk = cn->clk;
1244 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1245 &cnd);
1246 if (ret & NOTIFY_STOP_MASK)
1247 return ret;
1248 }
1249 }
1250
1251 return ret;
1252 }
1253
1254 /**
1255 * __clk_recalc_accuracies
1256 * @core: first clk in the subtree
1257 *
1258 * Walks the subtree of clks starting with clk and recalculates accuracies as
1259 * it goes. Note that if a clk does not implement the .recalc_accuracy
1260 * callback then it is assumed that the clock will take on the accuracy of its
1261 * parent.
1262 */
1263 static void __clk_recalc_accuracies(struct clk_core *core)
1264 {
1265 unsigned long parent_accuracy = 0;
1266 struct clk_core *child;
1267
1268 lockdep_assert_held(&prepare_lock);
1269
1270 if (core->parent)
1271 parent_accuracy = core->parent->accuracy;
1272
1273 if (core->ops->recalc_accuracy)
1274 core->accuracy = core->ops->recalc_accuracy(core->hw,
1275 parent_accuracy);
1276 else
1277 core->accuracy = parent_accuracy;
1278
1279 hlist_for_each_entry(child, &core->children, child_node)
1280 __clk_recalc_accuracies(child);
1281 }
1282
1283 static long clk_core_get_accuracy(struct clk_core *core)
1284 {
1285 unsigned long accuracy;
1286
1287 clk_prepare_lock();
1288 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1289 __clk_recalc_accuracies(core);
1290
1291 accuracy = __clk_get_accuracy(core);
1292 clk_prepare_unlock();
1293
1294 return accuracy;
1295 }
1296
1297 /**
1298 * clk_get_accuracy - return the accuracy of clk
1299 * @clk: the clk whose accuracy is being returned
1300 *
1301 * Simply returns the cached accuracy of the clk, unless
1302 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1303 * issued.
1304 * If clk is NULL then returns 0.
1305 */
1306 long clk_get_accuracy(struct clk *clk)
1307 {
1308 if (!clk)
1309 return 0;
1310
1311 return clk_core_get_accuracy(clk->core);
1312 }
1313 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1314
1315 static unsigned long clk_recalc(struct clk_core *core,
1316 unsigned long parent_rate)
1317 {
1318 unsigned long rate = parent_rate;
1319
1320 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1321 rate = core->ops->recalc_rate(core->hw, parent_rate);
1322 clk_pm_runtime_put(core);
1323 }
1324 return rate;
1325 }
1326
1327 /**
1328 * __clk_recalc_rates
1329 * @core: first clk in the subtree
1330 * @msg: notification type (see include/linux/clk.h)
1331 *
1332 * Walks the subtree of clks starting with clk and recalculates rates as it
1333 * goes. Note that if a clk does not implement the .recalc_rate callback then
1334 * it is assumed that the clock will take on the rate of its parent.
1335 *
1336 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1337 * if necessary.
1338 */
1339 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1340 {
1341 unsigned long old_rate;
1342 unsigned long parent_rate = 0;
1343 struct clk_core *child;
1344
1345 lockdep_assert_held(&prepare_lock);
1346
1347 old_rate = core->rate;
1348
1349 if (core->parent)
1350 parent_rate = core->parent->rate;
1351
1352 core->rate = clk_recalc(core, parent_rate);
1353
1354 /*
1355 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1356 * & ABORT_RATE_CHANGE notifiers
1357 */
1358 if (core->notifier_count && msg)
1359 __clk_notify(core, msg, old_rate, core->rate);
1360
1361 hlist_for_each_entry(child, &core->children, child_node)
1362 __clk_recalc_rates(child, msg);
1363 }
1364
1365 static unsigned long clk_core_get_rate(struct clk_core *core)
1366 {
1367 unsigned long rate;
1368
1369 clk_prepare_lock();
1370
1371 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1372 __clk_recalc_rates(core, 0);
1373
1374 rate = clk_core_get_rate_nolock(core);
1375 clk_prepare_unlock();
1376
1377 return rate;
1378 }
1379
1380 /**
1381 * clk_get_rate - return the rate of clk
1382 * @clk: the clk whose rate is being returned
1383 *
1384 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1385 * is set, which means a recalc_rate will be issued.
1386 * If clk is NULL then returns 0.
1387 */
1388 unsigned long clk_get_rate(struct clk *clk)
1389 {
1390 if (!clk)
1391 return 0;
1392
1393 return clk_core_get_rate(clk->core);
1394 }
1395 EXPORT_SYMBOL_GPL(clk_get_rate);
1396
1397 static int clk_fetch_parent_index(struct clk_core *core,
1398 struct clk_core *parent)
1399 {
1400 int i;
1401
1402 if (!parent)
1403 return -EINVAL;
1404
1405 for (i = 0; i < core->num_parents; i++)
1406 if (clk_core_get_parent_by_index(core, i) == parent)
1407 return i;
1408
1409 return -EINVAL;
1410 }
1411
1412 /*
1413 * Update the orphan status of @core and all its children.
1414 */
1415 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1416 {
1417 struct clk_core *child;
1418
1419 core->orphan = is_orphan;
1420
1421 hlist_for_each_entry(child, &core->children, child_node)
1422 clk_core_update_orphan_status(child, is_orphan);
1423 }
1424
1425 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1426 {
1427 bool was_orphan = core->orphan;
1428
1429 hlist_del(&core->child_node);
1430
1431 if (new_parent) {
1432 bool becomes_orphan = new_parent->orphan;
1433
1434 /* avoid duplicate POST_RATE_CHANGE notifications */
1435 if (new_parent->new_child == core)
1436 new_parent->new_child = NULL;
1437
1438 hlist_add_head(&core->child_node, &new_parent->children);
1439
1440 if (was_orphan != becomes_orphan)
1441 clk_core_update_orphan_status(core, becomes_orphan);
1442 } else {
1443 hlist_add_head(&core->child_node, &clk_orphan_list);
1444 if (!was_orphan)
1445 clk_core_update_orphan_status(core, true);
1446 }
1447
1448 core->parent = new_parent;
1449 }
1450
1451 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1452 struct clk_core *parent)
1453 {
1454 unsigned long flags;
1455 struct clk_core *old_parent = core->parent;
1456
1457 /*
1458 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1459 *
1460 * 2. Migrate prepare state between parents and prevent race with
1461 * clk_enable().
1462 *
1463 * If the clock is not prepared, then a race with
1464 * clk_enable/disable() is impossible since we already have the
1465 * prepare lock (future calls to clk_enable() need to be preceded by
1466 * a clk_prepare()).
1467 *
1468 * If the clock is prepared, migrate the prepared state to the new
1469 * parent and also protect against a race with clk_enable() by
1470 * forcing the clock and the new parent on. This ensures that all
1471 * future calls to clk_enable() are practically NOPs with respect to
1472 * hardware and software states.
1473 *
1474 * See also: Comment for clk_set_parent() below.
1475 */
1476
1477 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1478 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1479 clk_core_prepare_enable(old_parent);
1480 clk_core_prepare_enable(parent);
1481 }
1482
1483 /* migrate prepare count if > 0 */
1484 if (core->prepare_count) {
1485 clk_core_prepare_enable(parent);
1486 clk_core_enable_lock(core);
1487 }
1488
1489 /* update the clk tree topology */
1490 flags = clk_enable_lock();
1491 clk_reparent(core, parent);
1492 clk_enable_unlock(flags);
1493
1494 return old_parent;
1495 }
1496
1497 static void __clk_set_parent_after(struct clk_core *core,
1498 struct clk_core *parent,
1499 struct clk_core *old_parent)
1500 {
1501 /*
1502 * Finish the migration of prepare state and undo the changes done
1503 * for preventing a race with clk_enable().
1504 */
1505 if (core->prepare_count) {
1506 clk_core_disable_lock(core);
1507 clk_core_disable_unprepare(old_parent);
1508 }
1509
1510 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1511 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1512 clk_core_disable_unprepare(parent);
1513 clk_core_disable_unprepare(old_parent);
1514 }
1515 }
1516
1517 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1518 u8 p_index)
1519 {
1520 unsigned long flags;
1521 int ret = 0;
1522 struct clk_core *old_parent;
1523
1524 old_parent = __clk_set_parent_before(core, parent);
1525
1526 trace_clk_set_parent(core, parent);
1527
1528 /* change clock input source */
1529 if (parent && core->ops->set_parent)
1530 ret = core->ops->set_parent(core->hw, p_index);
1531
1532 trace_clk_set_parent_complete(core, parent);
1533
1534 if (ret) {
1535 flags = clk_enable_lock();
1536 clk_reparent(core, old_parent);
1537 clk_enable_unlock(flags);
1538 __clk_set_parent_after(core, old_parent, parent);
1539
1540 return ret;
1541 }
1542
1543 __clk_set_parent_after(core, parent, old_parent);
1544
1545 return 0;
1546 }
1547
1548 /**
1549 * __clk_speculate_rates
1550 * @core: first clk in the subtree
1551 * @parent_rate: the "future" rate of clk's parent
1552 *
1553 * Walks the subtree of clks starting with clk, speculating rates as it
1554 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1555 *
1556 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1557 * pre-rate change notifications and returns early if no clks in the
1558 * subtree have subscribed to the notifications. Note that if a clk does not
1559 * implement the .recalc_rate callback then it is assumed that the clock will
1560 * take on the rate of its parent.
1561 */
1562 static int __clk_speculate_rates(struct clk_core *core,
1563 unsigned long parent_rate)
1564 {
1565 struct clk_core *child;
1566 unsigned long new_rate;
1567 int ret = NOTIFY_DONE;
1568
1569 lockdep_assert_held(&prepare_lock);
1570
1571 new_rate = clk_recalc(core, parent_rate);
1572
1573 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1574 if (core->notifier_count)
1575 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1576
1577 if (ret & NOTIFY_STOP_MASK) {
1578 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1579 __func__, core->name, ret);
1580 goto out;
1581 }
1582
1583 hlist_for_each_entry(child, &core->children, child_node) {
1584 ret = __clk_speculate_rates(child, new_rate);
1585 if (ret & NOTIFY_STOP_MASK)
1586 break;
1587 }
1588
1589 out:
1590 return ret;
1591 }
1592
1593 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1594 struct clk_core *new_parent, u8 p_index)
1595 {
1596 struct clk_core *child;
1597
1598 core->new_rate = new_rate;
1599 core->new_parent = new_parent;
1600 core->new_parent_index = p_index;
1601 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1602 core->new_child = NULL;
1603 if (new_parent && new_parent != core->parent)
1604 new_parent->new_child = core;
1605
1606 hlist_for_each_entry(child, &core->children, child_node) {
1607 child->new_rate = clk_recalc(child, new_rate);
1608 clk_calc_subtree(child, child->new_rate, NULL, 0);
1609 }
1610 }
1611
1612 /*
1613 * calculate the new rates returning the topmost clock that has to be
1614 * changed.
1615 */
1616 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1617 unsigned long rate)
1618 {
1619 struct clk_core *top = core;
1620 struct clk_core *old_parent, *parent;
1621 unsigned long best_parent_rate = 0;
1622 unsigned long new_rate;
1623 unsigned long min_rate;
1624 unsigned long max_rate;
1625 int p_index = 0;
1626 long ret;
1627
1628 /* sanity */
1629 if (IS_ERR_OR_NULL(core))
1630 return NULL;
1631
1632 /* save parent rate, if it exists */
1633 parent = old_parent = core->parent;
1634 if (parent)
1635 best_parent_rate = parent->rate;
1636
1637 clk_core_get_boundaries(core, &min_rate, &max_rate);
1638
1639 /* find the closest rate and parent clk/rate */
1640 if (clk_core_can_round(core)) {
1641 struct clk_rate_request req;
1642
1643 req.rate = rate;
1644 req.min_rate = min_rate;
1645 req.max_rate = max_rate;
1646
1647 clk_core_init_rate_req(core, &req);
1648
1649 ret = clk_core_determine_round_nolock(core, &req);
1650 if (ret < 0)
1651 return NULL;
1652
1653 best_parent_rate = req.best_parent_rate;
1654 new_rate = req.rate;
1655 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1656
1657 if (new_rate < min_rate || new_rate > max_rate)
1658 return NULL;
1659 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1660 /* pass-through clock without adjustable parent */
1661 core->new_rate = core->rate;
1662 return NULL;
1663 } else {
1664 /* pass-through clock with adjustable parent */
1665 top = clk_calc_new_rates(parent, rate);
1666 new_rate = parent->new_rate;
1667 goto out;
1668 }
1669
1670 /* some clocks must be gated to change parent */
1671 if (parent != old_parent &&
1672 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1673 pr_debug("%s: %s not gated but wants to reparent\n",
1674 __func__, core->name);
1675 return NULL;
1676 }
1677
1678 /* try finding the new parent index */
1679 if (parent && core->num_parents > 1) {
1680 p_index = clk_fetch_parent_index(core, parent);
1681 if (p_index < 0) {
1682 pr_debug("%s: clk %s can not be parent of clk %s\n",
1683 __func__, parent->name, core->name);
1684 return NULL;
1685 }
1686 }
1687
1688 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1689 best_parent_rate != parent->rate)
1690 top = clk_calc_new_rates(parent, best_parent_rate);
1691
1692 out:
1693 clk_calc_subtree(core, new_rate, parent, p_index);
1694
1695 return top;
1696 }
1697
1698 /*
1699 * Notify about rate changes in a subtree. Always walk down the whole tree
1700 * so that in case of an error we can walk down the whole tree again and
1701 * abort the change.
1702 */
1703 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1704 unsigned long event)
1705 {
1706 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1707 int ret = NOTIFY_DONE;
1708
1709 if (core->rate == core->new_rate)
1710 return NULL;
1711
1712 if (core->notifier_count) {
1713 ret = __clk_notify(core, event, core->rate, core->new_rate);
1714 if (ret & NOTIFY_STOP_MASK)
1715 fail_clk = core;
1716 }
1717
1718 hlist_for_each_entry(child, &core->children, child_node) {
1719 /* Skip children who will be reparented to another clock */
1720 if (child->new_parent && child->new_parent != core)
1721 continue;
1722 tmp_clk = clk_propagate_rate_change(child, event);
1723 if (tmp_clk)
1724 fail_clk = tmp_clk;
1725 }
1726
1727 /* handle the new child who might not be in core->children yet */
1728 if (core->new_child) {
1729 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1730 if (tmp_clk)
1731 fail_clk = tmp_clk;
1732 }
1733
1734 return fail_clk;
1735 }
1736
1737 /*
1738 * walk down a subtree and set the new rates notifying the rate
1739 * change on the way
1740 */
1741 static void clk_change_rate(struct clk_core *core)
1742 {
1743 struct clk_core *child;
1744 struct hlist_node *tmp;
1745 unsigned long old_rate;
1746 unsigned long best_parent_rate = 0;
1747 bool skip_set_rate = false;
1748 struct clk_core *old_parent;
1749 struct clk_core *parent = NULL;
1750
1751 old_rate = core->rate;
1752
1753 if (core->new_parent) {
1754 parent = core->new_parent;
1755 best_parent_rate = core->new_parent->rate;
1756 } else if (core->parent) {
1757 parent = core->parent;
1758 best_parent_rate = core->parent->rate;
1759 }
1760
1761 if (clk_pm_runtime_get(core))
1762 return;
1763
1764 if (core->flags & CLK_SET_RATE_UNGATE) {
1765 unsigned long flags;
1766
1767 clk_core_prepare(core);
1768 flags = clk_enable_lock();
1769 clk_core_enable(core);
1770 clk_enable_unlock(flags);
1771 }
1772
1773 if (core->new_parent && core->new_parent != core->parent) {
1774 old_parent = __clk_set_parent_before(core, core->new_parent);
1775 trace_clk_set_parent(core, core->new_parent);
1776
1777 if (core->ops->set_rate_and_parent) {
1778 skip_set_rate = true;
1779 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1780 best_parent_rate,
1781 core->new_parent_index);
1782 } else if (core->ops->set_parent) {
1783 core->ops->set_parent(core->hw, core->new_parent_index);
1784 }
1785
1786 trace_clk_set_parent_complete(core, core->new_parent);
1787 __clk_set_parent_after(core, core->new_parent, old_parent);
1788 }
1789
1790 if (core->flags & CLK_OPS_PARENT_ENABLE)
1791 clk_core_prepare_enable(parent);
1792
1793 trace_clk_set_rate(core, core->new_rate);
1794
1795 if (!skip_set_rate && core->ops->set_rate)
1796 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1797
1798 trace_clk_set_rate_complete(core, core->new_rate);
1799
1800 core->rate = clk_recalc(core, best_parent_rate);
1801
1802 if (core->flags & CLK_SET_RATE_UNGATE) {
1803 unsigned long flags;
1804
1805 flags = clk_enable_lock();
1806 clk_core_disable(core);
1807 clk_enable_unlock(flags);
1808 clk_core_unprepare(core);
1809 }
1810
1811 if (core->flags & CLK_OPS_PARENT_ENABLE)
1812 clk_core_disable_unprepare(parent);
1813
1814 if (core->notifier_count && old_rate != core->rate)
1815 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1816
1817 if (core->flags & CLK_RECALC_NEW_RATES)
1818 (void)clk_calc_new_rates(core, core->new_rate);
1819
1820 /*
1821 * Use safe iteration, as change_rate can actually swap parents
1822 * for certain clock types.
1823 */
1824 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1825 /* Skip children who will be reparented to another clock */
1826 if (child->new_parent && child->new_parent != core)
1827 continue;
1828 clk_change_rate(child);
1829 }
1830
1831 /* handle the new child who might not be in core->children yet */
1832 if (core->new_child)
1833 clk_change_rate(core->new_child);
1834
1835 clk_pm_runtime_put(core);
1836 }
1837
1838 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
1839 unsigned long req_rate)
1840 {
1841 int ret, cnt;
1842 struct clk_rate_request req;
1843
1844 lockdep_assert_held(&prepare_lock);
1845
1846 if (!core)
1847 return 0;
1848
1849 /* simulate what the rate would be if it could be freely set */
1850 cnt = clk_core_rate_nuke_protect(core);
1851 if (cnt < 0)
1852 return cnt;
1853
1854 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
1855 req.rate = req_rate;
1856
1857 ret = clk_core_round_rate_nolock(core, &req);
1858
1859 /* restore the protection */
1860 clk_core_rate_restore_protect(core, cnt);
1861
1862 return ret ? 0 : req.rate;
1863 }
1864
1865 static int clk_core_set_rate_nolock(struct clk_core *core,
1866 unsigned long req_rate)
1867 {
1868 struct clk_core *top, *fail_clk;
1869 unsigned long rate;
1870 int ret = 0;
1871
1872 if (!core)
1873 return 0;
1874
1875 rate = clk_core_req_round_rate_nolock(core, req_rate);
1876
1877 /* bail early if nothing to do */
1878 if (rate == clk_core_get_rate_nolock(core))
1879 return 0;
1880
1881 /* fail on a direct rate set of a protected provider */
1882 if (clk_core_rate_is_protected(core))
1883 return -EBUSY;
1884
1885 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1886 return -EBUSY;
1887
1888 /* calculate new rates and get the topmost changed clock */
1889 top = clk_calc_new_rates(core, req_rate);
1890 if (!top)
1891 return -EINVAL;
1892
1893 ret = clk_pm_runtime_get(core);
1894 if (ret)
1895 return ret;
1896
1897 /* notify that we are about to change rates */
1898 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1899 if (fail_clk) {
1900 pr_debug("%s: failed to set %s rate\n", __func__,
1901 fail_clk->name);
1902 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1903 ret = -EBUSY;
1904 goto err;
1905 }
1906
1907 /* change the rates */
1908 clk_change_rate(top);
1909
1910 core->req_rate = req_rate;
1911 err:
1912 clk_pm_runtime_put(core);
1913
1914 return ret;
1915 }
1916
1917 /**
1918 * clk_set_rate - specify a new rate for clk
1919 * @clk: the clk whose rate is being changed
1920 * @rate: the new rate for clk
1921 *
1922 * In the simplest case clk_set_rate will only adjust the rate of clk.
1923 *
1924 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1925 * propagate up to clk's parent; whether or not this happens depends on the
1926 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1927 * after calling .round_rate then upstream parent propagation is ignored. If
1928 * *parent_rate comes back with a new rate for clk's parent then we propagate
1929 * up to clk's parent and set its rate. Upward propagation will continue
1930 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1931 * .round_rate stops requesting changes to clk's parent_rate.
1932 *
1933 * Rate changes are accomplished via tree traversal that also recalculates the
1934 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1935 *
1936 * Returns 0 on success, -EERROR otherwise.
1937 */
1938 int clk_set_rate(struct clk *clk, unsigned long rate)
1939 {
1940 int ret;
1941
1942 if (!clk)
1943 return 0;
1944
1945 /* prevent racing with updates to the clock topology */
1946 clk_prepare_lock();
1947
1948 if (clk->exclusive_count)
1949 clk_core_rate_unprotect(clk->core);
1950
1951 ret = clk_core_set_rate_nolock(clk->core, rate);
1952
1953 if (clk->exclusive_count)
1954 clk_core_rate_protect(clk->core);
1955
1956 clk_prepare_unlock();
1957
1958 return ret;
1959 }
1960 EXPORT_SYMBOL_GPL(clk_set_rate);
1961
1962 /**
1963 * clk_set_rate_exclusive - specify a new rate get exclusive control
1964 * @clk: the clk whose rate is being changed
1965 * @rate: the new rate for clk
1966 *
1967 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
1968 * within a critical section
1969 *
1970 * This can be used initially to ensure that at least 1 consumer is
1971 * statisfied when several consumers are competing for exclusivity over the
1972 * same clock provider.
1973 *
1974 * The exclusivity is not applied if setting the rate failed.
1975 *
1976 * Calls to clk_rate_exclusive_get() should be balanced with calls to
1977 * clk_rate_exclusive_put().
1978 *
1979 * Returns 0 on success, -EERROR otherwise.
1980 */
1981 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
1982 {
1983 int ret;
1984
1985 if (!clk)
1986 return 0;
1987
1988 /* prevent racing with updates to the clock topology */
1989 clk_prepare_lock();
1990
1991 /*
1992 * The temporary protection removal is not here, on purpose
1993 * This function is meant to be used instead of clk_rate_protect,
1994 * so before the consumer code path protect the clock provider
1995 */
1996
1997 ret = clk_core_set_rate_nolock(clk->core, rate);
1998 if (!ret) {
1999 clk_core_rate_protect(clk->core);
2000 clk->exclusive_count++;
2001 }
2002
2003 clk_prepare_unlock();
2004
2005 return ret;
2006 }
2007 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2008
2009 /**
2010 * clk_set_rate_range - set a rate range for a clock source
2011 * @clk: clock source
2012 * @min: desired minimum clock rate in Hz, inclusive
2013 * @max: desired maximum clock rate in Hz, inclusive
2014 *
2015 * Returns success (0) or negative errno.
2016 */
2017 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2018 {
2019 int ret = 0;
2020 unsigned long old_min, old_max, rate;
2021
2022 if (!clk)
2023 return 0;
2024
2025 if (min > max) {
2026 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2027 __func__, clk->core->name, clk->dev_id, clk->con_id,
2028 min, max);
2029 return -EINVAL;
2030 }
2031
2032 clk_prepare_lock();
2033
2034 if (clk->exclusive_count)
2035 clk_core_rate_unprotect(clk->core);
2036
2037 /* Save the current values in case we need to rollback the change */
2038 old_min = clk->min_rate;
2039 old_max = clk->max_rate;
2040 clk->min_rate = min;
2041 clk->max_rate = max;
2042
2043 rate = clk_core_get_rate_nolock(clk->core);
2044 if (rate < min || rate > max) {
2045 /*
2046 * FIXME:
2047 * We are in bit of trouble here, current rate is outside the
2048 * the requested range. We are going try to request appropriate
2049 * range boundary but there is a catch. It may fail for the
2050 * usual reason (clock broken, clock protected, etc) but also
2051 * because:
2052 * - round_rate() was not favorable and fell on the wrong
2053 * side of the boundary
2054 * - the determine_rate() callback does not really check for
2055 * this corner case when determining the rate
2056 */
2057
2058 if (rate < min)
2059 rate = min;
2060 else
2061 rate = max;
2062
2063 ret = clk_core_set_rate_nolock(clk->core, rate);
2064 if (ret) {
2065 /* rollback the changes */
2066 clk->min_rate = old_min;
2067 clk->max_rate = old_max;
2068 }
2069 }
2070
2071 if (clk->exclusive_count)
2072 clk_core_rate_protect(clk->core);
2073
2074 clk_prepare_unlock();
2075
2076 return ret;
2077 }
2078 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2079
2080 /**
2081 * clk_set_min_rate - set a minimum clock rate for a clock source
2082 * @clk: clock source
2083 * @rate: desired minimum clock rate in Hz, inclusive
2084 *
2085 * Returns success (0) or negative errno.
2086 */
2087 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2088 {
2089 if (!clk)
2090 return 0;
2091
2092 return clk_set_rate_range(clk, rate, clk->max_rate);
2093 }
2094 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2095
2096 /**
2097 * clk_set_max_rate - set a maximum clock rate for a clock source
2098 * @clk: clock source
2099 * @rate: desired maximum clock rate in Hz, inclusive
2100 *
2101 * Returns success (0) or negative errno.
2102 */
2103 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2104 {
2105 if (!clk)
2106 return 0;
2107
2108 return clk_set_rate_range(clk, clk->min_rate, rate);
2109 }
2110 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2111
2112 /**
2113 * clk_get_parent - return the parent of a clk
2114 * @clk: the clk whose parent gets returned
2115 *
2116 * Simply returns clk->parent. Returns NULL if clk is NULL.
2117 */
2118 struct clk *clk_get_parent(struct clk *clk)
2119 {
2120 struct clk *parent;
2121
2122 if (!clk)
2123 return NULL;
2124
2125 clk_prepare_lock();
2126 /* TODO: Create a per-user clk and change callers to call clk_put */
2127 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2128 clk_prepare_unlock();
2129
2130 return parent;
2131 }
2132 EXPORT_SYMBOL_GPL(clk_get_parent);
2133
2134 static struct clk_core *__clk_init_parent(struct clk_core *core)
2135 {
2136 u8 index = 0;
2137
2138 if (core->num_parents > 1 && core->ops->get_parent)
2139 index = core->ops->get_parent(core->hw);
2140
2141 return clk_core_get_parent_by_index(core, index);
2142 }
2143
2144 static void clk_core_reparent(struct clk_core *core,
2145 struct clk_core *new_parent)
2146 {
2147 clk_reparent(core, new_parent);
2148 __clk_recalc_accuracies(core);
2149 __clk_recalc_rates(core, POST_RATE_CHANGE);
2150 }
2151
2152 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2153 {
2154 if (!hw)
2155 return;
2156
2157 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2158 }
2159
2160 /**
2161 * clk_has_parent - check if a clock is a possible parent for another
2162 * @clk: clock source
2163 * @parent: parent clock source
2164 *
2165 * This function can be used in drivers that need to check that a clock can be
2166 * the parent of another without actually changing the parent.
2167 *
2168 * Returns true if @parent is a possible parent for @clk, false otherwise.
2169 */
2170 bool clk_has_parent(struct clk *clk, struct clk *parent)
2171 {
2172 struct clk_core *core, *parent_core;
2173 unsigned int i;
2174
2175 /* NULL clocks should be nops, so return success if either is NULL. */
2176 if (!clk || !parent)
2177 return true;
2178
2179 core = clk->core;
2180 parent_core = parent->core;
2181
2182 /* Optimize for the case where the parent is already the parent. */
2183 if (core->parent == parent_core)
2184 return true;
2185
2186 for (i = 0; i < core->num_parents; i++)
2187 if (strcmp(core->parent_names[i], parent_core->name) == 0)
2188 return true;
2189
2190 return false;
2191 }
2192 EXPORT_SYMBOL_GPL(clk_has_parent);
2193
2194 static int clk_core_set_parent_nolock(struct clk_core *core,
2195 struct clk_core *parent)
2196 {
2197 int ret = 0;
2198 int p_index = 0;
2199 unsigned long p_rate = 0;
2200
2201 lockdep_assert_held(&prepare_lock);
2202
2203 if (!core)
2204 return 0;
2205
2206 if (core->parent == parent)
2207 return 0;
2208
2209 /* verify ops for for multi-parent clks */
2210 if (core->num_parents > 1 && !core->ops->set_parent)
2211 return -EPERM;
2212
2213 /* check that we are allowed to re-parent if the clock is in use */
2214 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2215 return -EBUSY;
2216
2217 if (clk_core_rate_is_protected(core))
2218 return -EBUSY;
2219
2220 /* try finding the new parent index */
2221 if (parent) {
2222 p_index = clk_fetch_parent_index(core, parent);
2223 if (p_index < 0) {
2224 pr_debug("%s: clk %s can not be parent of clk %s\n",
2225 __func__, parent->name, core->name);
2226 return p_index;
2227 }
2228 p_rate = parent->rate;
2229 }
2230
2231 ret = clk_pm_runtime_get(core);
2232 if (ret)
2233 return ret;
2234
2235 /* propagate PRE_RATE_CHANGE notifications */
2236 ret = __clk_speculate_rates(core, p_rate);
2237
2238 /* abort if a driver objects */
2239 if (ret & NOTIFY_STOP_MASK)
2240 goto runtime_put;
2241
2242 /* do the re-parent */
2243 ret = __clk_set_parent(core, parent, p_index);
2244
2245 /* propagate rate an accuracy recalculation accordingly */
2246 if (ret) {
2247 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2248 } else {
2249 __clk_recalc_rates(core, POST_RATE_CHANGE);
2250 __clk_recalc_accuracies(core);
2251 }
2252
2253 runtime_put:
2254 clk_pm_runtime_put(core);
2255
2256 return ret;
2257 }
2258
2259 /**
2260 * clk_set_parent - switch the parent of a mux clk
2261 * @clk: the mux clk whose input we are switching
2262 * @parent: the new input to clk
2263 *
2264 * Re-parent clk to use parent as its new input source. If clk is in
2265 * prepared state, the clk will get enabled for the duration of this call. If
2266 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2267 * that, the reparenting is glitchy in hardware, etc), use the
2268 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2269 *
2270 * After successfully changing clk's parent clk_set_parent will update the
2271 * clk topology, sysfs topology and propagate rate recalculation via
2272 * __clk_recalc_rates.
2273 *
2274 * Returns 0 on success, -EERROR otherwise.
2275 */
2276 int clk_set_parent(struct clk *clk, struct clk *parent)
2277 {
2278 int ret;
2279
2280 if (!clk)
2281 return 0;
2282
2283 clk_prepare_lock();
2284
2285 if (clk->exclusive_count)
2286 clk_core_rate_unprotect(clk->core);
2287
2288 ret = clk_core_set_parent_nolock(clk->core,
2289 parent ? parent->core : NULL);
2290
2291 if (clk->exclusive_count)
2292 clk_core_rate_protect(clk->core);
2293
2294 clk_prepare_unlock();
2295
2296 return ret;
2297 }
2298 EXPORT_SYMBOL_GPL(clk_set_parent);
2299
2300 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2301 {
2302 int ret = -EINVAL;
2303
2304 lockdep_assert_held(&prepare_lock);
2305
2306 if (!core)
2307 return 0;
2308
2309 if (clk_core_rate_is_protected(core))
2310 return -EBUSY;
2311
2312 trace_clk_set_phase(core, degrees);
2313
2314 if (core->ops->set_phase) {
2315 ret = core->ops->set_phase(core->hw, degrees);
2316 if (!ret)
2317 core->phase = degrees;
2318 }
2319
2320 trace_clk_set_phase_complete(core, degrees);
2321
2322 return ret;
2323 }
2324
2325 /**
2326 * clk_set_phase - adjust the phase shift of a clock signal
2327 * @clk: clock signal source
2328 * @degrees: number of degrees the signal is shifted
2329 *
2330 * Shifts the phase of a clock signal by the specified
2331 * degrees. Returns 0 on success, -EERROR otherwise.
2332 *
2333 * This function makes no distinction about the input or reference
2334 * signal that we adjust the clock signal phase against. For example
2335 * phase locked-loop clock signal generators we may shift phase with
2336 * respect to feedback clock signal input, but for other cases the
2337 * clock phase may be shifted with respect to some other, unspecified
2338 * signal.
2339 *
2340 * Additionally the concept of phase shift does not propagate through
2341 * the clock tree hierarchy, which sets it apart from clock rates and
2342 * clock accuracy. A parent clock phase attribute does not have an
2343 * impact on the phase attribute of a child clock.
2344 */
2345 int clk_set_phase(struct clk *clk, int degrees)
2346 {
2347 int ret;
2348
2349 if (!clk)
2350 return 0;
2351
2352 /* sanity check degrees */
2353 degrees %= 360;
2354 if (degrees < 0)
2355 degrees += 360;
2356
2357 clk_prepare_lock();
2358
2359 if (clk->exclusive_count)
2360 clk_core_rate_unprotect(clk->core);
2361
2362 ret = clk_core_set_phase_nolock(clk->core, degrees);
2363
2364 if (clk->exclusive_count)
2365 clk_core_rate_protect(clk->core);
2366
2367 clk_prepare_unlock();
2368
2369 return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(clk_set_phase);
2372
2373 static int clk_core_get_phase(struct clk_core *core)
2374 {
2375 int ret;
2376
2377 clk_prepare_lock();
2378 ret = core->phase;
2379 clk_prepare_unlock();
2380
2381 return ret;
2382 }
2383
2384 /**
2385 * clk_get_phase - return the phase shift of a clock signal
2386 * @clk: clock signal source
2387 *
2388 * Returns the phase shift of a clock node in degrees, otherwise returns
2389 * -EERROR.
2390 */
2391 int clk_get_phase(struct clk *clk)
2392 {
2393 if (!clk)
2394 return 0;
2395
2396 return clk_core_get_phase(clk->core);
2397 }
2398 EXPORT_SYMBOL_GPL(clk_get_phase);
2399
2400 /**
2401 * clk_is_match - check if two clk's point to the same hardware clock
2402 * @p: clk compared against q
2403 * @q: clk compared against p
2404 *
2405 * Returns true if the two struct clk pointers both point to the same hardware
2406 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2407 * share the same struct clk_core object.
2408 *
2409 * Returns false otherwise. Note that two NULL clks are treated as matching.
2410 */
2411 bool clk_is_match(const struct clk *p, const struct clk *q)
2412 {
2413 /* trivial case: identical struct clk's or both NULL */
2414 if (p == q)
2415 return true;
2416
2417 /* true if clk->core pointers match. Avoid dereferencing garbage */
2418 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2419 if (p->core == q->core)
2420 return true;
2421
2422 return false;
2423 }
2424 EXPORT_SYMBOL_GPL(clk_is_match);
2425
2426 /*** debugfs support ***/
2427
2428 #ifdef CONFIG_DEBUG_FS
2429 #include <linux/debugfs.h>
2430
2431 static struct dentry *rootdir;
2432 static int inited = 0;
2433 static DEFINE_MUTEX(clk_debug_lock);
2434 static HLIST_HEAD(clk_debug_list);
2435
2436 static struct hlist_head *all_lists[] = {
2437 &clk_root_list,
2438 &clk_orphan_list,
2439 NULL,
2440 };
2441
2442 static struct hlist_head *orphan_list[] = {
2443 &clk_orphan_list,
2444 NULL,
2445 };
2446
2447 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2448 int level)
2449 {
2450 if (!c)
2451 return;
2452
2453 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %-3d\n",
2454 level * 3 + 1, "",
2455 30 - level * 3, c->name,
2456 c->enable_count, c->prepare_count, c->protect_count,
2457 clk_core_get_rate(c), clk_core_get_accuracy(c),
2458 clk_core_get_phase(c));
2459 }
2460
2461 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2462 int level)
2463 {
2464 struct clk_core *child;
2465
2466 if (!c)
2467 return;
2468
2469 clk_summary_show_one(s, c, level);
2470
2471 hlist_for_each_entry(child, &c->children, child_node)
2472 clk_summary_show_subtree(s, child, level + 1);
2473 }
2474
2475 static int clk_summary_show(struct seq_file *s, void *data)
2476 {
2477 struct clk_core *c;
2478 struct hlist_head **lists = (struct hlist_head **)s->private;
2479
2480 seq_puts(s, " enable prepare protect \n");
2481 seq_puts(s, " clock count count count rate accuracy phase\n");
2482 seq_puts(s, "----------------------------------------------------------------------------------------\n");
2483
2484 clk_prepare_lock();
2485
2486 for (; *lists; lists++)
2487 hlist_for_each_entry(c, *lists, child_node)
2488 clk_summary_show_subtree(s, c, 0);
2489
2490 clk_prepare_unlock();
2491
2492 return 0;
2493 }
2494
2495
2496 static int clk_summary_open(struct inode *inode, struct file *file)
2497 {
2498 return single_open(file, clk_summary_show, inode->i_private);
2499 }
2500
2501 static const struct file_operations clk_summary_fops = {
2502 .open = clk_summary_open,
2503 .read = seq_read,
2504 .llseek = seq_lseek,
2505 .release = single_release,
2506 };
2507
2508 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2509 {
2510 if (!c)
2511 return;
2512
2513 /* This should be JSON format, i.e. elements separated with a comma */
2514 seq_printf(s, "\"%s\": { ", c->name);
2515 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2516 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2517 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2518 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2519 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2520 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2521 }
2522
2523 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2524 {
2525 struct clk_core *child;
2526
2527 if (!c)
2528 return;
2529
2530 clk_dump_one(s, c, level);
2531
2532 hlist_for_each_entry(child, &c->children, child_node) {
2533 seq_putc(s, ',');
2534 clk_dump_subtree(s, child, level + 1);
2535 }
2536
2537 seq_putc(s, '}');
2538 }
2539
2540 static int clk_dump(struct seq_file *s, void *data)
2541 {
2542 struct clk_core *c;
2543 bool first_node = true;
2544 struct hlist_head **lists = (struct hlist_head **)s->private;
2545
2546 seq_putc(s, '{');
2547 clk_prepare_lock();
2548
2549 for (; *lists; lists++) {
2550 hlist_for_each_entry(c, *lists, child_node) {
2551 if (!first_node)
2552 seq_putc(s, ',');
2553 first_node = false;
2554 clk_dump_subtree(s, c, 0);
2555 }
2556 }
2557
2558 clk_prepare_unlock();
2559
2560 seq_puts(s, "}\n");
2561 return 0;
2562 }
2563
2564
2565 static int clk_dump_open(struct inode *inode, struct file *file)
2566 {
2567 return single_open(file, clk_dump, inode->i_private);
2568 }
2569
2570 static const struct file_operations clk_dump_fops = {
2571 .open = clk_dump_open,
2572 .read = seq_read,
2573 .llseek = seq_lseek,
2574 .release = single_release,
2575 };
2576
2577 static const struct {
2578 unsigned long flag;
2579 const char *name;
2580 } clk_flags[] = {
2581 #define ENTRY(f) { f, __stringify(f) }
2582 ENTRY(CLK_SET_RATE_GATE),
2583 ENTRY(CLK_SET_PARENT_GATE),
2584 ENTRY(CLK_SET_RATE_PARENT),
2585 ENTRY(CLK_IGNORE_UNUSED),
2586 ENTRY(CLK_IS_BASIC),
2587 ENTRY(CLK_GET_RATE_NOCACHE),
2588 ENTRY(CLK_SET_RATE_NO_REPARENT),
2589 ENTRY(CLK_GET_ACCURACY_NOCACHE),
2590 ENTRY(CLK_RECALC_NEW_RATES),
2591 ENTRY(CLK_SET_RATE_UNGATE),
2592 ENTRY(CLK_IS_CRITICAL),
2593 ENTRY(CLK_OPS_PARENT_ENABLE),
2594 #undef ENTRY
2595 };
2596
2597 static int clk_flags_dump(struct seq_file *s, void *data)
2598 {
2599 struct clk_core *core = s->private;
2600 unsigned long flags = core->flags;
2601 unsigned int i;
2602
2603 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
2604 if (flags & clk_flags[i].flag) {
2605 seq_printf(s, "%s\n", clk_flags[i].name);
2606 flags &= ~clk_flags[i].flag;
2607 }
2608 }
2609 if (flags) {
2610 /* Unknown flags */
2611 seq_printf(s, "0x%lx\n", flags);
2612 }
2613
2614 return 0;
2615 }
2616
2617 static int clk_flags_open(struct inode *inode, struct file *file)
2618 {
2619 return single_open(file, clk_flags_dump, inode->i_private);
2620 }
2621
2622 static const struct file_operations clk_flags_fops = {
2623 .open = clk_flags_open,
2624 .read = seq_read,
2625 .llseek = seq_lseek,
2626 .release = single_release,
2627 };
2628
2629 static int possible_parents_dump(struct seq_file *s, void *data)
2630 {
2631 struct clk_core *core = s->private;
2632 int i;
2633
2634 for (i = 0; i < core->num_parents - 1; i++)
2635 seq_printf(s, "%s ", core->parent_names[i]);
2636
2637 seq_printf(s, "%s\n", core->parent_names[i]);
2638
2639 return 0;
2640 }
2641
2642 static int possible_parents_open(struct inode *inode, struct file *file)
2643 {
2644 return single_open(file, possible_parents_dump, inode->i_private);
2645 }
2646
2647 static const struct file_operations possible_parents_fops = {
2648 .open = possible_parents_open,
2649 .read = seq_read,
2650 .llseek = seq_lseek,
2651 .release = single_release,
2652 };
2653
2654 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2655 {
2656 struct dentry *d;
2657 int ret = -ENOMEM;
2658
2659 if (!core || !pdentry) {
2660 ret = -EINVAL;
2661 goto out;
2662 }
2663
2664 d = debugfs_create_dir(core->name, pdentry);
2665 if (!d)
2666 goto out;
2667
2668 core->dentry = d;
2669
2670 d = debugfs_create_ulong("clk_rate", 0444, core->dentry, &core->rate);
2671 if (!d)
2672 goto err_out;
2673
2674 d = debugfs_create_ulong("clk_accuracy", 0444, core->dentry,
2675 &core->accuracy);
2676 if (!d)
2677 goto err_out;
2678
2679 d = debugfs_create_u32("clk_phase", 0444, core->dentry, &core->phase);
2680 if (!d)
2681 goto err_out;
2682
2683 d = debugfs_create_file("clk_flags", 0444, core->dentry, core,
2684 &clk_flags_fops);
2685 if (!d)
2686 goto err_out;
2687
2688 d = debugfs_create_u32("clk_prepare_count", 0444, core->dentry,
2689 &core->prepare_count);
2690 if (!d)
2691 goto err_out;
2692
2693 d = debugfs_create_u32("clk_enable_count", 0444, core->dentry,
2694 &core->enable_count);
2695 if (!d)
2696 goto err_out;
2697
2698 d = debugfs_create_u32("clk_protect_count", 0444, core->dentry,
2699 &core->protect_count);
2700 if (!d)
2701 goto err_out;
2702
2703 d = debugfs_create_u32("clk_notifier_count", 0444, core->dentry,
2704 &core->notifier_count);
2705 if (!d)
2706 goto err_out;
2707
2708 if (core->num_parents > 1) {
2709 d = debugfs_create_file("clk_possible_parents", 0444,
2710 core->dentry, core, &possible_parents_fops);
2711 if (!d)
2712 goto err_out;
2713 }
2714
2715 if (core->ops->debug_init) {
2716 ret = core->ops->debug_init(core->hw, core->dentry);
2717 if (ret)
2718 goto err_out;
2719 }
2720
2721 ret = 0;
2722 goto out;
2723
2724 err_out:
2725 debugfs_remove_recursive(core->dentry);
2726 core->dentry = NULL;
2727 out:
2728 return ret;
2729 }
2730
2731 /**
2732 * clk_debug_register - add a clk node to the debugfs clk directory
2733 * @core: the clk being added to the debugfs clk directory
2734 *
2735 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2736 * initialized. Otherwise it bails out early since the debugfs clk directory
2737 * will be created lazily by clk_debug_init as part of a late_initcall.
2738 */
2739 static int clk_debug_register(struct clk_core *core)
2740 {
2741 int ret = 0;
2742
2743 mutex_lock(&clk_debug_lock);
2744 hlist_add_head(&core->debug_node, &clk_debug_list);
2745 if (inited)
2746 ret = clk_debug_create_one(core, rootdir);
2747 mutex_unlock(&clk_debug_lock);
2748
2749 return ret;
2750 }
2751
2752 /**
2753 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2754 * @core: the clk being removed from the debugfs clk directory
2755 *
2756 * Dynamically removes a clk and all its child nodes from the
2757 * debugfs clk directory if clk->dentry points to debugfs created by
2758 * clk_debug_register in __clk_core_init.
2759 */
2760 static void clk_debug_unregister(struct clk_core *core)
2761 {
2762 mutex_lock(&clk_debug_lock);
2763 hlist_del_init(&core->debug_node);
2764 debugfs_remove_recursive(core->dentry);
2765 core->dentry = NULL;
2766 mutex_unlock(&clk_debug_lock);
2767 }
2768
2769 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2770 void *data, const struct file_operations *fops)
2771 {
2772 struct dentry *d = NULL;
2773
2774 if (hw->core->dentry)
2775 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2776 fops);
2777
2778 return d;
2779 }
2780 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2781
2782 /**
2783 * clk_debug_init - lazily populate the debugfs clk directory
2784 *
2785 * clks are often initialized very early during boot before memory can be
2786 * dynamically allocated and well before debugfs is setup. This function
2787 * populates the debugfs clk directory once at boot-time when we know that
2788 * debugfs is setup. It should only be called once at boot-time, all other clks
2789 * added dynamically will be done so with clk_debug_register.
2790 */
2791 static int __init clk_debug_init(void)
2792 {
2793 struct clk_core *core;
2794 struct dentry *d;
2795
2796 rootdir = debugfs_create_dir("clk", NULL);
2797
2798 if (!rootdir)
2799 return -ENOMEM;
2800
2801 d = debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
2802 &clk_summary_fops);
2803 if (!d)
2804 return -ENOMEM;
2805
2806 d = debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
2807 &clk_dump_fops);
2808 if (!d)
2809 return -ENOMEM;
2810
2811 d = debugfs_create_file("clk_orphan_summary", 0444, rootdir,
2812 &orphan_list, &clk_summary_fops);
2813 if (!d)
2814 return -ENOMEM;
2815
2816 d = debugfs_create_file("clk_orphan_dump", 0444, rootdir,
2817 &orphan_list, &clk_dump_fops);
2818 if (!d)
2819 return -ENOMEM;
2820
2821 mutex_lock(&clk_debug_lock);
2822 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2823 clk_debug_create_one(core, rootdir);
2824
2825 inited = 1;
2826 mutex_unlock(&clk_debug_lock);
2827
2828 return 0;
2829 }
2830 late_initcall(clk_debug_init);
2831 #else
2832 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2833 static inline void clk_debug_reparent(struct clk_core *core,
2834 struct clk_core *new_parent)
2835 {
2836 }
2837 static inline void clk_debug_unregister(struct clk_core *core)
2838 {
2839 }
2840 #endif
2841
2842 /**
2843 * __clk_core_init - initialize the data structures in a struct clk_core
2844 * @core: clk_core being initialized
2845 *
2846 * Initializes the lists in struct clk_core, queries the hardware for the
2847 * parent and rate and sets them both.
2848 */
2849 static int __clk_core_init(struct clk_core *core)
2850 {
2851 int i, ret;
2852 struct clk_core *orphan;
2853 struct hlist_node *tmp2;
2854 unsigned long rate;
2855
2856 if (!core)
2857 return -EINVAL;
2858
2859 clk_prepare_lock();
2860
2861 ret = clk_pm_runtime_get(core);
2862 if (ret)
2863 goto unlock;
2864
2865 /* check to see if a clock with this name is already registered */
2866 if (clk_core_lookup(core->name)) {
2867 pr_debug("%s: clk %s already initialized\n",
2868 __func__, core->name);
2869 ret = -EEXIST;
2870 goto out;
2871 }
2872
2873 /* check that clk_ops are sane. See Documentation/clk.txt */
2874 if (core->ops->set_rate &&
2875 !((core->ops->round_rate || core->ops->determine_rate) &&
2876 core->ops->recalc_rate)) {
2877 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2878 __func__, core->name);
2879 ret = -EINVAL;
2880 goto out;
2881 }
2882
2883 if (core->ops->set_parent && !core->ops->get_parent) {
2884 pr_err("%s: %s must implement .get_parent & .set_parent\n",
2885 __func__, core->name);
2886 ret = -EINVAL;
2887 goto out;
2888 }
2889
2890 if (core->num_parents > 1 && !core->ops->get_parent) {
2891 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2892 __func__, core->name);
2893 ret = -EINVAL;
2894 goto out;
2895 }
2896
2897 if (core->ops->set_rate_and_parent &&
2898 !(core->ops->set_parent && core->ops->set_rate)) {
2899 pr_err("%s: %s must implement .set_parent & .set_rate\n",
2900 __func__, core->name);
2901 ret = -EINVAL;
2902 goto out;
2903 }
2904
2905 /* throw a WARN if any entries in parent_names are NULL */
2906 for (i = 0; i < core->num_parents; i++)
2907 WARN(!core->parent_names[i],
2908 "%s: invalid NULL in %s's .parent_names\n",
2909 __func__, core->name);
2910
2911 core->parent = __clk_init_parent(core);
2912
2913 /*
2914 * Populate core->parent if parent has already been clk_core_init'd. If
2915 * parent has not yet been clk_core_init'd then place clk in the orphan
2916 * list. If clk doesn't have any parents then place it in the root
2917 * clk list.
2918 *
2919 * Every time a new clk is clk_init'd then we walk the list of orphan
2920 * clocks and re-parent any that are children of the clock currently
2921 * being clk_init'd.
2922 */
2923 if (core->parent) {
2924 hlist_add_head(&core->child_node,
2925 &core->parent->children);
2926 core->orphan = core->parent->orphan;
2927 } else if (!core->num_parents) {
2928 hlist_add_head(&core->child_node, &clk_root_list);
2929 core->orphan = false;
2930 } else {
2931 hlist_add_head(&core->child_node, &clk_orphan_list);
2932 core->orphan = true;
2933 }
2934
2935 /*
2936 * Set clk's accuracy. The preferred method is to use
2937 * .recalc_accuracy. For simple clocks and lazy developers the default
2938 * fallback is to use the parent's accuracy. If a clock doesn't have a
2939 * parent (or is orphaned) then accuracy is set to zero (perfect
2940 * clock).
2941 */
2942 if (core->ops->recalc_accuracy)
2943 core->accuracy = core->ops->recalc_accuracy(core->hw,
2944 __clk_get_accuracy(core->parent));
2945 else if (core->parent)
2946 core->accuracy = core->parent->accuracy;
2947 else
2948 core->accuracy = 0;
2949
2950 /*
2951 * Set clk's phase.
2952 * Since a phase is by definition relative to its parent, just
2953 * query the current clock phase, or just assume it's in phase.
2954 */
2955 if (core->ops->get_phase)
2956 core->phase = core->ops->get_phase(core->hw);
2957 else
2958 core->phase = 0;
2959
2960 /*
2961 * Set clk's rate. The preferred method is to use .recalc_rate. For
2962 * simple clocks and lazy developers the default fallback is to use the
2963 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2964 * then rate is set to zero.
2965 */
2966 if (core->ops->recalc_rate)
2967 rate = core->ops->recalc_rate(core->hw,
2968 clk_core_get_rate_nolock(core->parent));
2969 else if (core->parent)
2970 rate = core->parent->rate;
2971 else
2972 rate = 0;
2973 core->rate = core->req_rate = rate;
2974
2975 /*
2976 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
2977 * don't get accidentally disabled when walking the orphan tree and
2978 * reparenting clocks
2979 */
2980 if (core->flags & CLK_IS_CRITICAL) {
2981 unsigned long flags;
2982
2983 clk_core_prepare(core);
2984
2985 flags = clk_enable_lock();
2986 clk_core_enable(core);
2987 clk_enable_unlock(flags);
2988 }
2989
2990 /*
2991 * walk the list of orphan clocks and reparent any that newly finds a
2992 * parent.
2993 */
2994 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2995 struct clk_core *parent = __clk_init_parent(orphan);
2996
2997 /*
2998 * We need to use __clk_set_parent_before() and _after() to
2999 * to properly migrate any prepare/enable count of the orphan
3000 * clock. This is important for CLK_IS_CRITICAL clocks, which
3001 * are enabled during init but might not have a parent yet.
3002 */
3003 if (parent) {
3004 /* update the clk tree topology */
3005 __clk_set_parent_before(orphan, parent);
3006 __clk_set_parent_after(orphan, parent, NULL);
3007 __clk_recalc_accuracies(orphan);
3008 __clk_recalc_rates(orphan, 0);
3009 }
3010 }
3011
3012 /*
3013 * optional platform-specific magic
3014 *
3015 * The .init callback is not used by any of the basic clock types, but
3016 * exists for weird hardware that must perform initialization magic.
3017 * Please consider other ways of solving initialization problems before
3018 * using this callback, as its use is discouraged.
3019 */
3020 if (core->ops->init)
3021 core->ops->init(core->hw);
3022
3023 kref_init(&core->ref);
3024 out:
3025 clk_pm_runtime_put(core);
3026 unlock:
3027 clk_prepare_unlock();
3028
3029 if (!ret)
3030 clk_debug_register(core);
3031
3032 return ret;
3033 }
3034
3035 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
3036 const char *con_id)
3037 {
3038 struct clk *clk;
3039
3040 /* This is to allow this function to be chained to others */
3041 if (IS_ERR_OR_NULL(hw))
3042 return ERR_CAST(hw);
3043
3044 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3045 if (!clk)
3046 return ERR_PTR(-ENOMEM);
3047
3048 clk->core = hw->core;
3049 clk->dev_id = dev_id;
3050 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3051 clk->max_rate = ULONG_MAX;
3052
3053 clk_prepare_lock();
3054 hlist_add_head(&clk->clks_node, &hw->core->clks);
3055 clk_prepare_unlock();
3056
3057 return clk;
3058 }
3059
3060 void __clk_free_clk(struct clk *clk)
3061 {
3062 clk_prepare_lock();
3063 hlist_del(&clk->clks_node);
3064 clk_prepare_unlock();
3065
3066 kfree_const(clk->con_id);
3067 kfree(clk);
3068 }
3069
3070 /**
3071 * clk_register - allocate a new clock, register it and return an opaque cookie
3072 * @dev: device that is registering this clock
3073 * @hw: link to hardware-specific clock data
3074 *
3075 * clk_register is the primary interface for populating the clock tree with new
3076 * clock nodes. It returns a pointer to the newly allocated struct clk which
3077 * cannot be dereferenced by driver code but may be used in conjunction with the
3078 * rest of the clock API. In the event of an error clk_register will return an
3079 * error code; drivers must test for an error code after calling clk_register.
3080 */
3081 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3082 {
3083 int i, ret;
3084 struct clk_core *core;
3085
3086 core = kzalloc(sizeof(*core), GFP_KERNEL);
3087 if (!core) {
3088 ret = -ENOMEM;
3089 goto fail_out;
3090 }
3091
3092 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
3093 if (!core->name) {
3094 ret = -ENOMEM;
3095 goto fail_name;
3096 }
3097
3098 if (WARN_ON(!hw->init->ops)) {
3099 ret = -EINVAL;
3100 goto fail_ops;
3101 }
3102 core->ops = hw->init->ops;
3103
3104 if (dev && pm_runtime_enabled(dev))
3105 core->dev = dev;
3106 if (dev && dev->driver)
3107 core->owner = dev->driver->owner;
3108 core->hw = hw;
3109 core->flags = hw->init->flags;
3110 core->num_parents = hw->init->num_parents;
3111 core->min_rate = 0;
3112 core->max_rate = ULONG_MAX;
3113 hw->core = core;
3114
3115 /* allocate local copy in case parent_names is __initdata */
3116 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
3117 GFP_KERNEL);
3118
3119 if (!core->parent_names) {
3120 ret = -ENOMEM;
3121 goto fail_parent_names;
3122 }
3123
3124
3125 /* copy each string name in case parent_names is __initdata */
3126 for (i = 0; i < core->num_parents; i++) {
3127 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
3128 GFP_KERNEL);
3129 if (!core->parent_names[i]) {
3130 ret = -ENOMEM;
3131 goto fail_parent_names_copy;
3132 }
3133 }
3134
3135 /* avoid unnecessary string look-ups of clk_core's possible parents. */
3136 core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
3137 GFP_KERNEL);
3138 if (!core->parents) {
3139 ret = -ENOMEM;
3140 goto fail_parents;
3141 };
3142
3143 INIT_HLIST_HEAD(&core->clks);
3144
3145 hw->clk = __clk_create_clk(hw, NULL, NULL);
3146 if (IS_ERR(hw->clk)) {
3147 ret = PTR_ERR(hw->clk);
3148 goto fail_parents;
3149 }
3150
3151 ret = __clk_core_init(core);
3152 if (!ret)
3153 return hw->clk;
3154
3155 __clk_free_clk(hw->clk);
3156 hw->clk = NULL;
3157
3158 fail_parents:
3159 kfree(core->parents);
3160 fail_parent_names_copy:
3161 while (--i >= 0)
3162 kfree_const(core->parent_names[i]);
3163 kfree(core->parent_names);
3164 fail_parent_names:
3165 fail_ops:
3166 kfree_const(core->name);
3167 fail_name:
3168 kfree(core);
3169 fail_out:
3170 return ERR_PTR(ret);
3171 }
3172 EXPORT_SYMBOL_GPL(clk_register);
3173
3174 /**
3175 * clk_hw_register - register a clk_hw and return an error code
3176 * @dev: device that is registering this clock
3177 * @hw: link to hardware-specific clock data
3178 *
3179 * clk_hw_register is the primary interface for populating the clock tree with
3180 * new clock nodes. It returns an integer equal to zero indicating success or
3181 * less than zero indicating failure. Drivers must test for an error code after
3182 * calling clk_hw_register().
3183 */
3184 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3185 {
3186 return PTR_ERR_OR_ZERO(clk_register(dev, hw));
3187 }
3188 EXPORT_SYMBOL_GPL(clk_hw_register);
3189
3190 /* Free memory allocated for a clock. */
3191 static void __clk_release(struct kref *ref)
3192 {
3193 struct clk_core *core = container_of(ref, struct clk_core, ref);
3194 int i = core->num_parents;
3195
3196 lockdep_assert_held(&prepare_lock);
3197
3198 kfree(core->parents);
3199 while (--i >= 0)
3200 kfree_const(core->parent_names[i]);
3201
3202 kfree(core->parent_names);
3203 kfree_const(core->name);
3204 kfree(core);
3205 }
3206
3207 /*
3208 * Empty clk_ops for unregistered clocks. These are used temporarily
3209 * after clk_unregister() was called on a clock and until last clock
3210 * consumer calls clk_put() and the struct clk object is freed.
3211 */
3212 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3213 {
3214 return -ENXIO;
3215 }
3216
3217 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3218 {
3219 WARN_ON_ONCE(1);
3220 }
3221
3222 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3223 unsigned long parent_rate)
3224 {
3225 return -ENXIO;
3226 }
3227
3228 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3229 {
3230 return -ENXIO;
3231 }
3232
3233 static const struct clk_ops clk_nodrv_ops = {
3234 .enable = clk_nodrv_prepare_enable,
3235 .disable = clk_nodrv_disable_unprepare,
3236 .prepare = clk_nodrv_prepare_enable,
3237 .unprepare = clk_nodrv_disable_unprepare,
3238 .set_rate = clk_nodrv_set_rate,
3239 .set_parent = clk_nodrv_set_parent,
3240 };
3241
3242 /**
3243 * clk_unregister - unregister a currently registered clock
3244 * @clk: clock to unregister
3245 */
3246 void clk_unregister(struct clk *clk)
3247 {
3248 unsigned long flags;
3249
3250 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3251 return;
3252
3253 clk_debug_unregister(clk->core);
3254
3255 clk_prepare_lock();
3256
3257 if (clk->core->ops == &clk_nodrv_ops) {
3258 pr_err("%s: unregistered clock: %s\n", __func__,
3259 clk->core->name);
3260 goto unlock;
3261 }
3262 /*
3263 * Assign empty clock ops for consumers that might still hold
3264 * a reference to this clock.
3265 */
3266 flags = clk_enable_lock();
3267 clk->core->ops = &clk_nodrv_ops;
3268 clk_enable_unlock(flags);
3269
3270 if (!hlist_empty(&clk->core->children)) {
3271 struct clk_core *child;
3272 struct hlist_node *t;
3273
3274 /* Reparent all children to the orphan list. */
3275 hlist_for_each_entry_safe(child, t, &clk->core->children,
3276 child_node)
3277 clk_core_set_parent_nolock(child, NULL);
3278 }
3279
3280 hlist_del_init(&clk->core->child_node);
3281
3282 if (clk->core->prepare_count)
3283 pr_warn("%s: unregistering prepared clock: %s\n",
3284 __func__, clk->core->name);
3285
3286 if (clk->core->protect_count)
3287 pr_warn("%s: unregistering protected clock: %s\n",
3288 __func__, clk->core->name);
3289
3290 kref_put(&clk->core->ref, __clk_release);
3291 unlock:
3292 clk_prepare_unlock();
3293 }
3294 EXPORT_SYMBOL_GPL(clk_unregister);
3295
3296 /**
3297 * clk_hw_unregister - unregister a currently registered clk_hw
3298 * @hw: hardware-specific clock data to unregister
3299 */
3300 void clk_hw_unregister(struct clk_hw *hw)
3301 {
3302 clk_unregister(hw->clk);
3303 }
3304 EXPORT_SYMBOL_GPL(clk_hw_unregister);
3305
3306 static void devm_clk_release(struct device *dev, void *res)
3307 {
3308 clk_unregister(*(struct clk **)res);
3309 }
3310
3311 static void devm_clk_hw_release(struct device *dev, void *res)
3312 {
3313 clk_hw_unregister(*(struct clk_hw **)res);
3314 }
3315
3316 /**
3317 * devm_clk_register - resource managed clk_register()
3318 * @dev: device that is registering this clock
3319 * @hw: link to hardware-specific clock data
3320 *
3321 * Managed clk_register(). Clocks returned from this function are
3322 * automatically clk_unregister()ed on driver detach. See clk_register() for
3323 * more information.
3324 */
3325 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
3326 {
3327 struct clk *clk;
3328 struct clk **clkp;
3329
3330 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
3331 if (!clkp)
3332 return ERR_PTR(-ENOMEM);
3333
3334 clk = clk_register(dev, hw);
3335 if (!IS_ERR(clk)) {
3336 *clkp = clk;
3337 devres_add(dev, clkp);
3338 } else {
3339 devres_free(clkp);
3340 }
3341
3342 return clk;
3343 }
3344 EXPORT_SYMBOL_GPL(devm_clk_register);
3345
3346 /**
3347 * devm_clk_hw_register - resource managed clk_hw_register()
3348 * @dev: device that is registering this clock
3349 * @hw: link to hardware-specific clock data
3350 *
3351 * Managed clk_hw_register(). Clocks registered by this function are
3352 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
3353 * for more information.
3354 */
3355 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
3356 {
3357 struct clk_hw **hwp;
3358 int ret;
3359
3360 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
3361 if (!hwp)
3362 return -ENOMEM;
3363
3364 ret = clk_hw_register(dev, hw);
3365 if (!ret) {
3366 *hwp = hw;
3367 devres_add(dev, hwp);
3368 } else {
3369 devres_free(hwp);
3370 }
3371
3372 return ret;
3373 }
3374 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
3375
3376 static int devm_clk_match(struct device *dev, void *res, void *data)
3377 {
3378 struct clk *c = res;
3379 if (WARN_ON(!c))
3380 return 0;
3381 return c == data;
3382 }
3383
3384 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
3385 {
3386 struct clk_hw *hw = res;
3387
3388 if (WARN_ON(!hw))
3389 return 0;
3390 return hw == data;
3391 }
3392
3393 /**
3394 * devm_clk_unregister - resource managed clk_unregister()
3395 * @clk: clock to unregister
3396 *
3397 * Deallocate a clock allocated with devm_clk_register(). Normally
3398 * this function will not need to be called and the resource management
3399 * code will ensure that the resource is freed.
3400 */
3401 void devm_clk_unregister(struct device *dev, struct clk *clk)
3402 {
3403 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
3404 }
3405 EXPORT_SYMBOL_GPL(devm_clk_unregister);
3406
3407 /**
3408 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
3409 * @dev: device that is unregistering the hardware-specific clock data
3410 * @hw: link to hardware-specific clock data
3411 *
3412 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
3413 * this function will not need to be called and the resource management
3414 * code will ensure that the resource is freed.
3415 */
3416 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
3417 {
3418 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
3419 hw));
3420 }
3421 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3422
3423 /*
3424 * clkdev helpers
3425 */
3426 int __clk_get(struct clk *clk)
3427 {
3428 struct clk_core *core = !clk ? NULL : clk->core;
3429
3430 if (core) {
3431 if (!try_module_get(core->owner))
3432 return 0;
3433
3434 kref_get(&core->ref);
3435 }
3436 return 1;
3437 }
3438
3439 void __clk_put(struct clk *clk)
3440 {
3441 struct module *owner;
3442
3443 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3444 return;
3445
3446 clk_prepare_lock();
3447
3448 /*
3449 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
3450 * given user should be balanced with calls to clk_rate_exclusive_put()
3451 * and by that same consumer
3452 */
3453 if (WARN_ON(clk->exclusive_count)) {
3454 /* We voiced our concern, let's sanitize the situation */
3455 clk->core->protect_count -= (clk->exclusive_count - 1);
3456 clk_core_rate_unprotect(clk->core);
3457 clk->exclusive_count = 0;
3458 }
3459
3460 hlist_del(&clk->clks_node);
3461 if (clk->min_rate > clk->core->req_rate ||
3462 clk->max_rate < clk->core->req_rate)
3463 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3464
3465 owner = clk->core->owner;
3466 kref_put(&clk->core->ref, __clk_release);
3467
3468 clk_prepare_unlock();
3469
3470 module_put(owner);
3471
3472 kfree(clk);
3473 }
3474
3475 /*** clk rate change notifiers ***/
3476
3477 /**
3478 * clk_notifier_register - add a clk rate change notifier
3479 * @clk: struct clk * to watch
3480 * @nb: struct notifier_block * with callback info
3481 *
3482 * Request notification when clk's rate changes. This uses an SRCU
3483 * notifier because we want it to block and notifier unregistrations are
3484 * uncommon. The callbacks associated with the notifier must not
3485 * re-enter into the clk framework by calling any top-level clk APIs;
3486 * this will cause a nested prepare_lock mutex.
3487 *
3488 * In all notification cases (pre, post and abort rate change) the original
3489 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3490 * and the new frequency is passed via struct clk_notifier_data.new_rate.
3491 *
3492 * clk_notifier_register() must be called from non-atomic context.
3493 * Returns -EINVAL if called with null arguments, -ENOMEM upon
3494 * allocation failure; otherwise, passes along the return value of
3495 * srcu_notifier_chain_register().
3496 */
3497 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3498 {
3499 struct clk_notifier *cn;
3500 int ret = -ENOMEM;
3501
3502 if (!clk || !nb)
3503 return -EINVAL;
3504
3505 clk_prepare_lock();
3506
3507 /* search the list of notifiers for this clk */
3508 list_for_each_entry(cn, &clk_notifier_list, node)
3509 if (cn->clk == clk)
3510 break;
3511
3512 /* if clk wasn't in the notifier list, allocate new clk_notifier */
3513 if (cn->clk != clk) {
3514 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3515 if (!cn)
3516 goto out;
3517
3518 cn->clk = clk;
3519 srcu_init_notifier_head(&cn->notifier_head);
3520
3521 list_add(&cn->node, &clk_notifier_list);
3522 }
3523
3524 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3525
3526 clk->core->notifier_count++;
3527
3528 out:
3529 clk_prepare_unlock();
3530
3531 return ret;
3532 }
3533 EXPORT_SYMBOL_GPL(clk_notifier_register);
3534
3535 /**
3536 * clk_notifier_unregister - remove a clk rate change notifier
3537 * @clk: struct clk *
3538 * @nb: struct notifier_block * with callback info
3539 *
3540 * Request no further notification for changes to 'clk' and frees memory
3541 * allocated in clk_notifier_register.
3542 *
3543 * Returns -EINVAL if called with null arguments; otherwise, passes
3544 * along the return value of srcu_notifier_chain_unregister().
3545 */
3546 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3547 {
3548 struct clk_notifier *cn = NULL;
3549 int ret = -EINVAL;
3550
3551 if (!clk || !nb)
3552 return -EINVAL;
3553
3554 clk_prepare_lock();
3555
3556 list_for_each_entry(cn, &clk_notifier_list, node)
3557 if (cn->clk == clk)
3558 break;
3559
3560 if (cn->clk == clk) {
3561 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3562
3563 clk->core->notifier_count--;
3564
3565 /* XXX the notifier code should handle this better */
3566 if (!cn->notifier_head.head) {
3567 srcu_cleanup_notifier_head(&cn->notifier_head);
3568 list_del(&cn->node);
3569 kfree(cn);
3570 }
3571
3572 } else {
3573 ret = -ENOENT;
3574 }
3575
3576 clk_prepare_unlock();
3577
3578 return ret;
3579 }
3580 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3581
3582 #ifdef CONFIG_OF
3583 /**
3584 * struct of_clk_provider - Clock provider registration structure
3585 * @link: Entry in global list of clock providers
3586 * @node: Pointer to device tree node of clock provider
3587 * @get: Get clock callback. Returns NULL or a struct clk for the
3588 * given clock specifier
3589 * @data: context pointer to be passed into @get callback
3590 */
3591 struct of_clk_provider {
3592 struct list_head link;
3593
3594 struct device_node *node;
3595 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3596 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3597 void *data;
3598 };
3599
3600 static const struct of_device_id __clk_of_table_sentinel
3601 __used __section(__clk_of_table_end);
3602
3603 static LIST_HEAD(of_clk_providers);
3604 static DEFINE_MUTEX(of_clk_mutex);
3605
3606 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3607 void *data)
3608 {
3609 return data;
3610 }
3611 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3612
3613 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3614 {
3615 return data;
3616 }
3617 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3618
3619 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3620 {
3621 struct clk_onecell_data *clk_data = data;
3622 unsigned int idx = clkspec->args[0];
3623
3624 if (idx >= clk_data->clk_num) {
3625 pr_err("%s: invalid clock index %u\n", __func__, idx);
3626 return ERR_PTR(-EINVAL);
3627 }
3628
3629 return clk_data->clks[idx];
3630 }
3631 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3632
3633 struct clk_hw *
3634 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3635 {
3636 struct clk_hw_onecell_data *hw_data = data;
3637 unsigned int idx = clkspec->args[0];
3638
3639 if (idx >= hw_data->num) {
3640 pr_err("%s: invalid index %u\n", __func__, idx);
3641 return ERR_PTR(-EINVAL);
3642 }
3643
3644 return hw_data->hws[idx];
3645 }
3646 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3647
3648 /**
3649 * of_clk_add_provider() - Register a clock provider for a node
3650 * @np: Device node pointer associated with clock provider
3651 * @clk_src_get: callback for decoding clock
3652 * @data: context pointer for @clk_src_get callback.
3653 */
3654 int of_clk_add_provider(struct device_node *np,
3655 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3656 void *data),
3657 void *data)
3658 {
3659 struct of_clk_provider *cp;
3660 int ret;
3661
3662 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3663 if (!cp)
3664 return -ENOMEM;
3665
3666 cp->node = of_node_get(np);
3667 cp->data = data;
3668 cp->get = clk_src_get;
3669
3670 mutex_lock(&of_clk_mutex);
3671 list_add(&cp->link, &of_clk_providers);
3672 mutex_unlock(&of_clk_mutex);
3673 pr_debug("Added clock from %pOF\n", np);
3674
3675 ret = of_clk_set_defaults(np, true);
3676 if (ret < 0)
3677 of_clk_del_provider(np);
3678
3679 return ret;
3680 }
3681 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3682
3683 /**
3684 * of_clk_add_hw_provider() - Register a clock provider for a node
3685 * @np: Device node pointer associated with clock provider
3686 * @get: callback for decoding clk_hw
3687 * @data: context pointer for @get callback.
3688 */
3689 int of_clk_add_hw_provider(struct device_node *np,
3690 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3691 void *data),
3692 void *data)
3693 {
3694 struct of_clk_provider *cp;
3695 int ret;
3696
3697 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3698 if (!cp)
3699 return -ENOMEM;
3700
3701 cp->node = of_node_get(np);
3702 cp->data = data;
3703 cp->get_hw = get;
3704
3705 mutex_lock(&of_clk_mutex);
3706 list_add(&cp->link, &of_clk_providers);
3707 mutex_unlock(&of_clk_mutex);
3708 pr_debug("Added clk_hw provider from %pOF\n", np);
3709
3710 ret = of_clk_set_defaults(np, true);
3711 if (ret < 0)
3712 of_clk_del_provider(np);
3713
3714 return ret;
3715 }
3716 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3717
3718 static void devm_of_clk_release_provider(struct device *dev, void *res)
3719 {
3720 of_clk_del_provider(*(struct device_node **)res);
3721 }
3722
3723 int devm_of_clk_add_hw_provider(struct device *dev,
3724 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3725 void *data),
3726 void *data)
3727 {
3728 struct device_node **ptr, *np;
3729 int ret;
3730
3731 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3732 GFP_KERNEL);
3733 if (!ptr)
3734 return -ENOMEM;
3735
3736 np = dev->of_node;
3737 ret = of_clk_add_hw_provider(np, get, data);
3738 if (!ret) {
3739 *ptr = np;
3740 devres_add(dev, ptr);
3741 } else {
3742 devres_free(ptr);
3743 }
3744
3745 return ret;
3746 }
3747 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3748
3749 /**
3750 * of_clk_del_provider() - Remove a previously registered clock provider
3751 * @np: Device node pointer associated with clock provider
3752 */
3753 void of_clk_del_provider(struct device_node *np)
3754 {
3755 struct of_clk_provider *cp;
3756
3757 mutex_lock(&of_clk_mutex);
3758 list_for_each_entry(cp, &of_clk_providers, link) {
3759 if (cp->node == np) {
3760 list_del(&cp->link);
3761 of_node_put(cp->node);
3762 kfree(cp);
3763 break;
3764 }
3765 }
3766 mutex_unlock(&of_clk_mutex);
3767 }
3768 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3769
3770 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3771 {
3772 struct device_node **np = res;
3773
3774 if (WARN_ON(!np || !*np))
3775 return 0;
3776
3777 return *np == data;
3778 }
3779
3780 void devm_of_clk_del_provider(struct device *dev)
3781 {
3782 int ret;
3783
3784 ret = devres_release(dev, devm_of_clk_release_provider,
3785 devm_clk_provider_match, dev->of_node);
3786
3787 WARN_ON(ret);
3788 }
3789 EXPORT_SYMBOL(devm_of_clk_del_provider);
3790
3791 static struct clk_hw *
3792 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3793 struct of_phandle_args *clkspec)
3794 {
3795 struct clk *clk;
3796
3797 if (provider->get_hw)
3798 return provider->get_hw(clkspec, provider->data);
3799
3800 clk = provider->get(clkspec, provider->data);
3801 if (IS_ERR(clk))
3802 return ERR_CAST(clk);
3803 return __clk_get_hw(clk);
3804 }
3805
3806 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3807 const char *dev_id, const char *con_id)
3808 {
3809 struct of_clk_provider *provider;
3810 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3811 struct clk_hw *hw;
3812
3813 if (!clkspec)
3814 return ERR_PTR(-EINVAL);
3815
3816 /* Check if we have such a provider in our array */
3817 mutex_lock(&of_clk_mutex);
3818 list_for_each_entry(provider, &of_clk_providers, link) {
3819 if (provider->node == clkspec->np) {
3820 hw = __of_clk_get_hw_from_provider(provider, clkspec);
3821 clk = __clk_create_clk(hw, dev_id, con_id);
3822 }
3823
3824 if (!IS_ERR(clk)) {
3825 if (!__clk_get(clk)) {
3826 __clk_free_clk(clk);
3827 clk = ERR_PTR(-ENOENT);
3828 }
3829
3830 break;
3831 }
3832 }
3833 mutex_unlock(&of_clk_mutex);
3834
3835 return clk;
3836 }
3837
3838 /**
3839 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3840 * @clkspec: pointer to a clock specifier data structure
3841 *
3842 * This function looks up a struct clk from the registered list of clock
3843 * providers, an input is a clock specifier data structure as returned
3844 * from the of_parse_phandle_with_args() function call.
3845 */
3846 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3847 {
3848 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3849 }
3850 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3851
3852 /**
3853 * of_clk_get_parent_count() - Count the number of clocks a device node has
3854 * @np: device node to count
3855 *
3856 * Returns: The number of clocks that are possible parents of this node
3857 */
3858 unsigned int of_clk_get_parent_count(struct device_node *np)
3859 {
3860 int count;
3861
3862 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3863 if (count < 0)
3864 return 0;
3865
3866 return count;
3867 }
3868 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3869
3870 const char *of_clk_get_parent_name(struct device_node *np, int index)
3871 {
3872 struct of_phandle_args clkspec;
3873 struct property *prop;
3874 const char *clk_name;
3875 const __be32 *vp;
3876 u32 pv;
3877 int rc;
3878 int count;
3879 struct clk *clk;
3880
3881 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3882 &clkspec);
3883 if (rc)
3884 return NULL;
3885
3886 index = clkspec.args_count ? clkspec.args[0] : 0;
3887 count = 0;
3888
3889 /* if there is an indices property, use it to transfer the index
3890 * specified into an array offset for the clock-output-names property.
3891 */
3892 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3893 if (index == pv) {
3894 index = count;
3895 break;
3896 }
3897 count++;
3898 }
3899 /* We went off the end of 'clock-indices' without finding it */
3900 if (prop && !vp)
3901 return NULL;
3902
3903 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3904 index,
3905 &clk_name) < 0) {
3906 /*
3907 * Best effort to get the name if the clock has been
3908 * registered with the framework. If the clock isn't
3909 * registered, we return the node name as the name of
3910 * the clock as long as #clock-cells = 0.
3911 */
3912 clk = of_clk_get_from_provider(&clkspec);
3913 if (IS_ERR(clk)) {
3914 if (clkspec.args_count == 0)
3915 clk_name = clkspec.np->name;
3916 else
3917 clk_name = NULL;
3918 } else {
3919 clk_name = __clk_get_name(clk);
3920 clk_put(clk);
3921 }
3922 }
3923
3924
3925 of_node_put(clkspec.np);
3926 return clk_name;
3927 }
3928 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3929
3930 /**
3931 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3932 * number of parents
3933 * @np: Device node pointer associated with clock provider
3934 * @parents: pointer to char array that hold the parents' names
3935 * @size: size of the @parents array
3936 *
3937 * Return: number of parents for the clock node.
3938 */
3939 int of_clk_parent_fill(struct device_node *np, const char **parents,
3940 unsigned int size)
3941 {
3942 unsigned int i = 0;
3943
3944 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3945 i++;
3946
3947 return i;
3948 }
3949 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3950
3951 struct clock_provider {
3952 of_clk_init_cb_t clk_init_cb;
3953 struct device_node *np;
3954 struct list_head node;
3955 };
3956
3957 /*
3958 * This function looks for a parent clock. If there is one, then it
3959 * checks that the provider for this parent clock was initialized, in
3960 * this case the parent clock will be ready.
3961 */
3962 static int parent_ready(struct device_node *np)
3963 {
3964 int i = 0;
3965
3966 while (true) {
3967 struct clk *clk = of_clk_get(np, i);
3968
3969 /* this parent is ready we can check the next one */
3970 if (!IS_ERR(clk)) {
3971 clk_put(clk);
3972 i++;
3973 continue;
3974 }
3975
3976 /* at least one parent is not ready, we exit now */
3977 if (PTR_ERR(clk) == -EPROBE_DEFER)
3978 return 0;
3979
3980 /*
3981 * Here we make assumption that the device tree is
3982 * written correctly. So an error means that there is
3983 * no more parent. As we didn't exit yet, then the
3984 * previous parent are ready. If there is no clock
3985 * parent, no need to wait for them, then we can
3986 * consider their absence as being ready
3987 */
3988 return 1;
3989 }
3990 }
3991
3992 /**
3993 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3994 * @np: Device node pointer associated with clock provider
3995 * @index: clock index
3996 * @flags: pointer to top-level framework flags
3997 *
3998 * Detects if the clock-critical property exists and, if so, sets the
3999 * corresponding CLK_IS_CRITICAL flag.
4000 *
4001 * Do not use this function. It exists only for legacy Device Tree
4002 * bindings, such as the one-clock-per-node style that are outdated.
4003 * Those bindings typically put all clock data into .dts and the Linux
4004 * driver has no clock data, thus making it impossible to set this flag
4005 * correctly from the driver. Only those drivers may call
4006 * of_clk_detect_critical from their setup functions.
4007 *
4008 * Return: error code or zero on success
4009 */
4010 int of_clk_detect_critical(struct device_node *np,
4011 int index, unsigned long *flags)
4012 {
4013 struct property *prop;
4014 const __be32 *cur;
4015 uint32_t idx;
4016
4017 if (!np || !flags)
4018 return -EINVAL;
4019
4020 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4021 if (index == idx)
4022 *flags |= CLK_IS_CRITICAL;
4023
4024 return 0;
4025 }
4026
4027 /**
4028 * of_clk_init() - Scan and init clock providers from the DT
4029 * @matches: array of compatible values and init functions for providers.
4030 *
4031 * This function scans the device tree for matching clock providers
4032 * and calls their initialization functions. It also does it by trying
4033 * to follow the dependencies.
4034 */
4035 void __init of_clk_init(const struct of_device_id *matches)
4036 {
4037 const struct of_device_id *match;
4038 struct device_node *np;
4039 struct clock_provider *clk_provider, *next;
4040 bool is_init_done;
4041 bool force = false;
4042 LIST_HEAD(clk_provider_list);
4043
4044 if (!matches)
4045 matches = &__clk_of_table;
4046
4047 /* First prepare the list of the clocks providers */
4048 for_each_matching_node_and_match(np, matches, &match) {
4049 struct clock_provider *parent;
4050
4051 if (!of_device_is_available(np))
4052 continue;
4053
4054 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4055 if (!parent) {
4056 list_for_each_entry_safe(clk_provider, next,
4057 &clk_provider_list, node) {
4058 list_del(&clk_provider->node);
4059 of_node_put(clk_provider->np);
4060 kfree(clk_provider);
4061 }
4062 of_node_put(np);
4063 return;
4064 }
4065
4066 parent->clk_init_cb = match->data;
4067 parent->np = of_node_get(np);
4068 list_add_tail(&parent->node, &clk_provider_list);
4069 }
4070
4071 while (!list_empty(&clk_provider_list)) {
4072 is_init_done = false;
4073 list_for_each_entry_safe(clk_provider, next,
4074 &clk_provider_list, node) {
4075 if (force || parent_ready(clk_provider->np)) {
4076
4077 /* Don't populate platform devices */
4078 of_node_set_flag(clk_provider->np,
4079 OF_POPULATED);
4080
4081 clk_provider->clk_init_cb(clk_provider->np);
4082 of_clk_set_defaults(clk_provider->np, true);
4083
4084 list_del(&clk_provider->node);
4085 of_node_put(clk_provider->np);
4086 kfree(clk_provider);
4087 is_init_done = true;
4088 }
4089 }
4090
4091 /*
4092 * We didn't manage to initialize any of the
4093 * remaining providers during the last loop, so now we
4094 * initialize all the remaining ones unconditionally
4095 * in case the clock parent was not mandatory
4096 */
4097 if (!is_init_done)
4098 force = true;
4099 }
4100 }
4101 #endif