]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clk/clk.c
clk: move some parent related functions upwards
[mirror_ubuntu-bionic-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23
24 static DEFINE_SPINLOCK(enable_lock);
25 static DEFINE_MUTEX(prepare_lock);
26
27 static struct task_struct *prepare_owner;
28 static struct task_struct *enable_owner;
29
30 static int prepare_refcnt;
31 static int enable_refcnt;
32
33 static HLIST_HEAD(clk_root_list);
34 static HLIST_HEAD(clk_orphan_list);
35 static LIST_HEAD(clk_notifier_list);
36
37 /*** locking ***/
38 static void clk_prepare_lock(void)
39 {
40 if (!mutex_trylock(&prepare_lock)) {
41 if (prepare_owner == current) {
42 prepare_refcnt++;
43 return;
44 }
45 mutex_lock(&prepare_lock);
46 }
47 WARN_ON_ONCE(prepare_owner != NULL);
48 WARN_ON_ONCE(prepare_refcnt != 0);
49 prepare_owner = current;
50 prepare_refcnt = 1;
51 }
52
53 static void clk_prepare_unlock(void)
54 {
55 WARN_ON_ONCE(prepare_owner != current);
56 WARN_ON_ONCE(prepare_refcnt == 0);
57
58 if (--prepare_refcnt)
59 return;
60 prepare_owner = NULL;
61 mutex_unlock(&prepare_lock);
62 }
63
64 static unsigned long clk_enable_lock(void)
65 {
66 unsigned long flags;
67
68 if (!spin_trylock_irqsave(&enable_lock, flags)) {
69 if (enable_owner == current) {
70 enable_refcnt++;
71 return flags;
72 }
73 spin_lock_irqsave(&enable_lock, flags);
74 }
75 WARN_ON_ONCE(enable_owner != NULL);
76 WARN_ON_ONCE(enable_refcnt != 0);
77 enable_owner = current;
78 enable_refcnt = 1;
79 return flags;
80 }
81
82 static void clk_enable_unlock(unsigned long flags)
83 {
84 WARN_ON_ONCE(enable_owner != current);
85 WARN_ON_ONCE(enable_refcnt == 0);
86
87 if (--enable_refcnt)
88 return;
89 enable_owner = NULL;
90 spin_unlock_irqrestore(&enable_lock, flags);
91 }
92
93 /*** debugfs support ***/
94
95 #ifdef CONFIG_COMMON_CLK_DEBUG
96 #include <linux/debugfs.h>
97
98 static struct dentry *rootdir;
99 static struct dentry *orphandir;
100 static int inited = 0;
101
102 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
103 {
104 if (!c)
105 return;
106
107 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu",
108 level * 3 + 1, "",
109 30 - level * 3, c->name,
110 c->enable_count, c->prepare_count, clk_get_rate(c));
111 seq_printf(s, "\n");
112 }
113
114 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
115 int level)
116 {
117 struct clk *child;
118
119 if (!c)
120 return;
121
122 clk_summary_show_one(s, c, level);
123
124 hlist_for_each_entry(child, &c->children, child_node)
125 clk_summary_show_subtree(s, child, level + 1);
126 }
127
128 static int clk_summary_show(struct seq_file *s, void *data)
129 {
130 struct clk *c;
131
132 seq_printf(s, " clock enable_cnt prepare_cnt rate\n");
133 seq_printf(s, "---------------------------------------------------------------------\n");
134
135 clk_prepare_lock();
136
137 hlist_for_each_entry(c, &clk_root_list, child_node)
138 clk_summary_show_subtree(s, c, 0);
139
140 hlist_for_each_entry(c, &clk_orphan_list, child_node)
141 clk_summary_show_subtree(s, c, 0);
142
143 clk_prepare_unlock();
144
145 return 0;
146 }
147
148
149 static int clk_summary_open(struct inode *inode, struct file *file)
150 {
151 return single_open(file, clk_summary_show, inode->i_private);
152 }
153
154 static const struct file_operations clk_summary_fops = {
155 .open = clk_summary_open,
156 .read = seq_read,
157 .llseek = seq_lseek,
158 .release = single_release,
159 };
160
161 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
162 {
163 if (!c)
164 return;
165
166 seq_printf(s, "\"%s\": { ", c->name);
167 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
168 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
169 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
170 }
171
172 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
173 {
174 struct clk *child;
175
176 if (!c)
177 return;
178
179 clk_dump_one(s, c, level);
180
181 hlist_for_each_entry(child, &c->children, child_node) {
182 seq_printf(s, ",");
183 clk_dump_subtree(s, child, level + 1);
184 }
185
186 seq_printf(s, "}");
187 }
188
189 static int clk_dump(struct seq_file *s, void *data)
190 {
191 struct clk *c;
192 bool first_node = true;
193
194 seq_printf(s, "{");
195
196 clk_prepare_lock();
197
198 hlist_for_each_entry(c, &clk_root_list, child_node) {
199 if (!first_node)
200 seq_printf(s, ",");
201 first_node = false;
202 clk_dump_subtree(s, c, 0);
203 }
204
205 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
206 seq_printf(s, ",");
207 clk_dump_subtree(s, c, 0);
208 }
209
210 clk_prepare_unlock();
211
212 seq_printf(s, "}");
213 return 0;
214 }
215
216
217 static int clk_dump_open(struct inode *inode, struct file *file)
218 {
219 return single_open(file, clk_dump, inode->i_private);
220 }
221
222 static const struct file_operations clk_dump_fops = {
223 .open = clk_dump_open,
224 .read = seq_read,
225 .llseek = seq_lseek,
226 .release = single_release,
227 };
228
229 /* caller must hold prepare_lock */
230 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
231 {
232 struct dentry *d;
233 int ret = -ENOMEM;
234
235 if (!clk || !pdentry) {
236 ret = -EINVAL;
237 goto out;
238 }
239
240 d = debugfs_create_dir(clk->name, pdentry);
241 if (!d)
242 goto out;
243
244 clk->dentry = d;
245
246 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
247 (u32 *)&clk->rate);
248 if (!d)
249 goto err_out;
250
251 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
252 (u32 *)&clk->flags);
253 if (!d)
254 goto err_out;
255
256 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
257 (u32 *)&clk->prepare_count);
258 if (!d)
259 goto err_out;
260
261 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
262 (u32 *)&clk->enable_count);
263 if (!d)
264 goto err_out;
265
266 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
267 (u32 *)&clk->notifier_count);
268 if (!d)
269 goto err_out;
270
271 ret = 0;
272 goto out;
273
274 err_out:
275 debugfs_remove(clk->dentry);
276 out:
277 return ret;
278 }
279
280 /* caller must hold prepare_lock */
281 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
282 {
283 struct clk *child;
284 int ret = -EINVAL;;
285
286 if (!clk || !pdentry)
287 goto out;
288
289 ret = clk_debug_create_one(clk, pdentry);
290
291 if (ret)
292 goto out;
293
294 hlist_for_each_entry(child, &clk->children, child_node)
295 clk_debug_create_subtree(child, clk->dentry);
296
297 ret = 0;
298 out:
299 return ret;
300 }
301
302 /**
303 * clk_debug_register - add a clk node to the debugfs clk tree
304 * @clk: the clk being added to the debugfs clk tree
305 *
306 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
307 * initialized. Otherwise it bails out early since the debugfs clk tree
308 * will be created lazily by clk_debug_init as part of a late_initcall.
309 *
310 * Caller must hold prepare_lock. Only clk_init calls this function (so
311 * far) so this is taken care.
312 */
313 static int clk_debug_register(struct clk *clk)
314 {
315 struct clk *parent;
316 struct dentry *pdentry;
317 int ret = 0;
318
319 if (!inited)
320 goto out;
321
322 parent = clk->parent;
323
324 /*
325 * Check to see if a clk is a root clk. Also check that it is
326 * safe to add this clk to debugfs
327 */
328 if (!parent)
329 if (clk->flags & CLK_IS_ROOT)
330 pdentry = rootdir;
331 else
332 pdentry = orphandir;
333 else
334 if (parent->dentry)
335 pdentry = parent->dentry;
336 else
337 goto out;
338
339 ret = clk_debug_create_subtree(clk, pdentry);
340
341 out:
342 return ret;
343 }
344
345 /**
346 * clk_debug_reparent - reparent clk node in the debugfs clk tree
347 * @clk: the clk being reparented
348 * @new_parent: the new clk parent, may be NULL
349 *
350 * Rename clk entry in the debugfs clk tree if debugfs has been
351 * initialized. Otherwise it bails out early since the debugfs clk tree
352 * will be created lazily by clk_debug_init as part of a late_initcall.
353 *
354 * Caller must hold prepare_lock.
355 */
356 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
357 {
358 struct dentry *d;
359 struct dentry *new_parent_d;
360
361 if (!inited)
362 return;
363
364 if (new_parent)
365 new_parent_d = new_parent->dentry;
366 else
367 new_parent_d = orphandir;
368
369 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
370 new_parent_d, clk->name);
371 if (d)
372 clk->dentry = d;
373 else
374 pr_debug("%s: failed to rename debugfs entry for %s\n",
375 __func__, clk->name);
376 }
377
378 /**
379 * clk_debug_init - lazily create the debugfs clk tree visualization
380 *
381 * clks are often initialized very early during boot before memory can
382 * be dynamically allocated and well before debugfs is setup.
383 * clk_debug_init walks the clk tree hierarchy while holding
384 * prepare_lock and creates the topology as part of a late_initcall,
385 * thus insuring that clks initialized very early will still be
386 * represented in the debugfs clk tree. This function should only be
387 * called once at boot-time, and all other clks added dynamically will
388 * be done so with clk_debug_register.
389 */
390 static int __init clk_debug_init(void)
391 {
392 struct clk *clk;
393 struct dentry *d;
394
395 rootdir = debugfs_create_dir("clk", NULL);
396
397 if (!rootdir)
398 return -ENOMEM;
399
400 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
401 &clk_summary_fops);
402 if (!d)
403 return -ENOMEM;
404
405 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
406 &clk_dump_fops);
407 if (!d)
408 return -ENOMEM;
409
410 orphandir = debugfs_create_dir("orphans", rootdir);
411
412 if (!orphandir)
413 return -ENOMEM;
414
415 clk_prepare_lock();
416
417 hlist_for_each_entry(clk, &clk_root_list, child_node)
418 clk_debug_create_subtree(clk, rootdir);
419
420 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
421 clk_debug_create_subtree(clk, orphandir);
422
423 inited = 1;
424
425 clk_prepare_unlock();
426
427 return 0;
428 }
429 late_initcall(clk_debug_init);
430 #else
431 static inline int clk_debug_register(struct clk *clk) { return 0; }
432 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
433 {
434 }
435 #endif
436
437 /* caller must hold prepare_lock */
438 static void clk_unprepare_unused_subtree(struct clk *clk)
439 {
440 struct clk *child;
441
442 if (!clk)
443 return;
444
445 hlist_for_each_entry(child, &clk->children, child_node)
446 clk_unprepare_unused_subtree(child);
447
448 if (clk->prepare_count)
449 return;
450
451 if (clk->flags & CLK_IGNORE_UNUSED)
452 return;
453
454 if (__clk_is_prepared(clk)) {
455 if (clk->ops->unprepare_unused)
456 clk->ops->unprepare_unused(clk->hw);
457 else if (clk->ops->unprepare)
458 clk->ops->unprepare(clk->hw);
459 }
460 }
461 EXPORT_SYMBOL_GPL(__clk_get_flags);
462
463 /* caller must hold prepare_lock */
464 static void clk_disable_unused_subtree(struct clk *clk)
465 {
466 struct clk *child;
467 unsigned long flags;
468
469 if (!clk)
470 goto out;
471
472 hlist_for_each_entry(child, &clk->children, child_node)
473 clk_disable_unused_subtree(child);
474
475 flags = clk_enable_lock();
476
477 if (clk->enable_count)
478 goto unlock_out;
479
480 if (clk->flags & CLK_IGNORE_UNUSED)
481 goto unlock_out;
482
483 /*
484 * some gate clocks have special needs during the disable-unused
485 * sequence. call .disable_unused if available, otherwise fall
486 * back to .disable
487 */
488 if (__clk_is_enabled(clk)) {
489 if (clk->ops->disable_unused)
490 clk->ops->disable_unused(clk->hw);
491 else if (clk->ops->disable)
492 clk->ops->disable(clk->hw);
493 }
494
495 unlock_out:
496 clk_enable_unlock(flags);
497
498 out:
499 return;
500 }
501
502 static bool clk_ignore_unused;
503 static int __init clk_ignore_unused_setup(char *__unused)
504 {
505 clk_ignore_unused = true;
506 return 1;
507 }
508 __setup("clk_ignore_unused", clk_ignore_unused_setup);
509
510 static int clk_disable_unused(void)
511 {
512 struct clk *clk;
513
514 if (clk_ignore_unused) {
515 pr_warn("clk: Not disabling unused clocks\n");
516 return 0;
517 }
518
519 clk_prepare_lock();
520
521 hlist_for_each_entry(clk, &clk_root_list, child_node)
522 clk_disable_unused_subtree(clk);
523
524 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
525 clk_disable_unused_subtree(clk);
526
527 hlist_for_each_entry(clk, &clk_root_list, child_node)
528 clk_unprepare_unused_subtree(clk);
529
530 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
531 clk_unprepare_unused_subtree(clk);
532
533 clk_prepare_unlock();
534
535 return 0;
536 }
537 late_initcall_sync(clk_disable_unused);
538
539 /*** helper functions ***/
540
541 const char *__clk_get_name(struct clk *clk)
542 {
543 return !clk ? NULL : clk->name;
544 }
545 EXPORT_SYMBOL_GPL(__clk_get_name);
546
547 struct clk_hw *__clk_get_hw(struct clk *clk)
548 {
549 return !clk ? NULL : clk->hw;
550 }
551
552 u8 __clk_get_num_parents(struct clk *clk)
553 {
554 return !clk ? 0 : clk->num_parents;
555 }
556
557 struct clk *__clk_get_parent(struct clk *clk)
558 {
559 return !clk ? NULL : clk->parent;
560 }
561
562 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
563 {
564 if (!clk || index >= clk->num_parents)
565 return NULL;
566 else if (!clk->parents)
567 return __clk_lookup(clk->parent_names[index]);
568 else if (!clk->parents[index])
569 return clk->parents[index] =
570 __clk_lookup(clk->parent_names[index]);
571 else
572 return clk->parents[index];
573 }
574
575 unsigned int __clk_get_enable_count(struct clk *clk)
576 {
577 return !clk ? 0 : clk->enable_count;
578 }
579
580 unsigned int __clk_get_prepare_count(struct clk *clk)
581 {
582 return !clk ? 0 : clk->prepare_count;
583 }
584
585 unsigned long __clk_get_rate(struct clk *clk)
586 {
587 unsigned long ret;
588
589 if (!clk) {
590 ret = 0;
591 goto out;
592 }
593
594 ret = clk->rate;
595
596 if (clk->flags & CLK_IS_ROOT)
597 goto out;
598
599 if (!clk->parent)
600 ret = 0;
601
602 out:
603 return ret;
604 }
605
606 unsigned long __clk_get_flags(struct clk *clk)
607 {
608 return !clk ? 0 : clk->flags;
609 }
610
611 bool __clk_is_prepared(struct clk *clk)
612 {
613 int ret;
614
615 if (!clk)
616 return false;
617
618 /*
619 * .is_prepared is optional for clocks that can prepare
620 * fall back to software usage counter if it is missing
621 */
622 if (!clk->ops->is_prepared) {
623 ret = clk->prepare_count ? 1 : 0;
624 goto out;
625 }
626
627 ret = clk->ops->is_prepared(clk->hw);
628 out:
629 return !!ret;
630 }
631
632 bool __clk_is_enabled(struct clk *clk)
633 {
634 int ret;
635
636 if (!clk)
637 return false;
638
639 /*
640 * .is_enabled is only mandatory for clocks that gate
641 * fall back to software usage counter if .is_enabled is missing
642 */
643 if (!clk->ops->is_enabled) {
644 ret = clk->enable_count ? 1 : 0;
645 goto out;
646 }
647
648 ret = clk->ops->is_enabled(clk->hw);
649 out:
650 return !!ret;
651 }
652
653 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
654 {
655 struct clk *child;
656 struct clk *ret;
657
658 if (!strcmp(clk->name, name))
659 return clk;
660
661 hlist_for_each_entry(child, &clk->children, child_node) {
662 ret = __clk_lookup_subtree(name, child);
663 if (ret)
664 return ret;
665 }
666
667 return NULL;
668 }
669
670 struct clk *__clk_lookup(const char *name)
671 {
672 struct clk *root_clk;
673 struct clk *ret;
674
675 if (!name)
676 return NULL;
677
678 /* search the 'proper' clk tree first */
679 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
680 ret = __clk_lookup_subtree(name, root_clk);
681 if (ret)
682 return ret;
683 }
684
685 /* if not found, then search the orphan tree */
686 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
687 ret = __clk_lookup_subtree(name, root_clk);
688 if (ret)
689 return ret;
690 }
691
692 return NULL;
693 }
694
695 /*** clk api ***/
696
697 void __clk_unprepare(struct clk *clk)
698 {
699 if (!clk)
700 return;
701
702 if (WARN_ON(clk->prepare_count == 0))
703 return;
704
705 if (--clk->prepare_count > 0)
706 return;
707
708 WARN_ON(clk->enable_count > 0);
709
710 if (clk->ops->unprepare)
711 clk->ops->unprepare(clk->hw);
712
713 __clk_unprepare(clk->parent);
714 }
715
716 /**
717 * clk_unprepare - undo preparation of a clock source
718 * @clk: the clk being unprepared
719 *
720 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
721 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
722 * if the operation may sleep. One example is a clk which is accessed over
723 * I2c. In the complex case a clk gate operation may require a fast and a slow
724 * part. It is this reason that clk_unprepare and clk_disable are not mutually
725 * exclusive. In fact clk_disable must be called before clk_unprepare.
726 */
727 void clk_unprepare(struct clk *clk)
728 {
729 clk_prepare_lock();
730 __clk_unprepare(clk);
731 clk_prepare_unlock();
732 }
733 EXPORT_SYMBOL_GPL(clk_unprepare);
734
735 int __clk_prepare(struct clk *clk)
736 {
737 int ret = 0;
738
739 if (!clk)
740 return 0;
741
742 if (clk->prepare_count == 0) {
743 ret = __clk_prepare(clk->parent);
744 if (ret)
745 return ret;
746
747 if (clk->ops->prepare) {
748 ret = clk->ops->prepare(clk->hw);
749 if (ret) {
750 __clk_unprepare(clk->parent);
751 return ret;
752 }
753 }
754 }
755
756 clk->prepare_count++;
757
758 return 0;
759 }
760
761 /**
762 * clk_prepare - prepare a clock source
763 * @clk: the clk being prepared
764 *
765 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
766 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
767 * operation may sleep. One example is a clk which is accessed over I2c. In
768 * the complex case a clk ungate operation may require a fast and a slow part.
769 * It is this reason that clk_prepare and clk_enable are not mutually
770 * exclusive. In fact clk_prepare must be called before clk_enable.
771 * Returns 0 on success, -EERROR otherwise.
772 */
773 int clk_prepare(struct clk *clk)
774 {
775 int ret;
776
777 clk_prepare_lock();
778 ret = __clk_prepare(clk);
779 clk_prepare_unlock();
780
781 return ret;
782 }
783 EXPORT_SYMBOL_GPL(clk_prepare);
784
785 static void __clk_disable(struct clk *clk)
786 {
787 if (!clk)
788 return;
789
790 if (WARN_ON(IS_ERR(clk)))
791 return;
792
793 if (WARN_ON(clk->enable_count == 0))
794 return;
795
796 if (--clk->enable_count > 0)
797 return;
798
799 if (clk->ops->disable)
800 clk->ops->disable(clk->hw);
801
802 __clk_disable(clk->parent);
803 }
804
805 /**
806 * clk_disable - gate a clock
807 * @clk: the clk being gated
808 *
809 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
810 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
811 * clk if the operation is fast and will never sleep. One example is a
812 * SoC-internal clk which is controlled via simple register writes. In the
813 * complex case a clk gate operation may require a fast and a slow part. It is
814 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
815 * In fact clk_disable must be called before clk_unprepare.
816 */
817 void clk_disable(struct clk *clk)
818 {
819 unsigned long flags;
820
821 flags = clk_enable_lock();
822 __clk_disable(clk);
823 clk_enable_unlock(flags);
824 }
825 EXPORT_SYMBOL_GPL(clk_disable);
826
827 static int __clk_enable(struct clk *clk)
828 {
829 int ret = 0;
830
831 if (!clk)
832 return 0;
833
834 if (WARN_ON(clk->prepare_count == 0))
835 return -ESHUTDOWN;
836
837 if (clk->enable_count == 0) {
838 ret = __clk_enable(clk->parent);
839
840 if (ret)
841 return ret;
842
843 if (clk->ops->enable) {
844 ret = clk->ops->enable(clk->hw);
845 if (ret) {
846 __clk_disable(clk->parent);
847 return ret;
848 }
849 }
850 }
851
852 clk->enable_count++;
853 return 0;
854 }
855
856 /**
857 * clk_enable - ungate a clock
858 * @clk: the clk being ungated
859 *
860 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
861 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
862 * if the operation will never sleep. One example is a SoC-internal clk which
863 * is controlled via simple register writes. In the complex case a clk ungate
864 * operation may require a fast and a slow part. It is this reason that
865 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
866 * must be called before clk_enable. Returns 0 on success, -EERROR
867 * otherwise.
868 */
869 int clk_enable(struct clk *clk)
870 {
871 unsigned long flags;
872 int ret;
873
874 flags = clk_enable_lock();
875 ret = __clk_enable(clk);
876 clk_enable_unlock(flags);
877
878 return ret;
879 }
880 EXPORT_SYMBOL_GPL(clk_enable);
881
882 /**
883 * __clk_round_rate - round the given rate for a clk
884 * @clk: round the rate of this clock
885 * @rate: the rate which is to be rounded
886 *
887 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
888 */
889 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
890 {
891 unsigned long parent_rate = 0;
892
893 if (!clk)
894 return 0;
895
896 if (!clk->ops->round_rate) {
897 if (clk->flags & CLK_SET_RATE_PARENT)
898 return __clk_round_rate(clk->parent, rate);
899 else
900 return clk->rate;
901 }
902
903 if (clk->parent)
904 parent_rate = clk->parent->rate;
905
906 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
907 }
908
909 /**
910 * clk_round_rate - round the given rate for a clk
911 * @clk: the clk for which we are rounding a rate
912 * @rate: the rate which is to be rounded
913 *
914 * Takes in a rate as input and rounds it to a rate that the clk can actually
915 * use which is then returned. If clk doesn't support round_rate operation
916 * then the parent rate is returned.
917 */
918 long clk_round_rate(struct clk *clk, unsigned long rate)
919 {
920 unsigned long ret;
921
922 clk_prepare_lock();
923 ret = __clk_round_rate(clk, rate);
924 clk_prepare_unlock();
925
926 return ret;
927 }
928 EXPORT_SYMBOL_GPL(clk_round_rate);
929
930 /**
931 * __clk_notify - call clk notifier chain
932 * @clk: struct clk * that is changing rate
933 * @msg: clk notifier type (see include/linux/clk.h)
934 * @old_rate: old clk rate
935 * @new_rate: new clk rate
936 *
937 * Triggers a notifier call chain on the clk rate-change notification
938 * for 'clk'. Passes a pointer to the struct clk and the previous
939 * and current rates to the notifier callback. Intended to be called by
940 * internal clock code only. Returns NOTIFY_DONE from the last driver
941 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
942 * a driver returns that.
943 */
944 static int __clk_notify(struct clk *clk, unsigned long msg,
945 unsigned long old_rate, unsigned long new_rate)
946 {
947 struct clk_notifier *cn;
948 struct clk_notifier_data cnd;
949 int ret = NOTIFY_DONE;
950
951 cnd.clk = clk;
952 cnd.old_rate = old_rate;
953 cnd.new_rate = new_rate;
954
955 list_for_each_entry(cn, &clk_notifier_list, node) {
956 if (cn->clk == clk) {
957 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
958 &cnd);
959 break;
960 }
961 }
962
963 return ret;
964 }
965
966 /**
967 * __clk_recalc_rates
968 * @clk: first clk in the subtree
969 * @msg: notification type (see include/linux/clk.h)
970 *
971 * Walks the subtree of clks starting with clk and recalculates rates as it
972 * goes. Note that if a clk does not implement the .recalc_rate callback then
973 * it is assumed that the clock will take on the rate of its parent.
974 *
975 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
976 * if necessary.
977 *
978 * Caller must hold prepare_lock.
979 */
980 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
981 {
982 unsigned long old_rate;
983 unsigned long parent_rate = 0;
984 struct clk *child;
985
986 old_rate = clk->rate;
987
988 if (clk->parent)
989 parent_rate = clk->parent->rate;
990
991 if (clk->ops->recalc_rate)
992 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
993 else
994 clk->rate = parent_rate;
995
996 /*
997 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
998 * & ABORT_RATE_CHANGE notifiers
999 */
1000 if (clk->notifier_count && msg)
1001 __clk_notify(clk, msg, old_rate, clk->rate);
1002
1003 hlist_for_each_entry(child, &clk->children, child_node)
1004 __clk_recalc_rates(child, msg);
1005 }
1006
1007 /**
1008 * clk_get_rate - return the rate of clk
1009 * @clk: the clk whose rate is being returned
1010 *
1011 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1012 * is set, which means a recalc_rate will be issued.
1013 * If clk is NULL then returns 0.
1014 */
1015 unsigned long clk_get_rate(struct clk *clk)
1016 {
1017 unsigned long rate;
1018
1019 clk_prepare_lock();
1020
1021 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1022 __clk_recalc_rates(clk, 0);
1023
1024 rate = __clk_get_rate(clk);
1025 clk_prepare_unlock();
1026
1027 return rate;
1028 }
1029 EXPORT_SYMBOL_GPL(clk_get_rate);
1030
1031 static u8 clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1032 {
1033 u8 i;
1034
1035 if (!clk->parents)
1036 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1037 GFP_KERNEL);
1038
1039 /*
1040 * find index of new parent clock using cached parent ptrs,
1041 * or if not yet cached, use string name comparison and cache
1042 * them now to avoid future calls to __clk_lookup.
1043 */
1044 for (i = 0; i < clk->num_parents; i++) {
1045 if (clk->parents && clk->parents[i] == parent)
1046 break;
1047 else if (!strcmp(clk->parent_names[i], parent->name)) {
1048 if (clk->parents)
1049 clk->parents[i] = __clk_lookup(parent->name);
1050 break;
1051 }
1052 }
1053
1054 return i;
1055 }
1056
1057 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1058 {
1059 hlist_del(&clk->child_node);
1060
1061 if (new_parent)
1062 hlist_add_head(&clk->child_node, &new_parent->children);
1063 else
1064 hlist_add_head(&clk->child_node, &clk_orphan_list);
1065
1066 clk->parent = new_parent;
1067 }
1068
1069 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1070 {
1071 unsigned long flags;
1072 int ret = 0;
1073 struct clk *old_parent = clk->parent;
1074
1075 /*
1076 * Migrate prepare state between parents and prevent race with
1077 * clk_enable().
1078 *
1079 * If the clock is not prepared, then a race with
1080 * clk_enable/disable() is impossible since we already have the
1081 * prepare lock (future calls to clk_enable() need to be preceded by
1082 * a clk_prepare()).
1083 *
1084 * If the clock is prepared, migrate the prepared state to the new
1085 * parent and also protect against a race with clk_enable() by
1086 * forcing the clock and the new parent on. This ensures that all
1087 * future calls to clk_enable() are practically NOPs with respect to
1088 * hardware and software states.
1089 *
1090 * See also: Comment for clk_set_parent() below.
1091 */
1092 if (clk->prepare_count) {
1093 __clk_prepare(parent);
1094 clk_enable(parent);
1095 clk_enable(clk);
1096 }
1097
1098 /* update the clk tree topology */
1099 flags = clk_enable_lock();
1100 clk_reparent(clk, parent);
1101 clk_enable_unlock(flags);
1102
1103 /* change clock input source */
1104 if (parent && clk->ops->set_parent)
1105 ret = clk->ops->set_parent(clk->hw, p_index);
1106
1107 if (ret) {
1108 flags = clk_enable_lock();
1109 clk_reparent(clk, old_parent);
1110 clk_enable_unlock(flags);
1111
1112 if (clk->prepare_count) {
1113 clk_disable(clk);
1114 clk_disable(parent);
1115 __clk_unprepare(parent);
1116 }
1117 return ret;
1118 }
1119
1120 /*
1121 * Finish the migration of prepare state and undo the changes done
1122 * for preventing a race with clk_enable().
1123 */
1124 if (clk->prepare_count) {
1125 clk_disable(clk);
1126 clk_disable(old_parent);
1127 __clk_unprepare(old_parent);
1128 }
1129
1130 /* update debugfs with new clk tree topology */
1131 clk_debug_reparent(clk, parent);
1132 return 0;
1133 }
1134
1135 /**
1136 * __clk_speculate_rates
1137 * @clk: first clk in the subtree
1138 * @parent_rate: the "future" rate of clk's parent
1139 *
1140 * Walks the subtree of clks starting with clk, speculating rates as it
1141 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1142 *
1143 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1144 * pre-rate change notifications and returns early if no clks in the
1145 * subtree have subscribed to the notifications. Note that if a clk does not
1146 * implement the .recalc_rate callback then it is assumed that the clock will
1147 * take on the rate of its parent.
1148 *
1149 * Caller must hold prepare_lock.
1150 */
1151 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1152 {
1153 struct clk *child;
1154 unsigned long new_rate;
1155 int ret = NOTIFY_DONE;
1156
1157 if (clk->ops->recalc_rate)
1158 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1159 else
1160 new_rate = parent_rate;
1161
1162 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1163 if (clk->notifier_count)
1164 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1165
1166 if (ret & NOTIFY_STOP_MASK)
1167 goto out;
1168
1169 hlist_for_each_entry(child, &clk->children, child_node) {
1170 ret = __clk_speculate_rates(child, new_rate);
1171 if (ret & NOTIFY_STOP_MASK)
1172 break;
1173 }
1174
1175 out:
1176 return ret;
1177 }
1178
1179 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
1180 {
1181 struct clk *child;
1182
1183 clk->new_rate = new_rate;
1184
1185 hlist_for_each_entry(child, &clk->children, child_node) {
1186 if (child->ops->recalc_rate)
1187 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1188 else
1189 child->new_rate = new_rate;
1190 clk_calc_subtree(child, child->new_rate);
1191 }
1192 }
1193
1194 /*
1195 * calculate the new rates returning the topmost clock that has to be
1196 * changed.
1197 */
1198 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1199 {
1200 struct clk *top = clk;
1201 unsigned long best_parent_rate = 0;
1202 unsigned long new_rate;
1203
1204 /* sanity */
1205 if (IS_ERR_OR_NULL(clk))
1206 return NULL;
1207
1208 /* save parent rate, if it exists */
1209 if (clk->parent)
1210 best_parent_rate = clk->parent->rate;
1211
1212 /* never propagate up to the parent */
1213 if (!(clk->flags & CLK_SET_RATE_PARENT)) {
1214 if (!clk->ops->round_rate) {
1215 clk->new_rate = clk->rate;
1216 return NULL;
1217 }
1218 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
1219 goto out;
1220 }
1221
1222 /* need clk->parent from here on out */
1223 if (!clk->parent) {
1224 pr_debug("%s: %s has NULL parent\n", __func__, clk->name);
1225 return NULL;
1226 }
1227
1228 if (!clk->ops->round_rate) {
1229 top = clk_calc_new_rates(clk->parent, rate);
1230 new_rate = clk->parent->new_rate;
1231
1232 goto out;
1233 }
1234
1235 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
1236
1237 if (best_parent_rate != clk->parent->rate) {
1238 top = clk_calc_new_rates(clk->parent, best_parent_rate);
1239
1240 goto out;
1241 }
1242
1243 out:
1244 clk_calc_subtree(clk, new_rate);
1245
1246 return top;
1247 }
1248
1249 /*
1250 * Notify about rate changes in a subtree. Always walk down the whole tree
1251 * so that in case of an error we can walk down the whole tree again and
1252 * abort the change.
1253 */
1254 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1255 {
1256 struct clk *child, *fail_clk = NULL;
1257 int ret = NOTIFY_DONE;
1258
1259 if (clk->rate == clk->new_rate)
1260 return NULL;
1261
1262 if (clk->notifier_count) {
1263 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1264 if (ret & NOTIFY_STOP_MASK)
1265 fail_clk = clk;
1266 }
1267
1268 hlist_for_each_entry(child, &clk->children, child_node) {
1269 clk = clk_propagate_rate_change(child, event);
1270 if (clk)
1271 fail_clk = clk;
1272 }
1273
1274 return fail_clk;
1275 }
1276
1277 /*
1278 * walk down a subtree and set the new rates notifying the rate
1279 * change on the way
1280 */
1281 static void clk_change_rate(struct clk *clk)
1282 {
1283 struct clk *child;
1284 unsigned long old_rate;
1285 unsigned long best_parent_rate = 0;
1286
1287 old_rate = clk->rate;
1288
1289 if (clk->parent)
1290 best_parent_rate = clk->parent->rate;
1291
1292 if (clk->ops->set_rate)
1293 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1294
1295 if (clk->ops->recalc_rate)
1296 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1297 else
1298 clk->rate = best_parent_rate;
1299
1300 if (clk->notifier_count && old_rate != clk->rate)
1301 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1302
1303 hlist_for_each_entry(child, &clk->children, child_node)
1304 clk_change_rate(child);
1305 }
1306
1307 /**
1308 * clk_set_rate - specify a new rate for clk
1309 * @clk: the clk whose rate is being changed
1310 * @rate: the new rate for clk
1311 *
1312 * In the simplest case clk_set_rate will only adjust the rate of clk.
1313 *
1314 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1315 * propagate up to clk's parent; whether or not this happens depends on the
1316 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1317 * after calling .round_rate then upstream parent propagation is ignored. If
1318 * *parent_rate comes back with a new rate for clk's parent then we propagate
1319 * up to clk's parent and set its rate. Upward propagation will continue
1320 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1321 * .round_rate stops requesting changes to clk's parent_rate.
1322 *
1323 * Rate changes are accomplished via tree traversal that also recalculates the
1324 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1325 *
1326 * Returns 0 on success, -EERROR otherwise.
1327 */
1328 int clk_set_rate(struct clk *clk, unsigned long rate)
1329 {
1330 struct clk *top, *fail_clk;
1331 int ret = 0;
1332
1333 /* prevent racing with updates to the clock topology */
1334 clk_prepare_lock();
1335
1336 /* bail early if nothing to do */
1337 if (rate == clk_get_rate(clk))
1338 goto out;
1339
1340 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1341 ret = -EBUSY;
1342 goto out;
1343 }
1344
1345 /* calculate new rates and get the topmost changed clock */
1346 top = clk_calc_new_rates(clk, rate);
1347 if (!top) {
1348 ret = -EINVAL;
1349 goto out;
1350 }
1351
1352 /* notify that we are about to change rates */
1353 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1354 if (fail_clk) {
1355 pr_warn("%s: failed to set %s rate\n", __func__,
1356 fail_clk->name);
1357 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1358 ret = -EBUSY;
1359 goto out;
1360 }
1361
1362 /* change the rates */
1363 clk_change_rate(top);
1364
1365 out:
1366 clk_prepare_unlock();
1367
1368 return ret;
1369 }
1370 EXPORT_SYMBOL_GPL(clk_set_rate);
1371
1372 /**
1373 * clk_get_parent - return the parent of a clk
1374 * @clk: the clk whose parent gets returned
1375 *
1376 * Simply returns clk->parent. Returns NULL if clk is NULL.
1377 */
1378 struct clk *clk_get_parent(struct clk *clk)
1379 {
1380 struct clk *parent;
1381
1382 clk_prepare_lock();
1383 parent = __clk_get_parent(clk);
1384 clk_prepare_unlock();
1385
1386 return parent;
1387 }
1388 EXPORT_SYMBOL_GPL(clk_get_parent);
1389
1390 /*
1391 * .get_parent is mandatory for clocks with multiple possible parents. It is
1392 * optional for single-parent clocks. Always call .get_parent if it is
1393 * available and WARN if it is missing for multi-parent clocks.
1394 *
1395 * For single-parent clocks without .get_parent, first check to see if the
1396 * .parents array exists, and if so use it to avoid an expensive tree
1397 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1398 */
1399 static struct clk *__clk_init_parent(struct clk *clk)
1400 {
1401 struct clk *ret = NULL;
1402 u8 index;
1403
1404 /* handle the trivial cases */
1405
1406 if (!clk->num_parents)
1407 goto out;
1408
1409 if (clk->num_parents == 1) {
1410 if (IS_ERR_OR_NULL(clk->parent))
1411 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1412 ret = clk->parent;
1413 goto out;
1414 }
1415
1416 if (!clk->ops->get_parent) {
1417 WARN(!clk->ops->get_parent,
1418 "%s: multi-parent clocks must implement .get_parent\n",
1419 __func__);
1420 goto out;
1421 };
1422
1423 /*
1424 * Do our best to cache parent clocks in clk->parents. This prevents
1425 * unnecessary and expensive calls to __clk_lookup. We don't set
1426 * clk->parent here; that is done by the calling function
1427 */
1428
1429 index = clk->ops->get_parent(clk->hw);
1430
1431 if (!clk->parents)
1432 clk->parents =
1433 kzalloc((sizeof(struct clk*) * clk->num_parents),
1434 GFP_KERNEL);
1435
1436 ret = clk_get_parent_by_index(clk, index);
1437
1438 out:
1439 return ret;
1440 }
1441
1442 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1443 {
1444 clk_reparent(clk, new_parent);
1445 clk_debug_reparent(clk, new_parent);
1446 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1447 }
1448
1449 /**
1450 * clk_set_parent - switch the parent of a mux clk
1451 * @clk: the mux clk whose input we are switching
1452 * @parent: the new input to clk
1453 *
1454 * Re-parent clk to use parent as its new input source. If clk is in
1455 * prepared state, the clk will get enabled for the duration of this call. If
1456 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1457 * that, the reparenting is glitchy in hardware, etc), use the
1458 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1459 *
1460 * After successfully changing clk's parent clk_set_parent will update the
1461 * clk topology, sysfs topology and propagate rate recalculation via
1462 * __clk_recalc_rates.
1463 *
1464 * Returns 0 on success, -EERROR otherwise.
1465 */
1466 int clk_set_parent(struct clk *clk, struct clk *parent)
1467 {
1468 int ret = 0;
1469 u8 p_index = 0;
1470 unsigned long p_rate = 0;
1471
1472 if (!clk || !clk->ops)
1473 return -EINVAL;
1474
1475 /* verify ops for for multi-parent clks */
1476 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1477 return -ENOSYS;
1478
1479 /* prevent racing with updates to the clock topology */
1480 clk_prepare_lock();
1481
1482 if (clk->parent == parent)
1483 goto out;
1484
1485 /* check that we are allowed to re-parent if the clock is in use */
1486 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1487 ret = -EBUSY;
1488 goto out;
1489 }
1490
1491 /* try finding the new parent index */
1492 if (parent) {
1493 p_index = clk_fetch_parent_index(clk, parent);
1494 p_rate = parent->rate;
1495 if (p_index == clk->num_parents) {
1496 pr_debug("%s: clk %s can not be parent of clk %s\n",
1497 __func__, parent->name, clk->name);
1498 ret = -EINVAL;
1499 goto out;
1500 }
1501 }
1502
1503 /* propagate PRE_RATE_CHANGE notifications */
1504 ret = __clk_speculate_rates(clk, p_rate);
1505
1506 /* abort if a driver objects */
1507 if (ret & NOTIFY_STOP_MASK)
1508 goto out;
1509
1510 /* do the re-parent */
1511 ret = __clk_set_parent(clk, parent, p_index);
1512
1513 /* propagate rate recalculation accordingly */
1514 if (ret)
1515 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1516 else
1517 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1518
1519 out:
1520 clk_prepare_unlock();
1521
1522 return ret;
1523 }
1524 EXPORT_SYMBOL_GPL(clk_set_parent);
1525
1526 /**
1527 * __clk_init - initialize the data structures in a struct clk
1528 * @dev: device initializing this clk, placeholder for now
1529 * @clk: clk being initialized
1530 *
1531 * Initializes the lists in struct clk, queries the hardware for the
1532 * parent and rate and sets them both.
1533 */
1534 int __clk_init(struct device *dev, struct clk *clk)
1535 {
1536 int i, ret = 0;
1537 struct clk *orphan;
1538 struct hlist_node *tmp2;
1539
1540 if (!clk)
1541 return -EINVAL;
1542
1543 clk_prepare_lock();
1544
1545 /* check to see if a clock with this name is already registered */
1546 if (__clk_lookup(clk->name)) {
1547 pr_debug("%s: clk %s already initialized\n",
1548 __func__, clk->name);
1549 ret = -EEXIST;
1550 goto out;
1551 }
1552
1553 /* check that clk_ops are sane. See Documentation/clk.txt */
1554 if (clk->ops->set_rate &&
1555 !(clk->ops->round_rate && clk->ops->recalc_rate)) {
1556 pr_warning("%s: %s must implement .round_rate & .recalc_rate\n",
1557 __func__, clk->name);
1558 ret = -EINVAL;
1559 goto out;
1560 }
1561
1562 if (clk->ops->set_parent && !clk->ops->get_parent) {
1563 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1564 __func__, clk->name);
1565 ret = -EINVAL;
1566 goto out;
1567 }
1568
1569 /* throw a WARN if any entries in parent_names are NULL */
1570 for (i = 0; i < clk->num_parents; i++)
1571 WARN(!clk->parent_names[i],
1572 "%s: invalid NULL in %s's .parent_names\n",
1573 __func__, clk->name);
1574
1575 /*
1576 * Allocate an array of struct clk *'s to avoid unnecessary string
1577 * look-ups of clk's possible parents. This can fail for clocks passed
1578 * in to clk_init during early boot; thus any access to clk->parents[]
1579 * must always check for a NULL pointer and try to populate it if
1580 * necessary.
1581 *
1582 * If clk->parents is not NULL we skip this entire block. This allows
1583 * for clock drivers to statically initialize clk->parents.
1584 */
1585 if (clk->num_parents > 1 && !clk->parents) {
1586 clk->parents = kzalloc((sizeof(struct clk*) * clk->num_parents),
1587 GFP_KERNEL);
1588 /*
1589 * __clk_lookup returns NULL for parents that have not been
1590 * clk_init'd; thus any access to clk->parents[] must check
1591 * for a NULL pointer. We can always perform lazy lookups for
1592 * missing parents later on.
1593 */
1594 if (clk->parents)
1595 for (i = 0; i < clk->num_parents; i++)
1596 clk->parents[i] =
1597 __clk_lookup(clk->parent_names[i]);
1598 }
1599
1600 clk->parent = __clk_init_parent(clk);
1601
1602 /*
1603 * Populate clk->parent if parent has already been __clk_init'd. If
1604 * parent has not yet been __clk_init'd then place clk in the orphan
1605 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1606 * clk list.
1607 *
1608 * Every time a new clk is clk_init'd then we walk the list of orphan
1609 * clocks and re-parent any that are children of the clock currently
1610 * being clk_init'd.
1611 */
1612 if (clk->parent)
1613 hlist_add_head(&clk->child_node,
1614 &clk->parent->children);
1615 else if (clk->flags & CLK_IS_ROOT)
1616 hlist_add_head(&clk->child_node, &clk_root_list);
1617 else
1618 hlist_add_head(&clk->child_node, &clk_orphan_list);
1619
1620 /*
1621 * Set clk's rate. The preferred method is to use .recalc_rate. For
1622 * simple clocks and lazy developers the default fallback is to use the
1623 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1624 * then rate is set to zero.
1625 */
1626 if (clk->ops->recalc_rate)
1627 clk->rate = clk->ops->recalc_rate(clk->hw,
1628 __clk_get_rate(clk->parent));
1629 else if (clk->parent)
1630 clk->rate = clk->parent->rate;
1631 else
1632 clk->rate = 0;
1633
1634 /*
1635 * walk the list of orphan clocks and reparent any that are children of
1636 * this clock
1637 */
1638 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1639 if (orphan->ops->get_parent) {
1640 i = orphan->ops->get_parent(orphan->hw);
1641 if (!strcmp(clk->name, orphan->parent_names[i]))
1642 __clk_reparent(orphan, clk);
1643 continue;
1644 }
1645
1646 for (i = 0; i < orphan->num_parents; i++)
1647 if (!strcmp(clk->name, orphan->parent_names[i])) {
1648 __clk_reparent(orphan, clk);
1649 break;
1650 }
1651 }
1652
1653 /*
1654 * optional platform-specific magic
1655 *
1656 * The .init callback is not used by any of the basic clock types, but
1657 * exists for weird hardware that must perform initialization magic.
1658 * Please consider other ways of solving initialization problems before
1659 * using this callback, as its use is discouraged.
1660 */
1661 if (clk->ops->init)
1662 clk->ops->init(clk->hw);
1663
1664 clk_debug_register(clk);
1665
1666 out:
1667 clk_prepare_unlock();
1668
1669 return ret;
1670 }
1671
1672 /**
1673 * __clk_register - register a clock and return a cookie.
1674 *
1675 * Same as clk_register, except that the .clk field inside hw shall point to a
1676 * preallocated (generally statically allocated) struct clk. None of the fields
1677 * of the struct clk need to be initialized.
1678 *
1679 * The data pointed to by .init and .clk field shall NOT be marked as init
1680 * data.
1681 *
1682 * __clk_register is only exposed via clk-private.h and is intended for use with
1683 * very large numbers of clocks that need to be statically initialized. It is
1684 * a layering violation to include clk-private.h from any code which implements
1685 * a clock's .ops; as such any statically initialized clock data MUST be in a
1686 * separate C file from the logic that implements its operations. Returns 0
1687 * on success, otherwise an error code.
1688 */
1689 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1690 {
1691 int ret;
1692 struct clk *clk;
1693
1694 clk = hw->clk;
1695 clk->name = hw->init->name;
1696 clk->ops = hw->init->ops;
1697 clk->hw = hw;
1698 clk->flags = hw->init->flags;
1699 clk->parent_names = hw->init->parent_names;
1700 clk->num_parents = hw->init->num_parents;
1701
1702 ret = __clk_init(dev, clk);
1703 if (ret)
1704 return ERR_PTR(ret);
1705
1706 return clk;
1707 }
1708 EXPORT_SYMBOL_GPL(__clk_register);
1709
1710 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1711 {
1712 int i, ret;
1713
1714 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1715 if (!clk->name) {
1716 pr_err("%s: could not allocate clk->name\n", __func__);
1717 ret = -ENOMEM;
1718 goto fail_name;
1719 }
1720 clk->ops = hw->init->ops;
1721 clk->hw = hw;
1722 clk->flags = hw->init->flags;
1723 clk->num_parents = hw->init->num_parents;
1724 hw->clk = clk;
1725
1726 /* allocate local copy in case parent_names is __initdata */
1727 clk->parent_names = kzalloc((sizeof(char*) * clk->num_parents),
1728 GFP_KERNEL);
1729
1730 if (!clk->parent_names) {
1731 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1732 ret = -ENOMEM;
1733 goto fail_parent_names;
1734 }
1735
1736
1737 /* copy each string name in case parent_names is __initdata */
1738 for (i = 0; i < clk->num_parents; i++) {
1739 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1740 GFP_KERNEL);
1741 if (!clk->parent_names[i]) {
1742 pr_err("%s: could not copy parent_names\n", __func__);
1743 ret = -ENOMEM;
1744 goto fail_parent_names_copy;
1745 }
1746 }
1747
1748 ret = __clk_init(dev, clk);
1749 if (!ret)
1750 return 0;
1751
1752 fail_parent_names_copy:
1753 while (--i >= 0)
1754 kfree(clk->parent_names[i]);
1755 kfree(clk->parent_names);
1756 fail_parent_names:
1757 kfree(clk->name);
1758 fail_name:
1759 return ret;
1760 }
1761
1762 /**
1763 * clk_register - allocate a new clock, register it and return an opaque cookie
1764 * @dev: device that is registering this clock
1765 * @hw: link to hardware-specific clock data
1766 *
1767 * clk_register is the primary interface for populating the clock tree with new
1768 * clock nodes. It returns a pointer to the newly allocated struct clk which
1769 * cannot be dereferenced by driver code but may be used in conjuction with the
1770 * rest of the clock API. In the event of an error clk_register will return an
1771 * error code; drivers must test for an error code after calling clk_register.
1772 */
1773 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1774 {
1775 int ret;
1776 struct clk *clk;
1777
1778 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1779 if (!clk) {
1780 pr_err("%s: could not allocate clk\n", __func__);
1781 ret = -ENOMEM;
1782 goto fail_out;
1783 }
1784
1785 ret = _clk_register(dev, hw, clk);
1786 if (!ret)
1787 return clk;
1788
1789 kfree(clk);
1790 fail_out:
1791 return ERR_PTR(ret);
1792 }
1793 EXPORT_SYMBOL_GPL(clk_register);
1794
1795 /**
1796 * clk_unregister - unregister a currently registered clock
1797 * @clk: clock to unregister
1798 *
1799 * Currently unimplemented.
1800 */
1801 void clk_unregister(struct clk *clk) {}
1802 EXPORT_SYMBOL_GPL(clk_unregister);
1803
1804 static void devm_clk_release(struct device *dev, void *res)
1805 {
1806 clk_unregister(res);
1807 }
1808
1809 /**
1810 * devm_clk_register - resource managed clk_register()
1811 * @dev: device that is registering this clock
1812 * @hw: link to hardware-specific clock data
1813 *
1814 * Managed clk_register(). Clocks returned from this function are
1815 * automatically clk_unregister()ed on driver detach. See clk_register() for
1816 * more information.
1817 */
1818 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
1819 {
1820 struct clk *clk;
1821 int ret;
1822
1823 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
1824 if (!clk)
1825 return ERR_PTR(-ENOMEM);
1826
1827 ret = _clk_register(dev, hw, clk);
1828 if (!ret) {
1829 devres_add(dev, clk);
1830 } else {
1831 devres_free(clk);
1832 clk = ERR_PTR(ret);
1833 }
1834
1835 return clk;
1836 }
1837 EXPORT_SYMBOL_GPL(devm_clk_register);
1838
1839 static int devm_clk_match(struct device *dev, void *res, void *data)
1840 {
1841 struct clk *c = res;
1842 if (WARN_ON(!c))
1843 return 0;
1844 return c == data;
1845 }
1846
1847 /**
1848 * devm_clk_unregister - resource managed clk_unregister()
1849 * @clk: clock to unregister
1850 *
1851 * Deallocate a clock allocated with devm_clk_register(). Normally
1852 * this function will not need to be called and the resource management
1853 * code will ensure that the resource is freed.
1854 */
1855 void devm_clk_unregister(struct device *dev, struct clk *clk)
1856 {
1857 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
1858 }
1859 EXPORT_SYMBOL_GPL(devm_clk_unregister);
1860
1861 /*** clk rate change notifiers ***/
1862
1863 /**
1864 * clk_notifier_register - add a clk rate change notifier
1865 * @clk: struct clk * to watch
1866 * @nb: struct notifier_block * with callback info
1867 *
1868 * Request notification when clk's rate changes. This uses an SRCU
1869 * notifier because we want it to block and notifier unregistrations are
1870 * uncommon. The callbacks associated with the notifier must not
1871 * re-enter into the clk framework by calling any top-level clk APIs;
1872 * this will cause a nested prepare_lock mutex.
1873 *
1874 * Pre-change notifier callbacks will be passed the current, pre-change
1875 * rate of the clk via struct clk_notifier_data.old_rate. The new,
1876 * post-change rate of the clk is passed via struct
1877 * clk_notifier_data.new_rate.
1878 *
1879 * Post-change notifiers will pass the now-current, post-change rate of
1880 * the clk in both struct clk_notifier_data.old_rate and struct
1881 * clk_notifier_data.new_rate.
1882 *
1883 * Abort-change notifiers are effectively the opposite of pre-change
1884 * notifiers: the original pre-change clk rate is passed in via struct
1885 * clk_notifier_data.new_rate and the failed post-change rate is passed
1886 * in via struct clk_notifier_data.old_rate.
1887 *
1888 * clk_notifier_register() must be called from non-atomic context.
1889 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1890 * allocation failure; otherwise, passes along the return value of
1891 * srcu_notifier_chain_register().
1892 */
1893 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1894 {
1895 struct clk_notifier *cn;
1896 int ret = -ENOMEM;
1897
1898 if (!clk || !nb)
1899 return -EINVAL;
1900
1901 clk_prepare_lock();
1902
1903 /* search the list of notifiers for this clk */
1904 list_for_each_entry(cn, &clk_notifier_list, node)
1905 if (cn->clk == clk)
1906 break;
1907
1908 /* if clk wasn't in the notifier list, allocate new clk_notifier */
1909 if (cn->clk != clk) {
1910 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1911 if (!cn)
1912 goto out;
1913
1914 cn->clk = clk;
1915 srcu_init_notifier_head(&cn->notifier_head);
1916
1917 list_add(&cn->node, &clk_notifier_list);
1918 }
1919
1920 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1921
1922 clk->notifier_count++;
1923
1924 out:
1925 clk_prepare_unlock();
1926
1927 return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(clk_notifier_register);
1930
1931 /**
1932 * clk_notifier_unregister - remove a clk rate change notifier
1933 * @clk: struct clk *
1934 * @nb: struct notifier_block * with callback info
1935 *
1936 * Request no further notification for changes to 'clk' and frees memory
1937 * allocated in clk_notifier_register.
1938 *
1939 * Returns -EINVAL if called with null arguments; otherwise, passes
1940 * along the return value of srcu_notifier_chain_unregister().
1941 */
1942 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1943 {
1944 struct clk_notifier *cn = NULL;
1945 int ret = -EINVAL;
1946
1947 if (!clk || !nb)
1948 return -EINVAL;
1949
1950 clk_prepare_lock();
1951
1952 list_for_each_entry(cn, &clk_notifier_list, node)
1953 if (cn->clk == clk)
1954 break;
1955
1956 if (cn->clk == clk) {
1957 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1958
1959 clk->notifier_count--;
1960
1961 /* XXX the notifier code should handle this better */
1962 if (!cn->notifier_head.head) {
1963 srcu_cleanup_notifier_head(&cn->notifier_head);
1964 list_del(&cn->node);
1965 kfree(cn);
1966 }
1967
1968 } else {
1969 ret = -ENOENT;
1970 }
1971
1972 clk_prepare_unlock();
1973
1974 return ret;
1975 }
1976 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
1977
1978 #ifdef CONFIG_OF
1979 /**
1980 * struct of_clk_provider - Clock provider registration structure
1981 * @link: Entry in global list of clock providers
1982 * @node: Pointer to device tree node of clock provider
1983 * @get: Get clock callback. Returns NULL or a struct clk for the
1984 * given clock specifier
1985 * @data: context pointer to be passed into @get callback
1986 */
1987 struct of_clk_provider {
1988 struct list_head link;
1989
1990 struct device_node *node;
1991 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
1992 void *data;
1993 };
1994
1995 extern struct of_device_id __clk_of_table[];
1996
1997 static const struct of_device_id __clk_of_table_sentinel
1998 __used __section(__clk_of_table_end);
1999
2000 static LIST_HEAD(of_clk_providers);
2001 static DEFINE_MUTEX(of_clk_lock);
2002
2003 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2004 void *data)
2005 {
2006 return data;
2007 }
2008 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2009
2010 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2011 {
2012 struct clk_onecell_data *clk_data = data;
2013 unsigned int idx = clkspec->args[0];
2014
2015 if (idx >= clk_data->clk_num) {
2016 pr_err("%s: invalid clock index %d\n", __func__, idx);
2017 return ERR_PTR(-EINVAL);
2018 }
2019
2020 return clk_data->clks[idx];
2021 }
2022 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2023
2024 /**
2025 * of_clk_add_provider() - Register a clock provider for a node
2026 * @np: Device node pointer associated with clock provider
2027 * @clk_src_get: callback for decoding clock
2028 * @data: context pointer for @clk_src_get callback.
2029 */
2030 int of_clk_add_provider(struct device_node *np,
2031 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2032 void *data),
2033 void *data)
2034 {
2035 struct of_clk_provider *cp;
2036
2037 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2038 if (!cp)
2039 return -ENOMEM;
2040
2041 cp->node = of_node_get(np);
2042 cp->data = data;
2043 cp->get = clk_src_get;
2044
2045 mutex_lock(&of_clk_lock);
2046 list_add(&cp->link, &of_clk_providers);
2047 mutex_unlock(&of_clk_lock);
2048 pr_debug("Added clock from %s\n", np->full_name);
2049
2050 return 0;
2051 }
2052 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2053
2054 /**
2055 * of_clk_del_provider() - Remove a previously registered clock provider
2056 * @np: Device node pointer associated with clock provider
2057 */
2058 void of_clk_del_provider(struct device_node *np)
2059 {
2060 struct of_clk_provider *cp;
2061
2062 mutex_lock(&of_clk_lock);
2063 list_for_each_entry(cp, &of_clk_providers, link) {
2064 if (cp->node == np) {
2065 list_del(&cp->link);
2066 of_node_put(cp->node);
2067 kfree(cp);
2068 break;
2069 }
2070 }
2071 mutex_unlock(&of_clk_lock);
2072 }
2073 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2074
2075 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2076 {
2077 struct of_clk_provider *provider;
2078 struct clk *clk = ERR_PTR(-ENOENT);
2079
2080 /* Check if we have such a provider in our array */
2081 mutex_lock(&of_clk_lock);
2082 list_for_each_entry(provider, &of_clk_providers, link) {
2083 if (provider->node == clkspec->np)
2084 clk = provider->get(clkspec, provider->data);
2085 if (!IS_ERR(clk))
2086 break;
2087 }
2088 mutex_unlock(&of_clk_lock);
2089
2090 return clk;
2091 }
2092
2093 const char *of_clk_get_parent_name(struct device_node *np, int index)
2094 {
2095 struct of_phandle_args clkspec;
2096 const char *clk_name;
2097 int rc;
2098
2099 if (index < 0)
2100 return NULL;
2101
2102 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2103 &clkspec);
2104 if (rc)
2105 return NULL;
2106
2107 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2108 clkspec.args_count ? clkspec.args[0] : 0,
2109 &clk_name) < 0)
2110 clk_name = clkspec.np->name;
2111
2112 of_node_put(clkspec.np);
2113 return clk_name;
2114 }
2115 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2116
2117 /**
2118 * of_clk_init() - Scan and init clock providers from the DT
2119 * @matches: array of compatible values and init functions for providers.
2120 *
2121 * This function scans the device tree for matching clock providers and
2122 * calls their initialization functions
2123 */
2124 void __init of_clk_init(const struct of_device_id *matches)
2125 {
2126 struct device_node *np;
2127
2128 if (!matches)
2129 matches = __clk_of_table;
2130
2131 for_each_matching_node(np, matches) {
2132 const struct of_device_id *match = of_match_node(matches, np);
2133 of_clk_init_cb_t clk_init_cb = match->data;
2134 clk_init_cb(np);
2135 }
2136 }
2137 #endif