]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clk/clk.c
Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac802...
[mirror_ubuntu-bionic-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23
24 #include "clk.h"
25
26 static DEFINE_SPINLOCK(enable_lock);
27 static DEFINE_MUTEX(prepare_lock);
28
29 static struct task_struct *prepare_owner;
30 static struct task_struct *enable_owner;
31
32 static int prepare_refcnt;
33 static int enable_refcnt;
34
35 static HLIST_HEAD(clk_root_list);
36 static HLIST_HEAD(clk_orphan_list);
37 static LIST_HEAD(clk_notifier_list);
38
39 /*** locking ***/
40 static void clk_prepare_lock(void)
41 {
42 if (!mutex_trylock(&prepare_lock)) {
43 if (prepare_owner == current) {
44 prepare_refcnt++;
45 return;
46 }
47 mutex_lock(&prepare_lock);
48 }
49 WARN_ON_ONCE(prepare_owner != NULL);
50 WARN_ON_ONCE(prepare_refcnt != 0);
51 prepare_owner = current;
52 prepare_refcnt = 1;
53 }
54
55 static void clk_prepare_unlock(void)
56 {
57 WARN_ON_ONCE(prepare_owner != current);
58 WARN_ON_ONCE(prepare_refcnt == 0);
59
60 if (--prepare_refcnt)
61 return;
62 prepare_owner = NULL;
63 mutex_unlock(&prepare_lock);
64 }
65
66 static unsigned long clk_enable_lock(void)
67 {
68 unsigned long flags;
69
70 if (!spin_trylock_irqsave(&enable_lock, flags)) {
71 if (enable_owner == current) {
72 enable_refcnt++;
73 return flags;
74 }
75 spin_lock_irqsave(&enable_lock, flags);
76 }
77 WARN_ON_ONCE(enable_owner != NULL);
78 WARN_ON_ONCE(enable_refcnt != 0);
79 enable_owner = current;
80 enable_refcnt = 1;
81 return flags;
82 }
83
84 static void clk_enable_unlock(unsigned long flags)
85 {
86 WARN_ON_ONCE(enable_owner != current);
87 WARN_ON_ONCE(enable_refcnt == 0);
88
89 if (--enable_refcnt)
90 return;
91 enable_owner = NULL;
92 spin_unlock_irqrestore(&enable_lock, flags);
93 }
94
95 /*** debugfs support ***/
96
97 #ifdef CONFIG_DEBUG_FS
98 #include <linux/debugfs.h>
99
100 static struct dentry *rootdir;
101 static struct dentry *orphandir;
102 static int inited = 0;
103
104 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
105 {
106 if (!c)
107 return;
108
109 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu %-11lu",
110 level * 3 + 1, "",
111 30 - level * 3, c->name,
112 c->enable_count, c->prepare_count, clk_get_rate(c),
113 clk_get_accuracy(c));
114 seq_printf(s, "\n");
115 }
116
117 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
118 int level)
119 {
120 struct clk *child;
121
122 if (!c)
123 return;
124
125 clk_summary_show_one(s, c, level);
126
127 hlist_for_each_entry(child, &c->children, child_node)
128 clk_summary_show_subtree(s, child, level + 1);
129 }
130
131 static int clk_summary_show(struct seq_file *s, void *data)
132 {
133 struct clk *c;
134
135 seq_printf(s, " clock enable_cnt prepare_cnt rate accuracy\n");
136 seq_printf(s, "---------------------------------------------------------------------------------\n");
137
138 clk_prepare_lock();
139
140 hlist_for_each_entry(c, &clk_root_list, child_node)
141 clk_summary_show_subtree(s, c, 0);
142
143 hlist_for_each_entry(c, &clk_orphan_list, child_node)
144 clk_summary_show_subtree(s, c, 0);
145
146 clk_prepare_unlock();
147
148 return 0;
149 }
150
151
152 static int clk_summary_open(struct inode *inode, struct file *file)
153 {
154 return single_open(file, clk_summary_show, inode->i_private);
155 }
156
157 static const struct file_operations clk_summary_fops = {
158 .open = clk_summary_open,
159 .read = seq_read,
160 .llseek = seq_lseek,
161 .release = single_release,
162 };
163
164 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
165 {
166 if (!c)
167 return;
168
169 seq_printf(s, "\"%s\": { ", c->name);
170 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
171 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
172 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
173 seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
174 }
175
176 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
177 {
178 struct clk *child;
179
180 if (!c)
181 return;
182
183 clk_dump_one(s, c, level);
184
185 hlist_for_each_entry(child, &c->children, child_node) {
186 seq_printf(s, ",");
187 clk_dump_subtree(s, child, level + 1);
188 }
189
190 seq_printf(s, "}");
191 }
192
193 static int clk_dump(struct seq_file *s, void *data)
194 {
195 struct clk *c;
196 bool first_node = true;
197
198 seq_printf(s, "{");
199
200 clk_prepare_lock();
201
202 hlist_for_each_entry(c, &clk_root_list, child_node) {
203 if (!first_node)
204 seq_printf(s, ",");
205 first_node = false;
206 clk_dump_subtree(s, c, 0);
207 }
208
209 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
210 seq_printf(s, ",");
211 clk_dump_subtree(s, c, 0);
212 }
213
214 clk_prepare_unlock();
215
216 seq_printf(s, "}");
217 return 0;
218 }
219
220
221 static int clk_dump_open(struct inode *inode, struct file *file)
222 {
223 return single_open(file, clk_dump, inode->i_private);
224 }
225
226 static const struct file_operations clk_dump_fops = {
227 .open = clk_dump_open,
228 .read = seq_read,
229 .llseek = seq_lseek,
230 .release = single_release,
231 };
232
233 /* caller must hold prepare_lock */
234 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
235 {
236 struct dentry *d;
237 int ret = -ENOMEM;
238
239 if (!clk || !pdentry) {
240 ret = -EINVAL;
241 goto out;
242 }
243
244 d = debugfs_create_dir(clk->name, pdentry);
245 if (!d)
246 goto out;
247
248 clk->dentry = d;
249
250 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
251 (u32 *)&clk->rate);
252 if (!d)
253 goto err_out;
254
255 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
256 (u32 *)&clk->accuracy);
257 if (!d)
258 goto err_out;
259
260 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
261 (u32 *)&clk->flags);
262 if (!d)
263 goto err_out;
264
265 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
266 (u32 *)&clk->prepare_count);
267 if (!d)
268 goto err_out;
269
270 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
271 (u32 *)&clk->enable_count);
272 if (!d)
273 goto err_out;
274
275 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
276 (u32 *)&clk->notifier_count);
277 if (!d)
278 goto err_out;
279
280 ret = 0;
281 goto out;
282
283 err_out:
284 debugfs_remove_recursive(clk->dentry);
285 clk->dentry = NULL;
286 out:
287 return ret;
288 }
289
290 /* caller must hold prepare_lock */
291 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
292 {
293 struct clk *child;
294 int ret = -EINVAL;;
295
296 if (!clk || !pdentry)
297 goto out;
298
299 ret = clk_debug_create_one(clk, pdentry);
300
301 if (ret)
302 goto out;
303
304 hlist_for_each_entry(child, &clk->children, child_node)
305 clk_debug_create_subtree(child, clk->dentry);
306
307 ret = 0;
308 out:
309 return ret;
310 }
311
312 /**
313 * clk_debug_register - add a clk node to the debugfs clk tree
314 * @clk: the clk being added to the debugfs clk tree
315 *
316 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
317 * initialized. Otherwise it bails out early since the debugfs clk tree
318 * will be created lazily by clk_debug_init as part of a late_initcall.
319 *
320 * Caller must hold prepare_lock. Only clk_init calls this function (so
321 * far) so this is taken care.
322 */
323 static int clk_debug_register(struct clk *clk)
324 {
325 struct clk *parent;
326 struct dentry *pdentry;
327 int ret = 0;
328
329 if (!inited)
330 goto out;
331
332 parent = clk->parent;
333
334 /*
335 * Check to see if a clk is a root clk. Also check that it is
336 * safe to add this clk to debugfs
337 */
338 if (!parent)
339 if (clk->flags & CLK_IS_ROOT)
340 pdentry = rootdir;
341 else
342 pdentry = orphandir;
343 else
344 if (parent->dentry)
345 pdentry = parent->dentry;
346 else
347 goto out;
348
349 ret = clk_debug_create_subtree(clk, pdentry);
350
351 out:
352 return ret;
353 }
354
355 /**
356 * clk_debug_unregister - remove a clk node from the debugfs clk tree
357 * @clk: the clk being removed from the debugfs clk tree
358 *
359 * Dynamically removes a clk and all it's children clk nodes from the
360 * debugfs clk tree if clk->dentry points to debugfs created by
361 * clk_debug_register in __clk_init.
362 *
363 * Caller must hold prepare_lock.
364 */
365 static void clk_debug_unregister(struct clk *clk)
366 {
367 debugfs_remove_recursive(clk->dentry);
368 }
369
370 /**
371 * clk_debug_reparent - reparent clk node in the debugfs clk tree
372 * @clk: the clk being reparented
373 * @new_parent: the new clk parent, may be NULL
374 *
375 * Rename clk entry in the debugfs clk tree if debugfs has been
376 * initialized. Otherwise it bails out early since the debugfs clk tree
377 * will be created lazily by clk_debug_init as part of a late_initcall.
378 *
379 * Caller must hold prepare_lock.
380 */
381 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
382 {
383 struct dentry *d;
384 struct dentry *new_parent_d;
385
386 if (!inited)
387 return;
388
389 if (new_parent)
390 new_parent_d = new_parent->dentry;
391 else
392 new_parent_d = orphandir;
393
394 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
395 new_parent_d, clk->name);
396 if (d)
397 clk->dentry = d;
398 else
399 pr_debug("%s: failed to rename debugfs entry for %s\n",
400 __func__, clk->name);
401 }
402
403 /**
404 * clk_debug_init - lazily create the debugfs clk tree visualization
405 *
406 * clks are often initialized very early during boot before memory can
407 * be dynamically allocated and well before debugfs is setup.
408 * clk_debug_init walks the clk tree hierarchy while holding
409 * prepare_lock and creates the topology as part of a late_initcall,
410 * thus insuring that clks initialized very early will still be
411 * represented in the debugfs clk tree. This function should only be
412 * called once at boot-time, and all other clks added dynamically will
413 * be done so with clk_debug_register.
414 */
415 static int __init clk_debug_init(void)
416 {
417 struct clk *clk;
418 struct dentry *d;
419
420 rootdir = debugfs_create_dir("clk", NULL);
421
422 if (!rootdir)
423 return -ENOMEM;
424
425 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
426 &clk_summary_fops);
427 if (!d)
428 return -ENOMEM;
429
430 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
431 &clk_dump_fops);
432 if (!d)
433 return -ENOMEM;
434
435 orphandir = debugfs_create_dir("orphans", rootdir);
436
437 if (!orphandir)
438 return -ENOMEM;
439
440 clk_prepare_lock();
441
442 hlist_for_each_entry(clk, &clk_root_list, child_node)
443 clk_debug_create_subtree(clk, rootdir);
444
445 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
446 clk_debug_create_subtree(clk, orphandir);
447
448 inited = 1;
449
450 clk_prepare_unlock();
451
452 return 0;
453 }
454 late_initcall(clk_debug_init);
455 #else
456 static inline int clk_debug_register(struct clk *clk) { return 0; }
457 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
458 {
459 }
460 static inline void clk_debug_unregister(struct clk *clk)
461 {
462 }
463 #endif
464
465 /* caller must hold prepare_lock */
466 static void clk_unprepare_unused_subtree(struct clk *clk)
467 {
468 struct clk *child;
469
470 if (!clk)
471 return;
472
473 hlist_for_each_entry(child, &clk->children, child_node)
474 clk_unprepare_unused_subtree(child);
475
476 if (clk->prepare_count)
477 return;
478
479 if (clk->flags & CLK_IGNORE_UNUSED)
480 return;
481
482 if (__clk_is_prepared(clk)) {
483 if (clk->ops->unprepare_unused)
484 clk->ops->unprepare_unused(clk->hw);
485 else if (clk->ops->unprepare)
486 clk->ops->unprepare(clk->hw);
487 }
488 }
489
490 /* caller must hold prepare_lock */
491 static void clk_disable_unused_subtree(struct clk *clk)
492 {
493 struct clk *child;
494 unsigned long flags;
495
496 if (!clk)
497 goto out;
498
499 hlist_for_each_entry(child, &clk->children, child_node)
500 clk_disable_unused_subtree(child);
501
502 flags = clk_enable_lock();
503
504 if (clk->enable_count)
505 goto unlock_out;
506
507 if (clk->flags & CLK_IGNORE_UNUSED)
508 goto unlock_out;
509
510 /*
511 * some gate clocks have special needs during the disable-unused
512 * sequence. call .disable_unused if available, otherwise fall
513 * back to .disable
514 */
515 if (__clk_is_enabled(clk)) {
516 if (clk->ops->disable_unused)
517 clk->ops->disable_unused(clk->hw);
518 else if (clk->ops->disable)
519 clk->ops->disable(clk->hw);
520 }
521
522 unlock_out:
523 clk_enable_unlock(flags);
524
525 out:
526 return;
527 }
528
529 static bool clk_ignore_unused;
530 static int __init clk_ignore_unused_setup(char *__unused)
531 {
532 clk_ignore_unused = true;
533 return 1;
534 }
535 __setup("clk_ignore_unused", clk_ignore_unused_setup);
536
537 static int clk_disable_unused(void)
538 {
539 struct clk *clk;
540
541 if (clk_ignore_unused) {
542 pr_warn("clk: Not disabling unused clocks\n");
543 return 0;
544 }
545
546 clk_prepare_lock();
547
548 hlist_for_each_entry(clk, &clk_root_list, child_node)
549 clk_disable_unused_subtree(clk);
550
551 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
552 clk_disable_unused_subtree(clk);
553
554 hlist_for_each_entry(clk, &clk_root_list, child_node)
555 clk_unprepare_unused_subtree(clk);
556
557 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
558 clk_unprepare_unused_subtree(clk);
559
560 clk_prepare_unlock();
561
562 return 0;
563 }
564 late_initcall_sync(clk_disable_unused);
565
566 /*** helper functions ***/
567
568 const char *__clk_get_name(struct clk *clk)
569 {
570 return !clk ? NULL : clk->name;
571 }
572 EXPORT_SYMBOL_GPL(__clk_get_name);
573
574 struct clk_hw *__clk_get_hw(struct clk *clk)
575 {
576 return !clk ? NULL : clk->hw;
577 }
578 EXPORT_SYMBOL_GPL(__clk_get_hw);
579
580 u8 __clk_get_num_parents(struct clk *clk)
581 {
582 return !clk ? 0 : clk->num_parents;
583 }
584 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
585
586 struct clk *__clk_get_parent(struct clk *clk)
587 {
588 return !clk ? NULL : clk->parent;
589 }
590 EXPORT_SYMBOL_GPL(__clk_get_parent);
591
592 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
593 {
594 if (!clk || index >= clk->num_parents)
595 return NULL;
596 else if (!clk->parents)
597 return __clk_lookup(clk->parent_names[index]);
598 else if (!clk->parents[index])
599 return clk->parents[index] =
600 __clk_lookup(clk->parent_names[index]);
601 else
602 return clk->parents[index];
603 }
604 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
605
606 unsigned int __clk_get_enable_count(struct clk *clk)
607 {
608 return !clk ? 0 : clk->enable_count;
609 }
610
611 unsigned int __clk_get_prepare_count(struct clk *clk)
612 {
613 return !clk ? 0 : clk->prepare_count;
614 }
615
616 unsigned long __clk_get_rate(struct clk *clk)
617 {
618 unsigned long ret;
619
620 if (!clk) {
621 ret = 0;
622 goto out;
623 }
624
625 ret = clk->rate;
626
627 if (clk->flags & CLK_IS_ROOT)
628 goto out;
629
630 if (!clk->parent)
631 ret = 0;
632
633 out:
634 return ret;
635 }
636 EXPORT_SYMBOL_GPL(__clk_get_rate);
637
638 unsigned long __clk_get_accuracy(struct clk *clk)
639 {
640 if (!clk)
641 return 0;
642
643 return clk->accuracy;
644 }
645
646 unsigned long __clk_get_flags(struct clk *clk)
647 {
648 return !clk ? 0 : clk->flags;
649 }
650 EXPORT_SYMBOL_GPL(__clk_get_flags);
651
652 bool __clk_is_prepared(struct clk *clk)
653 {
654 int ret;
655
656 if (!clk)
657 return false;
658
659 /*
660 * .is_prepared is optional for clocks that can prepare
661 * fall back to software usage counter if it is missing
662 */
663 if (!clk->ops->is_prepared) {
664 ret = clk->prepare_count ? 1 : 0;
665 goto out;
666 }
667
668 ret = clk->ops->is_prepared(clk->hw);
669 out:
670 return !!ret;
671 }
672
673 bool __clk_is_enabled(struct clk *clk)
674 {
675 int ret;
676
677 if (!clk)
678 return false;
679
680 /*
681 * .is_enabled is only mandatory for clocks that gate
682 * fall back to software usage counter if .is_enabled is missing
683 */
684 if (!clk->ops->is_enabled) {
685 ret = clk->enable_count ? 1 : 0;
686 goto out;
687 }
688
689 ret = clk->ops->is_enabled(clk->hw);
690 out:
691 return !!ret;
692 }
693 EXPORT_SYMBOL_GPL(__clk_is_enabled);
694
695 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
696 {
697 struct clk *child;
698 struct clk *ret;
699
700 if (!strcmp(clk->name, name))
701 return clk;
702
703 hlist_for_each_entry(child, &clk->children, child_node) {
704 ret = __clk_lookup_subtree(name, child);
705 if (ret)
706 return ret;
707 }
708
709 return NULL;
710 }
711
712 struct clk *__clk_lookup(const char *name)
713 {
714 struct clk *root_clk;
715 struct clk *ret;
716
717 if (!name)
718 return NULL;
719
720 /* search the 'proper' clk tree first */
721 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
722 ret = __clk_lookup_subtree(name, root_clk);
723 if (ret)
724 return ret;
725 }
726
727 /* if not found, then search the orphan tree */
728 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
729 ret = __clk_lookup_subtree(name, root_clk);
730 if (ret)
731 return ret;
732 }
733
734 return NULL;
735 }
736
737 /*
738 * Helper for finding best parent to provide a given frequency. This can be used
739 * directly as a determine_rate callback (e.g. for a mux), or from a more
740 * complex clock that may combine a mux with other operations.
741 */
742 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
743 unsigned long *best_parent_rate,
744 struct clk **best_parent_p)
745 {
746 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
747 int i, num_parents;
748 unsigned long parent_rate, best = 0;
749
750 /* if NO_REPARENT flag set, pass through to current parent */
751 if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
752 parent = clk->parent;
753 if (clk->flags & CLK_SET_RATE_PARENT)
754 best = __clk_round_rate(parent, rate);
755 else if (parent)
756 best = __clk_get_rate(parent);
757 else
758 best = __clk_get_rate(clk);
759 goto out;
760 }
761
762 /* find the parent that can provide the fastest rate <= rate */
763 num_parents = clk->num_parents;
764 for (i = 0; i < num_parents; i++) {
765 parent = clk_get_parent_by_index(clk, i);
766 if (!parent)
767 continue;
768 if (clk->flags & CLK_SET_RATE_PARENT)
769 parent_rate = __clk_round_rate(parent, rate);
770 else
771 parent_rate = __clk_get_rate(parent);
772 if (parent_rate <= rate && parent_rate > best) {
773 best_parent = parent;
774 best = parent_rate;
775 }
776 }
777
778 out:
779 if (best_parent)
780 *best_parent_p = best_parent;
781 *best_parent_rate = best;
782
783 return best;
784 }
785 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
786
787 /*** clk api ***/
788
789 void __clk_unprepare(struct clk *clk)
790 {
791 if (!clk)
792 return;
793
794 if (WARN_ON(clk->prepare_count == 0))
795 return;
796
797 if (--clk->prepare_count > 0)
798 return;
799
800 WARN_ON(clk->enable_count > 0);
801
802 if (clk->ops->unprepare)
803 clk->ops->unprepare(clk->hw);
804
805 __clk_unprepare(clk->parent);
806 }
807
808 /**
809 * clk_unprepare - undo preparation of a clock source
810 * @clk: the clk being unprepared
811 *
812 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
813 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
814 * if the operation may sleep. One example is a clk which is accessed over
815 * I2c. In the complex case a clk gate operation may require a fast and a slow
816 * part. It is this reason that clk_unprepare and clk_disable are not mutually
817 * exclusive. In fact clk_disable must be called before clk_unprepare.
818 */
819 void clk_unprepare(struct clk *clk)
820 {
821 clk_prepare_lock();
822 __clk_unprepare(clk);
823 clk_prepare_unlock();
824 }
825 EXPORT_SYMBOL_GPL(clk_unprepare);
826
827 int __clk_prepare(struct clk *clk)
828 {
829 int ret = 0;
830
831 if (!clk)
832 return 0;
833
834 if (clk->prepare_count == 0) {
835 ret = __clk_prepare(clk->parent);
836 if (ret)
837 return ret;
838
839 if (clk->ops->prepare) {
840 ret = clk->ops->prepare(clk->hw);
841 if (ret) {
842 __clk_unprepare(clk->parent);
843 return ret;
844 }
845 }
846 }
847
848 clk->prepare_count++;
849
850 return 0;
851 }
852
853 /**
854 * clk_prepare - prepare a clock source
855 * @clk: the clk being prepared
856 *
857 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
858 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
859 * operation may sleep. One example is a clk which is accessed over I2c. In
860 * the complex case a clk ungate operation may require a fast and a slow part.
861 * It is this reason that clk_prepare and clk_enable are not mutually
862 * exclusive. In fact clk_prepare must be called before clk_enable.
863 * Returns 0 on success, -EERROR otherwise.
864 */
865 int clk_prepare(struct clk *clk)
866 {
867 int ret;
868
869 clk_prepare_lock();
870 ret = __clk_prepare(clk);
871 clk_prepare_unlock();
872
873 return ret;
874 }
875 EXPORT_SYMBOL_GPL(clk_prepare);
876
877 static void __clk_disable(struct clk *clk)
878 {
879 if (!clk)
880 return;
881
882 if (WARN_ON(IS_ERR(clk)))
883 return;
884
885 if (WARN_ON(clk->enable_count == 0))
886 return;
887
888 if (--clk->enable_count > 0)
889 return;
890
891 if (clk->ops->disable)
892 clk->ops->disable(clk->hw);
893
894 __clk_disable(clk->parent);
895 }
896
897 /**
898 * clk_disable - gate a clock
899 * @clk: the clk being gated
900 *
901 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
902 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
903 * clk if the operation is fast and will never sleep. One example is a
904 * SoC-internal clk which is controlled via simple register writes. In the
905 * complex case a clk gate operation may require a fast and a slow part. It is
906 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
907 * In fact clk_disable must be called before clk_unprepare.
908 */
909 void clk_disable(struct clk *clk)
910 {
911 unsigned long flags;
912
913 flags = clk_enable_lock();
914 __clk_disable(clk);
915 clk_enable_unlock(flags);
916 }
917 EXPORT_SYMBOL_GPL(clk_disable);
918
919 static int __clk_enable(struct clk *clk)
920 {
921 int ret = 0;
922
923 if (!clk)
924 return 0;
925
926 if (WARN_ON(clk->prepare_count == 0))
927 return -ESHUTDOWN;
928
929 if (clk->enable_count == 0) {
930 ret = __clk_enable(clk->parent);
931
932 if (ret)
933 return ret;
934
935 if (clk->ops->enable) {
936 ret = clk->ops->enable(clk->hw);
937 if (ret) {
938 __clk_disable(clk->parent);
939 return ret;
940 }
941 }
942 }
943
944 clk->enable_count++;
945 return 0;
946 }
947
948 /**
949 * clk_enable - ungate a clock
950 * @clk: the clk being ungated
951 *
952 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
953 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
954 * if the operation will never sleep. One example is a SoC-internal clk which
955 * is controlled via simple register writes. In the complex case a clk ungate
956 * operation may require a fast and a slow part. It is this reason that
957 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
958 * must be called before clk_enable. Returns 0 on success, -EERROR
959 * otherwise.
960 */
961 int clk_enable(struct clk *clk)
962 {
963 unsigned long flags;
964 int ret;
965
966 flags = clk_enable_lock();
967 ret = __clk_enable(clk);
968 clk_enable_unlock(flags);
969
970 return ret;
971 }
972 EXPORT_SYMBOL_GPL(clk_enable);
973
974 /**
975 * __clk_round_rate - round the given rate for a clk
976 * @clk: round the rate of this clock
977 * @rate: the rate which is to be rounded
978 *
979 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
980 */
981 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
982 {
983 unsigned long parent_rate = 0;
984 struct clk *parent;
985
986 if (!clk)
987 return 0;
988
989 parent = clk->parent;
990 if (parent)
991 parent_rate = parent->rate;
992
993 if (clk->ops->determine_rate)
994 return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
995 &parent);
996 else if (clk->ops->round_rate)
997 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
998 else if (clk->flags & CLK_SET_RATE_PARENT)
999 return __clk_round_rate(clk->parent, rate);
1000 else
1001 return clk->rate;
1002 }
1003
1004 /**
1005 * clk_round_rate - round the given rate for a clk
1006 * @clk: the clk for which we are rounding a rate
1007 * @rate: the rate which is to be rounded
1008 *
1009 * Takes in a rate as input and rounds it to a rate that the clk can actually
1010 * use which is then returned. If clk doesn't support round_rate operation
1011 * then the parent rate is returned.
1012 */
1013 long clk_round_rate(struct clk *clk, unsigned long rate)
1014 {
1015 unsigned long ret;
1016
1017 clk_prepare_lock();
1018 ret = __clk_round_rate(clk, rate);
1019 clk_prepare_unlock();
1020
1021 return ret;
1022 }
1023 EXPORT_SYMBOL_GPL(clk_round_rate);
1024
1025 /**
1026 * __clk_notify - call clk notifier chain
1027 * @clk: struct clk * that is changing rate
1028 * @msg: clk notifier type (see include/linux/clk.h)
1029 * @old_rate: old clk rate
1030 * @new_rate: new clk rate
1031 *
1032 * Triggers a notifier call chain on the clk rate-change notification
1033 * for 'clk'. Passes a pointer to the struct clk and the previous
1034 * and current rates to the notifier callback. Intended to be called by
1035 * internal clock code only. Returns NOTIFY_DONE from the last driver
1036 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1037 * a driver returns that.
1038 */
1039 static int __clk_notify(struct clk *clk, unsigned long msg,
1040 unsigned long old_rate, unsigned long new_rate)
1041 {
1042 struct clk_notifier *cn;
1043 struct clk_notifier_data cnd;
1044 int ret = NOTIFY_DONE;
1045
1046 cnd.clk = clk;
1047 cnd.old_rate = old_rate;
1048 cnd.new_rate = new_rate;
1049
1050 list_for_each_entry(cn, &clk_notifier_list, node) {
1051 if (cn->clk == clk) {
1052 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1053 &cnd);
1054 break;
1055 }
1056 }
1057
1058 return ret;
1059 }
1060
1061 /**
1062 * __clk_recalc_accuracies
1063 * @clk: first clk in the subtree
1064 *
1065 * Walks the subtree of clks starting with clk and recalculates accuracies as
1066 * it goes. Note that if a clk does not implement the .recalc_accuracy
1067 * callback then it is assumed that the clock will take on the accuracy of it's
1068 * parent.
1069 *
1070 * Caller must hold prepare_lock.
1071 */
1072 static void __clk_recalc_accuracies(struct clk *clk)
1073 {
1074 unsigned long parent_accuracy = 0;
1075 struct clk *child;
1076
1077 if (clk->parent)
1078 parent_accuracy = clk->parent->accuracy;
1079
1080 if (clk->ops->recalc_accuracy)
1081 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1082 parent_accuracy);
1083 else
1084 clk->accuracy = parent_accuracy;
1085
1086 hlist_for_each_entry(child, &clk->children, child_node)
1087 __clk_recalc_accuracies(child);
1088 }
1089
1090 /**
1091 * clk_get_accuracy - return the accuracy of clk
1092 * @clk: the clk whose accuracy is being returned
1093 *
1094 * Simply returns the cached accuracy of the clk, unless
1095 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1096 * issued.
1097 * If clk is NULL then returns 0.
1098 */
1099 long clk_get_accuracy(struct clk *clk)
1100 {
1101 unsigned long accuracy;
1102
1103 clk_prepare_lock();
1104 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1105 __clk_recalc_accuracies(clk);
1106
1107 accuracy = __clk_get_accuracy(clk);
1108 clk_prepare_unlock();
1109
1110 return accuracy;
1111 }
1112 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1113
1114 /**
1115 * __clk_recalc_rates
1116 * @clk: first clk in the subtree
1117 * @msg: notification type (see include/linux/clk.h)
1118 *
1119 * Walks the subtree of clks starting with clk and recalculates rates as it
1120 * goes. Note that if a clk does not implement the .recalc_rate callback then
1121 * it is assumed that the clock will take on the rate of its parent.
1122 *
1123 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1124 * if necessary.
1125 *
1126 * Caller must hold prepare_lock.
1127 */
1128 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1129 {
1130 unsigned long old_rate;
1131 unsigned long parent_rate = 0;
1132 struct clk *child;
1133
1134 old_rate = clk->rate;
1135
1136 if (clk->parent)
1137 parent_rate = clk->parent->rate;
1138
1139 if (clk->ops->recalc_rate)
1140 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1141 else
1142 clk->rate = parent_rate;
1143
1144 /*
1145 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1146 * & ABORT_RATE_CHANGE notifiers
1147 */
1148 if (clk->notifier_count && msg)
1149 __clk_notify(clk, msg, old_rate, clk->rate);
1150
1151 hlist_for_each_entry(child, &clk->children, child_node)
1152 __clk_recalc_rates(child, msg);
1153 }
1154
1155 /**
1156 * clk_get_rate - return the rate of clk
1157 * @clk: the clk whose rate is being returned
1158 *
1159 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1160 * is set, which means a recalc_rate will be issued.
1161 * If clk is NULL then returns 0.
1162 */
1163 unsigned long clk_get_rate(struct clk *clk)
1164 {
1165 unsigned long rate;
1166
1167 clk_prepare_lock();
1168
1169 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1170 __clk_recalc_rates(clk, 0);
1171
1172 rate = __clk_get_rate(clk);
1173 clk_prepare_unlock();
1174
1175 return rate;
1176 }
1177 EXPORT_SYMBOL_GPL(clk_get_rate);
1178
1179 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1180 {
1181 int i;
1182
1183 if (!clk->parents) {
1184 clk->parents = kcalloc(clk->num_parents,
1185 sizeof(struct clk *), GFP_KERNEL);
1186 if (!clk->parents)
1187 return -ENOMEM;
1188 }
1189
1190 /*
1191 * find index of new parent clock using cached parent ptrs,
1192 * or if not yet cached, use string name comparison and cache
1193 * them now to avoid future calls to __clk_lookup.
1194 */
1195 for (i = 0; i < clk->num_parents; i++) {
1196 if (clk->parents[i] == parent)
1197 return i;
1198
1199 if (clk->parents[i])
1200 continue;
1201
1202 if (!strcmp(clk->parent_names[i], parent->name)) {
1203 clk->parents[i] = __clk_lookup(parent->name);
1204 return i;
1205 }
1206 }
1207
1208 return -EINVAL;
1209 }
1210
1211 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1212 {
1213 hlist_del(&clk->child_node);
1214
1215 if (new_parent) {
1216 /* avoid duplicate POST_RATE_CHANGE notifications */
1217 if (new_parent->new_child == clk)
1218 new_parent->new_child = NULL;
1219
1220 hlist_add_head(&clk->child_node, &new_parent->children);
1221 } else {
1222 hlist_add_head(&clk->child_node, &clk_orphan_list);
1223 }
1224
1225 clk->parent = new_parent;
1226 }
1227
1228 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1229 {
1230 unsigned long flags;
1231 struct clk *old_parent = clk->parent;
1232
1233 /*
1234 * Migrate prepare state between parents and prevent race with
1235 * clk_enable().
1236 *
1237 * If the clock is not prepared, then a race with
1238 * clk_enable/disable() is impossible since we already have the
1239 * prepare lock (future calls to clk_enable() need to be preceded by
1240 * a clk_prepare()).
1241 *
1242 * If the clock is prepared, migrate the prepared state to the new
1243 * parent and also protect against a race with clk_enable() by
1244 * forcing the clock and the new parent on. This ensures that all
1245 * future calls to clk_enable() are practically NOPs with respect to
1246 * hardware and software states.
1247 *
1248 * See also: Comment for clk_set_parent() below.
1249 */
1250 if (clk->prepare_count) {
1251 __clk_prepare(parent);
1252 clk_enable(parent);
1253 clk_enable(clk);
1254 }
1255
1256 /* update the clk tree topology */
1257 flags = clk_enable_lock();
1258 clk_reparent(clk, parent);
1259 clk_enable_unlock(flags);
1260
1261 return old_parent;
1262 }
1263
1264 static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1265 struct clk *old_parent)
1266 {
1267 /*
1268 * Finish the migration of prepare state and undo the changes done
1269 * for preventing a race with clk_enable().
1270 */
1271 if (clk->prepare_count) {
1272 clk_disable(clk);
1273 clk_disable(old_parent);
1274 __clk_unprepare(old_parent);
1275 }
1276
1277 /* update debugfs with new clk tree topology */
1278 clk_debug_reparent(clk, parent);
1279 }
1280
1281 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1282 {
1283 unsigned long flags;
1284 int ret = 0;
1285 struct clk *old_parent;
1286
1287 old_parent = __clk_set_parent_before(clk, parent);
1288
1289 /* change clock input source */
1290 if (parent && clk->ops->set_parent)
1291 ret = clk->ops->set_parent(clk->hw, p_index);
1292
1293 if (ret) {
1294 flags = clk_enable_lock();
1295 clk_reparent(clk, old_parent);
1296 clk_enable_unlock(flags);
1297
1298 if (clk->prepare_count) {
1299 clk_disable(clk);
1300 clk_disable(parent);
1301 __clk_unprepare(parent);
1302 }
1303 return ret;
1304 }
1305
1306 __clk_set_parent_after(clk, parent, old_parent);
1307
1308 return 0;
1309 }
1310
1311 /**
1312 * __clk_speculate_rates
1313 * @clk: first clk in the subtree
1314 * @parent_rate: the "future" rate of clk's parent
1315 *
1316 * Walks the subtree of clks starting with clk, speculating rates as it
1317 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1318 *
1319 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1320 * pre-rate change notifications and returns early if no clks in the
1321 * subtree have subscribed to the notifications. Note that if a clk does not
1322 * implement the .recalc_rate callback then it is assumed that the clock will
1323 * take on the rate of its parent.
1324 *
1325 * Caller must hold prepare_lock.
1326 */
1327 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1328 {
1329 struct clk *child;
1330 unsigned long new_rate;
1331 int ret = NOTIFY_DONE;
1332
1333 if (clk->ops->recalc_rate)
1334 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1335 else
1336 new_rate = parent_rate;
1337
1338 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1339 if (clk->notifier_count)
1340 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1341
1342 if (ret & NOTIFY_STOP_MASK)
1343 goto out;
1344
1345 hlist_for_each_entry(child, &clk->children, child_node) {
1346 ret = __clk_speculate_rates(child, new_rate);
1347 if (ret & NOTIFY_STOP_MASK)
1348 break;
1349 }
1350
1351 out:
1352 return ret;
1353 }
1354
1355 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1356 struct clk *new_parent, u8 p_index)
1357 {
1358 struct clk *child;
1359
1360 clk->new_rate = new_rate;
1361 clk->new_parent = new_parent;
1362 clk->new_parent_index = p_index;
1363 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1364 clk->new_child = NULL;
1365 if (new_parent && new_parent != clk->parent)
1366 new_parent->new_child = clk;
1367
1368 hlist_for_each_entry(child, &clk->children, child_node) {
1369 if (child->ops->recalc_rate)
1370 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1371 else
1372 child->new_rate = new_rate;
1373 clk_calc_subtree(child, child->new_rate, NULL, 0);
1374 }
1375 }
1376
1377 /*
1378 * calculate the new rates returning the topmost clock that has to be
1379 * changed.
1380 */
1381 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1382 {
1383 struct clk *top = clk;
1384 struct clk *old_parent, *parent;
1385 unsigned long best_parent_rate = 0;
1386 unsigned long new_rate;
1387 int p_index = 0;
1388
1389 /* sanity */
1390 if (IS_ERR_OR_NULL(clk))
1391 return NULL;
1392
1393 /* save parent rate, if it exists */
1394 parent = old_parent = clk->parent;
1395 if (parent)
1396 best_parent_rate = parent->rate;
1397
1398 /* find the closest rate and parent clk/rate */
1399 if (clk->ops->determine_rate) {
1400 new_rate = clk->ops->determine_rate(clk->hw, rate,
1401 &best_parent_rate,
1402 &parent);
1403 } else if (clk->ops->round_rate) {
1404 new_rate = clk->ops->round_rate(clk->hw, rate,
1405 &best_parent_rate);
1406 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1407 /* pass-through clock without adjustable parent */
1408 clk->new_rate = clk->rate;
1409 return NULL;
1410 } else {
1411 /* pass-through clock with adjustable parent */
1412 top = clk_calc_new_rates(parent, rate);
1413 new_rate = parent->new_rate;
1414 goto out;
1415 }
1416
1417 /* some clocks must be gated to change parent */
1418 if (parent != old_parent &&
1419 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1420 pr_debug("%s: %s not gated but wants to reparent\n",
1421 __func__, clk->name);
1422 return NULL;
1423 }
1424
1425 /* try finding the new parent index */
1426 if (parent) {
1427 p_index = clk_fetch_parent_index(clk, parent);
1428 if (p_index < 0) {
1429 pr_debug("%s: clk %s can not be parent of clk %s\n",
1430 __func__, parent->name, clk->name);
1431 return NULL;
1432 }
1433 }
1434
1435 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1436 best_parent_rate != parent->rate)
1437 top = clk_calc_new_rates(parent, best_parent_rate);
1438
1439 out:
1440 clk_calc_subtree(clk, new_rate, parent, p_index);
1441
1442 return top;
1443 }
1444
1445 /*
1446 * Notify about rate changes in a subtree. Always walk down the whole tree
1447 * so that in case of an error we can walk down the whole tree again and
1448 * abort the change.
1449 */
1450 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1451 {
1452 struct clk *child, *tmp_clk, *fail_clk = NULL;
1453 int ret = NOTIFY_DONE;
1454
1455 if (clk->rate == clk->new_rate)
1456 return NULL;
1457
1458 if (clk->notifier_count) {
1459 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1460 if (ret & NOTIFY_STOP_MASK)
1461 fail_clk = clk;
1462 }
1463
1464 hlist_for_each_entry(child, &clk->children, child_node) {
1465 /* Skip children who will be reparented to another clock */
1466 if (child->new_parent && child->new_parent != clk)
1467 continue;
1468 tmp_clk = clk_propagate_rate_change(child, event);
1469 if (tmp_clk)
1470 fail_clk = tmp_clk;
1471 }
1472
1473 /* handle the new child who might not be in clk->children yet */
1474 if (clk->new_child) {
1475 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1476 if (tmp_clk)
1477 fail_clk = tmp_clk;
1478 }
1479
1480 return fail_clk;
1481 }
1482
1483 /*
1484 * walk down a subtree and set the new rates notifying the rate
1485 * change on the way
1486 */
1487 static void clk_change_rate(struct clk *clk)
1488 {
1489 struct clk *child;
1490 unsigned long old_rate;
1491 unsigned long best_parent_rate = 0;
1492 bool skip_set_rate = false;
1493 struct clk *old_parent;
1494
1495 old_rate = clk->rate;
1496
1497 if (clk->new_parent)
1498 best_parent_rate = clk->new_parent->rate;
1499 else if (clk->parent)
1500 best_parent_rate = clk->parent->rate;
1501
1502 if (clk->new_parent && clk->new_parent != clk->parent) {
1503 old_parent = __clk_set_parent_before(clk, clk->new_parent);
1504
1505 if (clk->ops->set_rate_and_parent) {
1506 skip_set_rate = true;
1507 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1508 best_parent_rate,
1509 clk->new_parent_index);
1510 } else if (clk->ops->set_parent) {
1511 clk->ops->set_parent(clk->hw, clk->new_parent_index);
1512 }
1513
1514 __clk_set_parent_after(clk, clk->new_parent, old_parent);
1515 }
1516
1517 if (!skip_set_rate && clk->ops->set_rate)
1518 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1519
1520 if (clk->ops->recalc_rate)
1521 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1522 else
1523 clk->rate = best_parent_rate;
1524
1525 if (clk->notifier_count && old_rate != clk->rate)
1526 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1527
1528 hlist_for_each_entry(child, &clk->children, child_node) {
1529 /* Skip children who will be reparented to another clock */
1530 if (child->new_parent && child->new_parent != clk)
1531 continue;
1532 clk_change_rate(child);
1533 }
1534
1535 /* handle the new child who might not be in clk->children yet */
1536 if (clk->new_child)
1537 clk_change_rate(clk->new_child);
1538 }
1539
1540 /**
1541 * clk_set_rate - specify a new rate for clk
1542 * @clk: the clk whose rate is being changed
1543 * @rate: the new rate for clk
1544 *
1545 * In the simplest case clk_set_rate will only adjust the rate of clk.
1546 *
1547 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1548 * propagate up to clk's parent; whether or not this happens depends on the
1549 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1550 * after calling .round_rate then upstream parent propagation is ignored. If
1551 * *parent_rate comes back with a new rate for clk's parent then we propagate
1552 * up to clk's parent and set its rate. Upward propagation will continue
1553 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1554 * .round_rate stops requesting changes to clk's parent_rate.
1555 *
1556 * Rate changes are accomplished via tree traversal that also recalculates the
1557 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1558 *
1559 * Returns 0 on success, -EERROR otherwise.
1560 */
1561 int clk_set_rate(struct clk *clk, unsigned long rate)
1562 {
1563 struct clk *top, *fail_clk;
1564 int ret = 0;
1565
1566 if (!clk)
1567 return 0;
1568
1569 /* prevent racing with updates to the clock topology */
1570 clk_prepare_lock();
1571
1572 /* bail early if nothing to do */
1573 if (rate == clk_get_rate(clk))
1574 goto out;
1575
1576 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1577 ret = -EBUSY;
1578 goto out;
1579 }
1580
1581 /* calculate new rates and get the topmost changed clock */
1582 top = clk_calc_new_rates(clk, rate);
1583 if (!top) {
1584 ret = -EINVAL;
1585 goto out;
1586 }
1587
1588 /* notify that we are about to change rates */
1589 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1590 if (fail_clk) {
1591 pr_warn("%s: failed to set %s rate\n", __func__,
1592 fail_clk->name);
1593 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1594 ret = -EBUSY;
1595 goto out;
1596 }
1597
1598 /* change the rates */
1599 clk_change_rate(top);
1600
1601 out:
1602 clk_prepare_unlock();
1603
1604 return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(clk_set_rate);
1607
1608 /**
1609 * clk_get_parent - return the parent of a clk
1610 * @clk: the clk whose parent gets returned
1611 *
1612 * Simply returns clk->parent. Returns NULL if clk is NULL.
1613 */
1614 struct clk *clk_get_parent(struct clk *clk)
1615 {
1616 struct clk *parent;
1617
1618 clk_prepare_lock();
1619 parent = __clk_get_parent(clk);
1620 clk_prepare_unlock();
1621
1622 return parent;
1623 }
1624 EXPORT_SYMBOL_GPL(clk_get_parent);
1625
1626 /*
1627 * .get_parent is mandatory for clocks with multiple possible parents. It is
1628 * optional for single-parent clocks. Always call .get_parent if it is
1629 * available and WARN if it is missing for multi-parent clocks.
1630 *
1631 * For single-parent clocks without .get_parent, first check to see if the
1632 * .parents array exists, and if so use it to avoid an expensive tree
1633 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1634 */
1635 static struct clk *__clk_init_parent(struct clk *clk)
1636 {
1637 struct clk *ret = NULL;
1638 u8 index;
1639
1640 /* handle the trivial cases */
1641
1642 if (!clk->num_parents)
1643 goto out;
1644
1645 if (clk->num_parents == 1) {
1646 if (IS_ERR_OR_NULL(clk->parent))
1647 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1648 ret = clk->parent;
1649 goto out;
1650 }
1651
1652 if (!clk->ops->get_parent) {
1653 WARN(!clk->ops->get_parent,
1654 "%s: multi-parent clocks must implement .get_parent\n",
1655 __func__);
1656 goto out;
1657 };
1658
1659 /*
1660 * Do our best to cache parent clocks in clk->parents. This prevents
1661 * unnecessary and expensive calls to __clk_lookup. We don't set
1662 * clk->parent here; that is done by the calling function
1663 */
1664
1665 index = clk->ops->get_parent(clk->hw);
1666
1667 if (!clk->parents)
1668 clk->parents =
1669 kcalloc(clk->num_parents, sizeof(struct clk *),
1670 GFP_KERNEL);
1671
1672 ret = clk_get_parent_by_index(clk, index);
1673
1674 out:
1675 return ret;
1676 }
1677
1678 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1679 {
1680 clk_reparent(clk, new_parent);
1681 clk_debug_reparent(clk, new_parent);
1682 __clk_recalc_accuracies(clk);
1683 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1684 }
1685
1686 /**
1687 * clk_set_parent - switch the parent of a mux clk
1688 * @clk: the mux clk whose input we are switching
1689 * @parent: the new input to clk
1690 *
1691 * Re-parent clk to use parent as its new input source. If clk is in
1692 * prepared state, the clk will get enabled for the duration of this call. If
1693 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1694 * that, the reparenting is glitchy in hardware, etc), use the
1695 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1696 *
1697 * After successfully changing clk's parent clk_set_parent will update the
1698 * clk topology, sysfs topology and propagate rate recalculation via
1699 * __clk_recalc_rates.
1700 *
1701 * Returns 0 on success, -EERROR otherwise.
1702 */
1703 int clk_set_parent(struct clk *clk, struct clk *parent)
1704 {
1705 int ret = 0;
1706 int p_index = 0;
1707 unsigned long p_rate = 0;
1708
1709 if (!clk)
1710 return 0;
1711
1712 if (!clk->ops)
1713 return -EINVAL;
1714
1715 /* verify ops for for multi-parent clks */
1716 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1717 return -ENOSYS;
1718
1719 /* prevent racing with updates to the clock topology */
1720 clk_prepare_lock();
1721
1722 if (clk->parent == parent)
1723 goto out;
1724
1725 /* check that we are allowed to re-parent if the clock is in use */
1726 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1727 ret = -EBUSY;
1728 goto out;
1729 }
1730
1731 /* try finding the new parent index */
1732 if (parent) {
1733 p_index = clk_fetch_parent_index(clk, parent);
1734 p_rate = parent->rate;
1735 if (p_index < 0) {
1736 pr_debug("%s: clk %s can not be parent of clk %s\n",
1737 __func__, parent->name, clk->name);
1738 ret = p_index;
1739 goto out;
1740 }
1741 }
1742
1743 /* propagate PRE_RATE_CHANGE notifications */
1744 ret = __clk_speculate_rates(clk, p_rate);
1745
1746 /* abort if a driver objects */
1747 if (ret & NOTIFY_STOP_MASK)
1748 goto out;
1749
1750 /* do the re-parent */
1751 ret = __clk_set_parent(clk, parent, p_index);
1752
1753 /* propagate rate an accuracy recalculation accordingly */
1754 if (ret) {
1755 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1756 } else {
1757 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1758 __clk_recalc_accuracies(clk);
1759 }
1760
1761 out:
1762 clk_prepare_unlock();
1763
1764 return ret;
1765 }
1766 EXPORT_SYMBOL_GPL(clk_set_parent);
1767
1768 /**
1769 * __clk_init - initialize the data structures in a struct clk
1770 * @dev: device initializing this clk, placeholder for now
1771 * @clk: clk being initialized
1772 *
1773 * Initializes the lists in struct clk, queries the hardware for the
1774 * parent and rate and sets them both.
1775 */
1776 int __clk_init(struct device *dev, struct clk *clk)
1777 {
1778 int i, ret = 0;
1779 struct clk *orphan;
1780 struct hlist_node *tmp2;
1781
1782 if (!clk)
1783 return -EINVAL;
1784
1785 clk_prepare_lock();
1786
1787 /* check to see if a clock with this name is already registered */
1788 if (__clk_lookup(clk->name)) {
1789 pr_debug("%s: clk %s already initialized\n",
1790 __func__, clk->name);
1791 ret = -EEXIST;
1792 goto out;
1793 }
1794
1795 /* check that clk_ops are sane. See Documentation/clk.txt */
1796 if (clk->ops->set_rate &&
1797 !((clk->ops->round_rate || clk->ops->determine_rate) &&
1798 clk->ops->recalc_rate)) {
1799 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1800 __func__, clk->name);
1801 ret = -EINVAL;
1802 goto out;
1803 }
1804
1805 if (clk->ops->set_parent && !clk->ops->get_parent) {
1806 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1807 __func__, clk->name);
1808 ret = -EINVAL;
1809 goto out;
1810 }
1811
1812 if (clk->ops->set_rate_and_parent &&
1813 !(clk->ops->set_parent && clk->ops->set_rate)) {
1814 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1815 __func__, clk->name);
1816 ret = -EINVAL;
1817 goto out;
1818 }
1819
1820 /* throw a WARN if any entries in parent_names are NULL */
1821 for (i = 0; i < clk->num_parents; i++)
1822 WARN(!clk->parent_names[i],
1823 "%s: invalid NULL in %s's .parent_names\n",
1824 __func__, clk->name);
1825
1826 /*
1827 * Allocate an array of struct clk *'s to avoid unnecessary string
1828 * look-ups of clk's possible parents. This can fail for clocks passed
1829 * in to clk_init during early boot; thus any access to clk->parents[]
1830 * must always check for a NULL pointer and try to populate it if
1831 * necessary.
1832 *
1833 * If clk->parents is not NULL we skip this entire block. This allows
1834 * for clock drivers to statically initialize clk->parents.
1835 */
1836 if (clk->num_parents > 1 && !clk->parents) {
1837 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1838 GFP_KERNEL);
1839 /*
1840 * __clk_lookup returns NULL for parents that have not been
1841 * clk_init'd; thus any access to clk->parents[] must check
1842 * for a NULL pointer. We can always perform lazy lookups for
1843 * missing parents later on.
1844 */
1845 if (clk->parents)
1846 for (i = 0; i < clk->num_parents; i++)
1847 clk->parents[i] =
1848 __clk_lookup(clk->parent_names[i]);
1849 }
1850
1851 clk->parent = __clk_init_parent(clk);
1852
1853 /*
1854 * Populate clk->parent if parent has already been __clk_init'd. If
1855 * parent has not yet been __clk_init'd then place clk in the orphan
1856 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1857 * clk list.
1858 *
1859 * Every time a new clk is clk_init'd then we walk the list of orphan
1860 * clocks and re-parent any that are children of the clock currently
1861 * being clk_init'd.
1862 */
1863 if (clk->parent)
1864 hlist_add_head(&clk->child_node,
1865 &clk->parent->children);
1866 else if (clk->flags & CLK_IS_ROOT)
1867 hlist_add_head(&clk->child_node, &clk_root_list);
1868 else
1869 hlist_add_head(&clk->child_node, &clk_orphan_list);
1870
1871 /*
1872 * Set clk's accuracy. The preferred method is to use
1873 * .recalc_accuracy. For simple clocks and lazy developers the default
1874 * fallback is to use the parent's accuracy. If a clock doesn't have a
1875 * parent (or is orphaned) then accuracy is set to zero (perfect
1876 * clock).
1877 */
1878 if (clk->ops->recalc_accuracy)
1879 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1880 __clk_get_accuracy(clk->parent));
1881 else if (clk->parent)
1882 clk->accuracy = clk->parent->accuracy;
1883 else
1884 clk->accuracy = 0;
1885
1886 /*
1887 * Set clk's rate. The preferred method is to use .recalc_rate. For
1888 * simple clocks and lazy developers the default fallback is to use the
1889 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1890 * then rate is set to zero.
1891 */
1892 if (clk->ops->recalc_rate)
1893 clk->rate = clk->ops->recalc_rate(clk->hw,
1894 __clk_get_rate(clk->parent));
1895 else if (clk->parent)
1896 clk->rate = clk->parent->rate;
1897 else
1898 clk->rate = 0;
1899
1900 clk_debug_register(clk);
1901 /*
1902 * walk the list of orphan clocks and reparent any that are children of
1903 * this clock
1904 */
1905 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1906 if (orphan->num_parents && orphan->ops->get_parent) {
1907 i = orphan->ops->get_parent(orphan->hw);
1908 if (!strcmp(clk->name, orphan->parent_names[i]))
1909 __clk_reparent(orphan, clk);
1910 continue;
1911 }
1912
1913 for (i = 0; i < orphan->num_parents; i++)
1914 if (!strcmp(clk->name, orphan->parent_names[i])) {
1915 __clk_reparent(orphan, clk);
1916 break;
1917 }
1918 }
1919
1920 /*
1921 * optional platform-specific magic
1922 *
1923 * The .init callback is not used by any of the basic clock types, but
1924 * exists for weird hardware that must perform initialization magic.
1925 * Please consider other ways of solving initialization problems before
1926 * using this callback, as its use is discouraged.
1927 */
1928 if (clk->ops->init)
1929 clk->ops->init(clk->hw);
1930
1931 kref_init(&clk->ref);
1932 out:
1933 clk_prepare_unlock();
1934
1935 return ret;
1936 }
1937
1938 /**
1939 * __clk_register - register a clock and return a cookie.
1940 *
1941 * Same as clk_register, except that the .clk field inside hw shall point to a
1942 * preallocated (generally statically allocated) struct clk. None of the fields
1943 * of the struct clk need to be initialized.
1944 *
1945 * The data pointed to by .init and .clk field shall NOT be marked as init
1946 * data.
1947 *
1948 * __clk_register is only exposed via clk-private.h and is intended for use with
1949 * very large numbers of clocks that need to be statically initialized. It is
1950 * a layering violation to include clk-private.h from any code which implements
1951 * a clock's .ops; as such any statically initialized clock data MUST be in a
1952 * separate C file from the logic that implements its operations. Returns 0
1953 * on success, otherwise an error code.
1954 */
1955 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1956 {
1957 int ret;
1958 struct clk *clk;
1959
1960 clk = hw->clk;
1961 clk->name = hw->init->name;
1962 clk->ops = hw->init->ops;
1963 clk->hw = hw;
1964 clk->flags = hw->init->flags;
1965 clk->parent_names = hw->init->parent_names;
1966 clk->num_parents = hw->init->num_parents;
1967 if (dev && dev->driver)
1968 clk->owner = dev->driver->owner;
1969 else
1970 clk->owner = NULL;
1971
1972 ret = __clk_init(dev, clk);
1973 if (ret)
1974 return ERR_PTR(ret);
1975
1976 return clk;
1977 }
1978 EXPORT_SYMBOL_GPL(__clk_register);
1979
1980 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1981 {
1982 int i, ret;
1983
1984 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1985 if (!clk->name) {
1986 pr_err("%s: could not allocate clk->name\n", __func__);
1987 ret = -ENOMEM;
1988 goto fail_name;
1989 }
1990 clk->ops = hw->init->ops;
1991 if (dev && dev->driver)
1992 clk->owner = dev->driver->owner;
1993 clk->hw = hw;
1994 clk->flags = hw->init->flags;
1995 clk->num_parents = hw->init->num_parents;
1996 hw->clk = clk;
1997
1998 /* allocate local copy in case parent_names is __initdata */
1999 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2000 GFP_KERNEL);
2001
2002 if (!clk->parent_names) {
2003 pr_err("%s: could not allocate clk->parent_names\n", __func__);
2004 ret = -ENOMEM;
2005 goto fail_parent_names;
2006 }
2007
2008
2009 /* copy each string name in case parent_names is __initdata */
2010 for (i = 0; i < clk->num_parents; i++) {
2011 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2012 GFP_KERNEL);
2013 if (!clk->parent_names[i]) {
2014 pr_err("%s: could not copy parent_names\n", __func__);
2015 ret = -ENOMEM;
2016 goto fail_parent_names_copy;
2017 }
2018 }
2019
2020 ret = __clk_init(dev, clk);
2021 if (!ret)
2022 return 0;
2023
2024 fail_parent_names_copy:
2025 while (--i >= 0)
2026 kfree(clk->parent_names[i]);
2027 kfree(clk->parent_names);
2028 fail_parent_names:
2029 kfree(clk->name);
2030 fail_name:
2031 return ret;
2032 }
2033
2034 /**
2035 * clk_register - allocate a new clock, register it and return an opaque cookie
2036 * @dev: device that is registering this clock
2037 * @hw: link to hardware-specific clock data
2038 *
2039 * clk_register is the primary interface for populating the clock tree with new
2040 * clock nodes. It returns a pointer to the newly allocated struct clk which
2041 * cannot be dereferenced by driver code but may be used in conjuction with the
2042 * rest of the clock API. In the event of an error clk_register will return an
2043 * error code; drivers must test for an error code after calling clk_register.
2044 */
2045 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2046 {
2047 int ret;
2048 struct clk *clk;
2049
2050 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2051 if (!clk) {
2052 pr_err("%s: could not allocate clk\n", __func__);
2053 ret = -ENOMEM;
2054 goto fail_out;
2055 }
2056
2057 ret = _clk_register(dev, hw, clk);
2058 if (!ret)
2059 return clk;
2060
2061 kfree(clk);
2062 fail_out:
2063 return ERR_PTR(ret);
2064 }
2065 EXPORT_SYMBOL_GPL(clk_register);
2066
2067 /*
2068 * Free memory allocated for a clock.
2069 * Caller must hold prepare_lock.
2070 */
2071 static void __clk_release(struct kref *ref)
2072 {
2073 struct clk *clk = container_of(ref, struct clk, ref);
2074 int i = clk->num_parents;
2075
2076 kfree(clk->parents);
2077 while (--i >= 0)
2078 kfree(clk->parent_names[i]);
2079
2080 kfree(clk->parent_names);
2081 kfree(clk->name);
2082 kfree(clk);
2083 }
2084
2085 /*
2086 * Empty clk_ops for unregistered clocks. These are used temporarily
2087 * after clk_unregister() was called on a clock and until last clock
2088 * consumer calls clk_put() and the struct clk object is freed.
2089 */
2090 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2091 {
2092 return -ENXIO;
2093 }
2094
2095 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2096 {
2097 WARN_ON_ONCE(1);
2098 }
2099
2100 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2101 unsigned long parent_rate)
2102 {
2103 return -ENXIO;
2104 }
2105
2106 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2107 {
2108 return -ENXIO;
2109 }
2110
2111 static const struct clk_ops clk_nodrv_ops = {
2112 .enable = clk_nodrv_prepare_enable,
2113 .disable = clk_nodrv_disable_unprepare,
2114 .prepare = clk_nodrv_prepare_enable,
2115 .unprepare = clk_nodrv_disable_unprepare,
2116 .set_rate = clk_nodrv_set_rate,
2117 .set_parent = clk_nodrv_set_parent,
2118 };
2119
2120 /**
2121 * clk_unregister - unregister a currently registered clock
2122 * @clk: clock to unregister
2123 */
2124 void clk_unregister(struct clk *clk)
2125 {
2126 unsigned long flags;
2127
2128 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2129 return;
2130
2131 clk_prepare_lock();
2132
2133 if (clk->ops == &clk_nodrv_ops) {
2134 pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2135 goto out;
2136 }
2137 /*
2138 * Assign empty clock ops for consumers that might still hold
2139 * a reference to this clock.
2140 */
2141 flags = clk_enable_lock();
2142 clk->ops = &clk_nodrv_ops;
2143 clk_enable_unlock(flags);
2144
2145 if (!hlist_empty(&clk->children)) {
2146 struct clk *child;
2147
2148 /* Reparent all children to the orphan list. */
2149 hlist_for_each_entry(child, &clk->children, child_node)
2150 clk_set_parent(child, NULL);
2151 }
2152
2153 clk_debug_unregister(clk);
2154
2155 hlist_del_init(&clk->child_node);
2156
2157 if (clk->prepare_count)
2158 pr_warn("%s: unregistering prepared clock: %s\n",
2159 __func__, clk->name);
2160
2161 kref_put(&clk->ref, __clk_release);
2162 out:
2163 clk_prepare_unlock();
2164 }
2165 EXPORT_SYMBOL_GPL(clk_unregister);
2166
2167 static void devm_clk_release(struct device *dev, void *res)
2168 {
2169 clk_unregister(res);
2170 }
2171
2172 /**
2173 * devm_clk_register - resource managed clk_register()
2174 * @dev: device that is registering this clock
2175 * @hw: link to hardware-specific clock data
2176 *
2177 * Managed clk_register(). Clocks returned from this function are
2178 * automatically clk_unregister()ed on driver detach. See clk_register() for
2179 * more information.
2180 */
2181 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2182 {
2183 struct clk *clk;
2184 int ret;
2185
2186 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
2187 if (!clk)
2188 return ERR_PTR(-ENOMEM);
2189
2190 ret = _clk_register(dev, hw, clk);
2191 if (!ret) {
2192 devres_add(dev, clk);
2193 } else {
2194 devres_free(clk);
2195 clk = ERR_PTR(ret);
2196 }
2197
2198 return clk;
2199 }
2200 EXPORT_SYMBOL_GPL(devm_clk_register);
2201
2202 static int devm_clk_match(struct device *dev, void *res, void *data)
2203 {
2204 struct clk *c = res;
2205 if (WARN_ON(!c))
2206 return 0;
2207 return c == data;
2208 }
2209
2210 /**
2211 * devm_clk_unregister - resource managed clk_unregister()
2212 * @clk: clock to unregister
2213 *
2214 * Deallocate a clock allocated with devm_clk_register(). Normally
2215 * this function will not need to be called and the resource management
2216 * code will ensure that the resource is freed.
2217 */
2218 void devm_clk_unregister(struct device *dev, struct clk *clk)
2219 {
2220 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2221 }
2222 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2223
2224 /*
2225 * clkdev helpers
2226 */
2227 int __clk_get(struct clk *clk)
2228 {
2229 if (clk && !try_module_get(clk->owner))
2230 return 0;
2231
2232 kref_get(&clk->ref);
2233 return 1;
2234 }
2235
2236 void __clk_put(struct clk *clk)
2237 {
2238 if (WARN_ON_ONCE(IS_ERR(clk)))
2239 return;
2240
2241 clk_prepare_lock();
2242 kref_put(&clk->ref, __clk_release);
2243 clk_prepare_unlock();
2244
2245 if (clk)
2246 module_put(clk->owner);
2247 }
2248
2249 /*** clk rate change notifiers ***/
2250
2251 /**
2252 * clk_notifier_register - add a clk rate change notifier
2253 * @clk: struct clk * to watch
2254 * @nb: struct notifier_block * with callback info
2255 *
2256 * Request notification when clk's rate changes. This uses an SRCU
2257 * notifier because we want it to block and notifier unregistrations are
2258 * uncommon. The callbacks associated with the notifier must not
2259 * re-enter into the clk framework by calling any top-level clk APIs;
2260 * this will cause a nested prepare_lock mutex.
2261 *
2262 * Pre-change notifier callbacks will be passed the current, pre-change
2263 * rate of the clk via struct clk_notifier_data.old_rate. The new,
2264 * post-change rate of the clk is passed via struct
2265 * clk_notifier_data.new_rate.
2266 *
2267 * Post-change notifiers will pass the now-current, post-change rate of
2268 * the clk in both struct clk_notifier_data.old_rate and struct
2269 * clk_notifier_data.new_rate.
2270 *
2271 * Abort-change notifiers are effectively the opposite of pre-change
2272 * notifiers: the original pre-change clk rate is passed in via struct
2273 * clk_notifier_data.new_rate and the failed post-change rate is passed
2274 * in via struct clk_notifier_data.old_rate.
2275 *
2276 * clk_notifier_register() must be called from non-atomic context.
2277 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2278 * allocation failure; otherwise, passes along the return value of
2279 * srcu_notifier_chain_register().
2280 */
2281 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2282 {
2283 struct clk_notifier *cn;
2284 int ret = -ENOMEM;
2285
2286 if (!clk || !nb)
2287 return -EINVAL;
2288
2289 clk_prepare_lock();
2290
2291 /* search the list of notifiers for this clk */
2292 list_for_each_entry(cn, &clk_notifier_list, node)
2293 if (cn->clk == clk)
2294 break;
2295
2296 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2297 if (cn->clk != clk) {
2298 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2299 if (!cn)
2300 goto out;
2301
2302 cn->clk = clk;
2303 srcu_init_notifier_head(&cn->notifier_head);
2304
2305 list_add(&cn->node, &clk_notifier_list);
2306 }
2307
2308 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2309
2310 clk->notifier_count++;
2311
2312 out:
2313 clk_prepare_unlock();
2314
2315 return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(clk_notifier_register);
2318
2319 /**
2320 * clk_notifier_unregister - remove a clk rate change notifier
2321 * @clk: struct clk *
2322 * @nb: struct notifier_block * with callback info
2323 *
2324 * Request no further notification for changes to 'clk' and frees memory
2325 * allocated in clk_notifier_register.
2326 *
2327 * Returns -EINVAL if called with null arguments; otherwise, passes
2328 * along the return value of srcu_notifier_chain_unregister().
2329 */
2330 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2331 {
2332 struct clk_notifier *cn = NULL;
2333 int ret = -EINVAL;
2334
2335 if (!clk || !nb)
2336 return -EINVAL;
2337
2338 clk_prepare_lock();
2339
2340 list_for_each_entry(cn, &clk_notifier_list, node)
2341 if (cn->clk == clk)
2342 break;
2343
2344 if (cn->clk == clk) {
2345 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2346
2347 clk->notifier_count--;
2348
2349 /* XXX the notifier code should handle this better */
2350 if (!cn->notifier_head.head) {
2351 srcu_cleanup_notifier_head(&cn->notifier_head);
2352 list_del(&cn->node);
2353 kfree(cn);
2354 }
2355
2356 } else {
2357 ret = -ENOENT;
2358 }
2359
2360 clk_prepare_unlock();
2361
2362 return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2365
2366 #ifdef CONFIG_OF
2367 /**
2368 * struct of_clk_provider - Clock provider registration structure
2369 * @link: Entry in global list of clock providers
2370 * @node: Pointer to device tree node of clock provider
2371 * @get: Get clock callback. Returns NULL or a struct clk for the
2372 * given clock specifier
2373 * @data: context pointer to be passed into @get callback
2374 */
2375 struct of_clk_provider {
2376 struct list_head link;
2377
2378 struct device_node *node;
2379 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2380 void *data;
2381 };
2382
2383 static const struct of_device_id __clk_of_table_sentinel
2384 __used __section(__clk_of_table_end);
2385
2386 static LIST_HEAD(of_clk_providers);
2387 static DEFINE_MUTEX(of_clk_mutex);
2388
2389 /* of_clk_provider list locking helpers */
2390 void of_clk_lock(void)
2391 {
2392 mutex_lock(&of_clk_mutex);
2393 }
2394
2395 void of_clk_unlock(void)
2396 {
2397 mutex_unlock(&of_clk_mutex);
2398 }
2399
2400 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2401 void *data)
2402 {
2403 return data;
2404 }
2405 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2406
2407 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2408 {
2409 struct clk_onecell_data *clk_data = data;
2410 unsigned int idx = clkspec->args[0];
2411
2412 if (idx >= clk_data->clk_num) {
2413 pr_err("%s: invalid clock index %d\n", __func__, idx);
2414 return ERR_PTR(-EINVAL);
2415 }
2416
2417 return clk_data->clks[idx];
2418 }
2419 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2420
2421 /**
2422 * of_clk_add_provider() - Register a clock provider for a node
2423 * @np: Device node pointer associated with clock provider
2424 * @clk_src_get: callback for decoding clock
2425 * @data: context pointer for @clk_src_get callback.
2426 */
2427 int of_clk_add_provider(struct device_node *np,
2428 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2429 void *data),
2430 void *data)
2431 {
2432 struct of_clk_provider *cp;
2433
2434 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2435 if (!cp)
2436 return -ENOMEM;
2437
2438 cp->node = of_node_get(np);
2439 cp->data = data;
2440 cp->get = clk_src_get;
2441
2442 mutex_lock(&of_clk_mutex);
2443 list_add(&cp->link, &of_clk_providers);
2444 mutex_unlock(&of_clk_mutex);
2445 pr_debug("Added clock from %s\n", np->full_name);
2446
2447 return 0;
2448 }
2449 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2450
2451 /**
2452 * of_clk_del_provider() - Remove a previously registered clock provider
2453 * @np: Device node pointer associated with clock provider
2454 */
2455 void of_clk_del_provider(struct device_node *np)
2456 {
2457 struct of_clk_provider *cp;
2458
2459 mutex_lock(&of_clk_mutex);
2460 list_for_each_entry(cp, &of_clk_providers, link) {
2461 if (cp->node == np) {
2462 list_del(&cp->link);
2463 of_node_put(cp->node);
2464 kfree(cp);
2465 break;
2466 }
2467 }
2468 mutex_unlock(&of_clk_mutex);
2469 }
2470 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2471
2472 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2473 {
2474 struct of_clk_provider *provider;
2475 struct clk *clk = ERR_PTR(-ENOENT);
2476
2477 /* Check if we have such a provider in our array */
2478 list_for_each_entry(provider, &of_clk_providers, link) {
2479 if (provider->node == clkspec->np)
2480 clk = provider->get(clkspec, provider->data);
2481 if (!IS_ERR(clk))
2482 break;
2483 }
2484
2485 return clk;
2486 }
2487
2488 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2489 {
2490 struct clk *clk;
2491
2492 mutex_lock(&of_clk_mutex);
2493 clk = __of_clk_get_from_provider(clkspec);
2494 mutex_unlock(&of_clk_mutex);
2495
2496 return clk;
2497 }
2498
2499 int of_clk_get_parent_count(struct device_node *np)
2500 {
2501 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2502 }
2503 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2504
2505 const char *of_clk_get_parent_name(struct device_node *np, int index)
2506 {
2507 struct of_phandle_args clkspec;
2508 const char *clk_name;
2509 int rc;
2510
2511 if (index < 0)
2512 return NULL;
2513
2514 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2515 &clkspec);
2516 if (rc)
2517 return NULL;
2518
2519 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2520 clkspec.args_count ? clkspec.args[0] : 0,
2521 &clk_name) < 0)
2522 clk_name = clkspec.np->name;
2523
2524 of_node_put(clkspec.np);
2525 return clk_name;
2526 }
2527 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2528
2529 /**
2530 * of_clk_init() - Scan and init clock providers from the DT
2531 * @matches: array of compatible values and init functions for providers.
2532 *
2533 * This function scans the device tree for matching clock providers and
2534 * calls their initialization functions
2535 */
2536 void __init of_clk_init(const struct of_device_id *matches)
2537 {
2538 const struct of_device_id *match;
2539 struct device_node *np;
2540
2541 if (!matches)
2542 matches = &__clk_of_table;
2543
2544 for_each_matching_node_and_match(np, matches, &match) {
2545 of_clk_init_cb_t clk_init_cb = match->data;
2546 clk_init_cb(np);
2547 }
2548 }
2549 #endif