]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clk/clk.c
Merge branch 'for-upstream/hdlcd' of git://linux-arm.org/linux-ld into drm-fixes
[mirror_ubuntu-bionic-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27
28 #include "clk.h"
29
30 static DEFINE_SPINLOCK(enable_lock);
31 static DEFINE_MUTEX(prepare_lock);
32
33 static struct task_struct *prepare_owner;
34 static struct task_struct *enable_owner;
35
36 static int prepare_refcnt;
37 static int enable_refcnt;
38
39 static HLIST_HEAD(clk_root_list);
40 static HLIST_HEAD(clk_orphan_list);
41 static LIST_HEAD(clk_notifier_list);
42
43 /*** private data structures ***/
44
45 struct clk_core {
46 const char *name;
47 const struct clk_ops *ops;
48 struct clk_hw *hw;
49 struct module *owner;
50 struct device *dev;
51 struct clk_core *parent;
52 const char **parent_names;
53 struct clk_core **parents;
54 u8 num_parents;
55 u8 new_parent_index;
56 unsigned long rate;
57 unsigned long req_rate;
58 unsigned long new_rate;
59 struct clk_core *new_parent;
60 struct clk_core *new_child;
61 unsigned long flags;
62 bool orphan;
63 unsigned int enable_count;
64 unsigned int prepare_count;
65 unsigned long min_rate;
66 unsigned long max_rate;
67 unsigned long accuracy;
68 int phase;
69 struct hlist_head children;
70 struct hlist_node child_node;
71 struct hlist_head clks;
72 unsigned int notifier_count;
73 #ifdef CONFIG_DEBUG_FS
74 struct dentry *dentry;
75 struct hlist_node debug_node;
76 #endif
77 struct kref ref;
78 };
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/clk.h>
82
83 struct clk {
84 struct clk_core *core;
85 const char *dev_id;
86 const char *con_id;
87 unsigned long min_rate;
88 unsigned long max_rate;
89 struct hlist_node clks_node;
90 };
91
92 /*** runtime pm ***/
93 static int clk_pm_runtime_get(struct clk_core *core)
94 {
95 int ret = 0;
96
97 if (!core->dev)
98 return 0;
99
100 ret = pm_runtime_get_sync(core->dev);
101 return ret < 0 ? ret : 0;
102 }
103
104 static void clk_pm_runtime_put(struct clk_core *core)
105 {
106 if (!core->dev)
107 return;
108
109 pm_runtime_put_sync(core->dev);
110 }
111
112 /*** locking ***/
113 static void clk_prepare_lock(void)
114 {
115 if (!mutex_trylock(&prepare_lock)) {
116 if (prepare_owner == current) {
117 prepare_refcnt++;
118 return;
119 }
120 mutex_lock(&prepare_lock);
121 }
122 WARN_ON_ONCE(prepare_owner != NULL);
123 WARN_ON_ONCE(prepare_refcnt != 0);
124 prepare_owner = current;
125 prepare_refcnt = 1;
126 }
127
128 static void clk_prepare_unlock(void)
129 {
130 WARN_ON_ONCE(prepare_owner != current);
131 WARN_ON_ONCE(prepare_refcnt == 0);
132
133 if (--prepare_refcnt)
134 return;
135 prepare_owner = NULL;
136 mutex_unlock(&prepare_lock);
137 }
138
139 static unsigned long clk_enable_lock(void)
140 __acquires(enable_lock)
141 {
142 unsigned long flags;
143
144 if (!spin_trylock_irqsave(&enable_lock, flags)) {
145 if (enable_owner == current) {
146 enable_refcnt++;
147 __acquire(enable_lock);
148 return flags;
149 }
150 spin_lock_irqsave(&enable_lock, flags);
151 }
152 WARN_ON_ONCE(enable_owner != NULL);
153 WARN_ON_ONCE(enable_refcnt != 0);
154 enable_owner = current;
155 enable_refcnt = 1;
156 return flags;
157 }
158
159 static void clk_enable_unlock(unsigned long flags)
160 __releases(enable_lock)
161 {
162 WARN_ON_ONCE(enable_owner != current);
163 WARN_ON_ONCE(enable_refcnt == 0);
164
165 if (--enable_refcnt) {
166 __release(enable_lock);
167 return;
168 }
169 enable_owner = NULL;
170 spin_unlock_irqrestore(&enable_lock, flags);
171 }
172
173 static bool clk_core_is_prepared(struct clk_core *core)
174 {
175 bool ret = false;
176
177 /*
178 * .is_prepared is optional for clocks that can prepare
179 * fall back to software usage counter if it is missing
180 */
181 if (!core->ops->is_prepared)
182 return core->prepare_count;
183
184 if (!clk_pm_runtime_get(core)) {
185 ret = core->ops->is_prepared(core->hw);
186 clk_pm_runtime_put(core);
187 }
188
189 return ret;
190 }
191
192 static bool clk_core_is_enabled(struct clk_core *core)
193 {
194 bool ret = false;
195
196 /*
197 * .is_enabled is only mandatory for clocks that gate
198 * fall back to software usage counter if .is_enabled is missing
199 */
200 if (!core->ops->is_enabled)
201 return core->enable_count;
202
203 /*
204 * Check if clock controller's device is runtime active before
205 * calling .is_enabled callback. If not, assume that clock is
206 * disabled, because we might be called from atomic context, from
207 * which pm_runtime_get() is not allowed.
208 * This function is called mainly from clk_disable_unused_subtree,
209 * which ensures proper runtime pm activation of controller before
210 * taking enable spinlock, but the below check is needed if one tries
211 * to call it from other places.
212 */
213 if (core->dev) {
214 pm_runtime_get_noresume(core->dev);
215 if (!pm_runtime_active(core->dev)) {
216 ret = false;
217 goto done;
218 }
219 }
220
221 ret = core->ops->is_enabled(core->hw);
222 done:
223 clk_pm_runtime_put(core);
224
225 return ret;
226 }
227
228 /*** helper functions ***/
229
230 const char *__clk_get_name(const struct clk *clk)
231 {
232 return !clk ? NULL : clk->core->name;
233 }
234 EXPORT_SYMBOL_GPL(__clk_get_name);
235
236 const char *clk_hw_get_name(const struct clk_hw *hw)
237 {
238 return hw->core->name;
239 }
240 EXPORT_SYMBOL_GPL(clk_hw_get_name);
241
242 struct clk_hw *__clk_get_hw(struct clk *clk)
243 {
244 return !clk ? NULL : clk->core->hw;
245 }
246 EXPORT_SYMBOL_GPL(__clk_get_hw);
247
248 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
249 {
250 return hw->core->num_parents;
251 }
252 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
253
254 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
255 {
256 return hw->core->parent ? hw->core->parent->hw : NULL;
257 }
258 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
259
260 static struct clk_core *__clk_lookup_subtree(const char *name,
261 struct clk_core *core)
262 {
263 struct clk_core *child;
264 struct clk_core *ret;
265
266 if (!strcmp(core->name, name))
267 return core;
268
269 hlist_for_each_entry(child, &core->children, child_node) {
270 ret = __clk_lookup_subtree(name, child);
271 if (ret)
272 return ret;
273 }
274
275 return NULL;
276 }
277
278 static struct clk_core *clk_core_lookup(const char *name)
279 {
280 struct clk_core *root_clk;
281 struct clk_core *ret;
282
283 if (!name)
284 return NULL;
285
286 /* search the 'proper' clk tree first */
287 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
288 ret = __clk_lookup_subtree(name, root_clk);
289 if (ret)
290 return ret;
291 }
292
293 /* if not found, then search the orphan tree */
294 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
295 ret = __clk_lookup_subtree(name, root_clk);
296 if (ret)
297 return ret;
298 }
299
300 return NULL;
301 }
302
303 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
304 u8 index)
305 {
306 if (!core || index >= core->num_parents)
307 return NULL;
308
309 if (!core->parents[index])
310 core->parents[index] =
311 clk_core_lookup(core->parent_names[index]);
312
313 return core->parents[index];
314 }
315
316 struct clk_hw *
317 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
318 {
319 struct clk_core *parent;
320
321 parent = clk_core_get_parent_by_index(hw->core, index);
322
323 return !parent ? NULL : parent->hw;
324 }
325 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
326
327 unsigned int __clk_get_enable_count(struct clk *clk)
328 {
329 return !clk ? 0 : clk->core->enable_count;
330 }
331
332 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
333 {
334 unsigned long ret;
335
336 if (!core) {
337 ret = 0;
338 goto out;
339 }
340
341 ret = core->rate;
342
343 if (!core->num_parents)
344 goto out;
345
346 if (!core->parent)
347 ret = 0;
348
349 out:
350 return ret;
351 }
352
353 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
354 {
355 return clk_core_get_rate_nolock(hw->core);
356 }
357 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
358
359 static unsigned long __clk_get_accuracy(struct clk_core *core)
360 {
361 if (!core)
362 return 0;
363
364 return core->accuracy;
365 }
366
367 unsigned long __clk_get_flags(struct clk *clk)
368 {
369 return !clk ? 0 : clk->core->flags;
370 }
371 EXPORT_SYMBOL_GPL(__clk_get_flags);
372
373 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
374 {
375 return hw->core->flags;
376 }
377 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
378
379 bool clk_hw_is_prepared(const struct clk_hw *hw)
380 {
381 return clk_core_is_prepared(hw->core);
382 }
383
384 bool clk_hw_is_enabled(const struct clk_hw *hw)
385 {
386 return clk_core_is_enabled(hw->core);
387 }
388
389 bool __clk_is_enabled(struct clk *clk)
390 {
391 if (!clk)
392 return false;
393
394 return clk_core_is_enabled(clk->core);
395 }
396 EXPORT_SYMBOL_GPL(__clk_is_enabled);
397
398 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
399 unsigned long best, unsigned long flags)
400 {
401 if (flags & CLK_MUX_ROUND_CLOSEST)
402 return abs(now - rate) < abs(best - rate);
403
404 return now <= rate && now > best;
405 }
406
407 static int
408 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
409 unsigned long flags)
410 {
411 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
412 int i, num_parents, ret;
413 unsigned long best = 0;
414 struct clk_rate_request parent_req = *req;
415
416 /* if NO_REPARENT flag set, pass through to current parent */
417 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
418 parent = core->parent;
419 if (core->flags & CLK_SET_RATE_PARENT) {
420 ret = __clk_determine_rate(parent ? parent->hw : NULL,
421 &parent_req);
422 if (ret)
423 return ret;
424
425 best = parent_req.rate;
426 } else if (parent) {
427 best = clk_core_get_rate_nolock(parent);
428 } else {
429 best = clk_core_get_rate_nolock(core);
430 }
431
432 goto out;
433 }
434
435 /* find the parent that can provide the fastest rate <= rate */
436 num_parents = core->num_parents;
437 for (i = 0; i < num_parents; i++) {
438 parent = clk_core_get_parent_by_index(core, i);
439 if (!parent)
440 continue;
441
442 if (core->flags & CLK_SET_RATE_PARENT) {
443 parent_req = *req;
444 ret = __clk_determine_rate(parent->hw, &parent_req);
445 if (ret)
446 continue;
447 } else {
448 parent_req.rate = clk_core_get_rate_nolock(parent);
449 }
450
451 if (mux_is_better_rate(req->rate, parent_req.rate,
452 best, flags)) {
453 best_parent = parent;
454 best = parent_req.rate;
455 }
456 }
457
458 if (!best_parent)
459 return -EINVAL;
460
461 out:
462 if (best_parent)
463 req->best_parent_hw = best_parent->hw;
464 req->best_parent_rate = best;
465 req->rate = best;
466
467 return 0;
468 }
469
470 struct clk *__clk_lookup(const char *name)
471 {
472 struct clk_core *core = clk_core_lookup(name);
473
474 return !core ? NULL : core->hw->clk;
475 }
476
477 static void clk_core_get_boundaries(struct clk_core *core,
478 unsigned long *min_rate,
479 unsigned long *max_rate)
480 {
481 struct clk *clk_user;
482
483 *min_rate = core->min_rate;
484 *max_rate = core->max_rate;
485
486 hlist_for_each_entry(clk_user, &core->clks, clks_node)
487 *min_rate = max(*min_rate, clk_user->min_rate);
488
489 hlist_for_each_entry(clk_user, &core->clks, clks_node)
490 *max_rate = min(*max_rate, clk_user->max_rate);
491 }
492
493 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
494 unsigned long max_rate)
495 {
496 hw->core->min_rate = min_rate;
497 hw->core->max_rate = max_rate;
498 }
499 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
500
501 /*
502 * Helper for finding best parent to provide a given frequency. This can be used
503 * directly as a determine_rate callback (e.g. for a mux), or from a more
504 * complex clock that may combine a mux with other operations.
505 */
506 int __clk_mux_determine_rate(struct clk_hw *hw,
507 struct clk_rate_request *req)
508 {
509 return clk_mux_determine_rate_flags(hw, req, 0);
510 }
511 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
512
513 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
514 struct clk_rate_request *req)
515 {
516 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
517 }
518 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
519
520 /*** clk api ***/
521
522 static void clk_core_unprepare(struct clk_core *core)
523 {
524 lockdep_assert_held(&prepare_lock);
525
526 if (!core)
527 return;
528
529 if (WARN_ON(core->prepare_count == 0))
530 return;
531
532 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
533 return;
534
535 if (--core->prepare_count > 0)
536 return;
537
538 WARN_ON(core->enable_count > 0);
539
540 trace_clk_unprepare(core);
541
542 if (core->ops->unprepare)
543 core->ops->unprepare(core->hw);
544
545 clk_pm_runtime_put(core);
546
547 trace_clk_unprepare_complete(core);
548 clk_core_unprepare(core->parent);
549 }
550
551 static void clk_core_unprepare_lock(struct clk_core *core)
552 {
553 clk_prepare_lock();
554 clk_core_unprepare(core);
555 clk_prepare_unlock();
556 }
557
558 /**
559 * clk_unprepare - undo preparation of a clock source
560 * @clk: the clk being unprepared
561 *
562 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
563 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
564 * if the operation may sleep. One example is a clk which is accessed over
565 * I2c. In the complex case a clk gate operation may require a fast and a slow
566 * part. It is this reason that clk_unprepare and clk_disable are not mutually
567 * exclusive. In fact clk_disable must be called before clk_unprepare.
568 */
569 void clk_unprepare(struct clk *clk)
570 {
571 if (IS_ERR_OR_NULL(clk))
572 return;
573
574 clk_core_unprepare_lock(clk->core);
575 }
576 EXPORT_SYMBOL_GPL(clk_unprepare);
577
578 static int clk_core_prepare(struct clk_core *core)
579 {
580 int ret = 0;
581
582 lockdep_assert_held(&prepare_lock);
583
584 if (!core)
585 return 0;
586
587 if (core->prepare_count == 0) {
588 ret = clk_pm_runtime_get(core);
589 if (ret)
590 return ret;
591
592 ret = clk_core_prepare(core->parent);
593 if (ret)
594 goto runtime_put;
595
596 trace_clk_prepare(core);
597
598 if (core->ops->prepare)
599 ret = core->ops->prepare(core->hw);
600
601 trace_clk_prepare_complete(core);
602
603 if (ret)
604 goto unprepare;
605 }
606
607 core->prepare_count++;
608
609 return 0;
610 unprepare:
611 clk_core_unprepare(core->parent);
612 runtime_put:
613 clk_pm_runtime_put(core);
614 return ret;
615 }
616
617 static int clk_core_prepare_lock(struct clk_core *core)
618 {
619 int ret;
620
621 clk_prepare_lock();
622 ret = clk_core_prepare(core);
623 clk_prepare_unlock();
624
625 return ret;
626 }
627
628 /**
629 * clk_prepare - prepare a clock source
630 * @clk: the clk being prepared
631 *
632 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
633 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
634 * operation may sleep. One example is a clk which is accessed over I2c. In
635 * the complex case a clk ungate operation may require a fast and a slow part.
636 * It is this reason that clk_prepare and clk_enable are not mutually
637 * exclusive. In fact clk_prepare must be called before clk_enable.
638 * Returns 0 on success, -EERROR otherwise.
639 */
640 int clk_prepare(struct clk *clk)
641 {
642 if (!clk)
643 return 0;
644
645 return clk_core_prepare_lock(clk->core);
646 }
647 EXPORT_SYMBOL_GPL(clk_prepare);
648
649 static void clk_core_disable(struct clk_core *core)
650 {
651 lockdep_assert_held(&enable_lock);
652
653 if (!core)
654 return;
655
656 if (WARN_ON(core->enable_count == 0))
657 return;
658
659 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
660 return;
661
662 if (--core->enable_count > 0)
663 return;
664
665 trace_clk_disable_rcuidle(core);
666
667 if (core->ops->disable)
668 core->ops->disable(core->hw);
669
670 trace_clk_disable_complete_rcuidle(core);
671
672 clk_core_disable(core->parent);
673 }
674
675 static void clk_core_disable_lock(struct clk_core *core)
676 {
677 unsigned long flags;
678
679 flags = clk_enable_lock();
680 clk_core_disable(core);
681 clk_enable_unlock(flags);
682 }
683
684 /**
685 * clk_disable - gate a clock
686 * @clk: the clk being gated
687 *
688 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
689 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
690 * clk if the operation is fast and will never sleep. One example is a
691 * SoC-internal clk which is controlled via simple register writes. In the
692 * complex case a clk gate operation may require a fast and a slow part. It is
693 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
694 * In fact clk_disable must be called before clk_unprepare.
695 */
696 void clk_disable(struct clk *clk)
697 {
698 if (IS_ERR_OR_NULL(clk))
699 return;
700
701 clk_core_disable_lock(clk->core);
702 }
703 EXPORT_SYMBOL_GPL(clk_disable);
704
705 static int clk_core_enable(struct clk_core *core)
706 {
707 int ret = 0;
708
709 lockdep_assert_held(&enable_lock);
710
711 if (!core)
712 return 0;
713
714 if (WARN_ON(core->prepare_count == 0))
715 return -ESHUTDOWN;
716
717 if (core->enable_count == 0) {
718 ret = clk_core_enable(core->parent);
719
720 if (ret)
721 return ret;
722
723 trace_clk_enable_rcuidle(core);
724
725 if (core->ops->enable)
726 ret = core->ops->enable(core->hw);
727
728 trace_clk_enable_complete_rcuidle(core);
729
730 if (ret) {
731 clk_core_disable(core->parent);
732 return ret;
733 }
734 }
735
736 core->enable_count++;
737 return 0;
738 }
739
740 static int clk_core_enable_lock(struct clk_core *core)
741 {
742 unsigned long flags;
743 int ret;
744
745 flags = clk_enable_lock();
746 ret = clk_core_enable(core);
747 clk_enable_unlock(flags);
748
749 return ret;
750 }
751
752 /**
753 * clk_enable - ungate a clock
754 * @clk: the clk being ungated
755 *
756 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
757 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
758 * if the operation will never sleep. One example is a SoC-internal clk which
759 * is controlled via simple register writes. In the complex case a clk ungate
760 * operation may require a fast and a slow part. It is this reason that
761 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
762 * must be called before clk_enable. Returns 0 on success, -EERROR
763 * otherwise.
764 */
765 int clk_enable(struct clk *clk)
766 {
767 if (!clk)
768 return 0;
769
770 return clk_core_enable_lock(clk->core);
771 }
772 EXPORT_SYMBOL_GPL(clk_enable);
773
774 static int clk_core_prepare_enable(struct clk_core *core)
775 {
776 int ret;
777
778 ret = clk_core_prepare_lock(core);
779 if (ret)
780 return ret;
781
782 ret = clk_core_enable_lock(core);
783 if (ret)
784 clk_core_unprepare_lock(core);
785
786 return ret;
787 }
788
789 static void clk_core_disable_unprepare(struct clk_core *core)
790 {
791 clk_core_disable_lock(core);
792 clk_core_unprepare_lock(core);
793 }
794
795 static void clk_unprepare_unused_subtree(struct clk_core *core)
796 {
797 struct clk_core *child;
798
799 lockdep_assert_held(&prepare_lock);
800
801 hlist_for_each_entry(child, &core->children, child_node)
802 clk_unprepare_unused_subtree(child);
803
804 if (core->prepare_count)
805 return;
806
807 if (core->flags & CLK_IGNORE_UNUSED)
808 return;
809
810 if (clk_pm_runtime_get(core))
811 return;
812
813 if (clk_core_is_prepared(core)) {
814 trace_clk_unprepare(core);
815 if (core->ops->unprepare_unused)
816 core->ops->unprepare_unused(core->hw);
817 else if (core->ops->unprepare)
818 core->ops->unprepare(core->hw);
819 trace_clk_unprepare_complete(core);
820 }
821
822 clk_pm_runtime_put(core);
823 }
824
825 static void clk_disable_unused_subtree(struct clk_core *core)
826 {
827 struct clk_core *child;
828 unsigned long flags;
829
830 lockdep_assert_held(&prepare_lock);
831
832 hlist_for_each_entry(child, &core->children, child_node)
833 clk_disable_unused_subtree(child);
834
835 if (core->flags & CLK_OPS_PARENT_ENABLE)
836 clk_core_prepare_enable(core->parent);
837
838 if (clk_pm_runtime_get(core))
839 goto unprepare_out;
840
841 flags = clk_enable_lock();
842
843 if (core->enable_count)
844 goto unlock_out;
845
846 if (core->flags & CLK_IGNORE_UNUSED)
847 goto unlock_out;
848
849 /*
850 * some gate clocks have special needs during the disable-unused
851 * sequence. call .disable_unused if available, otherwise fall
852 * back to .disable
853 */
854 if (clk_core_is_enabled(core)) {
855 trace_clk_disable(core);
856 if (core->ops->disable_unused)
857 core->ops->disable_unused(core->hw);
858 else if (core->ops->disable)
859 core->ops->disable(core->hw);
860 trace_clk_disable_complete(core);
861 }
862
863 unlock_out:
864 clk_enable_unlock(flags);
865 clk_pm_runtime_put(core);
866 unprepare_out:
867 if (core->flags & CLK_OPS_PARENT_ENABLE)
868 clk_core_disable_unprepare(core->parent);
869 }
870
871 static bool clk_ignore_unused;
872 static int __init clk_ignore_unused_setup(char *__unused)
873 {
874 clk_ignore_unused = true;
875 return 1;
876 }
877 __setup("clk_ignore_unused", clk_ignore_unused_setup);
878
879 static int clk_disable_unused(void)
880 {
881 struct clk_core *core;
882
883 if (clk_ignore_unused) {
884 pr_warn("clk: Not disabling unused clocks\n");
885 return 0;
886 }
887
888 clk_prepare_lock();
889
890 hlist_for_each_entry(core, &clk_root_list, child_node)
891 clk_disable_unused_subtree(core);
892
893 hlist_for_each_entry(core, &clk_orphan_list, child_node)
894 clk_disable_unused_subtree(core);
895
896 hlist_for_each_entry(core, &clk_root_list, child_node)
897 clk_unprepare_unused_subtree(core);
898
899 hlist_for_each_entry(core, &clk_orphan_list, child_node)
900 clk_unprepare_unused_subtree(core);
901
902 clk_prepare_unlock();
903
904 return 0;
905 }
906 late_initcall_sync(clk_disable_unused);
907
908 static int clk_core_round_rate_nolock(struct clk_core *core,
909 struct clk_rate_request *req)
910 {
911 struct clk_core *parent;
912 long rate;
913
914 lockdep_assert_held(&prepare_lock);
915
916 if (!core)
917 return 0;
918
919 parent = core->parent;
920 if (parent) {
921 req->best_parent_hw = parent->hw;
922 req->best_parent_rate = parent->rate;
923 } else {
924 req->best_parent_hw = NULL;
925 req->best_parent_rate = 0;
926 }
927
928 if (core->ops->determine_rate) {
929 return core->ops->determine_rate(core->hw, req);
930 } else if (core->ops->round_rate) {
931 rate = core->ops->round_rate(core->hw, req->rate,
932 &req->best_parent_rate);
933 if (rate < 0)
934 return rate;
935
936 req->rate = rate;
937 } else if (core->flags & CLK_SET_RATE_PARENT) {
938 return clk_core_round_rate_nolock(parent, req);
939 } else {
940 req->rate = core->rate;
941 }
942
943 return 0;
944 }
945
946 /**
947 * __clk_determine_rate - get the closest rate actually supported by a clock
948 * @hw: determine the rate of this clock
949 * @req: target rate request
950 *
951 * Useful for clk_ops such as .set_rate and .determine_rate.
952 */
953 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
954 {
955 if (!hw) {
956 req->rate = 0;
957 return 0;
958 }
959
960 return clk_core_round_rate_nolock(hw->core, req);
961 }
962 EXPORT_SYMBOL_GPL(__clk_determine_rate);
963
964 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
965 {
966 int ret;
967 struct clk_rate_request req;
968
969 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
970 req.rate = rate;
971
972 ret = clk_core_round_rate_nolock(hw->core, &req);
973 if (ret)
974 return 0;
975
976 return req.rate;
977 }
978 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
979
980 /**
981 * clk_round_rate - round the given rate for a clk
982 * @clk: the clk for which we are rounding a rate
983 * @rate: the rate which is to be rounded
984 *
985 * Takes in a rate as input and rounds it to a rate that the clk can actually
986 * use which is then returned. If clk doesn't support round_rate operation
987 * then the parent rate is returned.
988 */
989 long clk_round_rate(struct clk *clk, unsigned long rate)
990 {
991 struct clk_rate_request req;
992 int ret;
993
994 if (!clk)
995 return 0;
996
997 clk_prepare_lock();
998
999 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1000 req.rate = rate;
1001
1002 ret = clk_core_round_rate_nolock(clk->core, &req);
1003 clk_prepare_unlock();
1004
1005 if (ret)
1006 return ret;
1007
1008 return req.rate;
1009 }
1010 EXPORT_SYMBOL_GPL(clk_round_rate);
1011
1012 /**
1013 * __clk_notify - call clk notifier chain
1014 * @core: clk that is changing rate
1015 * @msg: clk notifier type (see include/linux/clk.h)
1016 * @old_rate: old clk rate
1017 * @new_rate: new clk rate
1018 *
1019 * Triggers a notifier call chain on the clk rate-change notification
1020 * for 'clk'. Passes a pointer to the struct clk and the previous
1021 * and current rates to the notifier callback. Intended to be called by
1022 * internal clock code only. Returns NOTIFY_DONE from the last driver
1023 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1024 * a driver returns that.
1025 */
1026 static int __clk_notify(struct clk_core *core, unsigned long msg,
1027 unsigned long old_rate, unsigned long new_rate)
1028 {
1029 struct clk_notifier *cn;
1030 struct clk_notifier_data cnd;
1031 int ret = NOTIFY_DONE;
1032
1033 cnd.old_rate = old_rate;
1034 cnd.new_rate = new_rate;
1035
1036 list_for_each_entry(cn, &clk_notifier_list, node) {
1037 if (cn->clk->core == core) {
1038 cnd.clk = cn->clk;
1039 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1040 &cnd);
1041 if (ret & NOTIFY_STOP_MASK)
1042 return ret;
1043 }
1044 }
1045
1046 return ret;
1047 }
1048
1049 /**
1050 * __clk_recalc_accuracies
1051 * @core: first clk in the subtree
1052 *
1053 * Walks the subtree of clks starting with clk and recalculates accuracies as
1054 * it goes. Note that if a clk does not implement the .recalc_accuracy
1055 * callback then it is assumed that the clock will take on the accuracy of its
1056 * parent.
1057 */
1058 static void __clk_recalc_accuracies(struct clk_core *core)
1059 {
1060 unsigned long parent_accuracy = 0;
1061 struct clk_core *child;
1062
1063 lockdep_assert_held(&prepare_lock);
1064
1065 if (core->parent)
1066 parent_accuracy = core->parent->accuracy;
1067
1068 if (core->ops->recalc_accuracy)
1069 core->accuracy = core->ops->recalc_accuracy(core->hw,
1070 parent_accuracy);
1071 else
1072 core->accuracy = parent_accuracy;
1073
1074 hlist_for_each_entry(child, &core->children, child_node)
1075 __clk_recalc_accuracies(child);
1076 }
1077
1078 static long clk_core_get_accuracy(struct clk_core *core)
1079 {
1080 unsigned long accuracy;
1081
1082 clk_prepare_lock();
1083 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1084 __clk_recalc_accuracies(core);
1085
1086 accuracy = __clk_get_accuracy(core);
1087 clk_prepare_unlock();
1088
1089 return accuracy;
1090 }
1091
1092 /**
1093 * clk_get_accuracy - return the accuracy of clk
1094 * @clk: the clk whose accuracy is being returned
1095 *
1096 * Simply returns the cached accuracy of the clk, unless
1097 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1098 * issued.
1099 * If clk is NULL then returns 0.
1100 */
1101 long clk_get_accuracy(struct clk *clk)
1102 {
1103 if (!clk)
1104 return 0;
1105
1106 return clk_core_get_accuracy(clk->core);
1107 }
1108 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1109
1110 static unsigned long clk_recalc(struct clk_core *core,
1111 unsigned long parent_rate)
1112 {
1113 unsigned long rate = parent_rate;
1114
1115 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1116 rate = core->ops->recalc_rate(core->hw, parent_rate);
1117 clk_pm_runtime_put(core);
1118 }
1119 return rate;
1120 }
1121
1122 /**
1123 * __clk_recalc_rates
1124 * @core: first clk in the subtree
1125 * @msg: notification type (see include/linux/clk.h)
1126 *
1127 * Walks the subtree of clks starting with clk and recalculates rates as it
1128 * goes. Note that if a clk does not implement the .recalc_rate callback then
1129 * it is assumed that the clock will take on the rate of its parent.
1130 *
1131 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1132 * if necessary.
1133 */
1134 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1135 {
1136 unsigned long old_rate;
1137 unsigned long parent_rate = 0;
1138 struct clk_core *child;
1139
1140 lockdep_assert_held(&prepare_lock);
1141
1142 old_rate = core->rate;
1143
1144 if (core->parent)
1145 parent_rate = core->parent->rate;
1146
1147 core->rate = clk_recalc(core, parent_rate);
1148
1149 /*
1150 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1151 * & ABORT_RATE_CHANGE notifiers
1152 */
1153 if (core->notifier_count && msg)
1154 __clk_notify(core, msg, old_rate, core->rate);
1155
1156 hlist_for_each_entry(child, &core->children, child_node)
1157 __clk_recalc_rates(child, msg);
1158 }
1159
1160 static unsigned long clk_core_get_rate(struct clk_core *core)
1161 {
1162 unsigned long rate;
1163
1164 clk_prepare_lock();
1165
1166 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1167 __clk_recalc_rates(core, 0);
1168
1169 rate = clk_core_get_rate_nolock(core);
1170 clk_prepare_unlock();
1171
1172 return rate;
1173 }
1174
1175 /**
1176 * clk_get_rate - return the rate of clk
1177 * @clk: the clk whose rate is being returned
1178 *
1179 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1180 * is set, which means a recalc_rate will be issued.
1181 * If clk is NULL then returns 0.
1182 */
1183 unsigned long clk_get_rate(struct clk *clk)
1184 {
1185 if (!clk)
1186 return 0;
1187
1188 return clk_core_get_rate(clk->core);
1189 }
1190 EXPORT_SYMBOL_GPL(clk_get_rate);
1191
1192 static int clk_fetch_parent_index(struct clk_core *core,
1193 struct clk_core *parent)
1194 {
1195 int i;
1196
1197 if (!parent)
1198 return -EINVAL;
1199
1200 for (i = 0; i < core->num_parents; i++)
1201 if (clk_core_get_parent_by_index(core, i) == parent)
1202 return i;
1203
1204 return -EINVAL;
1205 }
1206
1207 /*
1208 * Update the orphan status of @core and all its children.
1209 */
1210 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1211 {
1212 struct clk_core *child;
1213
1214 core->orphan = is_orphan;
1215
1216 hlist_for_each_entry(child, &core->children, child_node)
1217 clk_core_update_orphan_status(child, is_orphan);
1218 }
1219
1220 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1221 {
1222 bool was_orphan = core->orphan;
1223
1224 hlist_del(&core->child_node);
1225
1226 if (new_parent) {
1227 bool becomes_orphan = new_parent->orphan;
1228
1229 /* avoid duplicate POST_RATE_CHANGE notifications */
1230 if (new_parent->new_child == core)
1231 new_parent->new_child = NULL;
1232
1233 hlist_add_head(&core->child_node, &new_parent->children);
1234
1235 if (was_orphan != becomes_orphan)
1236 clk_core_update_orphan_status(core, becomes_orphan);
1237 } else {
1238 hlist_add_head(&core->child_node, &clk_orphan_list);
1239 if (!was_orphan)
1240 clk_core_update_orphan_status(core, true);
1241 }
1242
1243 core->parent = new_parent;
1244 }
1245
1246 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1247 struct clk_core *parent)
1248 {
1249 unsigned long flags;
1250 struct clk_core *old_parent = core->parent;
1251
1252 /*
1253 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1254 *
1255 * 2. Migrate prepare state between parents and prevent race with
1256 * clk_enable().
1257 *
1258 * If the clock is not prepared, then a race with
1259 * clk_enable/disable() is impossible since we already have the
1260 * prepare lock (future calls to clk_enable() need to be preceded by
1261 * a clk_prepare()).
1262 *
1263 * If the clock is prepared, migrate the prepared state to the new
1264 * parent and also protect against a race with clk_enable() by
1265 * forcing the clock and the new parent on. This ensures that all
1266 * future calls to clk_enable() are practically NOPs with respect to
1267 * hardware and software states.
1268 *
1269 * See also: Comment for clk_set_parent() below.
1270 */
1271
1272 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1273 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1274 clk_core_prepare_enable(old_parent);
1275 clk_core_prepare_enable(parent);
1276 }
1277
1278 /* migrate prepare count if > 0 */
1279 if (core->prepare_count) {
1280 clk_core_prepare_enable(parent);
1281 clk_core_enable_lock(core);
1282 }
1283
1284 /* update the clk tree topology */
1285 flags = clk_enable_lock();
1286 clk_reparent(core, parent);
1287 clk_enable_unlock(flags);
1288
1289 return old_parent;
1290 }
1291
1292 static void __clk_set_parent_after(struct clk_core *core,
1293 struct clk_core *parent,
1294 struct clk_core *old_parent)
1295 {
1296 /*
1297 * Finish the migration of prepare state and undo the changes done
1298 * for preventing a race with clk_enable().
1299 */
1300 if (core->prepare_count) {
1301 clk_core_disable_lock(core);
1302 clk_core_disable_unprepare(old_parent);
1303 }
1304
1305 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1306 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1307 clk_core_disable_unprepare(parent);
1308 clk_core_disable_unprepare(old_parent);
1309 }
1310 }
1311
1312 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1313 u8 p_index)
1314 {
1315 unsigned long flags;
1316 int ret = 0;
1317 struct clk_core *old_parent;
1318
1319 old_parent = __clk_set_parent_before(core, parent);
1320
1321 trace_clk_set_parent(core, parent);
1322
1323 /* change clock input source */
1324 if (parent && core->ops->set_parent)
1325 ret = core->ops->set_parent(core->hw, p_index);
1326
1327 trace_clk_set_parent_complete(core, parent);
1328
1329 if (ret) {
1330 flags = clk_enable_lock();
1331 clk_reparent(core, old_parent);
1332 clk_enable_unlock(flags);
1333 __clk_set_parent_after(core, old_parent, parent);
1334
1335 return ret;
1336 }
1337
1338 __clk_set_parent_after(core, parent, old_parent);
1339
1340 return 0;
1341 }
1342
1343 /**
1344 * __clk_speculate_rates
1345 * @core: first clk in the subtree
1346 * @parent_rate: the "future" rate of clk's parent
1347 *
1348 * Walks the subtree of clks starting with clk, speculating rates as it
1349 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1350 *
1351 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1352 * pre-rate change notifications and returns early if no clks in the
1353 * subtree have subscribed to the notifications. Note that if a clk does not
1354 * implement the .recalc_rate callback then it is assumed that the clock will
1355 * take on the rate of its parent.
1356 */
1357 static int __clk_speculate_rates(struct clk_core *core,
1358 unsigned long parent_rate)
1359 {
1360 struct clk_core *child;
1361 unsigned long new_rate;
1362 int ret = NOTIFY_DONE;
1363
1364 lockdep_assert_held(&prepare_lock);
1365
1366 new_rate = clk_recalc(core, parent_rate);
1367
1368 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1369 if (core->notifier_count)
1370 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1371
1372 if (ret & NOTIFY_STOP_MASK) {
1373 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1374 __func__, core->name, ret);
1375 goto out;
1376 }
1377
1378 hlist_for_each_entry(child, &core->children, child_node) {
1379 ret = __clk_speculate_rates(child, new_rate);
1380 if (ret & NOTIFY_STOP_MASK)
1381 break;
1382 }
1383
1384 out:
1385 return ret;
1386 }
1387
1388 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1389 struct clk_core *new_parent, u8 p_index)
1390 {
1391 struct clk_core *child;
1392
1393 core->new_rate = new_rate;
1394 core->new_parent = new_parent;
1395 core->new_parent_index = p_index;
1396 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1397 core->new_child = NULL;
1398 if (new_parent && new_parent != core->parent)
1399 new_parent->new_child = core;
1400
1401 hlist_for_each_entry(child, &core->children, child_node) {
1402 child->new_rate = clk_recalc(child, new_rate);
1403 clk_calc_subtree(child, child->new_rate, NULL, 0);
1404 }
1405 }
1406
1407 /*
1408 * calculate the new rates returning the topmost clock that has to be
1409 * changed.
1410 */
1411 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1412 unsigned long rate)
1413 {
1414 struct clk_core *top = core;
1415 struct clk_core *old_parent, *parent;
1416 unsigned long best_parent_rate = 0;
1417 unsigned long new_rate;
1418 unsigned long min_rate;
1419 unsigned long max_rate;
1420 int p_index = 0;
1421 long ret;
1422
1423 /* sanity */
1424 if (IS_ERR_OR_NULL(core))
1425 return NULL;
1426
1427 /* save parent rate, if it exists */
1428 parent = old_parent = core->parent;
1429 if (parent)
1430 best_parent_rate = parent->rate;
1431
1432 clk_core_get_boundaries(core, &min_rate, &max_rate);
1433
1434 /* find the closest rate and parent clk/rate */
1435 if (core->ops->determine_rate) {
1436 struct clk_rate_request req;
1437
1438 req.rate = rate;
1439 req.min_rate = min_rate;
1440 req.max_rate = max_rate;
1441 if (parent) {
1442 req.best_parent_hw = parent->hw;
1443 req.best_parent_rate = parent->rate;
1444 } else {
1445 req.best_parent_hw = NULL;
1446 req.best_parent_rate = 0;
1447 }
1448
1449 ret = core->ops->determine_rate(core->hw, &req);
1450 if (ret < 0)
1451 return NULL;
1452
1453 best_parent_rate = req.best_parent_rate;
1454 new_rate = req.rate;
1455 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1456 } else if (core->ops->round_rate) {
1457 ret = core->ops->round_rate(core->hw, rate,
1458 &best_parent_rate);
1459 if (ret < 0)
1460 return NULL;
1461
1462 new_rate = ret;
1463 if (new_rate < min_rate || new_rate > max_rate)
1464 return NULL;
1465 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1466 /* pass-through clock without adjustable parent */
1467 core->new_rate = core->rate;
1468 return NULL;
1469 } else {
1470 /* pass-through clock with adjustable parent */
1471 top = clk_calc_new_rates(parent, rate);
1472 new_rate = parent->new_rate;
1473 goto out;
1474 }
1475
1476 /* some clocks must be gated to change parent */
1477 if (parent != old_parent &&
1478 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1479 pr_debug("%s: %s not gated but wants to reparent\n",
1480 __func__, core->name);
1481 return NULL;
1482 }
1483
1484 /* try finding the new parent index */
1485 if (parent && core->num_parents > 1) {
1486 p_index = clk_fetch_parent_index(core, parent);
1487 if (p_index < 0) {
1488 pr_debug("%s: clk %s can not be parent of clk %s\n",
1489 __func__, parent->name, core->name);
1490 return NULL;
1491 }
1492 }
1493
1494 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1495 best_parent_rate != parent->rate)
1496 top = clk_calc_new_rates(parent, best_parent_rate);
1497
1498 out:
1499 clk_calc_subtree(core, new_rate, parent, p_index);
1500
1501 return top;
1502 }
1503
1504 /*
1505 * Notify about rate changes in a subtree. Always walk down the whole tree
1506 * so that in case of an error we can walk down the whole tree again and
1507 * abort the change.
1508 */
1509 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1510 unsigned long event)
1511 {
1512 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1513 int ret = NOTIFY_DONE;
1514
1515 if (core->rate == core->new_rate)
1516 return NULL;
1517
1518 if (core->notifier_count) {
1519 ret = __clk_notify(core, event, core->rate, core->new_rate);
1520 if (ret & NOTIFY_STOP_MASK)
1521 fail_clk = core;
1522 }
1523
1524 hlist_for_each_entry(child, &core->children, child_node) {
1525 /* Skip children who will be reparented to another clock */
1526 if (child->new_parent && child->new_parent != core)
1527 continue;
1528 tmp_clk = clk_propagate_rate_change(child, event);
1529 if (tmp_clk)
1530 fail_clk = tmp_clk;
1531 }
1532
1533 /* handle the new child who might not be in core->children yet */
1534 if (core->new_child) {
1535 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1536 if (tmp_clk)
1537 fail_clk = tmp_clk;
1538 }
1539
1540 return fail_clk;
1541 }
1542
1543 /*
1544 * walk down a subtree and set the new rates notifying the rate
1545 * change on the way
1546 */
1547 static void clk_change_rate(struct clk_core *core)
1548 {
1549 struct clk_core *child;
1550 struct hlist_node *tmp;
1551 unsigned long old_rate;
1552 unsigned long best_parent_rate = 0;
1553 bool skip_set_rate = false;
1554 struct clk_core *old_parent;
1555 struct clk_core *parent = NULL;
1556
1557 old_rate = core->rate;
1558
1559 if (core->new_parent) {
1560 parent = core->new_parent;
1561 best_parent_rate = core->new_parent->rate;
1562 } else if (core->parent) {
1563 parent = core->parent;
1564 best_parent_rate = core->parent->rate;
1565 }
1566
1567 if (core->flags & CLK_SET_RATE_UNGATE) {
1568 unsigned long flags;
1569
1570 clk_core_prepare(core);
1571 flags = clk_enable_lock();
1572 clk_core_enable(core);
1573 clk_enable_unlock(flags);
1574 }
1575
1576 if (core->new_parent && core->new_parent != core->parent) {
1577 old_parent = __clk_set_parent_before(core, core->new_parent);
1578 trace_clk_set_parent(core, core->new_parent);
1579
1580 if (core->ops->set_rate_and_parent) {
1581 skip_set_rate = true;
1582 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1583 best_parent_rate,
1584 core->new_parent_index);
1585 } else if (core->ops->set_parent) {
1586 core->ops->set_parent(core->hw, core->new_parent_index);
1587 }
1588
1589 trace_clk_set_parent_complete(core, core->new_parent);
1590 __clk_set_parent_after(core, core->new_parent, old_parent);
1591 }
1592
1593 if (core->flags & CLK_OPS_PARENT_ENABLE)
1594 clk_core_prepare_enable(parent);
1595
1596 trace_clk_set_rate(core, core->new_rate);
1597
1598 if (!skip_set_rate && core->ops->set_rate)
1599 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1600
1601 trace_clk_set_rate_complete(core, core->new_rate);
1602
1603 core->rate = clk_recalc(core, best_parent_rate);
1604
1605 if (core->flags & CLK_SET_RATE_UNGATE) {
1606 unsigned long flags;
1607
1608 flags = clk_enable_lock();
1609 clk_core_disable(core);
1610 clk_enable_unlock(flags);
1611 clk_core_unprepare(core);
1612 }
1613
1614 if (core->flags & CLK_OPS_PARENT_ENABLE)
1615 clk_core_disable_unprepare(parent);
1616
1617 if (core->notifier_count && old_rate != core->rate)
1618 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1619
1620 if (core->flags & CLK_RECALC_NEW_RATES)
1621 (void)clk_calc_new_rates(core, core->new_rate);
1622
1623 /*
1624 * Use safe iteration, as change_rate can actually swap parents
1625 * for certain clock types.
1626 */
1627 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1628 /* Skip children who will be reparented to another clock */
1629 if (child->new_parent && child->new_parent != core)
1630 continue;
1631 clk_change_rate(child);
1632 }
1633
1634 /* handle the new child who might not be in core->children yet */
1635 if (core->new_child)
1636 clk_change_rate(core->new_child);
1637 }
1638
1639 static int clk_core_set_rate_nolock(struct clk_core *core,
1640 unsigned long req_rate)
1641 {
1642 struct clk_core *top, *fail_clk;
1643 unsigned long rate = req_rate;
1644 int ret = 0;
1645
1646 if (!core)
1647 return 0;
1648
1649 /* bail early if nothing to do */
1650 if (rate == clk_core_get_rate_nolock(core))
1651 return 0;
1652
1653 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1654 return -EBUSY;
1655
1656 /* calculate new rates and get the topmost changed clock */
1657 top = clk_calc_new_rates(core, rate);
1658 if (!top)
1659 return -EINVAL;
1660
1661 ret = clk_pm_runtime_get(core);
1662 if (ret)
1663 return ret;
1664
1665 /* notify that we are about to change rates */
1666 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1667 if (fail_clk) {
1668 pr_debug("%s: failed to set %s rate\n", __func__,
1669 fail_clk->name);
1670 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1671 ret = -EBUSY;
1672 goto err;
1673 }
1674
1675 /* change the rates */
1676 clk_change_rate(top);
1677
1678 core->req_rate = req_rate;
1679 err:
1680 clk_pm_runtime_put(core);
1681
1682 return ret;
1683 }
1684
1685 /**
1686 * clk_set_rate - specify a new rate for clk
1687 * @clk: the clk whose rate is being changed
1688 * @rate: the new rate for clk
1689 *
1690 * In the simplest case clk_set_rate will only adjust the rate of clk.
1691 *
1692 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1693 * propagate up to clk's parent; whether or not this happens depends on the
1694 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1695 * after calling .round_rate then upstream parent propagation is ignored. If
1696 * *parent_rate comes back with a new rate for clk's parent then we propagate
1697 * up to clk's parent and set its rate. Upward propagation will continue
1698 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1699 * .round_rate stops requesting changes to clk's parent_rate.
1700 *
1701 * Rate changes are accomplished via tree traversal that also recalculates the
1702 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1703 *
1704 * Returns 0 on success, -EERROR otherwise.
1705 */
1706 int clk_set_rate(struct clk *clk, unsigned long rate)
1707 {
1708 int ret;
1709
1710 if (!clk)
1711 return 0;
1712
1713 /* prevent racing with updates to the clock topology */
1714 clk_prepare_lock();
1715
1716 ret = clk_core_set_rate_nolock(clk->core, rate);
1717
1718 clk_prepare_unlock();
1719
1720 return ret;
1721 }
1722 EXPORT_SYMBOL_GPL(clk_set_rate);
1723
1724 /**
1725 * clk_set_rate_range - set a rate range for a clock source
1726 * @clk: clock source
1727 * @min: desired minimum clock rate in Hz, inclusive
1728 * @max: desired maximum clock rate in Hz, inclusive
1729 *
1730 * Returns success (0) or negative errno.
1731 */
1732 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1733 {
1734 int ret = 0;
1735
1736 if (!clk)
1737 return 0;
1738
1739 if (min > max) {
1740 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1741 __func__, clk->core->name, clk->dev_id, clk->con_id,
1742 min, max);
1743 return -EINVAL;
1744 }
1745
1746 clk_prepare_lock();
1747
1748 if (min != clk->min_rate || max != clk->max_rate) {
1749 clk->min_rate = min;
1750 clk->max_rate = max;
1751 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1752 }
1753
1754 clk_prepare_unlock();
1755
1756 return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1759
1760 /**
1761 * clk_set_min_rate - set a minimum clock rate for a clock source
1762 * @clk: clock source
1763 * @rate: desired minimum clock rate in Hz, inclusive
1764 *
1765 * Returns success (0) or negative errno.
1766 */
1767 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1768 {
1769 if (!clk)
1770 return 0;
1771
1772 return clk_set_rate_range(clk, rate, clk->max_rate);
1773 }
1774 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1775
1776 /**
1777 * clk_set_max_rate - set a maximum clock rate for a clock source
1778 * @clk: clock source
1779 * @rate: desired maximum clock rate in Hz, inclusive
1780 *
1781 * Returns success (0) or negative errno.
1782 */
1783 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1784 {
1785 if (!clk)
1786 return 0;
1787
1788 return clk_set_rate_range(clk, clk->min_rate, rate);
1789 }
1790 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1791
1792 /**
1793 * clk_get_parent - return the parent of a clk
1794 * @clk: the clk whose parent gets returned
1795 *
1796 * Simply returns clk->parent. Returns NULL if clk is NULL.
1797 */
1798 struct clk *clk_get_parent(struct clk *clk)
1799 {
1800 struct clk *parent;
1801
1802 if (!clk)
1803 return NULL;
1804
1805 clk_prepare_lock();
1806 /* TODO: Create a per-user clk and change callers to call clk_put */
1807 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1808 clk_prepare_unlock();
1809
1810 return parent;
1811 }
1812 EXPORT_SYMBOL_GPL(clk_get_parent);
1813
1814 static struct clk_core *__clk_init_parent(struct clk_core *core)
1815 {
1816 u8 index = 0;
1817
1818 if (core->num_parents > 1 && core->ops->get_parent)
1819 index = core->ops->get_parent(core->hw);
1820
1821 return clk_core_get_parent_by_index(core, index);
1822 }
1823
1824 static void clk_core_reparent(struct clk_core *core,
1825 struct clk_core *new_parent)
1826 {
1827 clk_reparent(core, new_parent);
1828 __clk_recalc_accuracies(core);
1829 __clk_recalc_rates(core, POST_RATE_CHANGE);
1830 }
1831
1832 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1833 {
1834 if (!hw)
1835 return;
1836
1837 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1838 }
1839
1840 /**
1841 * clk_has_parent - check if a clock is a possible parent for another
1842 * @clk: clock source
1843 * @parent: parent clock source
1844 *
1845 * This function can be used in drivers that need to check that a clock can be
1846 * the parent of another without actually changing the parent.
1847 *
1848 * Returns true if @parent is a possible parent for @clk, false otherwise.
1849 */
1850 bool clk_has_parent(struct clk *clk, struct clk *parent)
1851 {
1852 struct clk_core *core, *parent_core;
1853 unsigned int i;
1854
1855 /* NULL clocks should be nops, so return success if either is NULL. */
1856 if (!clk || !parent)
1857 return true;
1858
1859 core = clk->core;
1860 parent_core = parent->core;
1861
1862 /* Optimize for the case where the parent is already the parent. */
1863 if (core->parent == parent_core)
1864 return true;
1865
1866 for (i = 0; i < core->num_parents; i++)
1867 if (strcmp(core->parent_names[i], parent_core->name) == 0)
1868 return true;
1869
1870 return false;
1871 }
1872 EXPORT_SYMBOL_GPL(clk_has_parent);
1873
1874 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1875 {
1876 int ret = 0;
1877 int p_index = 0;
1878 unsigned long p_rate = 0;
1879
1880 if (!core)
1881 return 0;
1882
1883 /* prevent racing with updates to the clock topology */
1884 clk_prepare_lock();
1885
1886 if (core->parent == parent)
1887 goto out;
1888
1889 /* verify ops for for multi-parent clks */
1890 if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1891 ret = -ENOSYS;
1892 goto out;
1893 }
1894
1895 /* check that we are allowed to re-parent if the clock is in use */
1896 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1897 ret = -EBUSY;
1898 goto out;
1899 }
1900
1901 /* try finding the new parent index */
1902 if (parent) {
1903 p_index = clk_fetch_parent_index(core, parent);
1904 if (p_index < 0) {
1905 pr_debug("%s: clk %s can not be parent of clk %s\n",
1906 __func__, parent->name, core->name);
1907 ret = p_index;
1908 goto out;
1909 }
1910 p_rate = parent->rate;
1911 }
1912
1913 ret = clk_pm_runtime_get(core);
1914 if (ret)
1915 goto out;
1916
1917 /* propagate PRE_RATE_CHANGE notifications */
1918 ret = __clk_speculate_rates(core, p_rate);
1919
1920 /* abort if a driver objects */
1921 if (ret & NOTIFY_STOP_MASK)
1922 goto runtime_put;
1923
1924 /* do the re-parent */
1925 ret = __clk_set_parent(core, parent, p_index);
1926
1927 /* propagate rate an accuracy recalculation accordingly */
1928 if (ret) {
1929 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
1930 } else {
1931 __clk_recalc_rates(core, POST_RATE_CHANGE);
1932 __clk_recalc_accuracies(core);
1933 }
1934
1935 runtime_put:
1936 clk_pm_runtime_put(core);
1937 out:
1938 clk_prepare_unlock();
1939
1940 return ret;
1941 }
1942
1943 /**
1944 * clk_set_parent - switch the parent of a mux clk
1945 * @clk: the mux clk whose input we are switching
1946 * @parent: the new input to clk
1947 *
1948 * Re-parent clk to use parent as its new input source. If clk is in
1949 * prepared state, the clk will get enabled for the duration of this call. If
1950 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1951 * that, the reparenting is glitchy in hardware, etc), use the
1952 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1953 *
1954 * After successfully changing clk's parent clk_set_parent will update the
1955 * clk topology, sysfs topology and propagate rate recalculation via
1956 * __clk_recalc_rates.
1957 *
1958 * Returns 0 on success, -EERROR otherwise.
1959 */
1960 int clk_set_parent(struct clk *clk, struct clk *parent)
1961 {
1962 if (!clk)
1963 return 0;
1964
1965 return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1966 }
1967 EXPORT_SYMBOL_GPL(clk_set_parent);
1968
1969 /**
1970 * clk_set_phase - adjust the phase shift of a clock signal
1971 * @clk: clock signal source
1972 * @degrees: number of degrees the signal is shifted
1973 *
1974 * Shifts the phase of a clock signal by the specified
1975 * degrees. Returns 0 on success, -EERROR otherwise.
1976 *
1977 * This function makes no distinction about the input or reference
1978 * signal that we adjust the clock signal phase against. For example
1979 * phase locked-loop clock signal generators we may shift phase with
1980 * respect to feedback clock signal input, but for other cases the
1981 * clock phase may be shifted with respect to some other, unspecified
1982 * signal.
1983 *
1984 * Additionally the concept of phase shift does not propagate through
1985 * the clock tree hierarchy, which sets it apart from clock rates and
1986 * clock accuracy. A parent clock phase attribute does not have an
1987 * impact on the phase attribute of a child clock.
1988 */
1989 int clk_set_phase(struct clk *clk, int degrees)
1990 {
1991 int ret = -EINVAL;
1992
1993 if (!clk)
1994 return 0;
1995
1996 /* sanity check degrees */
1997 degrees %= 360;
1998 if (degrees < 0)
1999 degrees += 360;
2000
2001 clk_prepare_lock();
2002
2003 trace_clk_set_phase(clk->core, degrees);
2004
2005 if (clk->core->ops->set_phase)
2006 ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2007
2008 trace_clk_set_phase_complete(clk->core, degrees);
2009
2010 if (!ret)
2011 clk->core->phase = degrees;
2012
2013 clk_prepare_unlock();
2014
2015 return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(clk_set_phase);
2018
2019 static int clk_core_get_phase(struct clk_core *core)
2020 {
2021 int ret;
2022
2023 clk_prepare_lock();
2024 ret = core->phase;
2025 clk_prepare_unlock();
2026
2027 return ret;
2028 }
2029
2030 /**
2031 * clk_get_phase - return the phase shift of a clock signal
2032 * @clk: clock signal source
2033 *
2034 * Returns the phase shift of a clock node in degrees, otherwise returns
2035 * -EERROR.
2036 */
2037 int clk_get_phase(struct clk *clk)
2038 {
2039 if (!clk)
2040 return 0;
2041
2042 return clk_core_get_phase(clk->core);
2043 }
2044 EXPORT_SYMBOL_GPL(clk_get_phase);
2045
2046 /**
2047 * clk_is_match - check if two clk's point to the same hardware clock
2048 * @p: clk compared against q
2049 * @q: clk compared against p
2050 *
2051 * Returns true if the two struct clk pointers both point to the same hardware
2052 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2053 * share the same struct clk_core object.
2054 *
2055 * Returns false otherwise. Note that two NULL clks are treated as matching.
2056 */
2057 bool clk_is_match(const struct clk *p, const struct clk *q)
2058 {
2059 /* trivial case: identical struct clk's or both NULL */
2060 if (p == q)
2061 return true;
2062
2063 /* true if clk->core pointers match. Avoid dereferencing garbage */
2064 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2065 if (p->core == q->core)
2066 return true;
2067
2068 return false;
2069 }
2070 EXPORT_SYMBOL_GPL(clk_is_match);
2071
2072 /*** debugfs support ***/
2073
2074 #ifdef CONFIG_DEBUG_FS
2075 #include <linux/debugfs.h>
2076
2077 static struct dentry *rootdir;
2078 static int inited = 0;
2079 static DEFINE_MUTEX(clk_debug_lock);
2080 static HLIST_HEAD(clk_debug_list);
2081
2082 static struct hlist_head *all_lists[] = {
2083 &clk_root_list,
2084 &clk_orphan_list,
2085 NULL,
2086 };
2087
2088 static struct hlist_head *orphan_list[] = {
2089 &clk_orphan_list,
2090 NULL,
2091 };
2092
2093 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2094 int level)
2095 {
2096 if (!c)
2097 return;
2098
2099 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2100 level * 3 + 1, "",
2101 30 - level * 3, c->name,
2102 c->enable_count, c->prepare_count, clk_core_get_rate(c),
2103 clk_core_get_accuracy(c), clk_core_get_phase(c));
2104 }
2105
2106 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2107 int level)
2108 {
2109 struct clk_core *child;
2110
2111 if (!c)
2112 return;
2113
2114 clk_summary_show_one(s, c, level);
2115
2116 hlist_for_each_entry(child, &c->children, child_node)
2117 clk_summary_show_subtree(s, child, level + 1);
2118 }
2119
2120 static int clk_summary_show(struct seq_file *s, void *data)
2121 {
2122 struct clk_core *c;
2123 struct hlist_head **lists = (struct hlist_head **)s->private;
2124
2125 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n");
2126 seq_puts(s, "----------------------------------------------------------------------------------------\n");
2127
2128 clk_prepare_lock();
2129
2130 for (; *lists; lists++)
2131 hlist_for_each_entry(c, *lists, child_node)
2132 clk_summary_show_subtree(s, c, 0);
2133
2134 clk_prepare_unlock();
2135
2136 return 0;
2137 }
2138
2139
2140 static int clk_summary_open(struct inode *inode, struct file *file)
2141 {
2142 return single_open(file, clk_summary_show, inode->i_private);
2143 }
2144
2145 static const struct file_operations clk_summary_fops = {
2146 .open = clk_summary_open,
2147 .read = seq_read,
2148 .llseek = seq_lseek,
2149 .release = single_release,
2150 };
2151
2152 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2153 {
2154 if (!c)
2155 return;
2156
2157 /* This should be JSON format, i.e. elements separated with a comma */
2158 seq_printf(s, "\"%s\": { ", c->name);
2159 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2160 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2161 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2162 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2163 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2164 }
2165
2166 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2167 {
2168 struct clk_core *child;
2169
2170 if (!c)
2171 return;
2172
2173 clk_dump_one(s, c, level);
2174
2175 hlist_for_each_entry(child, &c->children, child_node) {
2176 seq_putc(s, ',');
2177 clk_dump_subtree(s, child, level + 1);
2178 }
2179
2180 seq_putc(s, '}');
2181 }
2182
2183 static int clk_dump(struct seq_file *s, void *data)
2184 {
2185 struct clk_core *c;
2186 bool first_node = true;
2187 struct hlist_head **lists = (struct hlist_head **)s->private;
2188
2189 seq_putc(s, '{');
2190 clk_prepare_lock();
2191
2192 for (; *lists; lists++) {
2193 hlist_for_each_entry(c, *lists, child_node) {
2194 if (!first_node)
2195 seq_putc(s, ',');
2196 first_node = false;
2197 clk_dump_subtree(s, c, 0);
2198 }
2199 }
2200
2201 clk_prepare_unlock();
2202
2203 seq_puts(s, "}\n");
2204 return 0;
2205 }
2206
2207
2208 static int clk_dump_open(struct inode *inode, struct file *file)
2209 {
2210 return single_open(file, clk_dump, inode->i_private);
2211 }
2212
2213 static const struct file_operations clk_dump_fops = {
2214 .open = clk_dump_open,
2215 .read = seq_read,
2216 .llseek = seq_lseek,
2217 .release = single_release,
2218 };
2219
2220 static int possible_parents_dump(struct seq_file *s, void *data)
2221 {
2222 struct clk_core *core = s->private;
2223 int i;
2224
2225 for (i = 0; i < core->num_parents - 1; i++)
2226 seq_printf(s, "%s ", core->parent_names[i]);
2227
2228 seq_printf(s, "%s\n", core->parent_names[i]);
2229
2230 return 0;
2231 }
2232
2233 static int possible_parents_open(struct inode *inode, struct file *file)
2234 {
2235 return single_open(file, possible_parents_dump, inode->i_private);
2236 }
2237
2238 static const struct file_operations possible_parents_fops = {
2239 .open = possible_parents_open,
2240 .read = seq_read,
2241 .llseek = seq_lseek,
2242 .release = single_release,
2243 };
2244
2245 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2246 {
2247 struct dentry *d;
2248 int ret = -ENOMEM;
2249
2250 if (!core || !pdentry) {
2251 ret = -EINVAL;
2252 goto out;
2253 }
2254
2255 d = debugfs_create_dir(core->name, pdentry);
2256 if (!d)
2257 goto out;
2258
2259 core->dentry = d;
2260
2261 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2262 (u32 *)&core->rate);
2263 if (!d)
2264 goto err_out;
2265
2266 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2267 (u32 *)&core->accuracy);
2268 if (!d)
2269 goto err_out;
2270
2271 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2272 (u32 *)&core->phase);
2273 if (!d)
2274 goto err_out;
2275
2276 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2277 (u32 *)&core->flags);
2278 if (!d)
2279 goto err_out;
2280
2281 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2282 (u32 *)&core->prepare_count);
2283 if (!d)
2284 goto err_out;
2285
2286 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2287 (u32 *)&core->enable_count);
2288 if (!d)
2289 goto err_out;
2290
2291 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2292 (u32 *)&core->notifier_count);
2293 if (!d)
2294 goto err_out;
2295
2296 if (core->num_parents > 1) {
2297 d = debugfs_create_file("clk_possible_parents", S_IRUGO,
2298 core->dentry, core, &possible_parents_fops);
2299 if (!d)
2300 goto err_out;
2301 }
2302
2303 if (core->ops->debug_init) {
2304 ret = core->ops->debug_init(core->hw, core->dentry);
2305 if (ret)
2306 goto err_out;
2307 }
2308
2309 ret = 0;
2310 goto out;
2311
2312 err_out:
2313 debugfs_remove_recursive(core->dentry);
2314 core->dentry = NULL;
2315 out:
2316 return ret;
2317 }
2318
2319 /**
2320 * clk_debug_register - add a clk node to the debugfs clk directory
2321 * @core: the clk being added to the debugfs clk directory
2322 *
2323 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2324 * initialized. Otherwise it bails out early since the debugfs clk directory
2325 * will be created lazily by clk_debug_init as part of a late_initcall.
2326 */
2327 static int clk_debug_register(struct clk_core *core)
2328 {
2329 int ret = 0;
2330
2331 mutex_lock(&clk_debug_lock);
2332 hlist_add_head(&core->debug_node, &clk_debug_list);
2333
2334 if (!inited)
2335 goto unlock;
2336
2337 ret = clk_debug_create_one(core, rootdir);
2338 unlock:
2339 mutex_unlock(&clk_debug_lock);
2340
2341 return ret;
2342 }
2343
2344 /**
2345 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2346 * @core: the clk being removed from the debugfs clk directory
2347 *
2348 * Dynamically removes a clk and all its child nodes from the
2349 * debugfs clk directory if clk->dentry points to debugfs created by
2350 * clk_debug_register in __clk_core_init.
2351 */
2352 static void clk_debug_unregister(struct clk_core *core)
2353 {
2354 mutex_lock(&clk_debug_lock);
2355 hlist_del_init(&core->debug_node);
2356 debugfs_remove_recursive(core->dentry);
2357 core->dentry = NULL;
2358 mutex_unlock(&clk_debug_lock);
2359 }
2360
2361 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2362 void *data, const struct file_operations *fops)
2363 {
2364 struct dentry *d = NULL;
2365
2366 if (hw->core->dentry)
2367 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2368 fops);
2369
2370 return d;
2371 }
2372 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2373
2374 /**
2375 * clk_debug_init - lazily populate the debugfs clk directory
2376 *
2377 * clks are often initialized very early during boot before memory can be
2378 * dynamically allocated and well before debugfs is setup. This function
2379 * populates the debugfs clk directory once at boot-time when we know that
2380 * debugfs is setup. It should only be called once at boot-time, all other clks
2381 * added dynamically will be done so with clk_debug_register.
2382 */
2383 static int __init clk_debug_init(void)
2384 {
2385 struct clk_core *core;
2386 struct dentry *d;
2387
2388 rootdir = debugfs_create_dir("clk", NULL);
2389
2390 if (!rootdir)
2391 return -ENOMEM;
2392
2393 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2394 &clk_summary_fops);
2395 if (!d)
2396 return -ENOMEM;
2397
2398 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2399 &clk_dump_fops);
2400 if (!d)
2401 return -ENOMEM;
2402
2403 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2404 &orphan_list, &clk_summary_fops);
2405 if (!d)
2406 return -ENOMEM;
2407
2408 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2409 &orphan_list, &clk_dump_fops);
2410 if (!d)
2411 return -ENOMEM;
2412
2413 mutex_lock(&clk_debug_lock);
2414 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2415 clk_debug_create_one(core, rootdir);
2416
2417 inited = 1;
2418 mutex_unlock(&clk_debug_lock);
2419
2420 return 0;
2421 }
2422 late_initcall(clk_debug_init);
2423 #else
2424 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2425 static inline void clk_debug_reparent(struct clk_core *core,
2426 struct clk_core *new_parent)
2427 {
2428 }
2429 static inline void clk_debug_unregister(struct clk_core *core)
2430 {
2431 }
2432 #endif
2433
2434 /**
2435 * __clk_core_init - initialize the data structures in a struct clk_core
2436 * @core: clk_core being initialized
2437 *
2438 * Initializes the lists in struct clk_core, queries the hardware for the
2439 * parent and rate and sets them both.
2440 */
2441 static int __clk_core_init(struct clk_core *core)
2442 {
2443 int i, ret;
2444 struct clk_core *orphan;
2445 struct hlist_node *tmp2;
2446 unsigned long rate;
2447
2448 if (!core)
2449 return -EINVAL;
2450
2451 clk_prepare_lock();
2452
2453 ret = clk_pm_runtime_get(core);
2454 if (ret)
2455 goto unlock;
2456
2457 /* check to see if a clock with this name is already registered */
2458 if (clk_core_lookup(core->name)) {
2459 pr_debug("%s: clk %s already initialized\n",
2460 __func__, core->name);
2461 ret = -EEXIST;
2462 goto out;
2463 }
2464
2465 /* check that clk_ops are sane. See Documentation/clk.txt */
2466 if (core->ops->set_rate &&
2467 !((core->ops->round_rate || core->ops->determine_rate) &&
2468 core->ops->recalc_rate)) {
2469 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2470 __func__, core->name);
2471 ret = -EINVAL;
2472 goto out;
2473 }
2474
2475 if (core->ops->set_parent && !core->ops->get_parent) {
2476 pr_err("%s: %s must implement .get_parent & .set_parent\n",
2477 __func__, core->name);
2478 ret = -EINVAL;
2479 goto out;
2480 }
2481
2482 if (core->num_parents > 1 && !core->ops->get_parent) {
2483 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2484 __func__, core->name);
2485 ret = -EINVAL;
2486 goto out;
2487 }
2488
2489 if (core->ops->set_rate_and_parent &&
2490 !(core->ops->set_parent && core->ops->set_rate)) {
2491 pr_err("%s: %s must implement .set_parent & .set_rate\n",
2492 __func__, core->name);
2493 ret = -EINVAL;
2494 goto out;
2495 }
2496
2497 /* throw a WARN if any entries in parent_names are NULL */
2498 for (i = 0; i < core->num_parents; i++)
2499 WARN(!core->parent_names[i],
2500 "%s: invalid NULL in %s's .parent_names\n",
2501 __func__, core->name);
2502
2503 core->parent = __clk_init_parent(core);
2504
2505 /*
2506 * Populate core->parent if parent has already been clk_core_init'd. If
2507 * parent has not yet been clk_core_init'd then place clk in the orphan
2508 * list. If clk doesn't have any parents then place it in the root
2509 * clk list.
2510 *
2511 * Every time a new clk is clk_init'd then we walk the list of orphan
2512 * clocks and re-parent any that are children of the clock currently
2513 * being clk_init'd.
2514 */
2515 if (core->parent) {
2516 hlist_add_head(&core->child_node,
2517 &core->parent->children);
2518 core->orphan = core->parent->orphan;
2519 } else if (!core->num_parents) {
2520 hlist_add_head(&core->child_node, &clk_root_list);
2521 core->orphan = false;
2522 } else {
2523 hlist_add_head(&core->child_node, &clk_orphan_list);
2524 core->orphan = true;
2525 }
2526
2527 /*
2528 * Set clk's accuracy. The preferred method is to use
2529 * .recalc_accuracy. For simple clocks and lazy developers the default
2530 * fallback is to use the parent's accuracy. If a clock doesn't have a
2531 * parent (or is orphaned) then accuracy is set to zero (perfect
2532 * clock).
2533 */
2534 if (core->ops->recalc_accuracy)
2535 core->accuracy = core->ops->recalc_accuracy(core->hw,
2536 __clk_get_accuracy(core->parent));
2537 else if (core->parent)
2538 core->accuracy = core->parent->accuracy;
2539 else
2540 core->accuracy = 0;
2541
2542 /*
2543 * Set clk's phase.
2544 * Since a phase is by definition relative to its parent, just
2545 * query the current clock phase, or just assume it's in phase.
2546 */
2547 if (core->ops->get_phase)
2548 core->phase = core->ops->get_phase(core->hw);
2549 else
2550 core->phase = 0;
2551
2552 /*
2553 * Set clk's rate. The preferred method is to use .recalc_rate. For
2554 * simple clocks and lazy developers the default fallback is to use the
2555 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2556 * then rate is set to zero.
2557 */
2558 if (core->ops->recalc_rate)
2559 rate = core->ops->recalc_rate(core->hw,
2560 clk_core_get_rate_nolock(core->parent));
2561 else if (core->parent)
2562 rate = core->parent->rate;
2563 else
2564 rate = 0;
2565 core->rate = core->req_rate = rate;
2566
2567 /*
2568 * walk the list of orphan clocks and reparent any that newly finds a
2569 * parent.
2570 */
2571 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2572 struct clk_core *parent = __clk_init_parent(orphan);
2573
2574 /*
2575 * we could call __clk_set_parent, but that would result in a
2576 * redundant call to the .set_rate op, if it exists
2577 */
2578 if (parent) {
2579 __clk_set_parent_before(orphan, parent);
2580 __clk_set_parent_after(orphan, parent, NULL);
2581 __clk_recalc_accuracies(orphan);
2582 __clk_recalc_rates(orphan, 0);
2583 }
2584 }
2585
2586 /*
2587 * optional platform-specific magic
2588 *
2589 * The .init callback is not used by any of the basic clock types, but
2590 * exists for weird hardware that must perform initialization magic.
2591 * Please consider other ways of solving initialization problems before
2592 * using this callback, as its use is discouraged.
2593 */
2594 if (core->ops->init)
2595 core->ops->init(core->hw);
2596
2597 if (core->flags & CLK_IS_CRITICAL) {
2598 unsigned long flags;
2599
2600 clk_core_prepare(core);
2601
2602 flags = clk_enable_lock();
2603 clk_core_enable(core);
2604 clk_enable_unlock(flags);
2605 }
2606
2607 kref_init(&core->ref);
2608 out:
2609 clk_pm_runtime_put(core);
2610 unlock:
2611 clk_prepare_unlock();
2612
2613 if (!ret)
2614 clk_debug_register(core);
2615
2616 return ret;
2617 }
2618
2619 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2620 const char *con_id)
2621 {
2622 struct clk *clk;
2623
2624 /* This is to allow this function to be chained to others */
2625 if (IS_ERR_OR_NULL(hw))
2626 return ERR_CAST(hw);
2627
2628 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2629 if (!clk)
2630 return ERR_PTR(-ENOMEM);
2631
2632 clk->core = hw->core;
2633 clk->dev_id = dev_id;
2634 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2635 clk->max_rate = ULONG_MAX;
2636
2637 clk_prepare_lock();
2638 hlist_add_head(&clk->clks_node, &hw->core->clks);
2639 clk_prepare_unlock();
2640
2641 return clk;
2642 }
2643
2644 void __clk_free_clk(struct clk *clk)
2645 {
2646 clk_prepare_lock();
2647 hlist_del(&clk->clks_node);
2648 clk_prepare_unlock();
2649
2650 kfree_const(clk->con_id);
2651 kfree(clk);
2652 }
2653
2654 /**
2655 * clk_register - allocate a new clock, register it and return an opaque cookie
2656 * @dev: device that is registering this clock
2657 * @hw: link to hardware-specific clock data
2658 *
2659 * clk_register is the primary interface for populating the clock tree with new
2660 * clock nodes. It returns a pointer to the newly allocated struct clk which
2661 * cannot be dereferenced by driver code but may be used in conjunction with the
2662 * rest of the clock API. In the event of an error clk_register will return an
2663 * error code; drivers must test for an error code after calling clk_register.
2664 */
2665 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2666 {
2667 int i, ret;
2668 struct clk_core *core;
2669
2670 core = kzalloc(sizeof(*core), GFP_KERNEL);
2671 if (!core) {
2672 ret = -ENOMEM;
2673 goto fail_out;
2674 }
2675
2676 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2677 if (!core->name) {
2678 ret = -ENOMEM;
2679 goto fail_name;
2680 }
2681 core->ops = hw->init->ops;
2682 if (dev && pm_runtime_enabled(dev))
2683 core->dev = dev;
2684 if (dev && dev->driver)
2685 core->owner = dev->driver->owner;
2686 core->hw = hw;
2687 core->flags = hw->init->flags;
2688 core->num_parents = hw->init->num_parents;
2689 core->min_rate = 0;
2690 core->max_rate = ULONG_MAX;
2691 hw->core = core;
2692
2693 /* allocate local copy in case parent_names is __initdata */
2694 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2695 GFP_KERNEL);
2696
2697 if (!core->parent_names) {
2698 ret = -ENOMEM;
2699 goto fail_parent_names;
2700 }
2701
2702
2703 /* copy each string name in case parent_names is __initdata */
2704 for (i = 0; i < core->num_parents; i++) {
2705 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2706 GFP_KERNEL);
2707 if (!core->parent_names[i]) {
2708 ret = -ENOMEM;
2709 goto fail_parent_names_copy;
2710 }
2711 }
2712
2713 /* avoid unnecessary string look-ups of clk_core's possible parents. */
2714 core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2715 GFP_KERNEL);
2716 if (!core->parents) {
2717 ret = -ENOMEM;
2718 goto fail_parents;
2719 };
2720
2721 INIT_HLIST_HEAD(&core->clks);
2722
2723 hw->clk = __clk_create_clk(hw, NULL, NULL);
2724 if (IS_ERR(hw->clk)) {
2725 ret = PTR_ERR(hw->clk);
2726 goto fail_parents;
2727 }
2728
2729 ret = __clk_core_init(core);
2730 if (!ret)
2731 return hw->clk;
2732
2733 __clk_free_clk(hw->clk);
2734 hw->clk = NULL;
2735
2736 fail_parents:
2737 kfree(core->parents);
2738 fail_parent_names_copy:
2739 while (--i >= 0)
2740 kfree_const(core->parent_names[i]);
2741 kfree(core->parent_names);
2742 fail_parent_names:
2743 kfree_const(core->name);
2744 fail_name:
2745 kfree(core);
2746 fail_out:
2747 return ERR_PTR(ret);
2748 }
2749 EXPORT_SYMBOL_GPL(clk_register);
2750
2751 /**
2752 * clk_hw_register - register a clk_hw and return an error code
2753 * @dev: device that is registering this clock
2754 * @hw: link to hardware-specific clock data
2755 *
2756 * clk_hw_register is the primary interface for populating the clock tree with
2757 * new clock nodes. It returns an integer equal to zero indicating success or
2758 * less than zero indicating failure. Drivers must test for an error code after
2759 * calling clk_hw_register().
2760 */
2761 int clk_hw_register(struct device *dev, struct clk_hw *hw)
2762 {
2763 return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2764 }
2765 EXPORT_SYMBOL_GPL(clk_hw_register);
2766
2767 /* Free memory allocated for a clock. */
2768 static void __clk_release(struct kref *ref)
2769 {
2770 struct clk_core *core = container_of(ref, struct clk_core, ref);
2771 int i = core->num_parents;
2772
2773 lockdep_assert_held(&prepare_lock);
2774
2775 kfree(core->parents);
2776 while (--i >= 0)
2777 kfree_const(core->parent_names[i]);
2778
2779 kfree(core->parent_names);
2780 kfree_const(core->name);
2781 kfree(core);
2782 }
2783
2784 /*
2785 * Empty clk_ops for unregistered clocks. These are used temporarily
2786 * after clk_unregister() was called on a clock and until last clock
2787 * consumer calls clk_put() and the struct clk object is freed.
2788 */
2789 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2790 {
2791 return -ENXIO;
2792 }
2793
2794 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2795 {
2796 WARN_ON_ONCE(1);
2797 }
2798
2799 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2800 unsigned long parent_rate)
2801 {
2802 return -ENXIO;
2803 }
2804
2805 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2806 {
2807 return -ENXIO;
2808 }
2809
2810 static const struct clk_ops clk_nodrv_ops = {
2811 .enable = clk_nodrv_prepare_enable,
2812 .disable = clk_nodrv_disable_unprepare,
2813 .prepare = clk_nodrv_prepare_enable,
2814 .unprepare = clk_nodrv_disable_unprepare,
2815 .set_rate = clk_nodrv_set_rate,
2816 .set_parent = clk_nodrv_set_parent,
2817 };
2818
2819 /**
2820 * clk_unregister - unregister a currently registered clock
2821 * @clk: clock to unregister
2822 */
2823 void clk_unregister(struct clk *clk)
2824 {
2825 unsigned long flags;
2826
2827 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2828 return;
2829
2830 clk_debug_unregister(clk->core);
2831
2832 clk_prepare_lock();
2833
2834 if (clk->core->ops == &clk_nodrv_ops) {
2835 pr_err("%s: unregistered clock: %s\n", __func__,
2836 clk->core->name);
2837 goto unlock;
2838 }
2839 /*
2840 * Assign empty clock ops for consumers that might still hold
2841 * a reference to this clock.
2842 */
2843 flags = clk_enable_lock();
2844 clk->core->ops = &clk_nodrv_ops;
2845 clk_enable_unlock(flags);
2846
2847 if (!hlist_empty(&clk->core->children)) {
2848 struct clk_core *child;
2849 struct hlist_node *t;
2850
2851 /* Reparent all children to the orphan list. */
2852 hlist_for_each_entry_safe(child, t, &clk->core->children,
2853 child_node)
2854 clk_core_set_parent(child, NULL);
2855 }
2856
2857 hlist_del_init(&clk->core->child_node);
2858
2859 if (clk->core->prepare_count)
2860 pr_warn("%s: unregistering prepared clock: %s\n",
2861 __func__, clk->core->name);
2862 kref_put(&clk->core->ref, __clk_release);
2863 unlock:
2864 clk_prepare_unlock();
2865 }
2866 EXPORT_SYMBOL_GPL(clk_unregister);
2867
2868 /**
2869 * clk_hw_unregister - unregister a currently registered clk_hw
2870 * @hw: hardware-specific clock data to unregister
2871 */
2872 void clk_hw_unregister(struct clk_hw *hw)
2873 {
2874 clk_unregister(hw->clk);
2875 }
2876 EXPORT_SYMBOL_GPL(clk_hw_unregister);
2877
2878 static void devm_clk_release(struct device *dev, void *res)
2879 {
2880 clk_unregister(*(struct clk **)res);
2881 }
2882
2883 static void devm_clk_hw_release(struct device *dev, void *res)
2884 {
2885 clk_hw_unregister(*(struct clk_hw **)res);
2886 }
2887
2888 /**
2889 * devm_clk_register - resource managed clk_register()
2890 * @dev: device that is registering this clock
2891 * @hw: link to hardware-specific clock data
2892 *
2893 * Managed clk_register(). Clocks returned from this function are
2894 * automatically clk_unregister()ed on driver detach. See clk_register() for
2895 * more information.
2896 */
2897 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2898 {
2899 struct clk *clk;
2900 struct clk **clkp;
2901
2902 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2903 if (!clkp)
2904 return ERR_PTR(-ENOMEM);
2905
2906 clk = clk_register(dev, hw);
2907 if (!IS_ERR(clk)) {
2908 *clkp = clk;
2909 devres_add(dev, clkp);
2910 } else {
2911 devres_free(clkp);
2912 }
2913
2914 return clk;
2915 }
2916 EXPORT_SYMBOL_GPL(devm_clk_register);
2917
2918 /**
2919 * devm_clk_hw_register - resource managed clk_hw_register()
2920 * @dev: device that is registering this clock
2921 * @hw: link to hardware-specific clock data
2922 *
2923 * Managed clk_hw_register(). Clocks registered by this function are
2924 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2925 * for more information.
2926 */
2927 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2928 {
2929 struct clk_hw **hwp;
2930 int ret;
2931
2932 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2933 if (!hwp)
2934 return -ENOMEM;
2935
2936 ret = clk_hw_register(dev, hw);
2937 if (!ret) {
2938 *hwp = hw;
2939 devres_add(dev, hwp);
2940 } else {
2941 devres_free(hwp);
2942 }
2943
2944 return ret;
2945 }
2946 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2947
2948 static int devm_clk_match(struct device *dev, void *res, void *data)
2949 {
2950 struct clk *c = res;
2951 if (WARN_ON(!c))
2952 return 0;
2953 return c == data;
2954 }
2955
2956 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2957 {
2958 struct clk_hw *hw = res;
2959
2960 if (WARN_ON(!hw))
2961 return 0;
2962 return hw == data;
2963 }
2964
2965 /**
2966 * devm_clk_unregister - resource managed clk_unregister()
2967 * @clk: clock to unregister
2968 *
2969 * Deallocate a clock allocated with devm_clk_register(). Normally
2970 * this function will not need to be called and the resource management
2971 * code will ensure that the resource is freed.
2972 */
2973 void devm_clk_unregister(struct device *dev, struct clk *clk)
2974 {
2975 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2976 }
2977 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2978
2979 /**
2980 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2981 * @dev: device that is unregistering the hardware-specific clock data
2982 * @hw: link to hardware-specific clock data
2983 *
2984 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2985 * this function will not need to be called and the resource management
2986 * code will ensure that the resource is freed.
2987 */
2988 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2989 {
2990 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2991 hw));
2992 }
2993 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
2994
2995 /*
2996 * clkdev helpers
2997 */
2998 int __clk_get(struct clk *clk)
2999 {
3000 struct clk_core *core = !clk ? NULL : clk->core;
3001
3002 if (core) {
3003 if (!try_module_get(core->owner))
3004 return 0;
3005
3006 kref_get(&core->ref);
3007 }
3008 return 1;
3009 }
3010
3011 void __clk_put(struct clk *clk)
3012 {
3013 struct module *owner;
3014
3015 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3016 return;
3017
3018 clk_prepare_lock();
3019
3020 hlist_del(&clk->clks_node);
3021 if (clk->min_rate > clk->core->req_rate ||
3022 clk->max_rate < clk->core->req_rate)
3023 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3024
3025 owner = clk->core->owner;
3026 kref_put(&clk->core->ref, __clk_release);
3027
3028 clk_prepare_unlock();
3029
3030 module_put(owner);
3031
3032 kfree(clk);
3033 }
3034
3035 /*** clk rate change notifiers ***/
3036
3037 /**
3038 * clk_notifier_register - add a clk rate change notifier
3039 * @clk: struct clk * to watch
3040 * @nb: struct notifier_block * with callback info
3041 *
3042 * Request notification when clk's rate changes. This uses an SRCU
3043 * notifier because we want it to block and notifier unregistrations are
3044 * uncommon. The callbacks associated with the notifier must not
3045 * re-enter into the clk framework by calling any top-level clk APIs;
3046 * this will cause a nested prepare_lock mutex.
3047 *
3048 * In all notification cases (pre, post and abort rate change) the original
3049 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3050 * and the new frequency is passed via struct clk_notifier_data.new_rate.
3051 *
3052 * clk_notifier_register() must be called from non-atomic context.
3053 * Returns -EINVAL if called with null arguments, -ENOMEM upon
3054 * allocation failure; otherwise, passes along the return value of
3055 * srcu_notifier_chain_register().
3056 */
3057 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3058 {
3059 struct clk_notifier *cn;
3060 int ret = -ENOMEM;
3061
3062 if (!clk || !nb)
3063 return -EINVAL;
3064
3065 clk_prepare_lock();
3066
3067 /* search the list of notifiers for this clk */
3068 list_for_each_entry(cn, &clk_notifier_list, node)
3069 if (cn->clk == clk)
3070 break;
3071
3072 /* if clk wasn't in the notifier list, allocate new clk_notifier */
3073 if (cn->clk != clk) {
3074 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3075 if (!cn)
3076 goto out;
3077
3078 cn->clk = clk;
3079 srcu_init_notifier_head(&cn->notifier_head);
3080
3081 list_add(&cn->node, &clk_notifier_list);
3082 }
3083
3084 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3085
3086 clk->core->notifier_count++;
3087
3088 out:
3089 clk_prepare_unlock();
3090
3091 return ret;
3092 }
3093 EXPORT_SYMBOL_GPL(clk_notifier_register);
3094
3095 /**
3096 * clk_notifier_unregister - remove a clk rate change notifier
3097 * @clk: struct clk *
3098 * @nb: struct notifier_block * with callback info
3099 *
3100 * Request no further notification for changes to 'clk' and frees memory
3101 * allocated in clk_notifier_register.
3102 *
3103 * Returns -EINVAL if called with null arguments; otherwise, passes
3104 * along the return value of srcu_notifier_chain_unregister().
3105 */
3106 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3107 {
3108 struct clk_notifier *cn = NULL;
3109 int ret = -EINVAL;
3110
3111 if (!clk || !nb)
3112 return -EINVAL;
3113
3114 clk_prepare_lock();
3115
3116 list_for_each_entry(cn, &clk_notifier_list, node)
3117 if (cn->clk == clk)
3118 break;
3119
3120 if (cn->clk == clk) {
3121 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3122
3123 clk->core->notifier_count--;
3124
3125 /* XXX the notifier code should handle this better */
3126 if (!cn->notifier_head.head) {
3127 srcu_cleanup_notifier_head(&cn->notifier_head);
3128 list_del(&cn->node);
3129 kfree(cn);
3130 }
3131
3132 } else {
3133 ret = -ENOENT;
3134 }
3135
3136 clk_prepare_unlock();
3137
3138 return ret;
3139 }
3140 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3141
3142 #ifdef CONFIG_OF
3143 /**
3144 * struct of_clk_provider - Clock provider registration structure
3145 * @link: Entry in global list of clock providers
3146 * @node: Pointer to device tree node of clock provider
3147 * @get: Get clock callback. Returns NULL or a struct clk for the
3148 * given clock specifier
3149 * @data: context pointer to be passed into @get callback
3150 */
3151 struct of_clk_provider {
3152 struct list_head link;
3153
3154 struct device_node *node;
3155 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3156 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3157 void *data;
3158 };
3159
3160 static const struct of_device_id __clk_of_table_sentinel
3161 __used __section(__clk_of_table_end);
3162
3163 static LIST_HEAD(of_clk_providers);
3164 static DEFINE_MUTEX(of_clk_mutex);
3165
3166 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3167 void *data)
3168 {
3169 return data;
3170 }
3171 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3172
3173 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3174 {
3175 return data;
3176 }
3177 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3178
3179 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3180 {
3181 struct clk_onecell_data *clk_data = data;
3182 unsigned int idx = clkspec->args[0];
3183
3184 if (idx >= clk_data->clk_num) {
3185 pr_err("%s: invalid clock index %u\n", __func__, idx);
3186 return ERR_PTR(-EINVAL);
3187 }
3188
3189 return clk_data->clks[idx];
3190 }
3191 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3192
3193 struct clk_hw *
3194 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3195 {
3196 struct clk_hw_onecell_data *hw_data = data;
3197 unsigned int idx = clkspec->args[0];
3198
3199 if (idx >= hw_data->num) {
3200 pr_err("%s: invalid index %u\n", __func__, idx);
3201 return ERR_PTR(-EINVAL);
3202 }
3203
3204 return hw_data->hws[idx];
3205 }
3206 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3207
3208 /**
3209 * of_clk_add_provider() - Register a clock provider for a node
3210 * @np: Device node pointer associated with clock provider
3211 * @clk_src_get: callback for decoding clock
3212 * @data: context pointer for @clk_src_get callback.
3213 */
3214 int of_clk_add_provider(struct device_node *np,
3215 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3216 void *data),
3217 void *data)
3218 {
3219 struct of_clk_provider *cp;
3220 int ret;
3221
3222 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3223 if (!cp)
3224 return -ENOMEM;
3225
3226 cp->node = of_node_get(np);
3227 cp->data = data;
3228 cp->get = clk_src_get;
3229
3230 mutex_lock(&of_clk_mutex);
3231 list_add(&cp->link, &of_clk_providers);
3232 mutex_unlock(&of_clk_mutex);
3233 pr_debug("Added clock from %pOF\n", np);
3234
3235 ret = of_clk_set_defaults(np, true);
3236 if (ret < 0)
3237 of_clk_del_provider(np);
3238
3239 return ret;
3240 }
3241 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3242
3243 /**
3244 * of_clk_add_hw_provider() - Register a clock provider for a node
3245 * @np: Device node pointer associated with clock provider
3246 * @get: callback for decoding clk_hw
3247 * @data: context pointer for @get callback.
3248 */
3249 int of_clk_add_hw_provider(struct device_node *np,
3250 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3251 void *data),
3252 void *data)
3253 {
3254 struct of_clk_provider *cp;
3255 int ret;
3256
3257 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3258 if (!cp)
3259 return -ENOMEM;
3260
3261 cp->node = of_node_get(np);
3262 cp->data = data;
3263 cp->get_hw = get;
3264
3265 mutex_lock(&of_clk_mutex);
3266 list_add(&cp->link, &of_clk_providers);
3267 mutex_unlock(&of_clk_mutex);
3268 pr_debug("Added clk_hw provider from %pOF\n", np);
3269
3270 ret = of_clk_set_defaults(np, true);
3271 if (ret < 0)
3272 of_clk_del_provider(np);
3273
3274 return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3277
3278 static void devm_of_clk_release_provider(struct device *dev, void *res)
3279 {
3280 of_clk_del_provider(*(struct device_node **)res);
3281 }
3282
3283 int devm_of_clk_add_hw_provider(struct device *dev,
3284 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3285 void *data),
3286 void *data)
3287 {
3288 struct device_node **ptr, *np;
3289 int ret;
3290
3291 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3292 GFP_KERNEL);
3293 if (!ptr)
3294 return -ENOMEM;
3295
3296 np = dev->of_node;
3297 ret = of_clk_add_hw_provider(np, get, data);
3298 if (!ret) {
3299 *ptr = np;
3300 devres_add(dev, ptr);
3301 } else {
3302 devres_free(ptr);
3303 }
3304
3305 return ret;
3306 }
3307 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3308
3309 /**
3310 * of_clk_del_provider() - Remove a previously registered clock provider
3311 * @np: Device node pointer associated with clock provider
3312 */
3313 void of_clk_del_provider(struct device_node *np)
3314 {
3315 struct of_clk_provider *cp;
3316
3317 mutex_lock(&of_clk_mutex);
3318 list_for_each_entry(cp, &of_clk_providers, link) {
3319 if (cp->node == np) {
3320 list_del(&cp->link);
3321 of_node_put(cp->node);
3322 kfree(cp);
3323 break;
3324 }
3325 }
3326 mutex_unlock(&of_clk_mutex);
3327 }
3328 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3329
3330 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3331 {
3332 struct device_node **np = res;
3333
3334 if (WARN_ON(!np || !*np))
3335 return 0;
3336
3337 return *np == data;
3338 }
3339
3340 void devm_of_clk_del_provider(struct device *dev)
3341 {
3342 int ret;
3343
3344 ret = devres_release(dev, devm_of_clk_release_provider,
3345 devm_clk_provider_match, dev->of_node);
3346
3347 WARN_ON(ret);
3348 }
3349 EXPORT_SYMBOL(devm_of_clk_del_provider);
3350
3351 static struct clk_hw *
3352 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3353 struct of_phandle_args *clkspec)
3354 {
3355 struct clk *clk;
3356
3357 if (provider->get_hw)
3358 return provider->get_hw(clkspec, provider->data);
3359
3360 clk = provider->get(clkspec, provider->data);
3361 if (IS_ERR(clk))
3362 return ERR_CAST(clk);
3363 return __clk_get_hw(clk);
3364 }
3365
3366 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3367 const char *dev_id, const char *con_id)
3368 {
3369 struct of_clk_provider *provider;
3370 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3371 struct clk_hw *hw;
3372
3373 if (!clkspec)
3374 return ERR_PTR(-EINVAL);
3375
3376 /* Check if we have such a provider in our array */
3377 mutex_lock(&of_clk_mutex);
3378 list_for_each_entry(provider, &of_clk_providers, link) {
3379 if (provider->node == clkspec->np) {
3380 hw = __of_clk_get_hw_from_provider(provider, clkspec);
3381 clk = __clk_create_clk(hw, dev_id, con_id);
3382 }
3383
3384 if (!IS_ERR(clk)) {
3385 if (!__clk_get(clk)) {
3386 __clk_free_clk(clk);
3387 clk = ERR_PTR(-ENOENT);
3388 }
3389
3390 break;
3391 }
3392 }
3393 mutex_unlock(&of_clk_mutex);
3394
3395 return clk;
3396 }
3397
3398 /**
3399 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3400 * @clkspec: pointer to a clock specifier data structure
3401 *
3402 * This function looks up a struct clk from the registered list of clock
3403 * providers, an input is a clock specifier data structure as returned
3404 * from the of_parse_phandle_with_args() function call.
3405 */
3406 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3407 {
3408 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3409 }
3410 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3411
3412 /**
3413 * of_clk_get_parent_count() - Count the number of clocks a device node has
3414 * @np: device node to count
3415 *
3416 * Returns: The number of clocks that are possible parents of this node
3417 */
3418 unsigned int of_clk_get_parent_count(struct device_node *np)
3419 {
3420 int count;
3421
3422 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3423 if (count < 0)
3424 return 0;
3425
3426 return count;
3427 }
3428 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3429
3430 const char *of_clk_get_parent_name(struct device_node *np, int index)
3431 {
3432 struct of_phandle_args clkspec;
3433 struct property *prop;
3434 const char *clk_name;
3435 const __be32 *vp;
3436 u32 pv;
3437 int rc;
3438 int count;
3439 struct clk *clk;
3440
3441 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3442 &clkspec);
3443 if (rc)
3444 return NULL;
3445
3446 index = clkspec.args_count ? clkspec.args[0] : 0;
3447 count = 0;
3448
3449 /* if there is an indices property, use it to transfer the index
3450 * specified into an array offset for the clock-output-names property.
3451 */
3452 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3453 if (index == pv) {
3454 index = count;
3455 break;
3456 }
3457 count++;
3458 }
3459 /* We went off the end of 'clock-indices' without finding it */
3460 if (prop && !vp)
3461 return NULL;
3462
3463 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3464 index,
3465 &clk_name) < 0) {
3466 /*
3467 * Best effort to get the name if the clock has been
3468 * registered with the framework. If the clock isn't
3469 * registered, we return the node name as the name of
3470 * the clock as long as #clock-cells = 0.
3471 */
3472 clk = of_clk_get_from_provider(&clkspec);
3473 if (IS_ERR(clk)) {
3474 if (clkspec.args_count == 0)
3475 clk_name = clkspec.np->name;
3476 else
3477 clk_name = NULL;
3478 } else {
3479 clk_name = __clk_get_name(clk);
3480 clk_put(clk);
3481 }
3482 }
3483
3484
3485 of_node_put(clkspec.np);
3486 return clk_name;
3487 }
3488 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3489
3490 /**
3491 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3492 * number of parents
3493 * @np: Device node pointer associated with clock provider
3494 * @parents: pointer to char array that hold the parents' names
3495 * @size: size of the @parents array
3496 *
3497 * Return: number of parents for the clock node.
3498 */
3499 int of_clk_parent_fill(struct device_node *np, const char **parents,
3500 unsigned int size)
3501 {
3502 unsigned int i = 0;
3503
3504 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3505 i++;
3506
3507 return i;
3508 }
3509 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3510
3511 struct clock_provider {
3512 of_clk_init_cb_t clk_init_cb;
3513 struct device_node *np;
3514 struct list_head node;
3515 };
3516
3517 /*
3518 * This function looks for a parent clock. If there is one, then it
3519 * checks that the provider for this parent clock was initialized, in
3520 * this case the parent clock will be ready.
3521 */
3522 static int parent_ready(struct device_node *np)
3523 {
3524 int i = 0;
3525
3526 while (true) {
3527 struct clk *clk = of_clk_get(np, i);
3528
3529 /* this parent is ready we can check the next one */
3530 if (!IS_ERR(clk)) {
3531 clk_put(clk);
3532 i++;
3533 continue;
3534 }
3535
3536 /* at least one parent is not ready, we exit now */
3537 if (PTR_ERR(clk) == -EPROBE_DEFER)
3538 return 0;
3539
3540 /*
3541 * Here we make assumption that the device tree is
3542 * written correctly. So an error means that there is
3543 * no more parent. As we didn't exit yet, then the
3544 * previous parent are ready. If there is no clock
3545 * parent, no need to wait for them, then we can
3546 * consider their absence as being ready
3547 */
3548 return 1;
3549 }
3550 }
3551
3552 /**
3553 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3554 * @np: Device node pointer associated with clock provider
3555 * @index: clock index
3556 * @flags: pointer to clk_core->flags
3557 *
3558 * Detects if the clock-critical property exists and, if so, sets the
3559 * corresponding CLK_IS_CRITICAL flag.
3560 *
3561 * Do not use this function. It exists only for legacy Device Tree
3562 * bindings, such as the one-clock-per-node style that are outdated.
3563 * Those bindings typically put all clock data into .dts and the Linux
3564 * driver has no clock data, thus making it impossible to set this flag
3565 * correctly from the driver. Only those drivers may call
3566 * of_clk_detect_critical from their setup functions.
3567 *
3568 * Return: error code or zero on success
3569 */
3570 int of_clk_detect_critical(struct device_node *np,
3571 int index, unsigned long *flags)
3572 {
3573 struct property *prop;
3574 const __be32 *cur;
3575 uint32_t idx;
3576
3577 if (!np || !flags)
3578 return -EINVAL;
3579
3580 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3581 if (index == idx)
3582 *flags |= CLK_IS_CRITICAL;
3583
3584 return 0;
3585 }
3586
3587 /**
3588 * of_clk_init() - Scan and init clock providers from the DT
3589 * @matches: array of compatible values and init functions for providers.
3590 *
3591 * This function scans the device tree for matching clock providers
3592 * and calls their initialization functions. It also does it by trying
3593 * to follow the dependencies.
3594 */
3595 void __init of_clk_init(const struct of_device_id *matches)
3596 {
3597 const struct of_device_id *match;
3598 struct device_node *np;
3599 struct clock_provider *clk_provider, *next;
3600 bool is_init_done;
3601 bool force = false;
3602 LIST_HEAD(clk_provider_list);
3603
3604 if (!matches)
3605 matches = &__clk_of_table;
3606
3607 /* First prepare the list of the clocks providers */
3608 for_each_matching_node_and_match(np, matches, &match) {
3609 struct clock_provider *parent;
3610
3611 if (!of_device_is_available(np))
3612 continue;
3613
3614 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3615 if (!parent) {
3616 list_for_each_entry_safe(clk_provider, next,
3617 &clk_provider_list, node) {
3618 list_del(&clk_provider->node);
3619 of_node_put(clk_provider->np);
3620 kfree(clk_provider);
3621 }
3622 of_node_put(np);
3623 return;
3624 }
3625
3626 parent->clk_init_cb = match->data;
3627 parent->np = of_node_get(np);
3628 list_add_tail(&parent->node, &clk_provider_list);
3629 }
3630
3631 while (!list_empty(&clk_provider_list)) {
3632 is_init_done = false;
3633 list_for_each_entry_safe(clk_provider, next,
3634 &clk_provider_list, node) {
3635 if (force || parent_ready(clk_provider->np)) {
3636
3637 /* Don't populate platform devices */
3638 of_node_set_flag(clk_provider->np,
3639 OF_POPULATED);
3640
3641 clk_provider->clk_init_cb(clk_provider->np);
3642 of_clk_set_defaults(clk_provider->np, true);
3643
3644 list_del(&clk_provider->node);
3645 of_node_put(clk_provider->np);
3646 kfree(clk_provider);
3647 is_init_done = true;
3648 }
3649 }
3650
3651 /*
3652 * We didn't manage to initialize any of the
3653 * remaining providers during the last loop, so now we
3654 * initialize all the remaining ones unconditionally
3655 * in case the clock parent was not mandatory
3656 */
3657 if (!is_init_done)
3658 force = true;
3659 }
3660 }
3661 #endif