]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clk/clk.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-bionic-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/sched.h>
26 #include <linux/clkdev.h>
27
28 #include "clk.h"
29
30 static DEFINE_SPINLOCK(enable_lock);
31 static DEFINE_MUTEX(prepare_lock);
32
33 static struct task_struct *prepare_owner;
34 static struct task_struct *enable_owner;
35
36 static int prepare_refcnt;
37 static int enable_refcnt;
38
39 static HLIST_HEAD(clk_root_list);
40 static HLIST_HEAD(clk_orphan_list);
41 static LIST_HEAD(clk_notifier_list);
42
43 /*** private data structures ***/
44
45 struct clk_core {
46 const char *name;
47 const struct clk_ops *ops;
48 struct clk_hw *hw;
49 struct module *owner;
50 struct device *dev;
51 struct clk_core *parent;
52 const char **parent_names;
53 struct clk_core **parents;
54 u8 num_parents;
55 u8 new_parent_index;
56 unsigned long rate;
57 unsigned long req_rate;
58 unsigned long new_rate;
59 struct clk_core *new_parent;
60 struct clk_core *new_child;
61 unsigned long flags;
62 bool orphan;
63 unsigned int enable_count;
64 unsigned int prepare_count;
65 unsigned long min_rate;
66 unsigned long max_rate;
67 unsigned long accuracy;
68 int phase;
69 struct hlist_head children;
70 struct hlist_node child_node;
71 struct hlist_head clks;
72 unsigned int notifier_count;
73 #ifdef CONFIG_DEBUG_FS
74 struct dentry *dentry;
75 struct hlist_node debug_node;
76 #endif
77 struct kref ref;
78 };
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/clk.h>
82
83 struct clk {
84 struct clk_core *core;
85 const char *dev_id;
86 const char *con_id;
87 unsigned long min_rate;
88 unsigned long max_rate;
89 struct hlist_node clks_node;
90 };
91
92 /*** runtime pm ***/
93 static int clk_pm_runtime_get(struct clk_core *core)
94 {
95 int ret = 0;
96
97 if (!core->dev)
98 return 0;
99
100 ret = pm_runtime_get_sync(core->dev);
101 return ret < 0 ? ret : 0;
102 }
103
104 static void clk_pm_runtime_put(struct clk_core *core)
105 {
106 if (!core->dev)
107 return;
108
109 pm_runtime_put_sync(core->dev);
110 }
111
112 /*** locking ***/
113 static void clk_prepare_lock(void)
114 {
115 if (!mutex_trylock(&prepare_lock)) {
116 if (prepare_owner == current) {
117 prepare_refcnt++;
118 return;
119 }
120 mutex_lock(&prepare_lock);
121 }
122 WARN_ON_ONCE(prepare_owner != NULL);
123 WARN_ON_ONCE(prepare_refcnt != 0);
124 prepare_owner = current;
125 prepare_refcnt = 1;
126 }
127
128 static void clk_prepare_unlock(void)
129 {
130 WARN_ON_ONCE(prepare_owner != current);
131 WARN_ON_ONCE(prepare_refcnt == 0);
132
133 if (--prepare_refcnt)
134 return;
135 prepare_owner = NULL;
136 mutex_unlock(&prepare_lock);
137 }
138
139 static unsigned long clk_enable_lock(void)
140 __acquires(enable_lock)
141 {
142 unsigned long flags;
143
144 if (!spin_trylock_irqsave(&enable_lock, flags)) {
145 if (enable_owner == current) {
146 enable_refcnt++;
147 __acquire(enable_lock);
148 return flags;
149 }
150 spin_lock_irqsave(&enable_lock, flags);
151 }
152 WARN_ON_ONCE(enable_owner != NULL);
153 WARN_ON_ONCE(enable_refcnt != 0);
154 enable_owner = current;
155 enable_refcnt = 1;
156 return flags;
157 }
158
159 static void clk_enable_unlock(unsigned long flags)
160 __releases(enable_lock)
161 {
162 WARN_ON_ONCE(enable_owner != current);
163 WARN_ON_ONCE(enable_refcnt == 0);
164
165 if (--enable_refcnt) {
166 __release(enable_lock);
167 return;
168 }
169 enable_owner = NULL;
170 spin_unlock_irqrestore(&enable_lock, flags);
171 }
172
173 static bool clk_core_is_prepared(struct clk_core *core)
174 {
175 bool ret = false;
176
177 /*
178 * .is_prepared is optional for clocks that can prepare
179 * fall back to software usage counter if it is missing
180 */
181 if (!core->ops->is_prepared)
182 return core->prepare_count;
183
184 if (!clk_pm_runtime_get(core)) {
185 ret = core->ops->is_prepared(core->hw);
186 clk_pm_runtime_put(core);
187 }
188
189 return ret;
190 }
191
192 static bool clk_core_is_enabled(struct clk_core *core)
193 {
194 bool ret = false;
195
196 /*
197 * .is_enabled is only mandatory for clocks that gate
198 * fall back to software usage counter if .is_enabled is missing
199 */
200 if (!core->ops->is_enabled)
201 return core->enable_count;
202
203 /*
204 * Check if clock controller's device is runtime active before
205 * calling .is_enabled callback. If not, assume that clock is
206 * disabled, because we might be called from atomic context, from
207 * which pm_runtime_get() is not allowed.
208 * This function is called mainly from clk_disable_unused_subtree,
209 * which ensures proper runtime pm activation of controller before
210 * taking enable spinlock, but the below check is needed if one tries
211 * to call it from other places.
212 */
213 if (core->dev) {
214 pm_runtime_get_noresume(core->dev);
215 if (!pm_runtime_active(core->dev)) {
216 ret = false;
217 goto done;
218 }
219 }
220
221 ret = core->ops->is_enabled(core->hw);
222 done:
223 if (core->dev)
224 pm_runtime_put(core->dev);
225
226 return ret;
227 }
228
229 /*** helper functions ***/
230
231 const char *__clk_get_name(const struct clk *clk)
232 {
233 return !clk ? NULL : clk->core->name;
234 }
235 EXPORT_SYMBOL_GPL(__clk_get_name);
236
237 const char *clk_hw_get_name(const struct clk_hw *hw)
238 {
239 return hw->core->name;
240 }
241 EXPORT_SYMBOL_GPL(clk_hw_get_name);
242
243 struct clk_hw *__clk_get_hw(struct clk *clk)
244 {
245 return !clk ? NULL : clk->core->hw;
246 }
247 EXPORT_SYMBOL_GPL(__clk_get_hw);
248
249 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
250 {
251 return hw->core->num_parents;
252 }
253 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
254
255 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
256 {
257 return hw->core->parent ? hw->core->parent->hw : NULL;
258 }
259 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
260
261 static struct clk_core *__clk_lookup_subtree(const char *name,
262 struct clk_core *core)
263 {
264 struct clk_core *child;
265 struct clk_core *ret;
266
267 if (!strcmp(core->name, name))
268 return core;
269
270 hlist_for_each_entry(child, &core->children, child_node) {
271 ret = __clk_lookup_subtree(name, child);
272 if (ret)
273 return ret;
274 }
275
276 return NULL;
277 }
278
279 static struct clk_core *clk_core_lookup(const char *name)
280 {
281 struct clk_core *root_clk;
282 struct clk_core *ret;
283
284 if (!name)
285 return NULL;
286
287 /* search the 'proper' clk tree first */
288 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
289 ret = __clk_lookup_subtree(name, root_clk);
290 if (ret)
291 return ret;
292 }
293
294 /* if not found, then search the orphan tree */
295 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
296 ret = __clk_lookup_subtree(name, root_clk);
297 if (ret)
298 return ret;
299 }
300
301 return NULL;
302 }
303
304 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
305 u8 index)
306 {
307 if (!core || index >= core->num_parents)
308 return NULL;
309
310 if (!core->parents[index])
311 core->parents[index] =
312 clk_core_lookup(core->parent_names[index]);
313
314 return core->parents[index];
315 }
316
317 struct clk_hw *
318 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
319 {
320 struct clk_core *parent;
321
322 parent = clk_core_get_parent_by_index(hw->core, index);
323
324 return !parent ? NULL : parent->hw;
325 }
326 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
327
328 unsigned int __clk_get_enable_count(struct clk *clk)
329 {
330 return !clk ? 0 : clk->core->enable_count;
331 }
332
333 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
334 {
335 unsigned long ret;
336
337 if (!core) {
338 ret = 0;
339 goto out;
340 }
341
342 ret = core->rate;
343
344 if (!core->num_parents)
345 goto out;
346
347 if (!core->parent)
348 ret = 0;
349
350 out:
351 return ret;
352 }
353
354 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
355 {
356 return clk_core_get_rate_nolock(hw->core);
357 }
358 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
359
360 static unsigned long __clk_get_accuracy(struct clk_core *core)
361 {
362 if (!core)
363 return 0;
364
365 return core->accuracy;
366 }
367
368 unsigned long __clk_get_flags(struct clk *clk)
369 {
370 return !clk ? 0 : clk->core->flags;
371 }
372 EXPORT_SYMBOL_GPL(__clk_get_flags);
373
374 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
375 {
376 return hw->core->flags;
377 }
378 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
379
380 bool clk_hw_is_prepared(const struct clk_hw *hw)
381 {
382 return clk_core_is_prepared(hw->core);
383 }
384
385 bool clk_hw_is_enabled(const struct clk_hw *hw)
386 {
387 return clk_core_is_enabled(hw->core);
388 }
389
390 bool __clk_is_enabled(struct clk *clk)
391 {
392 if (!clk)
393 return false;
394
395 return clk_core_is_enabled(clk->core);
396 }
397 EXPORT_SYMBOL_GPL(__clk_is_enabled);
398
399 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
400 unsigned long best, unsigned long flags)
401 {
402 if (flags & CLK_MUX_ROUND_CLOSEST)
403 return abs(now - rate) < abs(best - rate);
404
405 return now <= rate && now > best;
406 }
407
408 static int
409 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
410 unsigned long flags)
411 {
412 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
413 int i, num_parents, ret;
414 unsigned long best = 0;
415 struct clk_rate_request parent_req = *req;
416
417 /* if NO_REPARENT flag set, pass through to current parent */
418 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
419 parent = core->parent;
420 if (core->flags & CLK_SET_RATE_PARENT) {
421 ret = __clk_determine_rate(parent ? parent->hw : NULL,
422 &parent_req);
423 if (ret)
424 return ret;
425
426 best = parent_req.rate;
427 } else if (parent) {
428 best = clk_core_get_rate_nolock(parent);
429 } else {
430 best = clk_core_get_rate_nolock(core);
431 }
432
433 goto out;
434 }
435
436 /* find the parent that can provide the fastest rate <= rate */
437 num_parents = core->num_parents;
438 for (i = 0; i < num_parents; i++) {
439 parent = clk_core_get_parent_by_index(core, i);
440 if (!parent)
441 continue;
442
443 if (core->flags & CLK_SET_RATE_PARENT) {
444 parent_req = *req;
445 ret = __clk_determine_rate(parent->hw, &parent_req);
446 if (ret)
447 continue;
448 } else {
449 parent_req.rate = clk_core_get_rate_nolock(parent);
450 }
451
452 if (mux_is_better_rate(req->rate, parent_req.rate,
453 best, flags)) {
454 best_parent = parent;
455 best = parent_req.rate;
456 }
457 }
458
459 if (!best_parent)
460 return -EINVAL;
461
462 out:
463 if (best_parent)
464 req->best_parent_hw = best_parent->hw;
465 req->best_parent_rate = best;
466 req->rate = best;
467
468 return 0;
469 }
470
471 struct clk *__clk_lookup(const char *name)
472 {
473 struct clk_core *core = clk_core_lookup(name);
474
475 return !core ? NULL : core->hw->clk;
476 }
477
478 static void clk_core_get_boundaries(struct clk_core *core,
479 unsigned long *min_rate,
480 unsigned long *max_rate)
481 {
482 struct clk *clk_user;
483
484 *min_rate = core->min_rate;
485 *max_rate = core->max_rate;
486
487 hlist_for_each_entry(clk_user, &core->clks, clks_node)
488 *min_rate = max(*min_rate, clk_user->min_rate);
489
490 hlist_for_each_entry(clk_user, &core->clks, clks_node)
491 *max_rate = min(*max_rate, clk_user->max_rate);
492 }
493
494 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
495 unsigned long max_rate)
496 {
497 hw->core->min_rate = min_rate;
498 hw->core->max_rate = max_rate;
499 }
500 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
501
502 /*
503 * Helper for finding best parent to provide a given frequency. This can be used
504 * directly as a determine_rate callback (e.g. for a mux), or from a more
505 * complex clock that may combine a mux with other operations.
506 */
507 int __clk_mux_determine_rate(struct clk_hw *hw,
508 struct clk_rate_request *req)
509 {
510 return clk_mux_determine_rate_flags(hw, req, 0);
511 }
512 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
513
514 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
515 struct clk_rate_request *req)
516 {
517 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
518 }
519 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
520
521 /*** clk api ***/
522
523 static void clk_core_unprepare(struct clk_core *core)
524 {
525 lockdep_assert_held(&prepare_lock);
526
527 if (!core)
528 return;
529
530 if (WARN_ON(core->prepare_count == 0))
531 return;
532
533 if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
534 return;
535
536 if (--core->prepare_count > 0)
537 return;
538
539 WARN_ON(core->enable_count > 0);
540
541 trace_clk_unprepare(core);
542
543 if (core->ops->unprepare)
544 core->ops->unprepare(core->hw);
545
546 clk_pm_runtime_put(core);
547
548 trace_clk_unprepare_complete(core);
549 clk_core_unprepare(core->parent);
550 }
551
552 static void clk_core_unprepare_lock(struct clk_core *core)
553 {
554 clk_prepare_lock();
555 clk_core_unprepare(core);
556 clk_prepare_unlock();
557 }
558
559 /**
560 * clk_unprepare - undo preparation of a clock source
561 * @clk: the clk being unprepared
562 *
563 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
564 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
565 * if the operation may sleep. One example is a clk which is accessed over
566 * I2c. In the complex case a clk gate operation may require a fast and a slow
567 * part. It is this reason that clk_unprepare and clk_disable are not mutually
568 * exclusive. In fact clk_disable must be called before clk_unprepare.
569 */
570 void clk_unprepare(struct clk *clk)
571 {
572 if (IS_ERR_OR_NULL(clk))
573 return;
574
575 clk_core_unprepare_lock(clk->core);
576 }
577 EXPORT_SYMBOL_GPL(clk_unprepare);
578
579 static int clk_core_prepare(struct clk_core *core)
580 {
581 int ret = 0;
582
583 lockdep_assert_held(&prepare_lock);
584
585 if (!core)
586 return 0;
587
588 if (core->prepare_count == 0) {
589 ret = clk_pm_runtime_get(core);
590 if (ret)
591 return ret;
592
593 ret = clk_core_prepare(core->parent);
594 if (ret)
595 goto runtime_put;
596
597 trace_clk_prepare(core);
598
599 if (core->ops->prepare)
600 ret = core->ops->prepare(core->hw);
601
602 trace_clk_prepare_complete(core);
603
604 if (ret)
605 goto unprepare;
606 }
607
608 core->prepare_count++;
609
610 return 0;
611 unprepare:
612 clk_core_unprepare(core->parent);
613 runtime_put:
614 clk_pm_runtime_put(core);
615 return ret;
616 }
617
618 static int clk_core_prepare_lock(struct clk_core *core)
619 {
620 int ret;
621
622 clk_prepare_lock();
623 ret = clk_core_prepare(core);
624 clk_prepare_unlock();
625
626 return ret;
627 }
628
629 /**
630 * clk_prepare - prepare a clock source
631 * @clk: the clk being prepared
632 *
633 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
634 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
635 * operation may sleep. One example is a clk which is accessed over I2c. In
636 * the complex case a clk ungate operation may require a fast and a slow part.
637 * It is this reason that clk_prepare and clk_enable are not mutually
638 * exclusive. In fact clk_prepare must be called before clk_enable.
639 * Returns 0 on success, -EERROR otherwise.
640 */
641 int clk_prepare(struct clk *clk)
642 {
643 if (!clk)
644 return 0;
645
646 return clk_core_prepare_lock(clk->core);
647 }
648 EXPORT_SYMBOL_GPL(clk_prepare);
649
650 static void clk_core_disable(struct clk_core *core)
651 {
652 lockdep_assert_held(&enable_lock);
653
654 if (!core)
655 return;
656
657 if (WARN_ON(core->enable_count == 0))
658 return;
659
660 if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
661 return;
662
663 if (--core->enable_count > 0)
664 return;
665
666 trace_clk_disable_rcuidle(core);
667
668 if (core->ops->disable)
669 core->ops->disable(core->hw);
670
671 trace_clk_disable_complete_rcuidle(core);
672
673 clk_core_disable(core->parent);
674 }
675
676 static void clk_core_disable_lock(struct clk_core *core)
677 {
678 unsigned long flags;
679
680 flags = clk_enable_lock();
681 clk_core_disable(core);
682 clk_enable_unlock(flags);
683 }
684
685 /**
686 * clk_disable - gate a clock
687 * @clk: the clk being gated
688 *
689 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
690 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
691 * clk if the operation is fast and will never sleep. One example is a
692 * SoC-internal clk which is controlled via simple register writes. In the
693 * complex case a clk gate operation may require a fast and a slow part. It is
694 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
695 * In fact clk_disable must be called before clk_unprepare.
696 */
697 void clk_disable(struct clk *clk)
698 {
699 if (IS_ERR_OR_NULL(clk))
700 return;
701
702 clk_core_disable_lock(clk->core);
703 }
704 EXPORT_SYMBOL_GPL(clk_disable);
705
706 static int clk_core_enable(struct clk_core *core)
707 {
708 int ret = 0;
709
710 lockdep_assert_held(&enable_lock);
711
712 if (!core)
713 return 0;
714
715 if (WARN_ON(core->prepare_count == 0))
716 return -ESHUTDOWN;
717
718 if (core->enable_count == 0) {
719 ret = clk_core_enable(core->parent);
720
721 if (ret)
722 return ret;
723
724 trace_clk_enable_rcuidle(core);
725
726 if (core->ops->enable)
727 ret = core->ops->enable(core->hw);
728
729 trace_clk_enable_complete_rcuidle(core);
730
731 if (ret) {
732 clk_core_disable(core->parent);
733 return ret;
734 }
735 }
736
737 core->enable_count++;
738 return 0;
739 }
740
741 static int clk_core_enable_lock(struct clk_core *core)
742 {
743 unsigned long flags;
744 int ret;
745
746 flags = clk_enable_lock();
747 ret = clk_core_enable(core);
748 clk_enable_unlock(flags);
749
750 return ret;
751 }
752
753 /**
754 * clk_enable - ungate a clock
755 * @clk: the clk being ungated
756 *
757 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
758 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
759 * if the operation will never sleep. One example is a SoC-internal clk which
760 * is controlled via simple register writes. In the complex case a clk ungate
761 * operation may require a fast and a slow part. It is this reason that
762 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
763 * must be called before clk_enable. Returns 0 on success, -EERROR
764 * otherwise.
765 */
766 int clk_enable(struct clk *clk)
767 {
768 if (!clk)
769 return 0;
770
771 return clk_core_enable_lock(clk->core);
772 }
773 EXPORT_SYMBOL_GPL(clk_enable);
774
775 static int clk_core_prepare_enable(struct clk_core *core)
776 {
777 int ret;
778
779 ret = clk_core_prepare_lock(core);
780 if (ret)
781 return ret;
782
783 ret = clk_core_enable_lock(core);
784 if (ret)
785 clk_core_unprepare_lock(core);
786
787 return ret;
788 }
789
790 static void clk_core_disable_unprepare(struct clk_core *core)
791 {
792 clk_core_disable_lock(core);
793 clk_core_unprepare_lock(core);
794 }
795
796 static void clk_unprepare_unused_subtree(struct clk_core *core)
797 {
798 struct clk_core *child;
799
800 lockdep_assert_held(&prepare_lock);
801
802 hlist_for_each_entry(child, &core->children, child_node)
803 clk_unprepare_unused_subtree(child);
804
805 if (core->prepare_count)
806 return;
807
808 if (core->flags & CLK_IGNORE_UNUSED)
809 return;
810
811 if (clk_pm_runtime_get(core))
812 return;
813
814 if (clk_core_is_prepared(core)) {
815 trace_clk_unprepare(core);
816 if (core->ops->unprepare_unused)
817 core->ops->unprepare_unused(core->hw);
818 else if (core->ops->unprepare)
819 core->ops->unprepare(core->hw);
820 trace_clk_unprepare_complete(core);
821 }
822
823 clk_pm_runtime_put(core);
824 }
825
826 static void clk_disable_unused_subtree(struct clk_core *core)
827 {
828 struct clk_core *child;
829 unsigned long flags;
830
831 lockdep_assert_held(&prepare_lock);
832
833 hlist_for_each_entry(child, &core->children, child_node)
834 clk_disable_unused_subtree(child);
835
836 if (core->flags & CLK_OPS_PARENT_ENABLE)
837 clk_core_prepare_enable(core->parent);
838
839 if (clk_pm_runtime_get(core))
840 goto unprepare_out;
841
842 flags = clk_enable_lock();
843
844 if (core->enable_count)
845 goto unlock_out;
846
847 if (core->flags & CLK_IGNORE_UNUSED)
848 goto unlock_out;
849
850 /*
851 * some gate clocks have special needs during the disable-unused
852 * sequence. call .disable_unused if available, otherwise fall
853 * back to .disable
854 */
855 if (clk_core_is_enabled(core)) {
856 trace_clk_disable(core);
857 if (core->ops->disable_unused)
858 core->ops->disable_unused(core->hw);
859 else if (core->ops->disable)
860 core->ops->disable(core->hw);
861 trace_clk_disable_complete(core);
862 }
863
864 unlock_out:
865 clk_enable_unlock(flags);
866 clk_pm_runtime_put(core);
867 unprepare_out:
868 if (core->flags & CLK_OPS_PARENT_ENABLE)
869 clk_core_disable_unprepare(core->parent);
870 }
871
872 static bool clk_ignore_unused;
873 static int __init clk_ignore_unused_setup(char *__unused)
874 {
875 clk_ignore_unused = true;
876 return 1;
877 }
878 __setup("clk_ignore_unused", clk_ignore_unused_setup);
879
880 static int clk_disable_unused(void)
881 {
882 struct clk_core *core;
883
884 if (clk_ignore_unused) {
885 pr_warn("clk: Not disabling unused clocks\n");
886 return 0;
887 }
888
889 clk_prepare_lock();
890
891 hlist_for_each_entry(core, &clk_root_list, child_node)
892 clk_disable_unused_subtree(core);
893
894 hlist_for_each_entry(core, &clk_orphan_list, child_node)
895 clk_disable_unused_subtree(core);
896
897 hlist_for_each_entry(core, &clk_root_list, child_node)
898 clk_unprepare_unused_subtree(core);
899
900 hlist_for_each_entry(core, &clk_orphan_list, child_node)
901 clk_unprepare_unused_subtree(core);
902
903 clk_prepare_unlock();
904
905 return 0;
906 }
907 late_initcall_sync(clk_disable_unused);
908
909 static int clk_core_round_rate_nolock(struct clk_core *core,
910 struct clk_rate_request *req)
911 {
912 struct clk_core *parent;
913 long rate;
914
915 lockdep_assert_held(&prepare_lock);
916
917 if (!core)
918 return 0;
919
920 parent = core->parent;
921 if (parent) {
922 req->best_parent_hw = parent->hw;
923 req->best_parent_rate = parent->rate;
924 } else {
925 req->best_parent_hw = NULL;
926 req->best_parent_rate = 0;
927 }
928
929 if (core->ops->determine_rate) {
930 return core->ops->determine_rate(core->hw, req);
931 } else if (core->ops->round_rate) {
932 rate = core->ops->round_rate(core->hw, req->rate,
933 &req->best_parent_rate);
934 if (rate < 0)
935 return rate;
936
937 req->rate = rate;
938 } else if (core->flags & CLK_SET_RATE_PARENT) {
939 return clk_core_round_rate_nolock(parent, req);
940 } else {
941 req->rate = core->rate;
942 }
943
944 return 0;
945 }
946
947 /**
948 * __clk_determine_rate - get the closest rate actually supported by a clock
949 * @hw: determine the rate of this clock
950 * @req: target rate request
951 *
952 * Useful for clk_ops such as .set_rate and .determine_rate.
953 */
954 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
955 {
956 if (!hw) {
957 req->rate = 0;
958 return 0;
959 }
960
961 return clk_core_round_rate_nolock(hw->core, req);
962 }
963 EXPORT_SYMBOL_GPL(__clk_determine_rate);
964
965 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
966 {
967 int ret;
968 struct clk_rate_request req;
969
970 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
971 req.rate = rate;
972
973 ret = clk_core_round_rate_nolock(hw->core, &req);
974 if (ret)
975 return 0;
976
977 return req.rate;
978 }
979 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
980
981 /**
982 * clk_round_rate - round the given rate for a clk
983 * @clk: the clk for which we are rounding a rate
984 * @rate: the rate which is to be rounded
985 *
986 * Takes in a rate as input and rounds it to a rate that the clk can actually
987 * use which is then returned. If clk doesn't support round_rate operation
988 * then the parent rate is returned.
989 */
990 long clk_round_rate(struct clk *clk, unsigned long rate)
991 {
992 struct clk_rate_request req;
993 int ret;
994
995 if (!clk)
996 return 0;
997
998 clk_prepare_lock();
999
1000 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1001 req.rate = rate;
1002
1003 ret = clk_core_round_rate_nolock(clk->core, &req);
1004 clk_prepare_unlock();
1005
1006 if (ret)
1007 return ret;
1008
1009 return req.rate;
1010 }
1011 EXPORT_SYMBOL_GPL(clk_round_rate);
1012
1013 /**
1014 * __clk_notify - call clk notifier chain
1015 * @core: clk that is changing rate
1016 * @msg: clk notifier type (see include/linux/clk.h)
1017 * @old_rate: old clk rate
1018 * @new_rate: new clk rate
1019 *
1020 * Triggers a notifier call chain on the clk rate-change notification
1021 * for 'clk'. Passes a pointer to the struct clk and the previous
1022 * and current rates to the notifier callback. Intended to be called by
1023 * internal clock code only. Returns NOTIFY_DONE from the last driver
1024 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1025 * a driver returns that.
1026 */
1027 static int __clk_notify(struct clk_core *core, unsigned long msg,
1028 unsigned long old_rate, unsigned long new_rate)
1029 {
1030 struct clk_notifier *cn;
1031 struct clk_notifier_data cnd;
1032 int ret = NOTIFY_DONE;
1033
1034 cnd.old_rate = old_rate;
1035 cnd.new_rate = new_rate;
1036
1037 list_for_each_entry(cn, &clk_notifier_list, node) {
1038 if (cn->clk->core == core) {
1039 cnd.clk = cn->clk;
1040 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1041 &cnd);
1042 if (ret & NOTIFY_STOP_MASK)
1043 return ret;
1044 }
1045 }
1046
1047 return ret;
1048 }
1049
1050 /**
1051 * __clk_recalc_accuracies
1052 * @core: first clk in the subtree
1053 *
1054 * Walks the subtree of clks starting with clk and recalculates accuracies as
1055 * it goes. Note that if a clk does not implement the .recalc_accuracy
1056 * callback then it is assumed that the clock will take on the accuracy of its
1057 * parent.
1058 */
1059 static void __clk_recalc_accuracies(struct clk_core *core)
1060 {
1061 unsigned long parent_accuracy = 0;
1062 struct clk_core *child;
1063
1064 lockdep_assert_held(&prepare_lock);
1065
1066 if (core->parent)
1067 parent_accuracy = core->parent->accuracy;
1068
1069 if (core->ops->recalc_accuracy)
1070 core->accuracy = core->ops->recalc_accuracy(core->hw,
1071 parent_accuracy);
1072 else
1073 core->accuracy = parent_accuracy;
1074
1075 hlist_for_each_entry(child, &core->children, child_node)
1076 __clk_recalc_accuracies(child);
1077 }
1078
1079 static long clk_core_get_accuracy(struct clk_core *core)
1080 {
1081 unsigned long accuracy;
1082
1083 clk_prepare_lock();
1084 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1085 __clk_recalc_accuracies(core);
1086
1087 accuracy = __clk_get_accuracy(core);
1088 clk_prepare_unlock();
1089
1090 return accuracy;
1091 }
1092
1093 /**
1094 * clk_get_accuracy - return the accuracy of clk
1095 * @clk: the clk whose accuracy is being returned
1096 *
1097 * Simply returns the cached accuracy of the clk, unless
1098 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1099 * issued.
1100 * If clk is NULL then returns 0.
1101 */
1102 long clk_get_accuracy(struct clk *clk)
1103 {
1104 if (!clk)
1105 return 0;
1106
1107 return clk_core_get_accuracy(clk->core);
1108 }
1109 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1110
1111 static unsigned long clk_recalc(struct clk_core *core,
1112 unsigned long parent_rate)
1113 {
1114 unsigned long rate = parent_rate;
1115
1116 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1117 rate = core->ops->recalc_rate(core->hw, parent_rate);
1118 clk_pm_runtime_put(core);
1119 }
1120 return rate;
1121 }
1122
1123 /**
1124 * __clk_recalc_rates
1125 * @core: first clk in the subtree
1126 * @msg: notification type (see include/linux/clk.h)
1127 *
1128 * Walks the subtree of clks starting with clk and recalculates rates as it
1129 * goes. Note that if a clk does not implement the .recalc_rate callback then
1130 * it is assumed that the clock will take on the rate of its parent.
1131 *
1132 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1133 * if necessary.
1134 */
1135 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1136 {
1137 unsigned long old_rate;
1138 unsigned long parent_rate = 0;
1139 struct clk_core *child;
1140
1141 lockdep_assert_held(&prepare_lock);
1142
1143 old_rate = core->rate;
1144
1145 if (core->parent)
1146 parent_rate = core->parent->rate;
1147
1148 core->rate = clk_recalc(core, parent_rate);
1149
1150 /*
1151 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1152 * & ABORT_RATE_CHANGE notifiers
1153 */
1154 if (core->notifier_count && msg)
1155 __clk_notify(core, msg, old_rate, core->rate);
1156
1157 hlist_for_each_entry(child, &core->children, child_node)
1158 __clk_recalc_rates(child, msg);
1159 }
1160
1161 static unsigned long clk_core_get_rate(struct clk_core *core)
1162 {
1163 unsigned long rate;
1164
1165 clk_prepare_lock();
1166
1167 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1168 __clk_recalc_rates(core, 0);
1169
1170 rate = clk_core_get_rate_nolock(core);
1171 clk_prepare_unlock();
1172
1173 return rate;
1174 }
1175
1176 /**
1177 * clk_get_rate - return the rate of clk
1178 * @clk: the clk whose rate is being returned
1179 *
1180 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1181 * is set, which means a recalc_rate will be issued.
1182 * If clk is NULL then returns 0.
1183 */
1184 unsigned long clk_get_rate(struct clk *clk)
1185 {
1186 if (!clk)
1187 return 0;
1188
1189 return clk_core_get_rate(clk->core);
1190 }
1191 EXPORT_SYMBOL_GPL(clk_get_rate);
1192
1193 static int clk_fetch_parent_index(struct clk_core *core,
1194 struct clk_core *parent)
1195 {
1196 int i;
1197
1198 if (!parent)
1199 return -EINVAL;
1200
1201 for (i = 0; i < core->num_parents; i++)
1202 if (clk_core_get_parent_by_index(core, i) == parent)
1203 return i;
1204
1205 return -EINVAL;
1206 }
1207
1208 /*
1209 * Update the orphan status of @core and all its children.
1210 */
1211 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1212 {
1213 struct clk_core *child;
1214
1215 core->orphan = is_orphan;
1216
1217 hlist_for_each_entry(child, &core->children, child_node)
1218 clk_core_update_orphan_status(child, is_orphan);
1219 }
1220
1221 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1222 {
1223 bool was_orphan = core->orphan;
1224
1225 hlist_del(&core->child_node);
1226
1227 if (new_parent) {
1228 bool becomes_orphan = new_parent->orphan;
1229
1230 /* avoid duplicate POST_RATE_CHANGE notifications */
1231 if (new_parent->new_child == core)
1232 new_parent->new_child = NULL;
1233
1234 hlist_add_head(&core->child_node, &new_parent->children);
1235
1236 if (was_orphan != becomes_orphan)
1237 clk_core_update_orphan_status(core, becomes_orphan);
1238 } else {
1239 hlist_add_head(&core->child_node, &clk_orphan_list);
1240 if (!was_orphan)
1241 clk_core_update_orphan_status(core, true);
1242 }
1243
1244 core->parent = new_parent;
1245 }
1246
1247 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1248 struct clk_core *parent)
1249 {
1250 unsigned long flags;
1251 struct clk_core *old_parent = core->parent;
1252
1253 /*
1254 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1255 *
1256 * 2. Migrate prepare state between parents and prevent race with
1257 * clk_enable().
1258 *
1259 * If the clock is not prepared, then a race with
1260 * clk_enable/disable() is impossible since we already have the
1261 * prepare lock (future calls to clk_enable() need to be preceded by
1262 * a clk_prepare()).
1263 *
1264 * If the clock is prepared, migrate the prepared state to the new
1265 * parent and also protect against a race with clk_enable() by
1266 * forcing the clock and the new parent on. This ensures that all
1267 * future calls to clk_enable() are practically NOPs with respect to
1268 * hardware and software states.
1269 *
1270 * See also: Comment for clk_set_parent() below.
1271 */
1272
1273 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1274 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1275 clk_core_prepare_enable(old_parent);
1276 clk_core_prepare_enable(parent);
1277 }
1278
1279 /* migrate prepare count if > 0 */
1280 if (core->prepare_count) {
1281 clk_core_prepare_enable(parent);
1282 clk_core_enable_lock(core);
1283 }
1284
1285 /* update the clk tree topology */
1286 flags = clk_enable_lock();
1287 clk_reparent(core, parent);
1288 clk_enable_unlock(flags);
1289
1290 return old_parent;
1291 }
1292
1293 static void __clk_set_parent_after(struct clk_core *core,
1294 struct clk_core *parent,
1295 struct clk_core *old_parent)
1296 {
1297 /*
1298 * Finish the migration of prepare state and undo the changes done
1299 * for preventing a race with clk_enable().
1300 */
1301 if (core->prepare_count) {
1302 clk_core_disable_lock(core);
1303 clk_core_disable_unprepare(old_parent);
1304 }
1305
1306 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1307 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1308 clk_core_disable_unprepare(parent);
1309 clk_core_disable_unprepare(old_parent);
1310 }
1311 }
1312
1313 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1314 u8 p_index)
1315 {
1316 unsigned long flags;
1317 int ret = 0;
1318 struct clk_core *old_parent;
1319
1320 old_parent = __clk_set_parent_before(core, parent);
1321
1322 trace_clk_set_parent(core, parent);
1323
1324 /* change clock input source */
1325 if (parent && core->ops->set_parent)
1326 ret = core->ops->set_parent(core->hw, p_index);
1327
1328 trace_clk_set_parent_complete(core, parent);
1329
1330 if (ret) {
1331 flags = clk_enable_lock();
1332 clk_reparent(core, old_parent);
1333 clk_enable_unlock(flags);
1334 __clk_set_parent_after(core, old_parent, parent);
1335
1336 return ret;
1337 }
1338
1339 __clk_set_parent_after(core, parent, old_parent);
1340
1341 return 0;
1342 }
1343
1344 /**
1345 * __clk_speculate_rates
1346 * @core: first clk in the subtree
1347 * @parent_rate: the "future" rate of clk's parent
1348 *
1349 * Walks the subtree of clks starting with clk, speculating rates as it
1350 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1351 *
1352 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1353 * pre-rate change notifications and returns early if no clks in the
1354 * subtree have subscribed to the notifications. Note that if a clk does not
1355 * implement the .recalc_rate callback then it is assumed that the clock will
1356 * take on the rate of its parent.
1357 */
1358 static int __clk_speculate_rates(struct clk_core *core,
1359 unsigned long parent_rate)
1360 {
1361 struct clk_core *child;
1362 unsigned long new_rate;
1363 int ret = NOTIFY_DONE;
1364
1365 lockdep_assert_held(&prepare_lock);
1366
1367 new_rate = clk_recalc(core, parent_rate);
1368
1369 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1370 if (core->notifier_count)
1371 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1372
1373 if (ret & NOTIFY_STOP_MASK) {
1374 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1375 __func__, core->name, ret);
1376 goto out;
1377 }
1378
1379 hlist_for_each_entry(child, &core->children, child_node) {
1380 ret = __clk_speculate_rates(child, new_rate);
1381 if (ret & NOTIFY_STOP_MASK)
1382 break;
1383 }
1384
1385 out:
1386 return ret;
1387 }
1388
1389 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1390 struct clk_core *new_parent, u8 p_index)
1391 {
1392 struct clk_core *child;
1393
1394 core->new_rate = new_rate;
1395 core->new_parent = new_parent;
1396 core->new_parent_index = p_index;
1397 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1398 core->new_child = NULL;
1399 if (new_parent && new_parent != core->parent)
1400 new_parent->new_child = core;
1401
1402 hlist_for_each_entry(child, &core->children, child_node) {
1403 child->new_rate = clk_recalc(child, new_rate);
1404 clk_calc_subtree(child, child->new_rate, NULL, 0);
1405 }
1406 }
1407
1408 /*
1409 * calculate the new rates returning the topmost clock that has to be
1410 * changed.
1411 */
1412 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1413 unsigned long rate)
1414 {
1415 struct clk_core *top = core;
1416 struct clk_core *old_parent, *parent;
1417 unsigned long best_parent_rate = 0;
1418 unsigned long new_rate;
1419 unsigned long min_rate;
1420 unsigned long max_rate;
1421 int p_index = 0;
1422 long ret;
1423
1424 /* sanity */
1425 if (IS_ERR_OR_NULL(core))
1426 return NULL;
1427
1428 /* save parent rate, if it exists */
1429 parent = old_parent = core->parent;
1430 if (parent)
1431 best_parent_rate = parent->rate;
1432
1433 clk_core_get_boundaries(core, &min_rate, &max_rate);
1434
1435 /* find the closest rate and parent clk/rate */
1436 if (core->ops->determine_rate) {
1437 struct clk_rate_request req;
1438
1439 req.rate = rate;
1440 req.min_rate = min_rate;
1441 req.max_rate = max_rate;
1442 if (parent) {
1443 req.best_parent_hw = parent->hw;
1444 req.best_parent_rate = parent->rate;
1445 } else {
1446 req.best_parent_hw = NULL;
1447 req.best_parent_rate = 0;
1448 }
1449
1450 ret = core->ops->determine_rate(core->hw, &req);
1451 if (ret < 0)
1452 return NULL;
1453
1454 best_parent_rate = req.best_parent_rate;
1455 new_rate = req.rate;
1456 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1457 } else if (core->ops->round_rate) {
1458 ret = core->ops->round_rate(core->hw, rate,
1459 &best_parent_rate);
1460 if (ret < 0)
1461 return NULL;
1462
1463 new_rate = ret;
1464 if (new_rate < min_rate || new_rate > max_rate)
1465 return NULL;
1466 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1467 /* pass-through clock without adjustable parent */
1468 core->new_rate = core->rate;
1469 return NULL;
1470 } else {
1471 /* pass-through clock with adjustable parent */
1472 top = clk_calc_new_rates(parent, rate);
1473 new_rate = parent->new_rate;
1474 goto out;
1475 }
1476
1477 /* some clocks must be gated to change parent */
1478 if (parent != old_parent &&
1479 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1480 pr_debug("%s: %s not gated but wants to reparent\n",
1481 __func__, core->name);
1482 return NULL;
1483 }
1484
1485 /* try finding the new parent index */
1486 if (parent && core->num_parents > 1) {
1487 p_index = clk_fetch_parent_index(core, parent);
1488 if (p_index < 0) {
1489 pr_debug("%s: clk %s can not be parent of clk %s\n",
1490 __func__, parent->name, core->name);
1491 return NULL;
1492 }
1493 }
1494
1495 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1496 best_parent_rate != parent->rate)
1497 top = clk_calc_new_rates(parent, best_parent_rate);
1498
1499 out:
1500 clk_calc_subtree(core, new_rate, parent, p_index);
1501
1502 return top;
1503 }
1504
1505 /*
1506 * Notify about rate changes in a subtree. Always walk down the whole tree
1507 * so that in case of an error we can walk down the whole tree again and
1508 * abort the change.
1509 */
1510 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1511 unsigned long event)
1512 {
1513 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1514 int ret = NOTIFY_DONE;
1515
1516 if (core->rate == core->new_rate)
1517 return NULL;
1518
1519 if (core->notifier_count) {
1520 ret = __clk_notify(core, event, core->rate, core->new_rate);
1521 if (ret & NOTIFY_STOP_MASK)
1522 fail_clk = core;
1523 }
1524
1525 hlist_for_each_entry(child, &core->children, child_node) {
1526 /* Skip children who will be reparented to another clock */
1527 if (child->new_parent && child->new_parent != core)
1528 continue;
1529 tmp_clk = clk_propagate_rate_change(child, event);
1530 if (tmp_clk)
1531 fail_clk = tmp_clk;
1532 }
1533
1534 /* handle the new child who might not be in core->children yet */
1535 if (core->new_child) {
1536 tmp_clk = clk_propagate_rate_change(core->new_child, event);
1537 if (tmp_clk)
1538 fail_clk = tmp_clk;
1539 }
1540
1541 return fail_clk;
1542 }
1543
1544 /*
1545 * walk down a subtree and set the new rates notifying the rate
1546 * change on the way
1547 */
1548 static void clk_change_rate(struct clk_core *core)
1549 {
1550 struct clk_core *child;
1551 struct hlist_node *tmp;
1552 unsigned long old_rate;
1553 unsigned long best_parent_rate = 0;
1554 bool skip_set_rate = false;
1555 struct clk_core *old_parent;
1556 struct clk_core *parent = NULL;
1557
1558 old_rate = core->rate;
1559
1560 if (core->new_parent) {
1561 parent = core->new_parent;
1562 best_parent_rate = core->new_parent->rate;
1563 } else if (core->parent) {
1564 parent = core->parent;
1565 best_parent_rate = core->parent->rate;
1566 }
1567
1568 if (clk_pm_runtime_get(core))
1569 return;
1570
1571 if (core->flags & CLK_SET_RATE_UNGATE) {
1572 unsigned long flags;
1573
1574 clk_core_prepare(core);
1575 flags = clk_enable_lock();
1576 clk_core_enable(core);
1577 clk_enable_unlock(flags);
1578 }
1579
1580 if (core->new_parent && core->new_parent != core->parent) {
1581 old_parent = __clk_set_parent_before(core, core->new_parent);
1582 trace_clk_set_parent(core, core->new_parent);
1583
1584 if (core->ops->set_rate_and_parent) {
1585 skip_set_rate = true;
1586 core->ops->set_rate_and_parent(core->hw, core->new_rate,
1587 best_parent_rate,
1588 core->new_parent_index);
1589 } else if (core->ops->set_parent) {
1590 core->ops->set_parent(core->hw, core->new_parent_index);
1591 }
1592
1593 trace_clk_set_parent_complete(core, core->new_parent);
1594 __clk_set_parent_after(core, core->new_parent, old_parent);
1595 }
1596
1597 if (core->flags & CLK_OPS_PARENT_ENABLE)
1598 clk_core_prepare_enable(parent);
1599
1600 trace_clk_set_rate(core, core->new_rate);
1601
1602 if (!skip_set_rate && core->ops->set_rate)
1603 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1604
1605 trace_clk_set_rate_complete(core, core->new_rate);
1606
1607 core->rate = clk_recalc(core, best_parent_rate);
1608
1609 if (core->flags & CLK_SET_RATE_UNGATE) {
1610 unsigned long flags;
1611
1612 flags = clk_enable_lock();
1613 clk_core_disable(core);
1614 clk_enable_unlock(flags);
1615 clk_core_unprepare(core);
1616 }
1617
1618 if (core->flags & CLK_OPS_PARENT_ENABLE)
1619 clk_core_disable_unprepare(parent);
1620
1621 if (core->notifier_count && old_rate != core->rate)
1622 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1623
1624 if (core->flags & CLK_RECALC_NEW_RATES)
1625 (void)clk_calc_new_rates(core, core->new_rate);
1626
1627 /*
1628 * Use safe iteration, as change_rate can actually swap parents
1629 * for certain clock types.
1630 */
1631 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1632 /* Skip children who will be reparented to another clock */
1633 if (child->new_parent && child->new_parent != core)
1634 continue;
1635 clk_change_rate(child);
1636 }
1637
1638 /* handle the new child who might not be in core->children yet */
1639 if (core->new_child)
1640 clk_change_rate(core->new_child);
1641
1642 clk_pm_runtime_put(core);
1643 }
1644
1645 static int clk_core_set_rate_nolock(struct clk_core *core,
1646 unsigned long req_rate)
1647 {
1648 struct clk_core *top, *fail_clk;
1649 unsigned long rate = req_rate;
1650 int ret = 0;
1651
1652 if (!core)
1653 return 0;
1654
1655 /* bail early if nothing to do */
1656 if (rate == clk_core_get_rate_nolock(core))
1657 return 0;
1658
1659 if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1660 return -EBUSY;
1661
1662 /* calculate new rates and get the topmost changed clock */
1663 top = clk_calc_new_rates(core, rate);
1664 if (!top)
1665 return -EINVAL;
1666
1667 ret = clk_pm_runtime_get(core);
1668 if (ret)
1669 return ret;
1670
1671 /* notify that we are about to change rates */
1672 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1673 if (fail_clk) {
1674 pr_debug("%s: failed to set %s rate\n", __func__,
1675 fail_clk->name);
1676 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1677 ret = -EBUSY;
1678 goto err;
1679 }
1680
1681 /* change the rates */
1682 clk_change_rate(top);
1683
1684 core->req_rate = req_rate;
1685 err:
1686 clk_pm_runtime_put(core);
1687
1688 return ret;
1689 }
1690
1691 /**
1692 * clk_set_rate - specify a new rate for clk
1693 * @clk: the clk whose rate is being changed
1694 * @rate: the new rate for clk
1695 *
1696 * In the simplest case clk_set_rate will only adjust the rate of clk.
1697 *
1698 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1699 * propagate up to clk's parent; whether or not this happens depends on the
1700 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1701 * after calling .round_rate then upstream parent propagation is ignored. If
1702 * *parent_rate comes back with a new rate for clk's parent then we propagate
1703 * up to clk's parent and set its rate. Upward propagation will continue
1704 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1705 * .round_rate stops requesting changes to clk's parent_rate.
1706 *
1707 * Rate changes are accomplished via tree traversal that also recalculates the
1708 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1709 *
1710 * Returns 0 on success, -EERROR otherwise.
1711 */
1712 int clk_set_rate(struct clk *clk, unsigned long rate)
1713 {
1714 int ret;
1715
1716 if (!clk)
1717 return 0;
1718
1719 /* prevent racing with updates to the clock topology */
1720 clk_prepare_lock();
1721
1722 ret = clk_core_set_rate_nolock(clk->core, rate);
1723
1724 clk_prepare_unlock();
1725
1726 return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(clk_set_rate);
1729
1730 /**
1731 * clk_set_rate_range - set a rate range for a clock source
1732 * @clk: clock source
1733 * @min: desired minimum clock rate in Hz, inclusive
1734 * @max: desired maximum clock rate in Hz, inclusive
1735 *
1736 * Returns success (0) or negative errno.
1737 */
1738 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1739 {
1740 int ret = 0;
1741
1742 if (!clk)
1743 return 0;
1744
1745 if (min > max) {
1746 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1747 __func__, clk->core->name, clk->dev_id, clk->con_id,
1748 min, max);
1749 return -EINVAL;
1750 }
1751
1752 clk_prepare_lock();
1753
1754 if (min != clk->min_rate || max != clk->max_rate) {
1755 clk->min_rate = min;
1756 clk->max_rate = max;
1757 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1758 }
1759
1760 clk_prepare_unlock();
1761
1762 return ret;
1763 }
1764 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1765
1766 /**
1767 * clk_set_min_rate - set a minimum clock rate for a clock source
1768 * @clk: clock source
1769 * @rate: desired minimum clock rate in Hz, inclusive
1770 *
1771 * Returns success (0) or negative errno.
1772 */
1773 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1774 {
1775 if (!clk)
1776 return 0;
1777
1778 return clk_set_rate_range(clk, rate, clk->max_rate);
1779 }
1780 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1781
1782 /**
1783 * clk_set_max_rate - set a maximum clock rate for a clock source
1784 * @clk: clock source
1785 * @rate: desired maximum clock rate in Hz, inclusive
1786 *
1787 * Returns success (0) or negative errno.
1788 */
1789 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1790 {
1791 if (!clk)
1792 return 0;
1793
1794 return clk_set_rate_range(clk, clk->min_rate, rate);
1795 }
1796 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1797
1798 /**
1799 * clk_get_parent - return the parent of a clk
1800 * @clk: the clk whose parent gets returned
1801 *
1802 * Simply returns clk->parent. Returns NULL if clk is NULL.
1803 */
1804 struct clk *clk_get_parent(struct clk *clk)
1805 {
1806 struct clk *parent;
1807
1808 if (!clk)
1809 return NULL;
1810
1811 clk_prepare_lock();
1812 /* TODO: Create a per-user clk and change callers to call clk_put */
1813 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1814 clk_prepare_unlock();
1815
1816 return parent;
1817 }
1818 EXPORT_SYMBOL_GPL(clk_get_parent);
1819
1820 static struct clk_core *__clk_init_parent(struct clk_core *core)
1821 {
1822 u8 index = 0;
1823
1824 if (core->num_parents > 1 && core->ops->get_parent)
1825 index = core->ops->get_parent(core->hw);
1826
1827 return clk_core_get_parent_by_index(core, index);
1828 }
1829
1830 static void clk_core_reparent(struct clk_core *core,
1831 struct clk_core *new_parent)
1832 {
1833 clk_reparent(core, new_parent);
1834 __clk_recalc_accuracies(core);
1835 __clk_recalc_rates(core, POST_RATE_CHANGE);
1836 }
1837
1838 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1839 {
1840 if (!hw)
1841 return;
1842
1843 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1844 }
1845
1846 /**
1847 * clk_has_parent - check if a clock is a possible parent for another
1848 * @clk: clock source
1849 * @parent: parent clock source
1850 *
1851 * This function can be used in drivers that need to check that a clock can be
1852 * the parent of another without actually changing the parent.
1853 *
1854 * Returns true if @parent is a possible parent for @clk, false otherwise.
1855 */
1856 bool clk_has_parent(struct clk *clk, struct clk *parent)
1857 {
1858 struct clk_core *core, *parent_core;
1859 unsigned int i;
1860
1861 /* NULL clocks should be nops, so return success if either is NULL. */
1862 if (!clk || !parent)
1863 return true;
1864
1865 core = clk->core;
1866 parent_core = parent->core;
1867
1868 /* Optimize for the case where the parent is already the parent. */
1869 if (core->parent == parent_core)
1870 return true;
1871
1872 for (i = 0; i < core->num_parents; i++)
1873 if (strcmp(core->parent_names[i], parent_core->name) == 0)
1874 return true;
1875
1876 return false;
1877 }
1878 EXPORT_SYMBOL_GPL(clk_has_parent);
1879
1880 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1881 {
1882 int ret = 0;
1883 int p_index = 0;
1884 unsigned long p_rate = 0;
1885
1886 if (!core)
1887 return 0;
1888
1889 /* prevent racing with updates to the clock topology */
1890 clk_prepare_lock();
1891
1892 if (core->parent == parent)
1893 goto out;
1894
1895 /* verify ops for for multi-parent clks */
1896 if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1897 ret = -ENOSYS;
1898 goto out;
1899 }
1900
1901 /* check that we are allowed to re-parent if the clock is in use */
1902 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1903 ret = -EBUSY;
1904 goto out;
1905 }
1906
1907 /* try finding the new parent index */
1908 if (parent) {
1909 p_index = clk_fetch_parent_index(core, parent);
1910 if (p_index < 0) {
1911 pr_debug("%s: clk %s can not be parent of clk %s\n",
1912 __func__, parent->name, core->name);
1913 ret = p_index;
1914 goto out;
1915 }
1916 p_rate = parent->rate;
1917 }
1918
1919 ret = clk_pm_runtime_get(core);
1920 if (ret)
1921 goto out;
1922
1923 /* propagate PRE_RATE_CHANGE notifications */
1924 ret = __clk_speculate_rates(core, p_rate);
1925
1926 /* abort if a driver objects */
1927 if (ret & NOTIFY_STOP_MASK)
1928 goto runtime_put;
1929
1930 /* do the re-parent */
1931 ret = __clk_set_parent(core, parent, p_index);
1932
1933 /* propagate rate an accuracy recalculation accordingly */
1934 if (ret) {
1935 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
1936 } else {
1937 __clk_recalc_rates(core, POST_RATE_CHANGE);
1938 __clk_recalc_accuracies(core);
1939 }
1940
1941 runtime_put:
1942 clk_pm_runtime_put(core);
1943 out:
1944 clk_prepare_unlock();
1945
1946 return ret;
1947 }
1948
1949 /**
1950 * clk_set_parent - switch the parent of a mux clk
1951 * @clk: the mux clk whose input we are switching
1952 * @parent: the new input to clk
1953 *
1954 * Re-parent clk to use parent as its new input source. If clk is in
1955 * prepared state, the clk will get enabled for the duration of this call. If
1956 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1957 * that, the reparenting is glitchy in hardware, etc), use the
1958 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1959 *
1960 * After successfully changing clk's parent clk_set_parent will update the
1961 * clk topology, sysfs topology and propagate rate recalculation via
1962 * __clk_recalc_rates.
1963 *
1964 * Returns 0 on success, -EERROR otherwise.
1965 */
1966 int clk_set_parent(struct clk *clk, struct clk *parent)
1967 {
1968 if (!clk)
1969 return 0;
1970
1971 return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1972 }
1973 EXPORT_SYMBOL_GPL(clk_set_parent);
1974
1975 /**
1976 * clk_set_phase - adjust the phase shift of a clock signal
1977 * @clk: clock signal source
1978 * @degrees: number of degrees the signal is shifted
1979 *
1980 * Shifts the phase of a clock signal by the specified
1981 * degrees. Returns 0 on success, -EERROR otherwise.
1982 *
1983 * This function makes no distinction about the input or reference
1984 * signal that we adjust the clock signal phase against. For example
1985 * phase locked-loop clock signal generators we may shift phase with
1986 * respect to feedback clock signal input, but for other cases the
1987 * clock phase may be shifted with respect to some other, unspecified
1988 * signal.
1989 *
1990 * Additionally the concept of phase shift does not propagate through
1991 * the clock tree hierarchy, which sets it apart from clock rates and
1992 * clock accuracy. A parent clock phase attribute does not have an
1993 * impact on the phase attribute of a child clock.
1994 */
1995 int clk_set_phase(struct clk *clk, int degrees)
1996 {
1997 int ret = -EINVAL;
1998
1999 if (!clk)
2000 return 0;
2001
2002 /* sanity check degrees */
2003 degrees %= 360;
2004 if (degrees < 0)
2005 degrees += 360;
2006
2007 clk_prepare_lock();
2008
2009 trace_clk_set_phase(clk->core, degrees);
2010
2011 if (clk->core->ops->set_phase)
2012 ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2013
2014 trace_clk_set_phase_complete(clk->core, degrees);
2015
2016 if (!ret)
2017 clk->core->phase = degrees;
2018
2019 clk_prepare_unlock();
2020
2021 return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(clk_set_phase);
2024
2025 static int clk_core_get_phase(struct clk_core *core)
2026 {
2027 int ret;
2028
2029 clk_prepare_lock();
2030 ret = core->phase;
2031 clk_prepare_unlock();
2032
2033 return ret;
2034 }
2035
2036 /**
2037 * clk_get_phase - return the phase shift of a clock signal
2038 * @clk: clock signal source
2039 *
2040 * Returns the phase shift of a clock node in degrees, otherwise returns
2041 * -EERROR.
2042 */
2043 int clk_get_phase(struct clk *clk)
2044 {
2045 if (!clk)
2046 return 0;
2047
2048 return clk_core_get_phase(clk->core);
2049 }
2050 EXPORT_SYMBOL_GPL(clk_get_phase);
2051
2052 /**
2053 * clk_is_match - check if two clk's point to the same hardware clock
2054 * @p: clk compared against q
2055 * @q: clk compared against p
2056 *
2057 * Returns true if the two struct clk pointers both point to the same hardware
2058 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2059 * share the same struct clk_core object.
2060 *
2061 * Returns false otherwise. Note that two NULL clks are treated as matching.
2062 */
2063 bool clk_is_match(const struct clk *p, const struct clk *q)
2064 {
2065 /* trivial case: identical struct clk's or both NULL */
2066 if (p == q)
2067 return true;
2068
2069 /* true if clk->core pointers match. Avoid dereferencing garbage */
2070 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2071 if (p->core == q->core)
2072 return true;
2073
2074 return false;
2075 }
2076 EXPORT_SYMBOL_GPL(clk_is_match);
2077
2078 /*** debugfs support ***/
2079
2080 #ifdef CONFIG_DEBUG_FS
2081 #include <linux/debugfs.h>
2082
2083 static struct dentry *rootdir;
2084 static int inited = 0;
2085 static DEFINE_MUTEX(clk_debug_lock);
2086 static HLIST_HEAD(clk_debug_list);
2087
2088 static struct hlist_head *all_lists[] = {
2089 &clk_root_list,
2090 &clk_orphan_list,
2091 NULL,
2092 };
2093
2094 static struct hlist_head *orphan_list[] = {
2095 &clk_orphan_list,
2096 NULL,
2097 };
2098
2099 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2100 int level)
2101 {
2102 if (!c)
2103 return;
2104
2105 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2106 level * 3 + 1, "",
2107 30 - level * 3, c->name,
2108 c->enable_count, c->prepare_count, clk_core_get_rate(c),
2109 clk_core_get_accuracy(c), clk_core_get_phase(c));
2110 }
2111
2112 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2113 int level)
2114 {
2115 struct clk_core *child;
2116
2117 if (!c)
2118 return;
2119
2120 clk_summary_show_one(s, c, level);
2121
2122 hlist_for_each_entry(child, &c->children, child_node)
2123 clk_summary_show_subtree(s, child, level + 1);
2124 }
2125
2126 static int clk_summary_show(struct seq_file *s, void *data)
2127 {
2128 struct clk_core *c;
2129 struct hlist_head **lists = (struct hlist_head **)s->private;
2130
2131 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n");
2132 seq_puts(s, "----------------------------------------------------------------------------------------\n");
2133
2134 clk_prepare_lock();
2135
2136 for (; *lists; lists++)
2137 hlist_for_each_entry(c, *lists, child_node)
2138 clk_summary_show_subtree(s, c, 0);
2139
2140 clk_prepare_unlock();
2141
2142 return 0;
2143 }
2144
2145
2146 static int clk_summary_open(struct inode *inode, struct file *file)
2147 {
2148 return single_open(file, clk_summary_show, inode->i_private);
2149 }
2150
2151 static const struct file_operations clk_summary_fops = {
2152 .open = clk_summary_open,
2153 .read = seq_read,
2154 .llseek = seq_lseek,
2155 .release = single_release,
2156 };
2157
2158 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2159 {
2160 if (!c)
2161 return;
2162
2163 /* This should be JSON format, i.e. elements separated with a comma */
2164 seq_printf(s, "\"%s\": { ", c->name);
2165 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2166 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2167 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2168 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2169 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2170 }
2171
2172 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2173 {
2174 struct clk_core *child;
2175
2176 if (!c)
2177 return;
2178
2179 clk_dump_one(s, c, level);
2180
2181 hlist_for_each_entry(child, &c->children, child_node) {
2182 seq_putc(s, ',');
2183 clk_dump_subtree(s, child, level + 1);
2184 }
2185
2186 seq_putc(s, '}');
2187 }
2188
2189 static int clk_dump(struct seq_file *s, void *data)
2190 {
2191 struct clk_core *c;
2192 bool first_node = true;
2193 struct hlist_head **lists = (struct hlist_head **)s->private;
2194
2195 seq_putc(s, '{');
2196 clk_prepare_lock();
2197
2198 for (; *lists; lists++) {
2199 hlist_for_each_entry(c, *lists, child_node) {
2200 if (!first_node)
2201 seq_putc(s, ',');
2202 first_node = false;
2203 clk_dump_subtree(s, c, 0);
2204 }
2205 }
2206
2207 clk_prepare_unlock();
2208
2209 seq_puts(s, "}\n");
2210 return 0;
2211 }
2212
2213
2214 static int clk_dump_open(struct inode *inode, struct file *file)
2215 {
2216 return single_open(file, clk_dump, inode->i_private);
2217 }
2218
2219 static const struct file_operations clk_dump_fops = {
2220 .open = clk_dump_open,
2221 .read = seq_read,
2222 .llseek = seq_lseek,
2223 .release = single_release,
2224 };
2225
2226 static int possible_parents_dump(struct seq_file *s, void *data)
2227 {
2228 struct clk_core *core = s->private;
2229 int i;
2230
2231 for (i = 0; i < core->num_parents - 1; i++)
2232 seq_printf(s, "%s ", core->parent_names[i]);
2233
2234 seq_printf(s, "%s\n", core->parent_names[i]);
2235
2236 return 0;
2237 }
2238
2239 static int possible_parents_open(struct inode *inode, struct file *file)
2240 {
2241 return single_open(file, possible_parents_dump, inode->i_private);
2242 }
2243
2244 static const struct file_operations possible_parents_fops = {
2245 .open = possible_parents_open,
2246 .read = seq_read,
2247 .llseek = seq_lseek,
2248 .release = single_release,
2249 };
2250
2251 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2252 {
2253 struct dentry *d;
2254 int ret = -ENOMEM;
2255
2256 if (!core || !pdentry) {
2257 ret = -EINVAL;
2258 goto out;
2259 }
2260
2261 d = debugfs_create_dir(core->name, pdentry);
2262 if (!d)
2263 goto out;
2264
2265 core->dentry = d;
2266
2267 d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2268 (u32 *)&core->rate);
2269 if (!d)
2270 goto err_out;
2271
2272 d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2273 (u32 *)&core->accuracy);
2274 if (!d)
2275 goto err_out;
2276
2277 d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2278 (u32 *)&core->phase);
2279 if (!d)
2280 goto err_out;
2281
2282 d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2283 (u32 *)&core->flags);
2284 if (!d)
2285 goto err_out;
2286
2287 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2288 (u32 *)&core->prepare_count);
2289 if (!d)
2290 goto err_out;
2291
2292 d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2293 (u32 *)&core->enable_count);
2294 if (!d)
2295 goto err_out;
2296
2297 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2298 (u32 *)&core->notifier_count);
2299 if (!d)
2300 goto err_out;
2301
2302 if (core->num_parents > 1) {
2303 d = debugfs_create_file("clk_possible_parents", S_IRUGO,
2304 core->dentry, core, &possible_parents_fops);
2305 if (!d)
2306 goto err_out;
2307 }
2308
2309 if (core->ops->debug_init) {
2310 ret = core->ops->debug_init(core->hw, core->dentry);
2311 if (ret)
2312 goto err_out;
2313 }
2314
2315 ret = 0;
2316 goto out;
2317
2318 err_out:
2319 debugfs_remove_recursive(core->dentry);
2320 core->dentry = NULL;
2321 out:
2322 return ret;
2323 }
2324
2325 /**
2326 * clk_debug_register - add a clk node to the debugfs clk directory
2327 * @core: the clk being added to the debugfs clk directory
2328 *
2329 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2330 * initialized. Otherwise it bails out early since the debugfs clk directory
2331 * will be created lazily by clk_debug_init as part of a late_initcall.
2332 */
2333 static int clk_debug_register(struct clk_core *core)
2334 {
2335 int ret = 0;
2336
2337 mutex_lock(&clk_debug_lock);
2338 hlist_add_head(&core->debug_node, &clk_debug_list);
2339
2340 if (!inited)
2341 goto unlock;
2342
2343 ret = clk_debug_create_one(core, rootdir);
2344 unlock:
2345 mutex_unlock(&clk_debug_lock);
2346
2347 return ret;
2348 }
2349
2350 /**
2351 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2352 * @core: the clk being removed from the debugfs clk directory
2353 *
2354 * Dynamically removes a clk and all its child nodes from the
2355 * debugfs clk directory if clk->dentry points to debugfs created by
2356 * clk_debug_register in __clk_core_init.
2357 */
2358 static void clk_debug_unregister(struct clk_core *core)
2359 {
2360 mutex_lock(&clk_debug_lock);
2361 hlist_del_init(&core->debug_node);
2362 debugfs_remove_recursive(core->dentry);
2363 core->dentry = NULL;
2364 mutex_unlock(&clk_debug_lock);
2365 }
2366
2367 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2368 void *data, const struct file_operations *fops)
2369 {
2370 struct dentry *d = NULL;
2371
2372 if (hw->core->dentry)
2373 d = debugfs_create_file(name, mode, hw->core->dentry, data,
2374 fops);
2375
2376 return d;
2377 }
2378 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2379
2380 /**
2381 * clk_debug_init - lazily populate the debugfs clk directory
2382 *
2383 * clks are often initialized very early during boot before memory can be
2384 * dynamically allocated and well before debugfs is setup. This function
2385 * populates the debugfs clk directory once at boot-time when we know that
2386 * debugfs is setup. It should only be called once at boot-time, all other clks
2387 * added dynamically will be done so with clk_debug_register.
2388 */
2389 static int __init clk_debug_init(void)
2390 {
2391 struct clk_core *core;
2392 struct dentry *d;
2393
2394 rootdir = debugfs_create_dir("clk", NULL);
2395
2396 if (!rootdir)
2397 return -ENOMEM;
2398
2399 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2400 &clk_summary_fops);
2401 if (!d)
2402 return -ENOMEM;
2403
2404 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2405 &clk_dump_fops);
2406 if (!d)
2407 return -ENOMEM;
2408
2409 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2410 &orphan_list, &clk_summary_fops);
2411 if (!d)
2412 return -ENOMEM;
2413
2414 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2415 &orphan_list, &clk_dump_fops);
2416 if (!d)
2417 return -ENOMEM;
2418
2419 mutex_lock(&clk_debug_lock);
2420 hlist_for_each_entry(core, &clk_debug_list, debug_node)
2421 clk_debug_create_one(core, rootdir);
2422
2423 inited = 1;
2424 mutex_unlock(&clk_debug_lock);
2425
2426 return 0;
2427 }
2428 late_initcall(clk_debug_init);
2429 #else
2430 static inline int clk_debug_register(struct clk_core *core) { return 0; }
2431 static inline void clk_debug_reparent(struct clk_core *core,
2432 struct clk_core *new_parent)
2433 {
2434 }
2435 static inline void clk_debug_unregister(struct clk_core *core)
2436 {
2437 }
2438 #endif
2439
2440 /**
2441 * __clk_core_init - initialize the data structures in a struct clk_core
2442 * @core: clk_core being initialized
2443 *
2444 * Initializes the lists in struct clk_core, queries the hardware for the
2445 * parent and rate and sets them both.
2446 */
2447 static int __clk_core_init(struct clk_core *core)
2448 {
2449 int i, ret;
2450 struct clk_core *orphan;
2451 struct hlist_node *tmp2;
2452 unsigned long rate;
2453
2454 if (!core)
2455 return -EINVAL;
2456
2457 clk_prepare_lock();
2458
2459 ret = clk_pm_runtime_get(core);
2460 if (ret)
2461 goto unlock;
2462
2463 /* check to see if a clock with this name is already registered */
2464 if (clk_core_lookup(core->name)) {
2465 pr_debug("%s: clk %s already initialized\n",
2466 __func__, core->name);
2467 ret = -EEXIST;
2468 goto out;
2469 }
2470
2471 /* check that clk_ops are sane. See Documentation/clk.txt */
2472 if (core->ops->set_rate &&
2473 !((core->ops->round_rate || core->ops->determine_rate) &&
2474 core->ops->recalc_rate)) {
2475 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2476 __func__, core->name);
2477 ret = -EINVAL;
2478 goto out;
2479 }
2480
2481 if (core->ops->set_parent && !core->ops->get_parent) {
2482 pr_err("%s: %s must implement .get_parent & .set_parent\n",
2483 __func__, core->name);
2484 ret = -EINVAL;
2485 goto out;
2486 }
2487
2488 if (core->num_parents > 1 && !core->ops->get_parent) {
2489 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2490 __func__, core->name);
2491 ret = -EINVAL;
2492 goto out;
2493 }
2494
2495 if (core->ops->set_rate_and_parent &&
2496 !(core->ops->set_parent && core->ops->set_rate)) {
2497 pr_err("%s: %s must implement .set_parent & .set_rate\n",
2498 __func__, core->name);
2499 ret = -EINVAL;
2500 goto out;
2501 }
2502
2503 /* throw a WARN if any entries in parent_names are NULL */
2504 for (i = 0; i < core->num_parents; i++)
2505 WARN(!core->parent_names[i],
2506 "%s: invalid NULL in %s's .parent_names\n",
2507 __func__, core->name);
2508
2509 core->parent = __clk_init_parent(core);
2510
2511 /*
2512 * Populate core->parent if parent has already been clk_core_init'd. If
2513 * parent has not yet been clk_core_init'd then place clk in the orphan
2514 * list. If clk doesn't have any parents then place it in the root
2515 * clk list.
2516 *
2517 * Every time a new clk is clk_init'd then we walk the list of orphan
2518 * clocks and re-parent any that are children of the clock currently
2519 * being clk_init'd.
2520 */
2521 if (core->parent) {
2522 hlist_add_head(&core->child_node,
2523 &core->parent->children);
2524 core->orphan = core->parent->orphan;
2525 } else if (!core->num_parents) {
2526 hlist_add_head(&core->child_node, &clk_root_list);
2527 core->orphan = false;
2528 } else {
2529 hlist_add_head(&core->child_node, &clk_orphan_list);
2530 core->orphan = true;
2531 }
2532
2533 /*
2534 * Set clk's accuracy. The preferred method is to use
2535 * .recalc_accuracy. For simple clocks and lazy developers the default
2536 * fallback is to use the parent's accuracy. If a clock doesn't have a
2537 * parent (or is orphaned) then accuracy is set to zero (perfect
2538 * clock).
2539 */
2540 if (core->ops->recalc_accuracy)
2541 core->accuracy = core->ops->recalc_accuracy(core->hw,
2542 __clk_get_accuracy(core->parent));
2543 else if (core->parent)
2544 core->accuracy = core->parent->accuracy;
2545 else
2546 core->accuracy = 0;
2547
2548 /*
2549 * Set clk's phase.
2550 * Since a phase is by definition relative to its parent, just
2551 * query the current clock phase, or just assume it's in phase.
2552 */
2553 if (core->ops->get_phase)
2554 core->phase = core->ops->get_phase(core->hw);
2555 else
2556 core->phase = 0;
2557
2558 /*
2559 * Set clk's rate. The preferred method is to use .recalc_rate. For
2560 * simple clocks and lazy developers the default fallback is to use the
2561 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2562 * then rate is set to zero.
2563 */
2564 if (core->ops->recalc_rate)
2565 rate = core->ops->recalc_rate(core->hw,
2566 clk_core_get_rate_nolock(core->parent));
2567 else if (core->parent)
2568 rate = core->parent->rate;
2569 else
2570 rate = 0;
2571 core->rate = core->req_rate = rate;
2572
2573 /*
2574 * walk the list of orphan clocks and reparent any that newly finds a
2575 * parent.
2576 */
2577 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2578 struct clk_core *parent = __clk_init_parent(orphan);
2579
2580 /*
2581 * we could call __clk_set_parent, but that would result in a
2582 * redundant call to the .set_rate op, if it exists
2583 */
2584 if (parent) {
2585 __clk_set_parent_before(orphan, parent);
2586 __clk_set_parent_after(orphan, parent, NULL);
2587 __clk_recalc_accuracies(orphan);
2588 __clk_recalc_rates(orphan, 0);
2589 }
2590 }
2591
2592 /*
2593 * optional platform-specific magic
2594 *
2595 * The .init callback is not used by any of the basic clock types, but
2596 * exists for weird hardware that must perform initialization magic.
2597 * Please consider other ways of solving initialization problems before
2598 * using this callback, as its use is discouraged.
2599 */
2600 if (core->ops->init)
2601 core->ops->init(core->hw);
2602
2603 if (core->flags & CLK_IS_CRITICAL) {
2604 unsigned long flags;
2605
2606 clk_core_prepare(core);
2607
2608 flags = clk_enable_lock();
2609 clk_core_enable(core);
2610 clk_enable_unlock(flags);
2611 }
2612
2613 kref_init(&core->ref);
2614 out:
2615 clk_pm_runtime_put(core);
2616 unlock:
2617 clk_prepare_unlock();
2618
2619 if (!ret)
2620 clk_debug_register(core);
2621
2622 return ret;
2623 }
2624
2625 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2626 const char *con_id)
2627 {
2628 struct clk *clk;
2629
2630 /* This is to allow this function to be chained to others */
2631 if (IS_ERR_OR_NULL(hw))
2632 return ERR_CAST(hw);
2633
2634 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2635 if (!clk)
2636 return ERR_PTR(-ENOMEM);
2637
2638 clk->core = hw->core;
2639 clk->dev_id = dev_id;
2640 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
2641 clk->max_rate = ULONG_MAX;
2642
2643 clk_prepare_lock();
2644 hlist_add_head(&clk->clks_node, &hw->core->clks);
2645 clk_prepare_unlock();
2646
2647 return clk;
2648 }
2649
2650 void __clk_free_clk(struct clk *clk)
2651 {
2652 clk_prepare_lock();
2653 hlist_del(&clk->clks_node);
2654 clk_prepare_unlock();
2655
2656 kfree_const(clk->con_id);
2657 kfree(clk);
2658 }
2659
2660 /**
2661 * clk_register - allocate a new clock, register it and return an opaque cookie
2662 * @dev: device that is registering this clock
2663 * @hw: link to hardware-specific clock data
2664 *
2665 * clk_register is the primary interface for populating the clock tree with new
2666 * clock nodes. It returns a pointer to the newly allocated struct clk which
2667 * cannot be dereferenced by driver code but may be used in conjunction with the
2668 * rest of the clock API. In the event of an error clk_register will return an
2669 * error code; drivers must test for an error code after calling clk_register.
2670 */
2671 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2672 {
2673 int i, ret;
2674 struct clk_core *core;
2675
2676 core = kzalloc(sizeof(*core), GFP_KERNEL);
2677 if (!core) {
2678 ret = -ENOMEM;
2679 goto fail_out;
2680 }
2681
2682 core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2683 if (!core->name) {
2684 ret = -ENOMEM;
2685 goto fail_name;
2686 }
2687 core->ops = hw->init->ops;
2688 if (dev && pm_runtime_enabled(dev))
2689 core->dev = dev;
2690 if (dev && dev->driver)
2691 core->owner = dev->driver->owner;
2692 core->hw = hw;
2693 core->flags = hw->init->flags;
2694 core->num_parents = hw->init->num_parents;
2695 core->min_rate = 0;
2696 core->max_rate = ULONG_MAX;
2697 hw->core = core;
2698
2699 /* allocate local copy in case parent_names is __initdata */
2700 core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2701 GFP_KERNEL);
2702
2703 if (!core->parent_names) {
2704 ret = -ENOMEM;
2705 goto fail_parent_names;
2706 }
2707
2708
2709 /* copy each string name in case parent_names is __initdata */
2710 for (i = 0; i < core->num_parents; i++) {
2711 core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2712 GFP_KERNEL);
2713 if (!core->parent_names[i]) {
2714 ret = -ENOMEM;
2715 goto fail_parent_names_copy;
2716 }
2717 }
2718
2719 /* avoid unnecessary string look-ups of clk_core's possible parents. */
2720 core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2721 GFP_KERNEL);
2722 if (!core->parents) {
2723 ret = -ENOMEM;
2724 goto fail_parents;
2725 };
2726
2727 INIT_HLIST_HEAD(&core->clks);
2728
2729 hw->clk = __clk_create_clk(hw, NULL, NULL);
2730 if (IS_ERR(hw->clk)) {
2731 ret = PTR_ERR(hw->clk);
2732 goto fail_parents;
2733 }
2734
2735 ret = __clk_core_init(core);
2736 if (!ret)
2737 return hw->clk;
2738
2739 __clk_free_clk(hw->clk);
2740 hw->clk = NULL;
2741
2742 fail_parents:
2743 kfree(core->parents);
2744 fail_parent_names_copy:
2745 while (--i >= 0)
2746 kfree_const(core->parent_names[i]);
2747 kfree(core->parent_names);
2748 fail_parent_names:
2749 kfree_const(core->name);
2750 fail_name:
2751 kfree(core);
2752 fail_out:
2753 return ERR_PTR(ret);
2754 }
2755 EXPORT_SYMBOL_GPL(clk_register);
2756
2757 /**
2758 * clk_hw_register - register a clk_hw and return an error code
2759 * @dev: device that is registering this clock
2760 * @hw: link to hardware-specific clock data
2761 *
2762 * clk_hw_register is the primary interface for populating the clock tree with
2763 * new clock nodes. It returns an integer equal to zero indicating success or
2764 * less than zero indicating failure. Drivers must test for an error code after
2765 * calling clk_hw_register().
2766 */
2767 int clk_hw_register(struct device *dev, struct clk_hw *hw)
2768 {
2769 return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2770 }
2771 EXPORT_SYMBOL_GPL(clk_hw_register);
2772
2773 /* Free memory allocated for a clock. */
2774 static void __clk_release(struct kref *ref)
2775 {
2776 struct clk_core *core = container_of(ref, struct clk_core, ref);
2777 int i = core->num_parents;
2778
2779 lockdep_assert_held(&prepare_lock);
2780
2781 kfree(core->parents);
2782 while (--i >= 0)
2783 kfree_const(core->parent_names[i]);
2784
2785 kfree(core->parent_names);
2786 kfree_const(core->name);
2787 kfree(core);
2788 }
2789
2790 /*
2791 * Empty clk_ops for unregistered clocks. These are used temporarily
2792 * after clk_unregister() was called on a clock and until last clock
2793 * consumer calls clk_put() and the struct clk object is freed.
2794 */
2795 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2796 {
2797 return -ENXIO;
2798 }
2799
2800 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2801 {
2802 WARN_ON_ONCE(1);
2803 }
2804
2805 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2806 unsigned long parent_rate)
2807 {
2808 return -ENXIO;
2809 }
2810
2811 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2812 {
2813 return -ENXIO;
2814 }
2815
2816 static const struct clk_ops clk_nodrv_ops = {
2817 .enable = clk_nodrv_prepare_enable,
2818 .disable = clk_nodrv_disable_unprepare,
2819 .prepare = clk_nodrv_prepare_enable,
2820 .unprepare = clk_nodrv_disable_unprepare,
2821 .set_rate = clk_nodrv_set_rate,
2822 .set_parent = clk_nodrv_set_parent,
2823 };
2824
2825 /**
2826 * clk_unregister - unregister a currently registered clock
2827 * @clk: clock to unregister
2828 */
2829 void clk_unregister(struct clk *clk)
2830 {
2831 unsigned long flags;
2832
2833 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2834 return;
2835
2836 clk_debug_unregister(clk->core);
2837
2838 clk_prepare_lock();
2839
2840 if (clk->core->ops == &clk_nodrv_ops) {
2841 pr_err("%s: unregistered clock: %s\n", __func__,
2842 clk->core->name);
2843 goto unlock;
2844 }
2845 /*
2846 * Assign empty clock ops for consumers that might still hold
2847 * a reference to this clock.
2848 */
2849 flags = clk_enable_lock();
2850 clk->core->ops = &clk_nodrv_ops;
2851 clk_enable_unlock(flags);
2852
2853 if (!hlist_empty(&clk->core->children)) {
2854 struct clk_core *child;
2855 struct hlist_node *t;
2856
2857 /* Reparent all children to the orphan list. */
2858 hlist_for_each_entry_safe(child, t, &clk->core->children,
2859 child_node)
2860 clk_core_set_parent(child, NULL);
2861 }
2862
2863 hlist_del_init(&clk->core->child_node);
2864
2865 if (clk->core->prepare_count)
2866 pr_warn("%s: unregistering prepared clock: %s\n",
2867 __func__, clk->core->name);
2868 kref_put(&clk->core->ref, __clk_release);
2869 unlock:
2870 clk_prepare_unlock();
2871 }
2872 EXPORT_SYMBOL_GPL(clk_unregister);
2873
2874 /**
2875 * clk_hw_unregister - unregister a currently registered clk_hw
2876 * @hw: hardware-specific clock data to unregister
2877 */
2878 void clk_hw_unregister(struct clk_hw *hw)
2879 {
2880 clk_unregister(hw->clk);
2881 }
2882 EXPORT_SYMBOL_GPL(clk_hw_unregister);
2883
2884 static void devm_clk_release(struct device *dev, void *res)
2885 {
2886 clk_unregister(*(struct clk **)res);
2887 }
2888
2889 static void devm_clk_hw_release(struct device *dev, void *res)
2890 {
2891 clk_hw_unregister(*(struct clk_hw **)res);
2892 }
2893
2894 /**
2895 * devm_clk_register - resource managed clk_register()
2896 * @dev: device that is registering this clock
2897 * @hw: link to hardware-specific clock data
2898 *
2899 * Managed clk_register(). Clocks returned from this function are
2900 * automatically clk_unregister()ed on driver detach. See clk_register() for
2901 * more information.
2902 */
2903 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2904 {
2905 struct clk *clk;
2906 struct clk **clkp;
2907
2908 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2909 if (!clkp)
2910 return ERR_PTR(-ENOMEM);
2911
2912 clk = clk_register(dev, hw);
2913 if (!IS_ERR(clk)) {
2914 *clkp = clk;
2915 devres_add(dev, clkp);
2916 } else {
2917 devres_free(clkp);
2918 }
2919
2920 return clk;
2921 }
2922 EXPORT_SYMBOL_GPL(devm_clk_register);
2923
2924 /**
2925 * devm_clk_hw_register - resource managed clk_hw_register()
2926 * @dev: device that is registering this clock
2927 * @hw: link to hardware-specific clock data
2928 *
2929 * Managed clk_hw_register(). Clocks registered by this function are
2930 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2931 * for more information.
2932 */
2933 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2934 {
2935 struct clk_hw **hwp;
2936 int ret;
2937
2938 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2939 if (!hwp)
2940 return -ENOMEM;
2941
2942 ret = clk_hw_register(dev, hw);
2943 if (!ret) {
2944 *hwp = hw;
2945 devres_add(dev, hwp);
2946 } else {
2947 devres_free(hwp);
2948 }
2949
2950 return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2953
2954 static int devm_clk_match(struct device *dev, void *res, void *data)
2955 {
2956 struct clk *c = res;
2957 if (WARN_ON(!c))
2958 return 0;
2959 return c == data;
2960 }
2961
2962 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2963 {
2964 struct clk_hw *hw = res;
2965
2966 if (WARN_ON(!hw))
2967 return 0;
2968 return hw == data;
2969 }
2970
2971 /**
2972 * devm_clk_unregister - resource managed clk_unregister()
2973 * @clk: clock to unregister
2974 *
2975 * Deallocate a clock allocated with devm_clk_register(). Normally
2976 * this function will not need to be called and the resource management
2977 * code will ensure that the resource is freed.
2978 */
2979 void devm_clk_unregister(struct device *dev, struct clk *clk)
2980 {
2981 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2982 }
2983 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2984
2985 /**
2986 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2987 * @dev: device that is unregistering the hardware-specific clock data
2988 * @hw: link to hardware-specific clock data
2989 *
2990 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2991 * this function will not need to be called and the resource management
2992 * code will ensure that the resource is freed.
2993 */
2994 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2995 {
2996 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2997 hw));
2998 }
2999 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
3000
3001 /*
3002 * clkdev helpers
3003 */
3004 int __clk_get(struct clk *clk)
3005 {
3006 struct clk_core *core = !clk ? NULL : clk->core;
3007
3008 if (core) {
3009 if (!try_module_get(core->owner))
3010 return 0;
3011
3012 kref_get(&core->ref);
3013 }
3014 return 1;
3015 }
3016
3017 void __clk_put(struct clk *clk)
3018 {
3019 struct module *owner;
3020
3021 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3022 return;
3023
3024 clk_prepare_lock();
3025
3026 hlist_del(&clk->clks_node);
3027 if (clk->min_rate > clk->core->req_rate ||
3028 clk->max_rate < clk->core->req_rate)
3029 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
3030
3031 owner = clk->core->owner;
3032 kref_put(&clk->core->ref, __clk_release);
3033
3034 clk_prepare_unlock();
3035
3036 module_put(owner);
3037
3038 kfree(clk);
3039 }
3040
3041 /*** clk rate change notifiers ***/
3042
3043 /**
3044 * clk_notifier_register - add a clk rate change notifier
3045 * @clk: struct clk * to watch
3046 * @nb: struct notifier_block * with callback info
3047 *
3048 * Request notification when clk's rate changes. This uses an SRCU
3049 * notifier because we want it to block and notifier unregistrations are
3050 * uncommon. The callbacks associated with the notifier must not
3051 * re-enter into the clk framework by calling any top-level clk APIs;
3052 * this will cause a nested prepare_lock mutex.
3053 *
3054 * In all notification cases (pre, post and abort rate change) the original
3055 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
3056 * and the new frequency is passed via struct clk_notifier_data.new_rate.
3057 *
3058 * clk_notifier_register() must be called from non-atomic context.
3059 * Returns -EINVAL if called with null arguments, -ENOMEM upon
3060 * allocation failure; otherwise, passes along the return value of
3061 * srcu_notifier_chain_register().
3062 */
3063 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
3064 {
3065 struct clk_notifier *cn;
3066 int ret = -ENOMEM;
3067
3068 if (!clk || !nb)
3069 return -EINVAL;
3070
3071 clk_prepare_lock();
3072
3073 /* search the list of notifiers for this clk */
3074 list_for_each_entry(cn, &clk_notifier_list, node)
3075 if (cn->clk == clk)
3076 break;
3077
3078 /* if clk wasn't in the notifier list, allocate new clk_notifier */
3079 if (cn->clk != clk) {
3080 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
3081 if (!cn)
3082 goto out;
3083
3084 cn->clk = clk;
3085 srcu_init_notifier_head(&cn->notifier_head);
3086
3087 list_add(&cn->node, &clk_notifier_list);
3088 }
3089
3090 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
3091
3092 clk->core->notifier_count++;
3093
3094 out:
3095 clk_prepare_unlock();
3096
3097 return ret;
3098 }
3099 EXPORT_SYMBOL_GPL(clk_notifier_register);
3100
3101 /**
3102 * clk_notifier_unregister - remove a clk rate change notifier
3103 * @clk: struct clk *
3104 * @nb: struct notifier_block * with callback info
3105 *
3106 * Request no further notification for changes to 'clk' and frees memory
3107 * allocated in clk_notifier_register.
3108 *
3109 * Returns -EINVAL if called with null arguments; otherwise, passes
3110 * along the return value of srcu_notifier_chain_unregister().
3111 */
3112 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
3113 {
3114 struct clk_notifier *cn = NULL;
3115 int ret = -EINVAL;
3116
3117 if (!clk || !nb)
3118 return -EINVAL;
3119
3120 clk_prepare_lock();
3121
3122 list_for_each_entry(cn, &clk_notifier_list, node)
3123 if (cn->clk == clk)
3124 break;
3125
3126 if (cn->clk == clk) {
3127 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
3128
3129 clk->core->notifier_count--;
3130
3131 /* XXX the notifier code should handle this better */
3132 if (!cn->notifier_head.head) {
3133 srcu_cleanup_notifier_head(&cn->notifier_head);
3134 list_del(&cn->node);
3135 kfree(cn);
3136 }
3137
3138 } else {
3139 ret = -ENOENT;
3140 }
3141
3142 clk_prepare_unlock();
3143
3144 return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3147
3148 #ifdef CONFIG_OF
3149 /**
3150 * struct of_clk_provider - Clock provider registration structure
3151 * @link: Entry in global list of clock providers
3152 * @node: Pointer to device tree node of clock provider
3153 * @get: Get clock callback. Returns NULL or a struct clk for the
3154 * given clock specifier
3155 * @data: context pointer to be passed into @get callback
3156 */
3157 struct of_clk_provider {
3158 struct list_head link;
3159
3160 struct device_node *node;
3161 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3162 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3163 void *data;
3164 };
3165
3166 static const struct of_device_id __clk_of_table_sentinel
3167 __used __section(__clk_of_table_end);
3168
3169 static LIST_HEAD(of_clk_providers);
3170 static DEFINE_MUTEX(of_clk_mutex);
3171
3172 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3173 void *data)
3174 {
3175 return data;
3176 }
3177 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3178
3179 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3180 {
3181 return data;
3182 }
3183 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3184
3185 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3186 {
3187 struct clk_onecell_data *clk_data = data;
3188 unsigned int idx = clkspec->args[0];
3189
3190 if (idx >= clk_data->clk_num) {
3191 pr_err("%s: invalid clock index %u\n", __func__, idx);
3192 return ERR_PTR(-EINVAL);
3193 }
3194
3195 return clk_data->clks[idx];
3196 }
3197 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3198
3199 struct clk_hw *
3200 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3201 {
3202 struct clk_hw_onecell_data *hw_data = data;
3203 unsigned int idx = clkspec->args[0];
3204
3205 if (idx >= hw_data->num) {
3206 pr_err("%s: invalid index %u\n", __func__, idx);
3207 return ERR_PTR(-EINVAL);
3208 }
3209
3210 return hw_data->hws[idx];
3211 }
3212 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3213
3214 /**
3215 * of_clk_add_provider() - Register a clock provider for a node
3216 * @np: Device node pointer associated with clock provider
3217 * @clk_src_get: callback for decoding clock
3218 * @data: context pointer for @clk_src_get callback.
3219 */
3220 int of_clk_add_provider(struct device_node *np,
3221 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3222 void *data),
3223 void *data)
3224 {
3225 struct of_clk_provider *cp;
3226 int ret;
3227
3228 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3229 if (!cp)
3230 return -ENOMEM;
3231
3232 cp->node = of_node_get(np);
3233 cp->data = data;
3234 cp->get = clk_src_get;
3235
3236 mutex_lock(&of_clk_mutex);
3237 list_add(&cp->link, &of_clk_providers);
3238 mutex_unlock(&of_clk_mutex);
3239 pr_debug("Added clock from %pOF\n", np);
3240
3241 ret = of_clk_set_defaults(np, true);
3242 if (ret < 0)
3243 of_clk_del_provider(np);
3244
3245 return ret;
3246 }
3247 EXPORT_SYMBOL_GPL(of_clk_add_provider);
3248
3249 /**
3250 * of_clk_add_hw_provider() - Register a clock provider for a node
3251 * @np: Device node pointer associated with clock provider
3252 * @get: callback for decoding clk_hw
3253 * @data: context pointer for @get callback.
3254 */
3255 int of_clk_add_hw_provider(struct device_node *np,
3256 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3257 void *data),
3258 void *data)
3259 {
3260 struct of_clk_provider *cp;
3261 int ret;
3262
3263 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3264 if (!cp)
3265 return -ENOMEM;
3266
3267 cp->node = of_node_get(np);
3268 cp->data = data;
3269 cp->get_hw = get;
3270
3271 mutex_lock(&of_clk_mutex);
3272 list_add(&cp->link, &of_clk_providers);
3273 mutex_unlock(&of_clk_mutex);
3274 pr_debug("Added clk_hw provider from %pOF\n", np);
3275
3276 ret = of_clk_set_defaults(np, true);
3277 if (ret < 0)
3278 of_clk_del_provider(np);
3279
3280 return ret;
3281 }
3282 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3283
3284 static void devm_of_clk_release_provider(struct device *dev, void *res)
3285 {
3286 of_clk_del_provider(*(struct device_node **)res);
3287 }
3288
3289 int devm_of_clk_add_hw_provider(struct device *dev,
3290 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3291 void *data),
3292 void *data)
3293 {
3294 struct device_node **ptr, *np;
3295 int ret;
3296
3297 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
3298 GFP_KERNEL);
3299 if (!ptr)
3300 return -ENOMEM;
3301
3302 np = dev->of_node;
3303 ret = of_clk_add_hw_provider(np, get, data);
3304 if (!ret) {
3305 *ptr = np;
3306 devres_add(dev, ptr);
3307 } else {
3308 devres_free(ptr);
3309 }
3310
3311 return ret;
3312 }
3313 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
3314
3315 /**
3316 * of_clk_del_provider() - Remove a previously registered clock provider
3317 * @np: Device node pointer associated with clock provider
3318 */
3319 void of_clk_del_provider(struct device_node *np)
3320 {
3321 struct of_clk_provider *cp;
3322
3323 mutex_lock(&of_clk_mutex);
3324 list_for_each_entry(cp, &of_clk_providers, link) {
3325 if (cp->node == np) {
3326 list_del(&cp->link);
3327 of_node_put(cp->node);
3328 kfree(cp);
3329 break;
3330 }
3331 }
3332 mutex_unlock(&of_clk_mutex);
3333 }
3334 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3335
3336 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
3337 {
3338 struct device_node **np = res;
3339
3340 if (WARN_ON(!np || !*np))
3341 return 0;
3342
3343 return *np == data;
3344 }
3345
3346 void devm_of_clk_del_provider(struct device *dev)
3347 {
3348 int ret;
3349
3350 ret = devres_release(dev, devm_of_clk_release_provider,
3351 devm_clk_provider_match, dev->of_node);
3352
3353 WARN_ON(ret);
3354 }
3355 EXPORT_SYMBOL(devm_of_clk_del_provider);
3356
3357 static struct clk_hw *
3358 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3359 struct of_phandle_args *clkspec)
3360 {
3361 struct clk *clk;
3362
3363 if (provider->get_hw)
3364 return provider->get_hw(clkspec, provider->data);
3365
3366 clk = provider->get(clkspec, provider->data);
3367 if (IS_ERR(clk))
3368 return ERR_CAST(clk);
3369 return __clk_get_hw(clk);
3370 }
3371
3372 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3373 const char *dev_id, const char *con_id)
3374 {
3375 struct of_clk_provider *provider;
3376 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3377 struct clk_hw *hw;
3378
3379 if (!clkspec)
3380 return ERR_PTR(-EINVAL);
3381
3382 /* Check if we have such a provider in our array */
3383 mutex_lock(&of_clk_mutex);
3384 list_for_each_entry(provider, &of_clk_providers, link) {
3385 if (provider->node == clkspec->np) {
3386 hw = __of_clk_get_hw_from_provider(provider, clkspec);
3387 clk = __clk_create_clk(hw, dev_id, con_id);
3388 }
3389
3390 if (!IS_ERR(clk)) {
3391 if (!__clk_get(clk)) {
3392 __clk_free_clk(clk);
3393 clk = ERR_PTR(-ENOENT);
3394 }
3395
3396 break;
3397 }
3398 }
3399 mutex_unlock(&of_clk_mutex);
3400
3401 return clk;
3402 }
3403
3404 /**
3405 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3406 * @clkspec: pointer to a clock specifier data structure
3407 *
3408 * This function looks up a struct clk from the registered list of clock
3409 * providers, an input is a clock specifier data structure as returned
3410 * from the of_parse_phandle_with_args() function call.
3411 */
3412 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3413 {
3414 return __of_clk_get_from_provider(clkspec, NULL, __func__);
3415 }
3416 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3417
3418 /**
3419 * of_clk_get_parent_count() - Count the number of clocks a device node has
3420 * @np: device node to count
3421 *
3422 * Returns: The number of clocks that are possible parents of this node
3423 */
3424 unsigned int of_clk_get_parent_count(struct device_node *np)
3425 {
3426 int count;
3427
3428 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3429 if (count < 0)
3430 return 0;
3431
3432 return count;
3433 }
3434 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3435
3436 const char *of_clk_get_parent_name(struct device_node *np, int index)
3437 {
3438 struct of_phandle_args clkspec;
3439 struct property *prop;
3440 const char *clk_name;
3441 const __be32 *vp;
3442 u32 pv;
3443 int rc;
3444 int count;
3445 struct clk *clk;
3446
3447 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3448 &clkspec);
3449 if (rc)
3450 return NULL;
3451
3452 index = clkspec.args_count ? clkspec.args[0] : 0;
3453 count = 0;
3454
3455 /* if there is an indices property, use it to transfer the index
3456 * specified into an array offset for the clock-output-names property.
3457 */
3458 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3459 if (index == pv) {
3460 index = count;
3461 break;
3462 }
3463 count++;
3464 }
3465 /* We went off the end of 'clock-indices' without finding it */
3466 if (prop && !vp)
3467 return NULL;
3468
3469 if (of_property_read_string_index(clkspec.np, "clock-output-names",
3470 index,
3471 &clk_name) < 0) {
3472 /*
3473 * Best effort to get the name if the clock has been
3474 * registered with the framework. If the clock isn't
3475 * registered, we return the node name as the name of
3476 * the clock as long as #clock-cells = 0.
3477 */
3478 clk = of_clk_get_from_provider(&clkspec);
3479 if (IS_ERR(clk)) {
3480 if (clkspec.args_count == 0)
3481 clk_name = clkspec.np->name;
3482 else
3483 clk_name = NULL;
3484 } else {
3485 clk_name = __clk_get_name(clk);
3486 clk_put(clk);
3487 }
3488 }
3489
3490
3491 of_node_put(clkspec.np);
3492 return clk_name;
3493 }
3494 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3495
3496 /**
3497 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3498 * number of parents
3499 * @np: Device node pointer associated with clock provider
3500 * @parents: pointer to char array that hold the parents' names
3501 * @size: size of the @parents array
3502 *
3503 * Return: number of parents for the clock node.
3504 */
3505 int of_clk_parent_fill(struct device_node *np, const char **parents,
3506 unsigned int size)
3507 {
3508 unsigned int i = 0;
3509
3510 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3511 i++;
3512
3513 return i;
3514 }
3515 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3516
3517 struct clock_provider {
3518 of_clk_init_cb_t clk_init_cb;
3519 struct device_node *np;
3520 struct list_head node;
3521 };
3522
3523 /*
3524 * This function looks for a parent clock. If there is one, then it
3525 * checks that the provider for this parent clock was initialized, in
3526 * this case the parent clock will be ready.
3527 */
3528 static int parent_ready(struct device_node *np)
3529 {
3530 int i = 0;
3531
3532 while (true) {
3533 struct clk *clk = of_clk_get(np, i);
3534
3535 /* this parent is ready we can check the next one */
3536 if (!IS_ERR(clk)) {
3537 clk_put(clk);
3538 i++;
3539 continue;
3540 }
3541
3542 /* at least one parent is not ready, we exit now */
3543 if (PTR_ERR(clk) == -EPROBE_DEFER)
3544 return 0;
3545
3546 /*
3547 * Here we make assumption that the device tree is
3548 * written correctly. So an error means that there is
3549 * no more parent. As we didn't exit yet, then the
3550 * previous parent are ready. If there is no clock
3551 * parent, no need to wait for them, then we can
3552 * consider their absence as being ready
3553 */
3554 return 1;
3555 }
3556 }
3557
3558 /**
3559 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3560 * @np: Device node pointer associated with clock provider
3561 * @index: clock index
3562 * @flags: pointer to clk_core->flags
3563 *
3564 * Detects if the clock-critical property exists and, if so, sets the
3565 * corresponding CLK_IS_CRITICAL flag.
3566 *
3567 * Do not use this function. It exists only for legacy Device Tree
3568 * bindings, such as the one-clock-per-node style that are outdated.
3569 * Those bindings typically put all clock data into .dts and the Linux
3570 * driver has no clock data, thus making it impossible to set this flag
3571 * correctly from the driver. Only those drivers may call
3572 * of_clk_detect_critical from their setup functions.
3573 *
3574 * Return: error code or zero on success
3575 */
3576 int of_clk_detect_critical(struct device_node *np,
3577 int index, unsigned long *flags)
3578 {
3579 struct property *prop;
3580 const __be32 *cur;
3581 uint32_t idx;
3582
3583 if (!np || !flags)
3584 return -EINVAL;
3585
3586 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3587 if (index == idx)
3588 *flags |= CLK_IS_CRITICAL;
3589
3590 return 0;
3591 }
3592
3593 /**
3594 * of_clk_init() - Scan and init clock providers from the DT
3595 * @matches: array of compatible values and init functions for providers.
3596 *
3597 * This function scans the device tree for matching clock providers
3598 * and calls their initialization functions. It also does it by trying
3599 * to follow the dependencies.
3600 */
3601 void __init of_clk_init(const struct of_device_id *matches)
3602 {
3603 const struct of_device_id *match;
3604 struct device_node *np;
3605 struct clock_provider *clk_provider, *next;
3606 bool is_init_done;
3607 bool force = false;
3608 LIST_HEAD(clk_provider_list);
3609
3610 if (!matches)
3611 matches = &__clk_of_table;
3612
3613 /* First prepare the list of the clocks providers */
3614 for_each_matching_node_and_match(np, matches, &match) {
3615 struct clock_provider *parent;
3616
3617 if (!of_device_is_available(np))
3618 continue;
3619
3620 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3621 if (!parent) {
3622 list_for_each_entry_safe(clk_provider, next,
3623 &clk_provider_list, node) {
3624 list_del(&clk_provider->node);
3625 of_node_put(clk_provider->np);
3626 kfree(clk_provider);
3627 }
3628 of_node_put(np);
3629 return;
3630 }
3631
3632 parent->clk_init_cb = match->data;
3633 parent->np = of_node_get(np);
3634 list_add_tail(&parent->node, &clk_provider_list);
3635 }
3636
3637 while (!list_empty(&clk_provider_list)) {
3638 is_init_done = false;
3639 list_for_each_entry_safe(clk_provider, next,
3640 &clk_provider_list, node) {
3641 if (force || parent_ready(clk_provider->np)) {
3642
3643 /* Don't populate platform devices */
3644 of_node_set_flag(clk_provider->np,
3645 OF_POPULATED);
3646
3647 clk_provider->clk_init_cb(clk_provider->np);
3648 of_clk_set_defaults(clk_provider->np, true);
3649
3650 list_del(&clk_provider->node);
3651 of_node_put(clk_provider->np);
3652 kfree(clk_provider);
3653 is_init_done = true;
3654 }
3655 }
3656
3657 /*
3658 * We didn't manage to initialize any of the
3659 * remaining providers during the last loop, so now we
3660 * initialize all the remaining ones unconditionally
3661 * in case the clock parent was not mandatory
3662 */
3663 if (!is_init_done)
3664 force = true;
3665 }
3666 }
3667 #endif