]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/clk/clk.c
Merge tag 'dm-3.17-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[mirror_ubuntu-artful-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 /*** locking ***/
41 static void clk_prepare_lock(void)
42 {
43 if (!mutex_trylock(&prepare_lock)) {
44 if (prepare_owner == current) {
45 prepare_refcnt++;
46 return;
47 }
48 mutex_lock(&prepare_lock);
49 }
50 WARN_ON_ONCE(prepare_owner != NULL);
51 WARN_ON_ONCE(prepare_refcnt != 0);
52 prepare_owner = current;
53 prepare_refcnt = 1;
54 }
55
56 static void clk_prepare_unlock(void)
57 {
58 WARN_ON_ONCE(prepare_owner != current);
59 WARN_ON_ONCE(prepare_refcnt == 0);
60
61 if (--prepare_refcnt)
62 return;
63 prepare_owner = NULL;
64 mutex_unlock(&prepare_lock);
65 }
66
67 static unsigned long clk_enable_lock(void)
68 {
69 unsigned long flags;
70
71 if (!spin_trylock_irqsave(&enable_lock, flags)) {
72 if (enable_owner == current) {
73 enable_refcnt++;
74 return flags;
75 }
76 spin_lock_irqsave(&enable_lock, flags);
77 }
78 WARN_ON_ONCE(enable_owner != NULL);
79 WARN_ON_ONCE(enable_refcnt != 0);
80 enable_owner = current;
81 enable_refcnt = 1;
82 return flags;
83 }
84
85 static void clk_enable_unlock(unsigned long flags)
86 {
87 WARN_ON_ONCE(enable_owner != current);
88 WARN_ON_ONCE(enable_refcnt == 0);
89
90 if (--enable_refcnt)
91 return;
92 enable_owner = NULL;
93 spin_unlock_irqrestore(&enable_lock, flags);
94 }
95
96 /*** debugfs support ***/
97
98 #ifdef CONFIG_DEBUG_FS
99 #include <linux/debugfs.h>
100
101 static struct dentry *rootdir;
102 static int inited = 0;
103
104 static struct hlist_head *all_lists[] = {
105 &clk_root_list,
106 &clk_orphan_list,
107 NULL,
108 };
109
110 static struct hlist_head *orphan_list[] = {
111 &clk_orphan_list,
112 NULL,
113 };
114
115 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
116 {
117 if (!c)
118 return;
119
120 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu\n",
121 level * 3 + 1, "",
122 30 - level * 3, c->name,
123 c->enable_count, c->prepare_count, clk_get_rate(c),
124 clk_get_accuracy(c));
125 }
126
127 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
128 int level)
129 {
130 struct clk *child;
131
132 if (!c)
133 return;
134
135 clk_summary_show_one(s, c, level);
136
137 hlist_for_each_entry(child, &c->children, child_node)
138 clk_summary_show_subtree(s, child, level + 1);
139 }
140
141 static int clk_summary_show(struct seq_file *s, void *data)
142 {
143 struct clk *c;
144 struct hlist_head **lists = (struct hlist_head **)s->private;
145
146 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy\n");
147 seq_puts(s, "--------------------------------------------------------------------------------\n");
148
149 clk_prepare_lock();
150
151 for (; *lists; lists++)
152 hlist_for_each_entry(c, *lists, child_node)
153 clk_summary_show_subtree(s, c, 0);
154
155 clk_prepare_unlock();
156
157 return 0;
158 }
159
160
161 static int clk_summary_open(struct inode *inode, struct file *file)
162 {
163 return single_open(file, clk_summary_show, inode->i_private);
164 }
165
166 static const struct file_operations clk_summary_fops = {
167 .open = clk_summary_open,
168 .read = seq_read,
169 .llseek = seq_lseek,
170 .release = single_release,
171 };
172
173 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
174 {
175 if (!c)
176 return;
177
178 seq_printf(s, "\"%s\": { ", c->name);
179 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
180 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
181 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
182 seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
183 }
184
185 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
186 {
187 struct clk *child;
188
189 if (!c)
190 return;
191
192 clk_dump_one(s, c, level);
193
194 hlist_for_each_entry(child, &c->children, child_node) {
195 seq_printf(s, ",");
196 clk_dump_subtree(s, child, level + 1);
197 }
198
199 seq_printf(s, "}");
200 }
201
202 static int clk_dump(struct seq_file *s, void *data)
203 {
204 struct clk *c;
205 bool first_node = true;
206 struct hlist_head **lists = (struct hlist_head **)s->private;
207
208 seq_printf(s, "{");
209
210 clk_prepare_lock();
211
212 for (; *lists; lists++) {
213 hlist_for_each_entry(c, *lists, child_node) {
214 if (!first_node)
215 seq_puts(s, ",");
216 first_node = false;
217 clk_dump_subtree(s, c, 0);
218 }
219 }
220
221 clk_prepare_unlock();
222
223 seq_printf(s, "}");
224 return 0;
225 }
226
227
228 static int clk_dump_open(struct inode *inode, struct file *file)
229 {
230 return single_open(file, clk_dump, inode->i_private);
231 }
232
233 static const struct file_operations clk_dump_fops = {
234 .open = clk_dump_open,
235 .read = seq_read,
236 .llseek = seq_lseek,
237 .release = single_release,
238 };
239
240 /* caller must hold prepare_lock */
241 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
242 {
243 struct dentry *d;
244 int ret = -ENOMEM;
245
246 if (!clk || !pdentry) {
247 ret = -EINVAL;
248 goto out;
249 }
250
251 d = debugfs_create_dir(clk->name, pdentry);
252 if (!d)
253 goto out;
254
255 clk->dentry = d;
256
257 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
258 (u32 *)&clk->rate);
259 if (!d)
260 goto err_out;
261
262 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
263 (u32 *)&clk->accuracy);
264 if (!d)
265 goto err_out;
266
267 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
268 (u32 *)&clk->flags);
269 if (!d)
270 goto err_out;
271
272 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
273 (u32 *)&clk->prepare_count);
274 if (!d)
275 goto err_out;
276
277 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
278 (u32 *)&clk->enable_count);
279 if (!d)
280 goto err_out;
281
282 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
283 (u32 *)&clk->notifier_count);
284 if (!d)
285 goto err_out;
286
287 if (clk->ops->debug_init) {
288 ret = clk->ops->debug_init(clk->hw, clk->dentry);
289 if (ret)
290 goto err_out;
291 }
292
293 ret = 0;
294 goto out;
295
296 err_out:
297 debugfs_remove_recursive(clk->dentry);
298 clk->dentry = NULL;
299 out:
300 return ret;
301 }
302
303 /* caller must hold prepare_lock */
304 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
305 {
306 struct clk *child;
307 int ret = -EINVAL;;
308
309 if (!clk || !pdentry)
310 goto out;
311
312 ret = clk_debug_create_one(clk, pdentry);
313
314 if (ret)
315 goto out;
316
317 hlist_for_each_entry(child, &clk->children, child_node)
318 clk_debug_create_subtree(child, pdentry);
319
320 ret = 0;
321 out:
322 return ret;
323 }
324
325 /**
326 * clk_debug_register - add a clk node to the debugfs clk tree
327 * @clk: the clk being added to the debugfs clk tree
328 *
329 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
330 * initialized. Otherwise it bails out early since the debugfs clk tree
331 * will be created lazily by clk_debug_init as part of a late_initcall.
332 *
333 * Caller must hold prepare_lock. Only clk_init calls this function (so
334 * far) so this is taken care.
335 */
336 static int clk_debug_register(struct clk *clk)
337 {
338 int ret = 0;
339
340 if (!inited)
341 goto out;
342
343 ret = clk_debug_create_subtree(clk, rootdir);
344
345 out:
346 return ret;
347 }
348
349 /**
350 * clk_debug_unregister - remove a clk node from the debugfs clk tree
351 * @clk: the clk being removed from the debugfs clk tree
352 *
353 * Dynamically removes a clk and all it's children clk nodes from the
354 * debugfs clk tree if clk->dentry points to debugfs created by
355 * clk_debug_register in __clk_init.
356 *
357 * Caller must hold prepare_lock.
358 */
359 static void clk_debug_unregister(struct clk *clk)
360 {
361 debugfs_remove_recursive(clk->dentry);
362 }
363
364 struct dentry *clk_debugfs_add_file(struct clk *clk, char *name, umode_t mode,
365 void *data, const struct file_operations *fops)
366 {
367 struct dentry *d = NULL;
368
369 if (clk->dentry)
370 d = debugfs_create_file(name, mode, clk->dentry, data, fops);
371
372 return d;
373 }
374 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
375
376 /**
377 * clk_debug_init - lazily create the debugfs clk tree visualization
378 *
379 * clks are often initialized very early during boot before memory can
380 * be dynamically allocated and well before debugfs is setup.
381 * clk_debug_init walks the clk tree hierarchy while holding
382 * prepare_lock and creates the topology as part of a late_initcall,
383 * thus insuring that clks initialized very early will still be
384 * represented in the debugfs clk tree. This function should only be
385 * called once at boot-time, and all other clks added dynamically will
386 * be done so with clk_debug_register.
387 */
388 static int __init clk_debug_init(void)
389 {
390 struct clk *clk;
391 struct dentry *d;
392
393 rootdir = debugfs_create_dir("clk", NULL);
394
395 if (!rootdir)
396 return -ENOMEM;
397
398 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
399 &clk_summary_fops);
400 if (!d)
401 return -ENOMEM;
402
403 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
404 &clk_dump_fops);
405 if (!d)
406 return -ENOMEM;
407
408 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
409 &orphan_list, &clk_summary_fops);
410 if (!d)
411 return -ENOMEM;
412
413 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
414 &orphan_list, &clk_dump_fops);
415 if (!d)
416 return -ENOMEM;
417
418 clk_prepare_lock();
419
420 hlist_for_each_entry(clk, &clk_root_list, child_node)
421 clk_debug_create_subtree(clk, rootdir);
422
423 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
424 clk_debug_create_subtree(clk, rootdir);
425
426 inited = 1;
427
428 clk_prepare_unlock();
429
430 return 0;
431 }
432 late_initcall(clk_debug_init);
433 #else
434 static inline int clk_debug_register(struct clk *clk) { return 0; }
435 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
436 {
437 }
438 static inline void clk_debug_unregister(struct clk *clk)
439 {
440 }
441 #endif
442
443 /* caller must hold prepare_lock */
444 static void clk_unprepare_unused_subtree(struct clk *clk)
445 {
446 struct clk *child;
447
448 if (!clk)
449 return;
450
451 hlist_for_each_entry(child, &clk->children, child_node)
452 clk_unprepare_unused_subtree(child);
453
454 if (clk->prepare_count)
455 return;
456
457 if (clk->flags & CLK_IGNORE_UNUSED)
458 return;
459
460 if (__clk_is_prepared(clk)) {
461 if (clk->ops->unprepare_unused)
462 clk->ops->unprepare_unused(clk->hw);
463 else if (clk->ops->unprepare)
464 clk->ops->unprepare(clk->hw);
465 }
466 }
467
468 /* caller must hold prepare_lock */
469 static void clk_disable_unused_subtree(struct clk *clk)
470 {
471 struct clk *child;
472 unsigned long flags;
473
474 if (!clk)
475 goto out;
476
477 hlist_for_each_entry(child, &clk->children, child_node)
478 clk_disable_unused_subtree(child);
479
480 flags = clk_enable_lock();
481
482 if (clk->enable_count)
483 goto unlock_out;
484
485 if (clk->flags & CLK_IGNORE_UNUSED)
486 goto unlock_out;
487
488 /*
489 * some gate clocks have special needs during the disable-unused
490 * sequence. call .disable_unused if available, otherwise fall
491 * back to .disable
492 */
493 if (__clk_is_enabled(clk)) {
494 if (clk->ops->disable_unused)
495 clk->ops->disable_unused(clk->hw);
496 else if (clk->ops->disable)
497 clk->ops->disable(clk->hw);
498 }
499
500 unlock_out:
501 clk_enable_unlock(flags);
502
503 out:
504 return;
505 }
506
507 static bool clk_ignore_unused;
508 static int __init clk_ignore_unused_setup(char *__unused)
509 {
510 clk_ignore_unused = true;
511 return 1;
512 }
513 __setup("clk_ignore_unused", clk_ignore_unused_setup);
514
515 static int clk_disable_unused(void)
516 {
517 struct clk *clk;
518
519 if (clk_ignore_unused) {
520 pr_warn("clk: Not disabling unused clocks\n");
521 return 0;
522 }
523
524 clk_prepare_lock();
525
526 hlist_for_each_entry(clk, &clk_root_list, child_node)
527 clk_disable_unused_subtree(clk);
528
529 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
530 clk_disable_unused_subtree(clk);
531
532 hlist_for_each_entry(clk, &clk_root_list, child_node)
533 clk_unprepare_unused_subtree(clk);
534
535 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
536 clk_unprepare_unused_subtree(clk);
537
538 clk_prepare_unlock();
539
540 return 0;
541 }
542 late_initcall_sync(clk_disable_unused);
543
544 /*** helper functions ***/
545
546 const char *__clk_get_name(struct clk *clk)
547 {
548 return !clk ? NULL : clk->name;
549 }
550 EXPORT_SYMBOL_GPL(__clk_get_name);
551
552 struct clk_hw *__clk_get_hw(struct clk *clk)
553 {
554 return !clk ? NULL : clk->hw;
555 }
556 EXPORT_SYMBOL_GPL(__clk_get_hw);
557
558 u8 __clk_get_num_parents(struct clk *clk)
559 {
560 return !clk ? 0 : clk->num_parents;
561 }
562 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
563
564 struct clk *__clk_get_parent(struct clk *clk)
565 {
566 return !clk ? NULL : clk->parent;
567 }
568 EXPORT_SYMBOL_GPL(__clk_get_parent);
569
570 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
571 {
572 if (!clk || index >= clk->num_parents)
573 return NULL;
574 else if (!clk->parents)
575 return __clk_lookup(clk->parent_names[index]);
576 else if (!clk->parents[index])
577 return clk->parents[index] =
578 __clk_lookup(clk->parent_names[index]);
579 else
580 return clk->parents[index];
581 }
582 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
583
584 unsigned int __clk_get_enable_count(struct clk *clk)
585 {
586 return !clk ? 0 : clk->enable_count;
587 }
588
589 unsigned int __clk_get_prepare_count(struct clk *clk)
590 {
591 return !clk ? 0 : clk->prepare_count;
592 }
593
594 unsigned long __clk_get_rate(struct clk *clk)
595 {
596 unsigned long ret;
597
598 if (!clk) {
599 ret = 0;
600 goto out;
601 }
602
603 ret = clk->rate;
604
605 if (clk->flags & CLK_IS_ROOT)
606 goto out;
607
608 if (!clk->parent)
609 ret = 0;
610
611 out:
612 return ret;
613 }
614 EXPORT_SYMBOL_GPL(__clk_get_rate);
615
616 unsigned long __clk_get_accuracy(struct clk *clk)
617 {
618 if (!clk)
619 return 0;
620
621 return clk->accuracy;
622 }
623
624 unsigned long __clk_get_flags(struct clk *clk)
625 {
626 return !clk ? 0 : clk->flags;
627 }
628 EXPORT_SYMBOL_GPL(__clk_get_flags);
629
630 bool __clk_is_prepared(struct clk *clk)
631 {
632 int ret;
633
634 if (!clk)
635 return false;
636
637 /*
638 * .is_prepared is optional for clocks that can prepare
639 * fall back to software usage counter if it is missing
640 */
641 if (!clk->ops->is_prepared) {
642 ret = clk->prepare_count ? 1 : 0;
643 goto out;
644 }
645
646 ret = clk->ops->is_prepared(clk->hw);
647 out:
648 return !!ret;
649 }
650
651 bool __clk_is_enabled(struct clk *clk)
652 {
653 int ret;
654
655 if (!clk)
656 return false;
657
658 /*
659 * .is_enabled is only mandatory for clocks that gate
660 * fall back to software usage counter if .is_enabled is missing
661 */
662 if (!clk->ops->is_enabled) {
663 ret = clk->enable_count ? 1 : 0;
664 goto out;
665 }
666
667 ret = clk->ops->is_enabled(clk->hw);
668 out:
669 return !!ret;
670 }
671 EXPORT_SYMBOL_GPL(__clk_is_enabled);
672
673 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
674 {
675 struct clk *child;
676 struct clk *ret;
677
678 if (!strcmp(clk->name, name))
679 return clk;
680
681 hlist_for_each_entry(child, &clk->children, child_node) {
682 ret = __clk_lookup_subtree(name, child);
683 if (ret)
684 return ret;
685 }
686
687 return NULL;
688 }
689
690 struct clk *__clk_lookup(const char *name)
691 {
692 struct clk *root_clk;
693 struct clk *ret;
694
695 if (!name)
696 return NULL;
697
698 /* search the 'proper' clk tree first */
699 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
700 ret = __clk_lookup_subtree(name, root_clk);
701 if (ret)
702 return ret;
703 }
704
705 /* if not found, then search the orphan tree */
706 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
707 ret = __clk_lookup_subtree(name, root_clk);
708 if (ret)
709 return ret;
710 }
711
712 return NULL;
713 }
714
715 /*
716 * Helper for finding best parent to provide a given frequency. This can be used
717 * directly as a determine_rate callback (e.g. for a mux), or from a more
718 * complex clock that may combine a mux with other operations.
719 */
720 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
721 unsigned long *best_parent_rate,
722 struct clk **best_parent_p)
723 {
724 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
725 int i, num_parents;
726 unsigned long parent_rate, best = 0;
727
728 /* if NO_REPARENT flag set, pass through to current parent */
729 if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
730 parent = clk->parent;
731 if (clk->flags & CLK_SET_RATE_PARENT)
732 best = __clk_round_rate(parent, rate);
733 else if (parent)
734 best = __clk_get_rate(parent);
735 else
736 best = __clk_get_rate(clk);
737 goto out;
738 }
739
740 /* find the parent that can provide the fastest rate <= rate */
741 num_parents = clk->num_parents;
742 for (i = 0; i < num_parents; i++) {
743 parent = clk_get_parent_by_index(clk, i);
744 if (!parent)
745 continue;
746 if (clk->flags & CLK_SET_RATE_PARENT)
747 parent_rate = __clk_round_rate(parent, rate);
748 else
749 parent_rate = __clk_get_rate(parent);
750 if (parent_rate <= rate && parent_rate > best) {
751 best_parent = parent;
752 best = parent_rate;
753 }
754 }
755
756 out:
757 if (best_parent)
758 *best_parent_p = best_parent;
759 *best_parent_rate = best;
760
761 return best;
762 }
763 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
764
765 /*** clk api ***/
766
767 void __clk_unprepare(struct clk *clk)
768 {
769 if (!clk)
770 return;
771
772 if (WARN_ON(clk->prepare_count == 0))
773 return;
774
775 if (--clk->prepare_count > 0)
776 return;
777
778 WARN_ON(clk->enable_count > 0);
779
780 if (clk->ops->unprepare)
781 clk->ops->unprepare(clk->hw);
782
783 __clk_unprepare(clk->parent);
784 }
785
786 /**
787 * clk_unprepare - undo preparation of a clock source
788 * @clk: the clk being unprepared
789 *
790 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
791 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
792 * if the operation may sleep. One example is a clk which is accessed over
793 * I2c. In the complex case a clk gate operation may require a fast and a slow
794 * part. It is this reason that clk_unprepare and clk_disable are not mutually
795 * exclusive. In fact clk_disable must be called before clk_unprepare.
796 */
797 void clk_unprepare(struct clk *clk)
798 {
799 if (IS_ERR_OR_NULL(clk))
800 return;
801
802 clk_prepare_lock();
803 __clk_unprepare(clk);
804 clk_prepare_unlock();
805 }
806 EXPORT_SYMBOL_GPL(clk_unprepare);
807
808 int __clk_prepare(struct clk *clk)
809 {
810 int ret = 0;
811
812 if (!clk)
813 return 0;
814
815 if (clk->prepare_count == 0) {
816 ret = __clk_prepare(clk->parent);
817 if (ret)
818 return ret;
819
820 if (clk->ops->prepare) {
821 ret = clk->ops->prepare(clk->hw);
822 if (ret) {
823 __clk_unprepare(clk->parent);
824 return ret;
825 }
826 }
827 }
828
829 clk->prepare_count++;
830
831 return 0;
832 }
833
834 /**
835 * clk_prepare - prepare a clock source
836 * @clk: the clk being prepared
837 *
838 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
839 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
840 * operation may sleep. One example is a clk which is accessed over I2c. In
841 * the complex case a clk ungate operation may require a fast and a slow part.
842 * It is this reason that clk_prepare and clk_enable are not mutually
843 * exclusive. In fact clk_prepare must be called before clk_enable.
844 * Returns 0 on success, -EERROR otherwise.
845 */
846 int clk_prepare(struct clk *clk)
847 {
848 int ret;
849
850 clk_prepare_lock();
851 ret = __clk_prepare(clk);
852 clk_prepare_unlock();
853
854 return ret;
855 }
856 EXPORT_SYMBOL_GPL(clk_prepare);
857
858 static void __clk_disable(struct clk *clk)
859 {
860 if (!clk)
861 return;
862
863 if (WARN_ON(clk->enable_count == 0))
864 return;
865
866 if (--clk->enable_count > 0)
867 return;
868
869 if (clk->ops->disable)
870 clk->ops->disable(clk->hw);
871
872 __clk_disable(clk->parent);
873 }
874
875 /**
876 * clk_disable - gate a clock
877 * @clk: the clk being gated
878 *
879 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
880 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
881 * clk if the operation is fast and will never sleep. One example is a
882 * SoC-internal clk which is controlled via simple register writes. In the
883 * complex case a clk gate operation may require a fast and a slow part. It is
884 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
885 * In fact clk_disable must be called before clk_unprepare.
886 */
887 void clk_disable(struct clk *clk)
888 {
889 unsigned long flags;
890
891 if (IS_ERR_OR_NULL(clk))
892 return;
893
894 flags = clk_enable_lock();
895 __clk_disable(clk);
896 clk_enable_unlock(flags);
897 }
898 EXPORT_SYMBOL_GPL(clk_disable);
899
900 static int __clk_enable(struct clk *clk)
901 {
902 int ret = 0;
903
904 if (!clk)
905 return 0;
906
907 if (WARN_ON(clk->prepare_count == 0))
908 return -ESHUTDOWN;
909
910 if (clk->enable_count == 0) {
911 ret = __clk_enable(clk->parent);
912
913 if (ret)
914 return ret;
915
916 if (clk->ops->enable) {
917 ret = clk->ops->enable(clk->hw);
918 if (ret) {
919 __clk_disable(clk->parent);
920 return ret;
921 }
922 }
923 }
924
925 clk->enable_count++;
926 return 0;
927 }
928
929 /**
930 * clk_enable - ungate a clock
931 * @clk: the clk being ungated
932 *
933 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
934 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
935 * if the operation will never sleep. One example is a SoC-internal clk which
936 * is controlled via simple register writes. In the complex case a clk ungate
937 * operation may require a fast and a slow part. It is this reason that
938 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
939 * must be called before clk_enable. Returns 0 on success, -EERROR
940 * otherwise.
941 */
942 int clk_enable(struct clk *clk)
943 {
944 unsigned long flags;
945 int ret;
946
947 flags = clk_enable_lock();
948 ret = __clk_enable(clk);
949 clk_enable_unlock(flags);
950
951 return ret;
952 }
953 EXPORT_SYMBOL_GPL(clk_enable);
954
955 /**
956 * __clk_round_rate - round the given rate for a clk
957 * @clk: round the rate of this clock
958 * @rate: the rate which is to be rounded
959 *
960 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
961 */
962 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
963 {
964 unsigned long parent_rate = 0;
965 struct clk *parent;
966
967 if (!clk)
968 return 0;
969
970 parent = clk->parent;
971 if (parent)
972 parent_rate = parent->rate;
973
974 if (clk->ops->determine_rate)
975 return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
976 &parent);
977 else if (clk->ops->round_rate)
978 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
979 else if (clk->flags & CLK_SET_RATE_PARENT)
980 return __clk_round_rate(clk->parent, rate);
981 else
982 return clk->rate;
983 }
984 EXPORT_SYMBOL_GPL(__clk_round_rate);
985
986 /**
987 * clk_round_rate - round the given rate for a clk
988 * @clk: the clk for which we are rounding a rate
989 * @rate: the rate which is to be rounded
990 *
991 * Takes in a rate as input and rounds it to a rate that the clk can actually
992 * use which is then returned. If clk doesn't support round_rate operation
993 * then the parent rate is returned.
994 */
995 long clk_round_rate(struct clk *clk, unsigned long rate)
996 {
997 unsigned long ret;
998
999 clk_prepare_lock();
1000 ret = __clk_round_rate(clk, rate);
1001 clk_prepare_unlock();
1002
1003 return ret;
1004 }
1005 EXPORT_SYMBOL_GPL(clk_round_rate);
1006
1007 /**
1008 * __clk_notify - call clk notifier chain
1009 * @clk: struct clk * that is changing rate
1010 * @msg: clk notifier type (see include/linux/clk.h)
1011 * @old_rate: old clk rate
1012 * @new_rate: new clk rate
1013 *
1014 * Triggers a notifier call chain on the clk rate-change notification
1015 * for 'clk'. Passes a pointer to the struct clk and the previous
1016 * and current rates to the notifier callback. Intended to be called by
1017 * internal clock code only. Returns NOTIFY_DONE from the last driver
1018 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1019 * a driver returns that.
1020 */
1021 static int __clk_notify(struct clk *clk, unsigned long msg,
1022 unsigned long old_rate, unsigned long new_rate)
1023 {
1024 struct clk_notifier *cn;
1025 struct clk_notifier_data cnd;
1026 int ret = NOTIFY_DONE;
1027
1028 cnd.clk = clk;
1029 cnd.old_rate = old_rate;
1030 cnd.new_rate = new_rate;
1031
1032 list_for_each_entry(cn, &clk_notifier_list, node) {
1033 if (cn->clk == clk) {
1034 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1035 &cnd);
1036 break;
1037 }
1038 }
1039
1040 return ret;
1041 }
1042
1043 /**
1044 * __clk_recalc_accuracies
1045 * @clk: first clk in the subtree
1046 *
1047 * Walks the subtree of clks starting with clk and recalculates accuracies as
1048 * it goes. Note that if a clk does not implement the .recalc_accuracy
1049 * callback then it is assumed that the clock will take on the accuracy of it's
1050 * parent.
1051 *
1052 * Caller must hold prepare_lock.
1053 */
1054 static void __clk_recalc_accuracies(struct clk *clk)
1055 {
1056 unsigned long parent_accuracy = 0;
1057 struct clk *child;
1058
1059 if (clk->parent)
1060 parent_accuracy = clk->parent->accuracy;
1061
1062 if (clk->ops->recalc_accuracy)
1063 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1064 parent_accuracy);
1065 else
1066 clk->accuracy = parent_accuracy;
1067
1068 hlist_for_each_entry(child, &clk->children, child_node)
1069 __clk_recalc_accuracies(child);
1070 }
1071
1072 /**
1073 * clk_get_accuracy - return the accuracy of clk
1074 * @clk: the clk whose accuracy is being returned
1075 *
1076 * Simply returns the cached accuracy of the clk, unless
1077 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1078 * issued.
1079 * If clk is NULL then returns 0.
1080 */
1081 long clk_get_accuracy(struct clk *clk)
1082 {
1083 unsigned long accuracy;
1084
1085 clk_prepare_lock();
1086 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1087 __clk_recalc_accuracies(clk);
1088
1089 accuracy = __clk_get_accuracy(clk);
1090 clk_prepare_unlock();
1091
1092 return accuracy;
1093 }
1094 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1095
1096 static unsigned long clk_recalc(struct clk *clk, unsigned long parent_rate)
1097 {
1098 if (clk->ops->recalc_rate)
1099 return clk->ops->recalc_rate(clk->hw, parent_rate);
1100 return parent_rate;
1101 }
1102
1103 /**
1104 * __clk_recalc_rates
1105 * @clk: first clk in the subtree
1106 * @msg: notification type (see include/linux/clk.h)
1107 *
1108 * Walks the subtree of clks starting with clk and recalculates rates as it
1109 * goes. Note that if a clk does not implement the .recalc_rate callback then
1110 * it is assumed that the clock will take on the rate of its parent.
1111 *
1112 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1113 * if necessary.
1114 *
1115 * Caller must hold prepare_lock.
1116 */
1117 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1118 {
1119 unsigned long old_rate;
1120 unsigned long parent_rate = 0;
1121 struct clk *child;
1122
1123 old_rate = clk->rate;
1124
1125 if (clk->parent)
1126 parent_rate = clk->parent->rate;
1127
1128 clk->rate = clk_recalc(clk, parent_rate);
1129
1130 /*
1131 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1132 * & ABORT_RATE_CHANGE notifiers
1133 */
1134 if (clk->notifier_count && msg)
1135 __clk_notify(clk, msg, old_rate, clk->rate);
1136
1137 hlist_for_each_entry(child, &clk->children, child_node)
1138 __clk_recalc_rates(child, msg);
1139 }
1140
1141 /**
1142 * clk_get_rate - return the rate of clk
1143 * @clk: the clk whose rate is being returned
1144 *
1145 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1146 * is set, which means a recalc_rate will be issued.
1147 * If clk is NULL then returns 0.
1148 */
1149 unsigned long clk_get_rate(struct clk *clk)
1150 {
1151 unsigned long rate;
1152
1153 clk_prepare_lock();
1154
1155 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1156 __clk_recalc_rates(clk, 0);
1157
1158 rate = __clk_get_rate(clk);
1159 clk_prepare_unlock();
1160
1161 return rate;
1162 }
1163 EXPORT_SYMBOL_GPL(clk_get_rate);
1164
1165 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1166 {
1167 int i;
1168
1169 if (!clk->parents) {
1170 clk->parents = kcalloc(clk->num_parents,
1171 sizeof(struct clk *), GFP_KERNEL);
1172 if (!clk->parents)
1173 return -ENOMEM;
1174 }
1175
1176 /*
1177 * find index of new parent clock using cached parent ptrs,
1178 * or if not yet cached, use string name comparison and cache
1179 * them now to avoid future calls to __clk_lookup.
1180 */
1181 for (i = 0; i < clk->num_parents; i++) {
1182 if (clk->parents[i] == parent)
1183 return i;
1184
1185 if (clk->parents[i])
1186 continue;
1187
1188 if (!strcmp(clk->parent_names[i], parent->name)) {
1189 clk->parents[i] = __clk_lookup(parent->name);
1190 return i;
1191 }
1192 }
1193
1194 return -EINVAL;
1195 }
1196
1197 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1198 {
1199 hlist_del(&clk->child_node);
1200
1201 if (new_parent) {
1202 /* avoid duplicate POST_RATE_CHANGE notifications */
1203 if (new_parent->new_child == clk)
1204 new_parent->new_child = NULL;
1205
1206 hlist_add_head(&clk->child_node, &new_parent->children);
1207 } else {
1208 hlist_add_head(&clk->child_node, &clk_orphan_list);
1209 }
1210
1211 clk->parent = new_parent;
1212 }
1213
1214 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1215 {
1216 unsigned long flags;
1217 struct clk *old_parent = clk->parent;
1218
1219 /*
1220 * Migrate prepare state between parents and prevent race with
1221 * clk_enable().
1222 *
1223 * If the clock is not prepared, then a race with
1224 * clk_enable/disable() is impossible since we already have the
1225 * prepare lock (future calls to clk_enable() need to be preceded by
1226 * a clk_prepare()).
1227 *
1228 * If the clock is prepared, migrate the prepared state to the new
1229 * parent and also protect against a race with clk_enable() by
1230 * forcing the clock and the new parent on. This ensures that all
1231 * future calls to clk_enable() are practically NOPs with respect to
1232 * hardware and software states.
1233 *
1234 * See also: Comment for clk_set_parent() below.
1235 */
1236 if (clk->prepare_count) {
1237 __clk_prepare(parent);
1238 clk_enable(parent);
1239 clk_enable(clk);
1240 }
1241
1242 /* update the clk tree topology */
1243 flags = clk_enable_lock();
1244 clk_reparent(clk, parent);
1245 clk_enable_unlock(flags);
1246
1247 return old_parent;
1248 }
1249
1250 static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1251 struct clk *old_parent)
1252 {
1253 /*
1254 * Finish the migration of prepare state and undo the changes done
1255 * for preventing a race with clk_enable().
1256 */
1257 if (clk->prepare_count) {
1258 clk_disable(clk);
1259 clk_disable(old_parent);
1260 __clk_unprepare(old_parent);
1261 }
1262 }
1263
1264 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1265 {
1266 unsigned long flags;
1267 int ret = 0;
1268 struct clk *old_parent;
1269
1270 old_parent = __clk_set_parent_before(clk, parent);
1271
1272 /* change clock input source */
1273 if (parent && clk->ops->set_parent)
1274 ret = clk->ops->set_parent(clk->hw, p_index);
1275
1276 if (ret) {
1277 flags = clk_enable_lock();
1278 clk_reparent(clk, old_parent);
1279 clk_enable_unlock(flags);
1280
1281 if (clk->prepare_count) {
1282 clk_disable(clk);
1283 clk_disable(parent);
1284 __clk_unprepare(parent);
1285 }
1286 return ret;
1287 }
1288
1289 __clk_set_parent_after(clk, parent, old_parent);
1290
1291 return 0;
1292 }
1293
1294 /**
1295 * __clk_speculate_rates
1296 * @clk: first clk in the subtree
1297 * @parent_rate: the "future" rate of clk's parent
1298 *
1299 * Walks the subtree of clks starting with clk, speculating rates as it
1300 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1301 *
1302 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1303 * pre-rate change notifications and returns early if no clks in the
1304 * subtree have subscribed to the notifications. Note that if a clk does not
1305 * implement the .recalc_rate callback then it is assumed that the clock will
1306 * take on the rate of its parent.
1307 *
1308 * Caller must hold prepare_lock.
1309 */
1310 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1311 {
1312 struct clk *child;
1313 unsigned long new_rate;
1314 int ret = NOTIFY_DONE;
1315
1316 new_rate = clk_recalc(clk, parent_rate);
1317
1318 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1319 if (clk->notifier_count)
1320 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1321
1322 if (ret & NOTIFY_STOP_MASK) {
1323 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1324 __func__, clk->name, ret);
1325 goto out;
1326 }
1327
1328 hlist_for_each_entry(child, &clk->children, child_node) {
1329 ret = __clk_speculate_rates(child, new_rate);
1330 if (ret & NOTIFY_STOP_MASK)
1331 break;
1332 }
1333
1334 out:
1335 return ret;
1336 }
1337
1338 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1339 struct clk *new_parent, u8 p_index)
1340 {
1341 struct clk *child;
1342
1343 clk->new_rate = new_rate;
1344 clk->new_parent = new_parent;
1345 clk->new_parent_index = p_index;
1346 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1347 clk->new_child = NULL;
1348 if (new_parent && new_parent != clk->parent)
1349 new_parent->new_child = clk;
1350
1351 hlist_for_each_entry(child, &clk->children, child_node) {
1352 child->new_rate = clk_recalc(child, new_rate);
1353 clk_calc_subtree(child, child->new_rate, NULL, 0);
1354 }
1355 }
1356
1357 /*
1358 * calculate the new rates returning the topmost clock that has to be
1359 * changed.
1360 */
1361 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1362 {
1363 struct clk *top = clk;
1364 struct clk *old_parent, *parent;
1365 unsigned long best_parent_rate = 0;
1366 unsigned long new_rate;
1367 int p_index = 0;
1368
1369 /* sanity */
1370 if (IS_ERR_OR_NULL(clk))
1371 return NULL;
1372
1373 /* save parent rate, if it exists */
1374 parent = old_parent = clk->parent;
1375 if (parent)
1376 best_parent_rate = parent->rate;
1377
1378 /* find the closest rate and parent clk/rate */
1379 if (clk->ops->determine_rate) {
1380 new_rate = clk->ops->determine_rate(clk->hw, rate,
1381 &best_parent_rate,
1382 &parent);
1383 } else if (clk->ops->round_rate) {
1384 new_rate = clk->ops->round_rate(clk->hw, rate,
1385 &best_parent_rate);
1386 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1387 /* pass-through clock without adjustable parent */
1388 clk->new_rate = clk->rate;
1389 return NULL;
1390 } else {
1391 /* pass-through clock with adjustable parent */
1392 top = clk_calc_new_rates(parent, rate);
1393 new_rate = parent->new_rate;
1394 goto out;
1395 }
1396
1397 /* some clocks must be gated to change parent */
1398 if (parent != old_parent &&
1399 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1400 pr_debug("%s: %s not gated but wants to reparent\n",
1401 __func__, clk->name);
1402 return NULL;
1403 }
1404
1405 /* try finding the new parent index */
1406 if (parent) {
1407 p_index = clk_fetch_parent_index(clk, parent);
1408 if (p_index < 0) {
1409 pr_debug("%s: clk %s can not be parent of clk %s\n",
1410 __func__, parent->name, clk->name);
1411 return NULL;
1412 }
1413 }
1414
1415 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1416 best_parent_rate != parent->rate)
1417 top = clk_calc_new_rates(parent, best_parent_rate);
1418
1419 out:
1420 clk_calc_subtree(clk, new_rate, parent, p_index);
1421
1422 return top;
1423 }
1424
1425 /*
1426 * Notify about rate changes in a subtree. Always walk down the whole tree
1427 * so that in case of an error we can walk down the whole tree again and
1428 * abort the change.
1429 */
1430 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1431 {
1432 struct clk *child, *tmp_clk, *fail_clk = NULL;
1433 int ret = NOTIFY_DONE;
1434
1435 if (clk->rate == clk->new_rate)
1436 return NULL;
1437
1438 if (clk->notifier_count) {
1439 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1440 if (ret & NOTIFY_STOP_MASK)
1441 fail_clk = clk;
1442 }
1443
1444 hlist_for_each_entry(child, &clk->children, child_node) {
1445 /* Skip children who will be reparented to another clock */
1446 if (child->new_parent && child->new_parent != clk)
1447 continue;
1448 tmp_clk = clk_propagate_rate_change(child, event);
1449 if (tmp_clk)
1450 fail_clk = tmp_clk;
1451 }
1452
1453 /* handle the new child who might not be in clk->children yet */
1454 if (clk->new_child) {
1455 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1456 if (tmp_clk)
1457 fail_clk = tmp_clk;
1458 }
1459
1460 return fail_clk;
1461 }
1462
1463 /*
1464 * walk down a subtree and set the new rates notifying the rate
1465 * change on the way
1466 */
1467 static void clk_change_rate(struct clk *clk)
1468 {
1469 struct clk *child;
1470 unsigned long old_rate;
1471 unsigned long best_parent_rate = 0;
1472 bool skip_set_rate = false;
1473 struct clk *old_parent;
1474
1475 old_rate = clk->rate;
1476
1477 if (clk->new_parent)
1478 best_parent_rate = clk->new_parent->rate;
1479 else if (clk->parent)
1480 best_parent_rate = clk->parent->rate;
1481
1482 if (clk->new_parent && clk->new_parent != clk->parent) {
1483 old_parent = __clk_set_parent_before(clk, clk->new_parent);
1484
1485 if (clk->ops->set_rate_and_parent) {
1486 skip_set_rate = true;
1487 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1488 best_parent_rate,
1489 clk->new_parent_index);
1490 } else if (clk->ops->set_parent) {
1491 clk->ops->set_parent(clk->hw, clk->new_parent_index);
1492 }
1493
1494 __clk_set_parent_after(clk, clk->new_parent, old_parent);
1495 }
1496
1497 if (!skip_set_rate && clk->ops->set_rate)
1498 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1499
1500 clk->rate = clk_recalc(clk, best_parent_rate);
1501
1502 if (clk->notifier_count && old_rate != clk->rate)
1503 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1504
1505 hlist_for_each_entry(child, &clk->children, child_node) {
1506 /* Skip children who will be reparented to another clock */
1507 if (child->new_parent && child->new_parent != clk)
1508 continue;
1509 clk_change_rate(child);
1510 }
1511
1512 /* handle the new child who might not be in clk->children yet */
1513 if (clk->new_child)
1514 clk_change_rate(clk->new_child);
1515 }
1516
1517 /**
1518 * clk_set_rate - specify a new rate for clk
1519 * @clk: the clk whose rate is being changed
1520 * @rate: the new rate for clk
1521 *
1522 * In the simplest case clk_set_rate will only adjust the rate of clk.
1523 *
1524 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1525 * propagate up to clk's parent; whether or not this happens depends on the
1526 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1527 * after calling .round_rate then upstream parent propagation is ignored. If
1528 * *parent_rate comes back with a new rate for clk's parent then we propagate
1529 * up to clk's parent and set its rate. Upward propagation will continue
1530 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1531 * .round_rate stops requesting changes to clk's parent_rate.
1532 *
1533 * Rate changes are accomplished via tree traversal that also recalculates the
1534 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1535 *
1536 * Returns 0 on success, -EERROR otherwise.
1537 */
1538 int clk_set_rate(struct clk *clk, unsigned long rate)
1539 {
1540 struct clk *top, *fail_clk;
1541 int ret = 0;
1542
1543 if (!clk)
1544 return 0;
1545
1546 /* prevent racing with updates to the clock topology */
1547 clk_prepare_lock();
1548
1549 /* bail early if nothing to do */
1550 if (rate == clk_get_rate(clk))
1551 goto out;
1552
1553 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1554 ret = -EBUSY;
1555 goto out;
1556 }
1557
1558 /* calculate new rates and get the topmost changed clock */
1559 top = clk_calc_new_rates(clk, rate);
1560 if (!top) {
1561 ret = -EINVAL;
1562 goto out;
1563 }
1564
1565 /* notify that we are about to change rates */
1566 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1567 if (fail_clk) {
1568 pr_debug("%s: failed to set %s rate\n", __func__,
1569 fail_clk->name);
1570 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1571 ret = -EBUSY;
1572 goto out;
1573 }
1574
1575 /* change the rates */
1576 clk_change_rate(top);
1577
1578 out:
1579 clk_prepare_unlock();
1580
1581 return ret;
1582 }
1583 EXPORT_SYMBOL_GPL(clk_set_rate);
1584
1585 /**
1586 * clk_get_parent - return the parent of a clk
1587 * @clk: the clk whose parent gets returned
1588 *
1589 * Simply returns clk->parent. Returns NULL if clk is NULL.
1590 */
1591 struct clk *clk_get_parent(struct clk *clk)
1592 {
1593 struct clk *parent;
1594
1595 clk_prepare_lock();
1596 parent = __clk_get_parent(clk);
1597 clk_prepare_unlock();
1598
1599 return parent;
1600 }
1601 EXPORT_SYMBOL_GPL(clk_get_parent);
1602
1603 /*
1604 * .get_parent is mandatory for clocks with multiple possible parents. It is
1605 * optional for single-parent clocks. Always call .get_parent if it is
1606 * available and WARN if it is missing for multi-parent clocks.
1607 *
1608 * For single-parent clocks without .get_parent, first check to see if the
1609 * .parents array exists, and if so use it to avoid an expensive tree
1610 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1611 */
1612 static struct clk *__clk_init_parent(struct clk *clk)
1613 {
1614 struct clk *ret = NULL;
1615 u8 index;
1616
1617 /* handle the trivial cases */
1618
1619 if (!clk->num_parents)
1620 goto out;
1621
1622 if (clk->num_parents == 1) {
1623 if (IS_ERR_OR_NULL(clk->parent))
1624 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1625 ret = clk->parent;
1626 goto out;
1627 }
1628
1629 if (!clk->ops->get_parent) {
1630 WARN(!clk->ops->get_parent,
1631 "%s: multi-parent clocks must implement .get_parent\n",
1632 __func__);
1633 goto out;
1634 };
1635
1636 /*
1637 * Do our best to cache parent clocks in clk->parents. This prevents
1638 * unnecessary and expensive calls to __clk_lookup. We don't set
1639 * clk->parent here; that is done by the calling function
1640 */
1641
1642 index = clk->ops->get_parent(clk->hw);
1643
1644 if (!clk->parents)
1645 clk->parents =
1646 kcalloc(clk->num_parents, sizeof(struct clk *),
1647 GFP_KERNEL);
1648
1649 ret = clk_get_parent_by_index(clk, index);
1650
1651 out:
1652 return ret;
1653 }
1654
1655 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1656 {
1657 clk_reparent(clk, new_parent);
1658 __clk_recalc_accuracies(clk);
1659 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1660 }
1661
1662 /**
1663 * clk_set_parent - switch the parent of a mux clk
1664 * @clk: the mux clk whose input we are switching
1665 * @parent: the new input to clk
1666 *
1667 * Re-parent clk to use parent as its new input source. If clk is in
1668 * prepared state, the clk will get enabled for the duration of this call. If
1669 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1670 * that, the reparenting is glitchy in hardware, etc), use the
1671 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1672 *
1673 * After successfully changing clk's parent clk_set_parent will update the
1674 * clk topology, sysfs topology and propagate rate recalculation via
1675 * __clk_recalc_rates.
1676 *
1677 * Returns 0 on success, -EERROR otherwise.
1678 */
1679 int clk_set_parent(struct clk *clk, struct clk *parent)
1680 {
1681 int ret = 0;
1682 int p_index = 0;
1683 unsigned long p_rate = 0;
1684
1685 if (!clk)
1686 return 0;
1687
1688 /* verify ops for for multi-parent clks */
1689 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1690 return -ENOSYS;
1691
1692 /* prevent racing with updates to the clock topology */
1693 clk_prepare_lock();
1694
1695 if (clk->parent == parent)
1696 goto out;
1697
1698 /* check that we are allowed to re-parent if the clock is in use */
1699 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1700 ret = -EBUSY;
1701 goto out;
1702 }
1703
1704 /* try finding the new parent index */
1705 if (parent) {
1706 p_index = clk_fetch_parent_index(clk, parent);
1707 p_rate = parent->rate;
1708 if (p_index < 0) {
1709 pr_debug("%s: clk %s can not be parent of clk %s\n",
1710 __func__, parent->name, clk->name);
1711 ret = p_index;
1712 goto out;
1713 }
1714 }
1715
1716 /* propagate PRE_RATE_CHANGE notifications */
1717 ret = __clk_speculate_rates(clk, p_rate);
1718
1719 /* abort if a driver objects */
1720 if (ret & NOTIFY_STOP_MASK)
1721 goto out;
1722
1723 /* do the re-parent */
1724 ret = __clk_set_parent(clk, parent, p_index);
1725
1726 /* propagate rate an accuracy recalculation accordingly */
1727 if (ret) {
1728 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1729 } else {
1730 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1731 __clk_recalc_accuracies(clk);
1732 }
1733
1734 out:
1735 clk_prepare_unlock();
1736
1737 return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(clk_set_parent);
1740
1741 /**
1742 * __clk_init - initialize the data structures in a struct clk
1743 * @dev: device initializing this clk, placeholder for now
1744 * @clk: clk being initialized
1745 *
1746 * Initializes the lists in struct clk, queries the hardware for the
1747 * parent and rate and sets them both.
1748 */
1749 int __clk_init(struct device *dev, struct clk *clk)
1750 {
1751 int i, ret = 0;
1752 struct clk *orphan;
1753 struct hlist_node *tmp2;
1754
1755 if (!clk)
1756 return -EINVAL;
1757
1758 clk_prepare_lock();
1759
1760 /* check to see if a clock with this name is already registered */
1761 if (__clk_lookup(clk->name)) {
1762 pr_debug("%s: clk %s already initialized\n",
1763 __func__, clk->name);
1764 ret = -EEXIST;
1765 goto out;
1766 }
1767
1768 /* check that clk_ops are sane. See Documentation/clk.txt */
1769 if (clk->ops->set_rate &&
1770 !((clk->ops->round_rate || clk->ops->determine_rate) &&
1771 clk->ops->recalc_rate)) {
1772 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1773 __func__, clk->name);
1774 ret = -EINVAL;
1775 goto out;
1776 }
1777
1778 if (clk->ops->set_parent && !clk->ops->get_parent) {
1779 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1780 __func__, clk->name);
1781 ret = -EINVAL;
1782 goto out;
1783 }
1784
1785 if (clk->ops->set_rate_and_parent &&
1786 !(clk->ops->set_parent && clk->ops->set_rate)) {
1787 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1788 __func__, clk->name);
1789 ret = -EINVAL;
1790 goto out;
1791 }
1792
1793 /* throw a WARN if any entries in parent_names are NULL */
1794 for (i = 0; i < clk->num_parents; i++)
1795 WARN(!clk->parent_names[i],
1796 "%s: invalid NULL in %s's .parent_names\n",
1797 __func__, clk->name);
1798
1799 /*
1800 * Allocate an array of struct clk *'s to avoid unnecessary string
1801 * look-ups of clk's possible parents. This can fail for clocks passed
1802 * in to clk_init during early boot; thus any access to clk->parents[]
1803 * must always check for a NULL pointer and try to populate it if
1804 * necessary.
1805 *
1806 * If clk->parents is not NULL we skip this entire block. This allows
1807 * for clock drivers to statically initialize clk->parents.
1808 */
1809 if (clk->num_parents > 1 && !clk->parents) {
1810 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1811 GFP_KERNEL);
1812 /*
1813 * __clk_lookup returns NULL for parents that have not been
1814 * clk_init'd; thus any access to clk->parents[] must check
1815 * for a NULL pointer. We can always perform lazy lookups for
1816 * missing parents later on.
1817 */
1818 if (clk->parents)
1819 for (i = 0; i < clk->num_parents; i++)
1820 clk->parents[i] =
1821 __clk_lookup(clk->parent_names[i]);
1822 }
1823
1824 clk->parent = __clk_init_parent(clk);
1825
1826 /*
1827 * Populate clk->parent if parent has already been __clk_init'd. If
1828 * parent has not yet been __clk_init'd then place clk in the orphan
1829 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1830 * clk list.
1831 *
1832 * Every time a new clk is clk_init'd then we walk the list of orphan
1833 * clocks and re-parent any that are children of the clock currently
1834 * being clk_init'd.
1835 */
1836 if (clk->parent)
1837 hlist_add_head(&clk->child_node,
1838 &clk->parent->children);
1839 else if (clk->flags & CLK_IS_ROOT)
1840 hlist_add_head(&clk->child_node, &clk_root_list);
1841 else
1842 hlist_add_head(&clk->child_node, &clk_orphan_list);
1843
1844 /*
1845 * Set clk's accuracy. The preferred method is to use
1846 * .recalc_accuracy. For simple clocks and lazy developers the default
1847 * fallback is to use the parent's accuracy. If a clock doesn't have a
1848 * parent (or is orphaned) then accuracy is set to zero (perfect
1849 * clock).
1850 */
1851 if (clk->ops->recalc_accuracy)
1852 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1853 __clk_get_accuracy(clk->parent));
1854 else if (clk->parent)
1855 clk->accuracy = clk->parent->accuracy;
1856 else
1857 clk->accuracy = 0;
1858
1859 /*
1860 * Set clk's rate. The preferred method is to use .recalc_rate. For
1861 * simple clocks and lazy developers the default fallback is to use the
1862 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1863 * then rate is set to zero.
1864 */
1865 if (clk->ops->recalc_rate)
1866 clk->rate = clk->ops->recalc_rate(clk->hw,
1867 __clk_get_rate(clk->parent));
1868 else if (clk->parent)
1869 clk->rate = clk->parent->rate;
1870 else
1871 clk->rate = 0;
1872
1873 clk_debug_register(clk);
1874 /*
1875 * walk the list of orphan clocks and reparent any that are children of
1876 * this clock
1877 */
1878 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1879 if (orphan->num_parents && orphan->ops->get_parent) {
1880 i = orphan->ops->get_parent(orphan->hw);
1881 if (!strcmp(clk->name, orphan->parent_names[i]))
1882 __clk_reparent(orphan, clk);
1883 continue;
1884 }
1885
1886 for (i = 0; i < orphan->num_parents; i++)
1887 if (!strcmp(clk->name, orphan->parent_names[i])) {
1888 __clk_reparent(orphan, clk);
1889 break;
1890 }
1891 }
1892
1893 /*
1894 * optional platform-specific magic
1895 *
1896 * The .init callback is not used by any of the basic clock types, but
1897 * exists for weird hardware that must perform initialization magic.
1898 * Please consider other ways of solving initialization problems before
1899 * using this callback, as its use is discouraged.
1900 */
1901 if (clk->ops->init)
1902 clk->ops->init(clk->hw);
1903
1904 kref_init(&clk->ref);
1905 out:
1906 clk_prepare_unlock();
1907
1908 return ret;
1909 }
1910
1911 /**
1912 * __clk_register - register a clock and return a cookie.
1913 *
1914 * Same as clk_register, except that the .clk field inside hw shall point to a
1915 * preallocated (generally statically allocated) struct clk. None of the fields
1916 * of the struct clk need to be initialized.
1917 *
1918 * The data pointed to by .init and .clk field shall NOT be marked as init
1919 * data.
1920 *
1921 * __clk_register is only exposed via clk-private.h and is intended for use with
1922 * very large numbers of clocks that need to be statically initialized. It is
1923 * a layering violation to include clk-private.h from any code which implements
1924 * a clock's .ops; as such any statically initialized clock data MUST be in a
1925 * separate C file from the logic that implements its operations. Returns 0
1926 * on success, otherwise an error code.
1927 */
1928 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1929 {
1930 int ret;
1931 struct clk *clk;
1932
1933 clk = hw->clk;
1934 clk->name = hw->init->name;
1935 clk->ops = hw->init->ops;
1936 clk->hw = hw;
1937 clk->flags = hw->init->flags;
1938 clk->parent_names = hw->init->parent_names;
1939 clk->num_parents = hw->init->num_parents;
1940 if (dev && dev->driver)
1941 clk->owner = dev->driver->owner;
1942 else
1943 clk->owner = NULL;
1944
1945 ret = __clk_init(dev, clk);
1946 if (ret)
1947 return ERR_PTR(ret);
1948
1949 return clk;
1950 }
1951 EXPORT_SYMBOL_GPL(__clk_register);
1952
1953 /**
1954 * clk_register - allocate a new clock, register it and return an opaque cookie
1955 * @dev: device that is registering this clock
1956 * @hw: link to hardware-specific clock data
1957 *
1958 * clk_register is the primary interface for populating the clock tree with new
1959 * clock nodes. It returns a pointer to the newly allocated struct clk which
1960 * cannot be dereferenced by driver code but may be used in conjuction with the
1961 * rest of the clock API. In the event of an error clk_register will return an
1962 * error code; drivers must test for an error code after calling clk_register.
1963 */
1964 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1965 {
1966 int i, ret;
1967 struct clk *clk;
1968
1969 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1970 if (!clk) {
1971 pr_err("%s: could not allocate clk\n", __func__);
1972 ret = -ENOMEM;
1973 goto fail_out;
1974 }
1975
1976 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1977 if (!clk->name) {
1978 pr_err("%s: could not allocate clk->name\n", __func__);
1979 ret = -ENOMEM;
1980 goto fail_name;
1981 }
1982 clk->ops = hw->init->ops;
1983 if (dev && dev->driver)
1984 clk->owner = dev->driver->owner;
1985 clk->hw = hw;
1986 clk->flags = hw->init->flags;
1987 clk->num_parents = hw->init->num_parents;
1988 hw->clk = clk;
1989
1990 /* allocate local copy in case parent_names is __initdata */
1991 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
1992 GFP_KERNEL);
1993
1994 if (!clk->parent_names) {
1995 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1996 ret = -ENOMEM;
1997 goto fail_parent_names;
1998 }
1999
2000
2001 /* copy each string name in case parent_names is __initdata */
2002 for (i = 0; i < clk->num_parents; i++) {
2003 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2004 GFP_KERNEL);
2005 if (!clk->parent_names[i]) {
2006 pr_err("%s: could not copy parent_names\n", __func__);
2007 ret = -ENOMEM;
2008 goto fail_parent_names_copy;
2009 }
2010 }
2011
2012 ret = __clk_init(dev, clk);
2013 if (!ret)
2014 return clk;
2015
2016 fail_parent_names_copy:
2017 while (--i >= 0)
2018 kfree(clk->parent_names[i]);
2019 kfree(clk->parent_names);
2020 fail_parent_names:
2021 kfree(clk->name);
2022 fail_name:
2023 kfree(clk);
2024 fail_out:
2025 return ERR_PTR(ret);
2026 }
2027 EXPORT_SYMBOL_GPL(clk_register);
2028
2029 /*
2030 * Free memory allocated for a clock.
2031 * Caller must hold prepare_lock.
2032 */
2033 static void __clk_release(struct kref *ref)
2034 {
2035 struct clk *clk = container_of(ref, struct clk, ref);
2036 int i = clk->num_parents;
2037
2038 kfree(clk->parents);
2039 while (--i >= 0)
2040 kfree(clk->parent_names[i]);
2041
2042 kfree(clk->parent_names);
2043 kfree(clk->name);
2044 kfree(clk);
2045 }
2046
2047 /*
2048 * Empty clk_ops for unregistered clocks. These are used temporarily
2049 * after clk_unregister() was called on a clock and until last clock
2050 * consumer calls clk_put() and the struct clk object is freed.
2051 */
2052 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2053 {
2054 return -ENXIO;
2055 }
2056
2057 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2058 {
2059 WARN_ON_ONCE(1);
2060 }
2061
2062 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2063 unsigned long parent_rate)
2064 {
2065 return -ENXIO;
2066 }
2067
2068 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2069 {
2070 return -ENXIO;
2071 }
2072
2073 static const struct clk_ops clk_nodrv_ops = {
2074 .enable = clk_nodrv_prepare_enable,
2075 .disable = clk_nodrv_disable_unprepare,
2076 .prepare = clk_nodrv_prepare_enable,
2077 .unprepare = clk_nodrv_disable_unprepare,
2078 .set_rate = clk_nodrv_set_rate,
2079 .set_parent = clk_nodrv_set_parent,
2080 };
2081
2082 /**
2083 * clk_unregister - unregister a currently registered clock
2084 * @clk: clock to unregister
2085 */
2086 void clk_unregister(struct clk *clk)
2087 {
2088 unsigned long flags;
2089
2090 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2091 return;
2092
2093 clk_prepare_lock();
2094
2095 if (clk->ops == &clk_nodrv_ops) {
2096 pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2097 goto out;
2098 }
2099 /*
2100 * Assign empty clock ops for consumers that might still hold
2101 * a reference to this clock.
2102 */
2103 flags = clk_enable_lock();
2104 clk->ops = &clk_nodrv_ops;
2105 clk_enable_unlock(flags);
2106
2107 if (!hlist_empty(&clk->children)) {
2108 struct clk *child;
2109 struct hlist_node *t;
2110
2111 /* Reparent all children to the orphan list. */
2112 hlist_for_each_entry_safe(child, t, &clk->children, child_node)
2113 clk_set_parent(child, NULL);
2114 }
2115
2116 clk_debug_unregister(clk);
2117
2118 hlist_del_init(&clk->child_node);
2119
2120 if (clk->prepare_count)
2121 pr_warn("%s: unregistering prepared clock: %s\n",
2122 __func__, clk->name);
2123
2124 kref_put(&clk->ref, __clk_release);
2125 out:
2126 clk_prepare_unlock();
2127 }
2128 EXPORT_SYMBOL_GPL(clk_unregister);
2129
2130 static void devm_clk_release(struct device *dev, void *res)
2131 {
2132 clk_unregister(*(struct clk **)res);
2133 }
2134
2135 /**
2136 * devm_clk_register - resource managed clk_register()
2137 * @dev: device that is registering this clock
2138 * @hw: link to hardware-specific clock data
2139 *
2140 * Managed clk_register(). Clocks returned from this function are
2141 * automatically clk_unregister()ed on driver detach. See clk_register() for
2142 * more information.
2143 */
2144 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2145 {
2146 struct clk *clk;
2147 struct clk **clkp;
2148
2149 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2150 if (!clkp)
2151 return ERR_PTR(-ENOMEM);
2152
2153 clk = clk_register(dev, hw);
2154 if (!IS_ERR(clk)) {
2155 *clkp = clk;
2156 devres_add(dev, clkp);
2157 } else {
2158 devres_free(clkp);
2159 }
2160
2161 return clk;
2162 }
2163 EXPORT_SYMBOL_GPL(devm_clk_register);
2164
2165 static int devm_clk_match(struct device *dev, void *res, void *data)
2166 {
2167 struct clk *c = res;
2168 if (WARN_ON(!c))
2169 return 0;
2170 return c == data;
2171 }
2172
2173 /**
2174 * devm_clk_unregister - resource managed clk_unregister()
2175 * @clk: clock to unregister
2176 *
2177 * Deallocate a clock allocated with devm_clk_register(). Normally
2178 * this function will not need to be called and the resource management
2179 * code will ensure that the resource is freed.
2180 */
2181 void devm_clk_unregister(struct device *dev, struct clk *clk)
2182 {
2183 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2184 }
2185 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2186
2187 /*
2188 * clkdev helpers
2189 */
2190 int __clk_get(struct clk *clk)
2191 {
2192 if (clk) {
2193 if (!try_module_get(clk->owner))
2194 return 0;
2195
2196 kref_get(&clk->ref);
2197 }
2198 return 1;
2199 }
2200
2201 void __clk_put(struct clk *clk)
2202 {
2203 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2204 return;
2205
2206 clk_prepare_lock();
2207 kref_put(&clk->ref, __clk_release);
2208 clk_prepare_unlock();
2209
2210 module_put(clk->owner);
2211 }
2212
2213 /*** clk rate change notifiers ***/
2214
2215 /**
2216 * clk_notifier_register - add a clk rate change notifier
2217 * @clk: struct clk * to watch
2218 * @nb: struct notifier_block * with callback info
2219 *
2220 * Request notification when clk's rate changes. This uses an SRCU
2221 * notifier because we want it to block and notifier unregistrations are
2222 * uncommon. The callbacks associated with the notifier must not
2223 * re-enter into the clk framework by calling any top-level clk APIs;
2224 * this will cause a nested prepare_lock mutex.
2225 *
2226 * In all notification cases cases (pre, post and abort rate change) the
2227 * original clock rate is passed to the callback via struct
2228 * clk_notifier_data.old_rate and the new frequency is passed via struct
2229 * clk_notifier_data.new_rate.
2230 *
2231 * clk_notifier_register() must be called from non-atomic context.
2232 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2233 * allocation failure; otherwise, passes along the return value of
2234 * srcu_notifier_chain_register().
2235 */
2236 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2237 {
2238 struct clk_notifier *cn;
2239 int ret = -ENOMEM;
2240
2241 if (!clk || !nb)
2242 return -EINVAL;
2243
2244 clk_prepare_lock();
2245
2246 /* search the list of notifiers for this clk */
2247 list_for_each_entry(cn, &clk_notifier_list, node)
2248 if (cn->clk == clk)
2249 break;
2250
2251 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2252 if (cn->clk != clk) {
2253 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2254 if (!cn)
2255 goto out;
2256
2257 cn->clk = clk;
2258 srcu_init_notifier_head(&cn->notifier_head);
2259
2260 list_add(&cn->node, &clk_notifier_list);
2261 }
2262
2263 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2264
2265 clk->notifier_count++;
2266
2267 out:
2268 clk_prepare_unlock();
2269
2270 return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(clk_notifier_register);
2273
2274 /**
2275 * clk_notifier_unregister - remove a clk rate change notifier
2276 * @clk: struct clk *
2277 * @nb: struct notifier_block * with callback info
2278 *
2279 * Request no further notification for changes to 'clk' and frees memory
2280 * allocated in clk_notifier_register.
2281 *
2282 * Returns -EINVAL if called with null arguments; otherwise, passes
2283 * along the return value of srcu_notifier_chain_unregister().
2284 */
2285 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2286 {
2287 struct clk_notifier *cn = NULL;
2288 int ret = -EINVAL;
2289
2290 if (!clk || !nb)
2291 return -EINVAL;
2292
2293 clk_prepare_lock();
2294
2295 list_for_each_entry(cn, &clk_notifier_list, node)
2296 if (cn->clk == clk)
2297 break;
2298
2299 if (cn->clk == clk) {
2300 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2301
2302 clk->notifier_count--;
2303
2304 /* XXX the notifier code should handle this better */
2305 if (!cn->notifier_head.head) {
2306 srcu_cleanup_notifier_head(&cn->notifier_head);
2307 list_del(&cn->node);
2308 kfree(cn);
2309 }
2310
2311 } else {
2312 ret = -ENOENT;
2313 }
2314
2315 clk_prepare_unlock();
2316
2317 return ret;
2318 }
2319 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2320
2321 #ifdef CONFIG_OF
2322 /**
2323 * struct of_clk_provider - Clock provider registration structure
2324 * @link: Entry in global list of clock providers
2325 * @node: Pointer to device tree node of clock provider
2326 * @get: Get clock callback. Returns NULL or a struct clk for the
2327 * given clock specifier
2328 * @data: context pointer to be passed into @get callback
2329 */
2330 struct of_clk_provider {
2331 struct list_head link;
2332
2333 struct device_node *node;
2334 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2335 void *data;
2336 };
2337
2338 static const struct of_device_id __clk_of_table_sentinel
2339 __used __section(__clk_of_table_end);
2340
2341 static LIST_HEAD(of_clk_providers);
2342 static DEFINE_MUTEX(of_clk_mutex);
2343
2344 /* of_clk_provider list locking helpers */
2345 void of_clk_lock(void)
2346 {
2347 mutex_lock(&of_clk_mutex);
2348 }
2349
2350 void of_clk_unlock(void)
2351 {
2352 mutex_unlock(&of_clk_mutex);
2353 }
2354
2355 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2356 void *data)
2357 {
2358 return data;
2359 }
2360 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2361
2362 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2363 {
2364 struct clk_onecell_data *clk_data = data;
2365 unsigned int idx = clkspec->args[0];
2366
2367 if (idx >= clk_data->clk_num) {
2368 pr_err("%s: invalid clock index %d\n", __func__, idx);
2369 return ERR_PTR(-EINVAL);
2370 }
2371
2372 return clk_data->clks[idx];
2373 }
2374 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2375
2376 /**
2377 * of_clk_add_provider() - Register a clock provider for a node
2378 * @np: Device node pointer associated with clock provider
2379 * @clk_src_get: callback for decoding clock
2380 * @data: context pointer for @clk_src_get callback.
2381 */
2382 int of_clk_add_provider(struct device_node *np,
2383 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2384 void *data),
2385 void *data)
2386 {
2387 struct of_clk_provider *cp;
2388 int ret;
2389
2390 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2391 if (!cp)
2392 return -ENOMEM;
2393
2394 cp->node = of_node_get(np);
2395 cp->data = data;
2396 cp->get = clk_src_get;
2397
2398 mutex_lock(&of_clk_mutex);
2399 list_add(&cp->link, &of_clk_providers);
2400 mutex_unlock(&of_clk_mutex);
2401 pr_debug("Added clock from %s\n", np->full_name);
2402
2403 ret = of_clk_set_defaults(np, true);
2404 if (ret < 0)
2405 of_clk_del_provider(np);
2406
2407 return ret;
2408 }
2409 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2410
2411 /**
2412 * of_clk_del_provider() - Remove a previously registered clock provider
2413 * @np: Device node pointer associated with clock provider
2414 */
2415 void of_clk_del_provider(struct device_node *np)
2416 {
2417 struct of_clk_provider *cp;
2418
2419 mutex_lock(&of_clk_mutex);
2420 list_for_each_entry(cp, &of_clk_providers, link) {
2421 if (cp->node == np) {
2422 list_del(&cp->link);
2423 of_node_put(cp->node);
2424 kfree(cp);
2425 break;
2426 }
2427 }
2428 mutex_unlock(&of_clk_mutex);
2429 }
2430 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2431
2432 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2433 {
2434 struct of_clk_provider *provider;
2435 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2436
2437 /* Check if we have such a provider in our array */
2438 list_for_each_entry(provider, &of_clk_providers, link) {
2439 if (provider->node == clkspec->np)
2440 clk = provider->get(clkspec, provider->data);
2441 if (!IS_ERR(clk))
2442 break;
2443 }
2444
2445 return clk;
2446 }
2447
2448 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2449 {
2450 struct clk *clk;
2451
2452 mutex_lock(&of_clk_mutex);
2453 clk = __of_clk_get_from_provider(clkspec);
2454 mutex_unlock(&of_clk_mutex);
2455
2456 return clk;
2457 }
2458
2459 int of_clk_get_parent_count(struct device_node *np)
2460 {
2461 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2462 }
2463 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2464
2465 const char *of_clk_get_parent_name(struct device_node *np, int index)
2466 {
2467 struct of_phandle_args clkspec;
2468 struct property *prop;
2469 const char *clk_name;
2470 const __be32 *vp;
2471 u32 pv;
2472 int rc;
2473 int count;
2474
2475 if (index < 0)
2476 return NULL;
2477
2478 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2479 &clkspec);
2480 if (rc)
2481 return NULL;
2482
2483 index = clkspec.args_count ? clkspec.args[0] : 0;
2484 count = 0;
2485
2486 /* if there is an indices property, use it to transfer the index
2487 * specified into an array offset for the clock-output-names property.
2488 */
2489 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2490 if (index == pv) {
2491 index = count;
2492 break;
2493 }
2494 count++;
2495 }
2496
2497 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2498 index,
2499 &clk_name) < 0)
2500 clk_name = clkspec.np->name;
2501
2502 of_node_put(clkspec.np);
2503 return clk_name;
2504 }
2505 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2506
2507 struct clock_provider {
2508 of_clk_init_cb_t clk_init_cb;
2509 struct device_node *np;
2510 struct list_head node;
2511 };
2512
2513 static LIST_HEAD(clk_provider_list);
2514
2515 /*
2516 * This function looks for a parent clock. If there is one, then it
2517 * checks that the provider for this parent clock was initialized, in
2518 * this case the parent clock will be ready.
2519 */
2520 static int parent_ready(struct device_node *np)
2521 {
2522 int i = 0;
2523
2524 while (true) {
2525 struct clk *clk = of_clk_get(np, i);
2526
2527 /* this parent is ready we can check the next one */
2528 if (!IS_ERR(clk)) {
2529 clk_put(clk);
2530 i++;
2531 continue;
2532 }
2533
2534 /* at least one parent is not ready, we exit now */
2535 if (PTR_ERR(clk) == -EPROBE_DEFER)
2536 return 0;
2537
2538 /*
2539 * Here we make assumption that the device tree is
2540 * written correctly. So an error means that there is
2541 * no more parent. As we didn't exit yet, then the
2542 * previous parent are ready. If there is no clock
2543 * parent, no need to wait for them, then we can
2544 * consider their absence as being ready
2545 */
2546 return 1;
2547 }
2548 }
2549
2550 /**
2551 * of_clk_init() - Scan and init clock providers from the DT
2552 * @matches: array of compatible values and init functions for providers.
2553 *
2554 * This function scans the device tree for matching clock providers
2555 * and calls their initialization functions. It also does it by trying
2556 * to follow the dependencies.
2557 */
2558 void __init of_clk_init(const struct of_device_id *matches)
2559 {
2560 const struct of_device_id *match;
2561 struct device_node *np;
2562 struct clock_provider *clk_provider, *next;
2563 bool is_init_done;
2564 bool force = false;
2565
2566 if (!matches)
2567 matches = &__clk_of_table;
2568
2569 /* First prepare the list of the clocks providers */
2570 for_each_matching_node_and_match(np, matches, &match) {
2571 struct clock_provider *parent =
2572 kzalloc(sizeof(struct clock_provider), GFP_KERNEL);
2573
2574 parent->clk_init_cb = match->data;
2575 parent->np = np;
2576 list_add_tail(&parent->node, &clk_provider_list);
2577 }
2578
2579 while (!list_empty(&clk_provider_list)) {
2580 is_init_done = false;
2581 list_for_each_entry_safe(clk_provider, next,
2582 &clk_provider_list, node) {
2583 if (force || parent_ready(clk_provider->np)) {
2584
2585 clk_provider->clk_init_cb(clk_provider->np);
2586 of_clk_set_defaults(clk_provider->np, true);
2587
2588 list_del(&clk_provider->node);
2589 kfree(clk_provider);
2590 is_init_done = true;
2591 }
2592 }
2593
2594 /*
2595 * We didn't manage to initialize any of the
2596 * remaining providers during the last loop, so now we
2597 * initialize all the remaining ones unconditionally
2598 * in case the clock parent was not mandatory
2599 */
2600 if (!is_init_done)
2601 force = true;
2602 }
2603 }
2604 #endif