]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/clk/clk.c
Merge tag 'clk-for-linus-3.20' of git://git.linaro.org/people/mike.turquette/linux
[mirror_ubuntu-artful-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-provider.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 static long clk_core_get_accuracy(struct clk_core *clk);
41 static unsigned long clk_core_get_rate(struct clk_core *clk);
42 static int clk_core_get_phase(struct clk_core *clk);
43 static bool clk_core_is_prepared(struct clk_core *clk);
44 static bool clk_core_is_enabled(struct clk_core *clk);
45 static struct clk_core *clk_core_lookup(const char *name);
46
47 /*** private data structures ***/
48
49 struct clk_core {
50 const char *name;
51 const struct clk_ops *ops;
52 struct clk_hw *hw;
53 struct module *owner;
54 struct clk_core *parent;
55 const char **parent_names;
56 struct clk_core **parents;
57 u8 num_parents;
58 u8 new_parent_index;
59 unsigned long rate;
60 unsigned long req_rate;
61 unsigned long new_rate;
62 struct clk_core *new_parent;
63 struct clk_core *new_child;
64 unsigned long flags;
65 unsigned int enable_count;
66 unsigned int prepare_count;
67 unsigned long accuracy;
68 int phase;
69 struct hlist_head children;
70 struct hlist_node child_node;
71 struct hlist_node debug_node;
72 struct hlist_head clks;
73 unsigned int notifier_count;
74 #ifdef CONFIG_DEBUG_FS
75 struct dentry *dentry;
76 #endif
77 struct kref ref;
78 };
79
80 struct clk {
81 struct clk_core *core;
82 const char *dev_id;
83 const char *con_id;
84 unsigned long min_rate;
85 unsigned long max_rate;
86 struct hlist_node child_node;
87 };
88
89 /*** locking ***/
90 static void clk_prepare_lock(void)
91 {
92 if (!mutex_trylock(&prepare_lock)) {
93 if (prepare_owner == current) {
94 prepare_refcnt++;
95 return;
96 }
97 mutex_lock(&prepare_lock);
98 }
99 WARN_ON_ONCE(prepare_owner != NULL);
100 WARN_ON_ONCE(prepare_refcnt != 0);
101 prepare_owner = current;
102 prepare_refcnt = 1;
103 }
104
105 static void clk_prepare_unlock(void)
106 {
107 WARN_ON_ONCE(prepare_owner != current);
108 WARN_ON_ONCE(prepare_refcnt == 0);
109
110 if (--prepare_refcnt)
111 return;
112 prepare_owner = NULL;
113 mutex_unlock(&prepare_lock);
114 }
115
116 static unsigned long clk_enable_lock(void)
117 {
118 unsigned long flags;
119
120 if (!spin_trylock_irqsave(&enable_lock, flags)) {
121 if (enable_owner == current) {
122 enable_refcnt++;
123 return flags;
124 }
125 spin_lock_irqsave(&enable_lock, flags);
126 }
127 WARN_ON_ONCE(enable_owner != NULL);
128 WARN_ON_ONCE(enable_refcnt != 0);
129 enable_owner = current;
130 enable_refcnt = 1;
131 return flags;
132 }
133
134 static void clk_enable_unlock(unsigned long flags)
135 {
136 WARN_ON_ONCE(enable_owner != current);
137 WARN_ON_ONCE(enable_refcnt == 0);
138
139 if (--enable_refcnt)
140 return;
141 enable_owner = NULL;
142 spin_unlock_irqrestore(&enable_lock, flags);
143 }
144
145 /*** debugfs support ***/
146
147 #ifdef CONFIG_DEBUG_FS
148 #include <linux/debugfs.h>
149
150 static struct dentry *rootdir;
151 static int inited = 0;
152 static DEFINE_MUTEX(clk_debug_lock);
153 static HLIST_HEAD(clk_debug_list);
154
155 static struct hlist_head *all_lists[] = {
156 &clk_root_list,
157 &clk_orphan_list,
158 NULL,
159 };
160
161 static struct hlist_head *orphan_list[] = {
162 &clk_orphan_list,
163 NULL,
164 };
165
166 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
167 int level)
168 {
169 if (!c)
170 return;
171
172 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
173 level * 3 + 1, "",
174 30 - level * 3, c->name,
175 c->enable_count, c->prepare_count, clk_core_get_rate(c),
176 clk_core_get_accuracy(c), clk_core_get_phase(c));
177 }
178
179 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
180 int level)
181 {
182 struct clk_core *child;
183
184 if (!c)
185 return;
186
187 clk_summary_show_one(s, c, level);
188
189 hlist_for_each_entry(child, &c->children, child_node)
190 clk_summary_show_subtree(s, child, level + 1);
191 }
192
193 static int clk_summary_show(struct seq_file *s, void *data)
194 {
195 struct clk_core *c;
196 struct hlist_head **lists = (struct hlist_head **)s->private;
197
198 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy phase\n");
199 seq_puts(s, "----------------------------------------------------------------------------------------\n");
200
201 clk_prepare_lock();
202
203 for (; *lists; lists++)
204 hlist_for_each_entry(c, *lists, child_node)
205 clk_summary_show_subtree(s, c, 0);
206
207 clk_prepare_unlock();
208
209 return 0;
210 }
211
212
213 static int clk_summary_open(struct inode *inode, struct file *file)
214 {
215 return single_open(file, clk_summary_show, inode->i_private);
216 }
217
218 static const struct file_operations clk_summary_fops = {
219 .open = clk_summary_open,
220 .read = seq_read,
221 .llseek = seq_lseek,
222 .release = single_release,
223 };
224
225 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
226 {
227 if (!c)
228 return;
229
230 seq_printf(s, "\"%s\": { ", c->name);
231 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
232 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
233 seq_printf(s, "\"rate\": %lu", clk_core_get_rate(c));
234 seq_printf(s, "\"accuracy\": %lu", clk_core_get_accuracy(c));
235 seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
236 }
237
238 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
239 {
240 struct clk_core *child;
241
242 if (!c)
243 return;
244
245 clk_dump_one(s, c, level);
246
247 hlist_for_each_entry(child, &c->children, child_node) {
248 seq_printf(s, ",");
249 clk_dump_subtree(s, child, level + 1);
250 }
251
252 seq_printf(s, "}");
253 }
254
255 static int clk_dump(struct seq_file *s, void *data)
256 {
257 struct clk_core *c;
258 bool first_node = true;
259 struct hlist_head **lists = (struct hlist_head **)s->private;
260
261 seq_printf(s, "{");
262
263 clk_prepare_lock();
264
265 for (; *lists; lists++) {
266 hlist_for_each_entry(c, *lists, child_node) {
267 if (!first_node)
268 seq_puts(s, ",");
269 first_node = false;
270 clk_dump_subtree(s, c, 0);
271 }
272 }
273
274 clk_prepare_unlock();
275
276 seq_printf(s, "}");
277 return 0;
278 }
279
280
281 static int clk_dump_open(struct inode *inode, struct file *file)
282 {
283 return single_open(file, clk_dump, inode->i_private);
284 }
285
286 static const struct file_operations clk_dump_fops = {
287 .open = clk_dump_open,
288 .read = seq_read,
289 .llseek = seq_lseek,
290 .release = single_release,
291 };
292
293 static int clk_debug_create_one(struct clk_core *clk, struct dentry *pdentry)
294 {
295 struct dentry *d;
296 int ret = -ENOMEM;
297
298 if (!clk || !pdentry) {
299 ret = -EINVAL;
300 goto out;
301 }
302
303 d = debugfs_create_dir(clk->name, pdentry);
304 if (!d)
305 goto out;
306
307 clk->dentry = d;
308
309 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
310 (u32 *)&clk->rate);
311 if (!d)
312 goto err_out;
313
314 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
315 (u32 *)&clk->accuracy);
316 if (!d)
317 goto err_out;
318
319 d = debugfs_create_u32("clk_phase", S_IRUGO, clk->dentry,
320 (u32 *)&clk->phase);
321 if (!d)
322 goto err_out;
323
324 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
325 (u32 *)&clk->flags);
326 if (!d)
327 goto err_out;
328
329 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
330 (u32 *)&clk->prepare_count);
331 if (!d)
332 goto err_out;
333
334 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
335 (u32 *)&clk->enable_count);
336 if (!d)
337 goto err_out;
338
339 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
340 (u32 *)&clk->notifier_count);
341 if (!d)
342 goto err_out;
343
344 if (clk->ops->debug_init) {
345 ret = clk->ops->debug_init(clk->hw, clk->dentry);
346 if (ret)
347 goto err_out;
348 }
349
350 ret = 0;
351 goto out;
352
353 err_out:
354 debugfs_remove_recursive(clk->dentry);
355 clk->dentry = NULL;
356 out:
357 return ret;
358 }
359
360 /**
361 * clk_debug_register - add a clk node to the debugfs clk tree
362 * @clk: the clk being added to the debugfs clk tree
363 *
364 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
365 * initialized. Otherwise it bails out early since the debugfs clk tree
366 * will be created lazily by clk_debug_init as part of a late_initcall.
367 */
368 static int clk_debug_register(struct clk_core *clk)
369 {
370 int ret = 0;
371
372 mutex_lock(&clk_debug_lock);
373 hlist_add_head(&clk->debug_node, &clk_debug_list);
374
375 if (!inited)
376 goto unlock;
377
378 ret = clk_debug_create_one(clk, rootdir);
379 unlock:
380 mutex_unlock(&clk_debug_lock);
381
382 return ret;
383 }
384
385 /**
386 * clk_debug_unregister - remove a clk node from the debugfs clk tree
387 * @clk: the clk being removed from the debugfs clk tree
388 *
389 * Dynamically removes a clk and all it's children clk nodes from the
390 * debugfs clk tree if clk->dentry points to debugfs created by
391 * clk_debug_register in __clk_init.
392 */
393 static void clk_debug_unregister(struct clk_core *clk)
394 {
395 mutex_lock(&clk_debug_lock);
396 hlist_del_init(&clk->debug_node);
397 debugfs_remove_recursive(clk->dentry);
398 clk->dentry = NULL;
399 mutex_unlock(&clk_debug_lock);
400 }
401
402 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
403 void *data, const struct file_operations *fops)
404 {
405 struct dentry *d = NULL;
406
407 if (hw->core->dentry)
408 d = debugfs_create_file(name, mode, hw->core->dentry, data,
409 fops);
410
411 return d;
412 }
413 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
414
415 /**
416 * clk_debug_init - lazily create the debugfs clk tree visualization
417 *
418 * clks are often initialized very early during boot before memory can
419 * be dynamically allocated and well before debugfs is setup.
420 * clk_debug_init walks the clk tree hierarchy while holding
421 * prepare_lock and creates the topology as part of a late_initcall,
422 * thus insuring that clks initialized very early will still be
423 * represented in the debugfs clk tree. This function should only be
424 * called once at boot-time, and all other clks added dynamically will
425 * be done so with clk_debug_register.
426 */
427 static int __init clk_debug_init(void)
428 {
429 struct clk_core *clk;
430 struct dentry *d;
431
432 rootdir = debugfs_create_dir("clk", NULL);
433
434 if (!rootdir)
435 return -ENOMEM;
436
437 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
438 &clk_summary_fops);
439 if (!d)
440 return -ENOMEM;
441
442 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
443 &clk_dump_fops);
444 if (!d)
445 return -ENOMEM;
446
447 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
448 &orphan_list, &clk_summary_fops);
449 if (!d)
450 return -ENOMEM;
451
452 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
453 &orphan_list, &clk_dump_fops);
454 if (!d)
455 return -ENOMEM;
456
457 mutex_lock(&clk_debug_lock);
458 hlist_for_each_entry(clk, &clk_debug_list, debug_node)
459 clk_debug_create_one(clk, rootdir);
460
461 inited = 1;
462 mutex_unlock(&clk_debug_lock);
463
464 return 0;
465 }
466 late_initcall(clk_debug_init);
467 #else
468 static inline int clk_debug_register(struct clk_core *clk) { return 0; }
469 static inline void clk_debug_reparent(struct clk_core *clk,
470 struct clk_core *new_parent)
471 {
472 }
473 static inline void clk_debug_unregister(struct clk_core *clk)
474 {
475 }
476 #endif
477
478 /* caller must hold prepare_lock */
479 static void clk_unprepare_unused_subtree(struct clk_core *clk)
480 {
481 struct clk_core *child;
482
483 hlist_for_each_entry(child, &clk->children, child_node)
484 clk_unprepare_unused_subtree(child);
485
486 if (clk->prepare_count)
487 return;
488
489 if (clk->flags & CLK_IGNORE_UNUSED)
490 return;
491
492 if (clk_core_is_prepared(clk)) {
493 if (clk->ops->unprepare_unused)
494 clk->ops->unprepare_unused(clk->hw);
495 else if (clk->ops->unprepare)
496 clk->ops->unprepare(clk->hw);
497 }
498 }
499
500 /* caller must hold prepare_lock */
501 static void clk_disable_unused_subtree(struct clk_core *clk)
502 {
503 struct clk_core *child;
504 unsigned long flags;
505
506 hlist_for_each_entry(child, &clk->children, child_node)
507 clk_disable_unused_subtree(child);
508
509 flags = clk_enable_lock();
510
511 if (clk->enable_count)
512 goto unlock_out;
513
514 if (clk->flags & CLK_IGNORE_UNUSED)
515 goto unlock_out;
516
517 /*
518 * some gate clocks have special needs during the disable-unused
519 * sequence. call .disable_unused if available, otherwise fall
520 * back to .disable
521 */
522 if (clk_core_is_enabled(clk)) {
523 if (clk->ops->disable_unused)
524 clk->ops->disable_unused(clk->hw);
525 else if (clk->ops->disable)
526 clk->ops->disable(clk->hw);
527 }
528
529 unlock_out:
530 clk_enable_unlock(flags);
531 }
532
533 static bool clk_ignore_unused;
534 static int __init clk_ignore_unused_setup(char *__unused)
535 {
536 clk_ignore_unused = true;
537 return 1;
538 }
539 __setup("clk_ignore_unused", clk_ignore_unused_setup);
540
541 static int clk_disable_unused(void)
542 {
543 struct clk_core *clk;
544
545 if (clk_ignore_unused) {
546 pr_warn("clk: Not disabling unused clocks\n");
547 return 0;
548 }
549
550 clk_prepare_lock();
551
552 hlist_for_each_entry(clk, &clk_root_list, child_node)
553 clk_disable_unused_subtree(clk);
554
555 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
556 clk_disable_unused_subtree(clk);
557
558 hlist_for_each_entry(clk, &clk_root_list, child_node)
559 clk_unprepare_unused_subtree(clk);
560
561 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
562 clk_unprepare_unused_subtree(clk);
563
564 clk_prepare_unlock();
565
566 return 0;
567 }
568 late_initcall_sync(clk_disable_unused);
569
570 /*** helper functions ***/
571
572 const char *__clk_get_name(struct clk *clk)
573 {
574 return !clk ? NULL : clk->core->name;
575 }
576 EXPORT_SYMBOL_GPL(__clk_get_name);
577
578 struct clk_hw *__clk_get_hw(struct clk *clk)
579 {
580 return !clk ? NULL : clk->core->hw;
581 }
582 EXPORT_SYMBOL_GPL(__clk_get_hw);
583
584 u8 __clk_get_num_parents(struct clk *clk)
585 {
586 return !clk ? 0 : clk->core->num_parents;
587 }
588 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
589
590 struct clk *__clk_get_parent(struct clk *clk)
591 {
592 if (!clk)
593 return NULL;
594
595 /* TODO: Create a per-user clk and change callers to call clk_put */
596 return !clk->core->parent ? NULL : clk->core->parent->hw->clk;
597 }
598 EXPORT_SYMBOL_GPL(__clk_get_parent);
599
600 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *clk,
601 u8 index)
602 {
603 if (!clk || index >= clk->num_parents)
604 return NULL;
605 else if (!clk->parents)
606 return clk_core_lookup(clk->parent_names[index]);
607 else if (!clk->parents[index])
608 return clk->parents[index] =
609 clk_core_lookup(clk->parent_names[index]);
610 else
611 return clk->parents[index];
612 }
613
614 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
615 {
616 struct clk_core *parent;
617
618 if (!clk)
619 return NULL;
620
621 parent = clk_core_get_parent_by_index(clk->core, index);
622
623 return !parent ? NULL : parent->hw->clk;
624 }
625 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
626
627 unsigned int __clk_get_enable_count(struct clk *clk)
628 {
629 return !clk ? 0 : clk->core->enable_count;
630 }
631
632 static unsigned long clk_core_get_rate_nolock(struct clk_core *clk)
633 {
634 unsigned long ret;
635
636 if (!clk) {
637 ret = 0;
638 goto out;
639 }
640
641 ret = clk->rate;
642
643 if (clk->flags & CLK_IS_ROOT)
644 goto out;
645
646 if (!clk->parent)
647 ret = 0;
648
649 out:
650 return ret;
651 }
652
653 unsigned long __clk_get_rate(struct clk *clk)
654 {
655 if (!clk)
656 return 0;
657
658 return clk_core_get_rate_nolock(clk->core);
659 }
660 EXPORT_SYMBOL_GPL(__clk_get_rate);
661
662 static unsigned long __clk_get_accuracy(struct clk_core *clk)
663 {
664 if (!clk)
665 return 0;
666
667 return clk->accuracy;
668 }
669
670 unsigned long __clk_get_flags(struct clk *clk)
671 {
672 return !clk ? 0 : clk->core->flags;
673 }
674 EXPORT_SYMBOL_GPL(__clk_get_flags);
675
676 static bool clk_core_is_prepared(struct clk_core *clk)
677 {
678 int ret;
679
680 if (!clk)
681 return false;
682
683 /*
684 * .is_prepared is optional for clocks that can prepare
685 * fall back to software usage counter if it is missing
686 */
687 if (!clk->ops->is_prepared) {
688 ret = clk->prepare_count ? 1 : 0;
689 goto out;
690 }
691
692 ret = clk->ops->is_prepared(clk->hw);
693 out:
694 return !!ret;
695 }
696
697 bool __clk_is_prepared(struct clk *clk)
698 {
699 if (!clk)
700 return false;
701
702 return clk_core_is_prepared(clk->core);
703 }
704
705 static bool clk_core_is_enabled(struct clk_core *clk)
706 {
707 int ret;
708
709 if (!clk)
710 return false;
711
712 /*
713 * .is_enabled is only mandatory for clocks that gate
714 * fall back to software usage counter if .is_enabled is missing
715 */
716 if (!clk->ops->is_enabled) {
717 ret = clk->enable_count ? 1 : 0;
718 goto out;
719 }
720
721 ret = clk->ops->is_enabled(clk->hw);
722 out:
723 return !!ret;
724 }
725
726 bool __clk_is_enabled(struct clk *clk)
727 {
728 if (!clk)
729 return false;
730
731 return clk_core_is_enabled(clk->core);
732 }
733 EXPORT_SYMBOL_GPL(__clk_is_enabled);
734
735 static struct clk_core *__clk_lookup_subtree(const char *name,
736 struct clk_core *clk)
737 {
738 struct clk_core *child;
739 struct clk_core *ret;
740
741 if (!strcmp(clk->name, name))
742 return clk;
743
744 hlist_for_each_entry(child, &clk->children, child_node) {
745 ret = __clk_lookup_subtree(name, child);
746 if (ret)
747 return ret;
748 }
749
750 return NULL;
751 }
752
753 static struct clk_core *clk_core_lookup(const char *name)
754 {
755 struct clk_core *root_clk;
756 struct clk_core *ret;
757
758 if (!name)
759 return NULL;
760
761 /* search the 'proper' clk tree first */
762 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
763 ret = __clk_lookup_subtree(name, root_clk);
764 if (ret)
765 return ret;
766 }
767
768 /* if not found, then search the orphan tree */
769 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
770 ret = __clk_lookup_subtree(name, root_clk);
771 if (ret)
772 return ret;
773 }
774
775 return NULL;
776 }
777
778 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
779 unsigned long best, unsigned long flags)
780 {
781 if (flags & CLK_MUX_ROUND_CLOSEST)
782 return abs(now - rate) < abs(best - rate);
783
784 return now <= rate && now > best;
785 }
786
787 static long
788 clk_mux_determine_rate_flags(struct clk_hw *hw, unsigned long rate,
789 unsigned long min_rate,
790 unsigned long max_rate,
791 unsigned long *best_parent_rate,
792 struct clk_hw **best_parent_p,
793 unsigned long flags)
794 {
795 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
796 int i, num_parents;
797 unsigned long parent_rate, best = 0;
798
799 /* if NO_REPARENT flag set, pass through to current parent */
800 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
801 parent = core->parent;
802 if (core->flags & CLK_SET_RATE_PARENT)
803 best = __clk_determine_rate(parent ? parent->hw : NULL,
804 rate, min_rate, max_rate);
805 else if (parent)
806 best = clk_core_get_rate_nolock(parent);
807 else
808 best = clk_core_get_rate_nolock(core);
809 goto out;
810 }
811
812 /* find the parent that can provide the fastest rate <= rate */
813 num_parents = core->num_parents;
814 for (i = 0; i < num_parents; i++) {
815 parent = clk_core_get_parent_by_index(core, i);
816 if (!parent)
817 continue;
818 if (core->flags & CLK_SET_RATE_PARENT)
819 parent_rate = __clk_determine_rate(parent->hw, rate,
820 min_rate,
821 max_rate);
822 else
823 parent_rate = clk_core_get_rate_nolock(parent);
824 if (mux_is_better_rate(rate, parent_rate, best, flags)) {
825 best_parent = parent;
826 best = parent_rate;
827 }
828 }
829
830 out:
831 if (best_parent)
832 *best_parent_p = best_parent->hw;
833 *best_parent_rate = best;
834
835 return best;
836 }
837
838 struct clk *__clk_lookup(const char *name)
839 {
840 struct clk_core *core = clk_core_lookup(name);
841
842 return !core ? NULL : core->hw->clk;
843 }
844
845 static void clk_core_get_boundaries(struct clk_core *clk,
846 unsigned long *min_rate,
847 unsigned long *max_rate)
848 {
849 struct clk *clk_user;
850
851 *min_rate = 0;
852 *max_rate = ULONG_MAX;
853
854 hlist_for_each_entry(clk_user, &clk->clks, child_node)
855 *min_rate = max(*min_rate, clk_user->min_rate);
856
857 hlist_for_each_entry(clk_user, &clk->clks, child_node)
858 *max_rate = min(*max_rate, clk_user->max_rate);
859 }
860
861 /*
862 * Helper for finding best parent to provide a given frequency. This can be used
863 * directly as a determine_rate callback (e.g. for a mux), or from a more
864 * complex clock that may combine a mux with other operations.
865 */
866 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
867 unsigned long min_rate,
868 unsigned long max_rate,
869 unsigned long *best_parent_rate,
870 struct clk_hw **best_parent_p)
871 {
872 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
873 best_parent_rate,
874 best_parent_p, 0);
875 }
876 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
877
878 long __clk_mux_determine_rate_closest(struct clk_hw *hw, unsigned long rate,
879 unsigned long min_rate,
880 unsigned long max_rate,
881 unsigned long *best_parent_rate,
882 struct clk_hw **best_parent_p)
883 {
884 return clk_mux_determine_rate_flags(hw, rate, min_rate, max_rate,
885 best_parent_rate,
886 best_parent_p,
887 CLK_MUX_ROUND_CLOSEST);
888 }
889 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
890
891 /*** clk api ***/
892
893 static void clk_core_unprepare(struct clk_core *clk)
894 {
895 if (!clk)
896 return;
897
898 if (WARN_ON(clk->prepare_count == 0))
899 return;
900
901 if (--clk->prepare_count > 0)
902 return;
903
904 WARN_ON(clk->enable_count > 0);
905
906 if (clk->ops->unprepare)
907 clk->ops->unprepare(clk->hw);
908
909 clk_core_unprepare(clk->parent);
910 }
911
912 /**
913 * clk_unprepare - undo preparation of a clock source
914 * @clk: the clk being unprepared
915 *
916 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
917 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
918 * if the operation may sleep. One example is a clk which is accessed over
919 * I2c. In the complex case a clk gate operation may require a fast and a slow
920 * part. It is this reason that clk_unprepare and clk_disable are not mutually
921 * exclusive. In fact clk_disable must be called before clk_unprepare.
922 */
923 void clk_unprepare(struct clk *clk)
924 {
925 if (IS_ERR_OR_NULL(clk))
926 return;
927
928 clk_prepare_lock();
929 clk_core_unprepare(clk->core);
930 clk_prepare_unlock();
931 }
932 EXPORT_SYMBOL_GPL(clk_unprepare);
933
934 static int clk_core_prepare(struct clk_core *clk)
935 {
936 int ret = 0;
937
938 if (!clk)
939 return 0;
940
941 if (clk->prepare_count == 0) {
942 ret = clk_core_prepare(clk->parent);
943 if (ret)
944 return ret;
945
946 if (clk->ops->prepare) {
947 ret = clk->ops->prepare(clk->hw);
948 if (ret) {
949 clk_core_unprepare(clk->parent);
950 return ret;
951 }
952 }
953 }
954
955 clk->prepare_count++;
956
957 return 0;
958 }
959
960 /**
961 * clk_prepare - prepare a clock source
962 * @clk: the clk being prepared
963 *
964 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
965 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
966 * operation may sleep. One example is a clk which is accessed over I2c. In
967 * the complex case a clk ungate operation may require a fast and a slow part.
968 * It is this reason that clk_prepare and clk_enable are not mutually
969 * exclusive. In fact clk_prepare must be called before clk_enable.
970 * Returns 0 on success, -EERROR otherwise.
971 */
972 int clk_prepare(struct clk *clk)
973 {
974 int ret;
975
976 if (!clk)
977 return 0;
978
979 clk_prepare_lock();
980 ret = clk_core_prepare(clk->core);
981 clk_prepare_unlock();
982
983 return ret;
984 }
985 EXPORT_SYMBOL_GPL(clk_prepare);
986
987 static void clk_core_disable(struct clk_core *clk)
988 {
989 if (!clk)
990 return;
991
992 if (WARN_ON(clk->enable_count == 0))
993 return;
994
995 if (--clk->enable_count > 0)
996 return;
997
998 if (clk->ops->disable)
999 clk->ops->disable(clk->hw);
1000
1001 clk_core_disable(clk->parent);
1002 }
1003
1004 static void __clk_disable(struct clk *clk)
1005 {
1006 if (!clk)
1007 return;
1008
1009 clk_core_disable(clk->core);
1010 }
1011
1012 /**
1013 * clk_disable - gate a clock
1014 * @clk: the clk being gated
1015 *
1016 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
1017 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1018 * clk if the operation is fast and will never sleep. One example is a
1019 * SoC-internal clk which is controlled via simple register writes. In the
1020 * complex case a clk gate operation may require a fast and a slow part. It is
1021 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1022 * In fact clk_disable must be called before clk_unprepare.
1023 */
1024 void clk_disable(struct clk *clk)
1025 {
1026 unsigned long flags;
1027
1028 if (IS_ERR_OR_NULL(clk))
1029 return;
1030
1031 flags = clk_enable_lock();
1032 __clk_disable(clk);
1033 clk_enable_unlock(flags);
1034 }
1035 EXPORT_SYMBOL_GPL(clk_disable);
1036
1037 static int clk_core_enable(struct clk_core *clk)
1038 {
1039 int ret = 0;
1040
1041 if (!clk)
1042 return 0;
1043
1044 if (WARN_ON(clk->prepare_count == 0))
1045 return -ESHUTDOWN;
1046
1047 if (clk->enable_count == 0) {
1048 ret = clk_core_enable(clk->parent);
1049
1050 if (ret)
1051 return ret;
1052
1053 if (clk->ops->enable) {
1054 ret = clk->ops->enable(clk->hw);
1055 if (ret) {
1056 clk_core_disable(clk->parent);
1057 return ret;
1058 }
1059 }
1060 }
1061
1062 clk->enable_count++;
1063 return 0;
1064 }
1065
1066 static int __clk_enable(struct clk *clk)
1067 {
1068 if (!clk)
1069 return 0;
1070
1071 return clk_core_enable(clk->core);
1072 }
1073
1074 /**
1075 * clk_enable - ungate a clock
1076 * @clk: the clk being ungated
1077 *
1078 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1079 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1080 * if the operation will never sleep. One example is a SoC-internal clk which
1081 * is controlled via simple register writes. In the complex case a clk ungate
1082 * operation may require a fast and a slow part. It is this reason that
1083 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1084 * must be called before clk_enable. Returns 0 on success, -EERROR
1085 * otherwise.
1086 */
1087 int clk_enable(struct clk *clk)
1088 {
1089 unsigned long flags;
1090 int ret;
1091
1092 flags = clk_enable_lock();
1093 ret = __clk_enable(clk);
1094 clk_enable_unlock(flags);
1095
1096 return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(clk_enable);
1099
1100 static unsigned long clk_core_round_rate_nolock(struct clk_core *clk,
1101 unsigned long rate,
1102 unsigned long min_rate,
1103 unsigned long max_rate)
1104 {
1105 unsigned long parent_rate = 0;
1106 struct clk_core *parent;
1107 struct clk_hw *parent_hw;
1108
1109 if (!clk)
1110 return 0;
1111
1112 parent = clk->parent;
1113 if (parent)
1114 parent_rate = parent->rate;
1115
1116 if (clk->ops->determine_rate) {
1117 parent_hw = parent ? parent->hw : NULL;
1118 return clk->ops->determine_rate(clk->hw, rate,
1119 min_rate, max_rate,
1120 &parent_rate, &parent_hw);
1121 } else if (clk->ops->round_rate)
1122 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
1123 else if (clk->flags & CLK_SET_RATE_PARENT)
1124 return clk_core_round_rate_nolock(clk->parent, rate, min_rate,
1125 max_rate);
1126 else
1127 return clk->rate;
1128 }
1129
1130 /**
1131 * __clk_determine_rate - get the closest rate actually supported by a clock
1132 * @hw: determine the rate of this clock
1133 * @rate: target rate
1134 * @min_rate: returned rate must be greater than this rate
1135 * @max_rate: returned rate must be less than this rate
1136 *
1137 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate and
1138 * .determine_rate.
1139 */
1140 unsigned long __clk_determine_rate(struct clk_hw *hw,
1141 unsigned long rate,
1142 unsigned long min_rate,
1143 unsigned long max_rate)
1144 {
1145 if (!hw)
1146 return 0;
1147
1148 return clk_core_round_rate_nolock(hw->core, rate, min_rate, max_rate);
1149 }
1150 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1151
1152 /**
1153 * __clk_round_rate - round the given rate for a clk
1154 * @clk: round the rate of this clock
1155 * @rate: the rate which is to be rounded
1156 *
1157 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
1158 */
1159 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
1160 {
1161 unsigned long min_rate;
1162 unsigned long max_rate;
1163
1164 if (!clk)
1165 return 0;
1166
1167 clk_core_get_boundaries(clk->core, &min_rate, &max_rate);
1168
1169 return clk_core_round_rate_nolock(clk->core, rate, min_rate, max_rate);
1170 }
1171 EXPORT_SYMBOL_GPL(__clk_round_rate);
1172
1173 /**
1174 * clk_round_rate - round the given rate for a clk
1175 * @clk: the clk for which we are rounding a rate
1176 * @rate: the rate which is to be rounded
1177 *
1178 * Takes in a rate as input and rounds it to a rate that the clk can actually
1179 * use which is then returned. If clk doesn't support round_rate operation
1180 * then the parent rate is returned.
1181 */
1182 long clk_round_rate(struct clk *clk, unsigned long rate)
1183 {
1184 unsigned long ret;
1185
1186 if (!clk)
1187 return 0;
1188
1189 clk_prepare_lock();
1190 ret = __clk_round_rate(clk, rate);
1191 clk_prepare_unlock();
1192
1193 return ret;
1194 }
1195 EXPORT_SYMBOL_GPL(clk_round_rate);
1196
1197 /**
1198 * __clk_notify - call clk notifier chain
1199 * @clk: struct clk * that is changing rate
1200 * @msg: clk notifier type (see include/linux/clk.h)
1201 * @old_rate: old clk rate
1202 * @new_rate: new clk rate
1203 *
1204 * Triggers a notifier call chain on the clk rate-change notification
1205 * for 'clk'. Passes a pointer to the struct clk and the previous
1206 * and current rates to the notifier callback. Intended to be called by
1207 * internal clock code only. Returns NOTIFY_DONE from the last driver
1208 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1209 * a driver returns that.
1210 */
1211 static int __clk_notify(struct clk_core *clk, unsigned long msg,
1212 unsigned long old_rate, unsigned long new_rate)
1213 {
1214 struct clk_notifier *cn;
1215 struct clk_notifier_data cnd;
1216 int ret = NOTIFY_DONE;
1217
1218 cnd.old_rate = old_rate;
1219 cnd.new_rate = new_rate;
1220
1221 list_for_each_entry(cn, &clk_notifier_list, node) {
1222 if (cn->clk->core == clk) {
1223 cnd.clk = cn->clk;
1224 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1225 &cnd);
1226 }
1227 }
1228
1229 return ret;
1230 }
1231
1232 /**
1233 * __clk_recalc_accuracies
1234 * @clk: first clk in the subtree
1235 *
1236 * Walks the subtree of clks starting with clk and recalculates accuracies as
1237 * it goes. Note that if a clk does not implement the .recalc_accuracy
1238 * callback then it is assumed that the clock will take on the accuracy of it's
1239 * parent.
1240 *
1241 * Caller must hold prepare_lock.
1242 */
1243 static void __clk_recalc_accuracies(struct clk_core *clk)
1244 {
1245 unsigned long parent_accuracy = 0;
1246 struct clk_core *child;
1247
1248 if (clk->parent)
1249 parent_accuracy = clk->parent->accuracy;
1250
1251 if (clk->ops->recalc_accuracy)
1252 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1253 parent_accuracy);
1254 else
1255 clk->accuracy = parent_accuracy;
1256
1257 hlist_for_each_entry(child, &clk->children, child_node)
1258 __clk_recalc_accuracies(child);
1259 }
1260
1261 static long clk_core_get_accuracy(struct clk_core *clk)
1262 {
1263 unsigned long accuracy;
1264
1265 clk_prepare_lock();
1266 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1267 __clk_recalc_accuracies(clk);
1268
1269 accuracy = __clk_get_accuracy(clk);
1270 clk_prepare_unlock();
1271
1272 return accuracy;
1273 }
1274
1275 /**
1276 * clk_get_accuracy - return the accuracy of clk
1277 * @clk: the clk whose accuracy is being returned
1278 *
1279 * Simply returns the cached accuracy of the clk, unless
1280 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1281 * issued.
1282 * If clk is NULL then returns 0.
1283 */
1284 long clk_get_accuracy(struct clk *clk)
1285 {
1286 if (!clk)
1287 return 0;
1288
1289 return clk_core_get_accuracy(clk->core);
1290 }
1291 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1292
1293 static unsigned long clk_recalc(struct clk_core *clk,
1294 unsigned long parent_rate)
1295 {
1296 if (clk->ops->recalc_rate)
1297 return clk->ops->recalc_rate(clk->hw, parent_rate);
1298 return parent_rate;
1299 }
1300
1301 /**
1302 * __clk_recalc_rates
1303 * @clk: first clk in the subtree
1304 * @msg: notification type (see include/linux/clk.h)
1305 *
1306 * Walks the subtree of clks starting with clk and recalculates rates as it
1307 * goes. Note that if a clk does not implement the .recalc_rate callback then
1308 * it is assumed that the clock will take on the rate of its parent.
1309 *
1310 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1311 * if necessary.
1312 *
1313 * Caller must hold prepare_lock.
1314 */
1315 static void __clk_recalc_rates(struct clk_core *clk, unsigned long msg)
1316 {
1317 unsigned long old_rate;
1318 unsigned long parent_rate = 0;
1319 struct clk_core *child;
1320
1321 old_rate = clk->rate;
1322
1323 if (clk->parent)
1324 parent_rate = clk->parent->rate;
1325
1326 clk->rate = clk_recalc(clk, parent_rate);
1327
1328 /*
1329 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1330 * & ABORT_RATE_CHANGE notifiers
1331 */
1332 if (clk->notifier_count && msg)
1333 __clk_notify(clk, msg, old_rate, clk->rate);
1334
1335 hlist_for_each_entry(child, &clk->children, child_node)
1336 __clk_recalc_rates(child, msg);
1337 }
1338
1339 static unsigned long clk_core_get_rate(struct clk_core *clk)
1340 {
1341 unsigned long rate;
1342
1343 clk_prepare_lock();
1344
1345 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1346 __clk_recalc_rates(clk, 0);
1347
1348 rate = clk_core_get_rate_nolock(clk);
1349 clk_prepare_unlock();
1350
1351 return rate;
1352 }
1353 EXPORT_SYMBOL_GPL(clk_core_get_rate);
1354
1355 /**
1356 * clk_get_rate - return the rate of clk
1357 * @clk: the clk whose rate is being returned
1358 *
1359 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1360 * is set, which means a recalc_rate will be issued.
1361 * If clk is NULL then returns 0.
1362 */
1363 unsigned long clk_get_rate(struct clk *clk)
1364 {
1365 if (!clk)
1366 return 0;
1367
1368 return clk_core_get_rate(clk->core);
1369 }
1370 EXPORT_SYMBOL_GPL(clk_get_rate);
1371
1372 static int clk_fetch_parent_index(struct clk_core *clk,
1373 struct clk_core *parent)
1374 {
1375 int i;
1376
1377 if (!clk->parents) {
1378 clk->parents = kcalloc(clk->num_parents,
1379 sizeof(struct clk *), GFP_KERNEL);
1380 if (!clk->parents)
1381 return -ENOMEM;
1382 }
1383
1384 /*
1385 * find index of new parent clock using cached parent ptrs,
1386 * or if not yet cached, use string name comparison and cache
1387 * them now to avoid future calls to clk_core_lookup.
1388 */
1389 for (i = 0; i < clk->num_parents; i++) {
1390 if (clk->parents[i] == parent)
1391 return i;
1392
1393 if (clk->parents[i])
1394 continue;
1395
1396 if (!strcmp(clk->parent_names[i], parent->name)) {
1397 clk->parents[i] = clk_core_lookup(parent->name);
1398 return i;
1399 }
1400 }
1401
1402 return -EINVAL;
1403 }
1404
1405 static void clk_reparent(struct clk_core *clk, struct clk_core *new_parent)
1406 {
1407 hlist_del(&clk->child_node);
1408
1409 if (new_parent) {
1410 /* avoid duplicate POST_RATE_CHANGE notifications */
1411 if (new_parent->new_child == clk)
1412 new_parent->new_child = NULL;
1413
1414 hlist_add_head(&clk->child_node, &new_parent->children);
1415 } else {
1416 hlist_add_head(&clk->child_node, &clk_orphan_list);
1417 }
1418
1419 clk->parent = new_parent;
1420 }
1421
1422 static struct clk_core *__clk_set_parent_before(struct clk_core *clk,
1423 struct clk_core *parent)
1424 {
1425 unsigned long flags;
1426 struct clk_core *old_parent = clk->parent;
1427
1428 /*
1429 * Migrate prepare state between parents and prevent race with
1430 * clk_enable().
1431 *
1432 * If the clock is not prepared, then a race with
1433 * clk_enable/disable() is impossible since we already have the
1434 * prepare lock (future calls to clk_enable() need to be preceded by
1435 * a clk_prepare()).
1436 *
1437 * If the clock is prepared, migrate the prepared state to the new
1438 * parent and also protect against a race with clk_enable() by
1439 * forcing the clock and the new parent on. This ensures that all
1440 * future calls to clk_enable() are practically NOPs with respect to
1441 * hardware and software states.
1442 *
1443 * See also: Comment for clk_set_parent() below.
1444 */
1445 if (clk->prepare_count) {
1446 clk_core_prepare(parent);
1447 clk_core_enable(parent);
1448 clk_core_enable(clk);
1449 }
1450
1451 /* update the clk tree topology */
1452 flags = clk_enable_lock();
1453 clk_reparent(clk, parent);
1454 clk_enable_unlock(flags);
1455
1456 return old_parent;
1457 }
1458
1459 static void __clk_set_parent_after(struct clk_core *core,
1460 struct clk_core *parent,
1461 struct clk_core *old_parent)
1462 {
1463 /*
1464 * Finish the migration of prepare state and undo the changes done
1465 * for preventing a race with clk_enable().
1466 */
1467 if (core->prepare_count) {
1468 clk_core_disable(core);
1469 clk_core_disable(old_parent);
1470 clk_core_unprepare(old_parent);
1471 }
1472 }
1473
1474 static int __clk_set_parent(struct clk_core *clk, struct clk_core *parent,
1475 u8 p_index)
1476 {
1477 unsigned long flags;
1478 int ret = 0;
1479 struct clk_core *old_parent;
1480
1481 old_parent = __clk_set_parent_before(clk, parent);
1482
1483 /* change clock input source */
1484 if (parent && clk->ops->set_parent)
1485 ret = clk->ops->set_parent(clk->hw, p_index);
1486
1487 if (ret) {
1488 flags = clk_enable_lock();
1489 clk_reparent(clk, old_parent);
1490 clk_enable_unlock(flags);
1491
1492 if (clk->prepare_count) {
1493 clk_core_disable(clk);
1494 clk_core_disable(parent);
1495 clk_core_unprepare(parent);
1496 }
1497 return ret;
1498 }
1499
1500 __clk_set_parent_after(clk, parent, old_parent);
1501
1502 return 0;
1503 }
1504
1505 /**
1506 * __clk_speculate_rates
1507 * @clk: first clk in the subtree
1508 * @parent_rate: the "future" rate of clk's parent
1509 *
1510 * Walks the subtree of clks starting with clk, speculating rates as it
1511 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1512 *
1513 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1514 * pre-rate change notifications and returns early if no clks in the
1515 * subtree have subscribed to the notifications. Note that if a clk does not
1516 * implement the .recalc_rate callback then it is assumed that the clock will
1517 * take on the rate of its parent.
1518 *
1519 * Caller must hold prepare_lock.
1520 */
1521 static int __clk_speculate_rates(struct clk_core *clk,
1522 unsigned long parent_rate)
1523 {
1524 struct clk_core *child;
1525 unsigned long new_rate;
1526 int ret = NOTIFY_DONE;
1527
1528 new_rate = clk_recalc(clk, parent_rate);
1529
1530 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1531 if (clk->notifier_count)
1532 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1533
1534 if (ret & NOTIFY_STOP_MASK) {
1535 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1536 __func__, clk->name, ret);
1537 goto out;
1538 }
1539
1540 hlist_for_each_entry(child, &clk->children, child_node) {
1541 ret = __clk_speculate_rates(child, new_rate);
1542 if (ret & NOTIFY_STOP_MASK)
1543 break;
1544 }
1545
1546 out:
1547 return ret;
1548 }
1549
1550 static void clk_calc_subtree(struct clk_core *clk, unsigned long new_rate,
1551 struct clk_core *new_parent, u8 p_index)
1552 {
1553 struct clk_core *child;
1554
1555 clk->new_rate = new_rate;
1556 clk->new_parent = new_parent;
1557 clk->new_parent_index = p_index;
1558 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1559 clk->new_child = NULL;
1560 if (new_parent && new_parent != clk->parent)
1561 new_parent->new_child = clk;
1562
1563 hlist_for_each_entry(child, &clk->children, child_node) {
1564 child->new_rate = clk_recalc(child, new_rate);
1565 clk_calc_subtree(child, child->new_rate, NULL, 0);
1566 }
1567 }
1568
1569 /*
1570 * calculate the new rates returning the topmost clock that has to be
1571 * changed.
1572 */
1573 static struct clk_core *clk_calc_new_rates(struct clk_core *clk,
1574 unsigned long rate)
1575 {
1576 struct clk_core *top = clk;
1577 struct clk_core *old_parent, *parent;
1578 struct clk_hw *parent_hw;
1579 unsigned long best_parent_rate = 0;
1580 unsigned long new_rate;
1581 unsigned long min_rate;
1582 unsigned long max_rate;
1583 int p_index = 0;
1584
1585 /* sanity */
1586 if (IS_ERR_OR_NULL(clk))
1587 return NULL;
1588
1589 /* save parent rate, if it exists */
1590 parent = old_parent = clk->parent;
1591 if (parent)
1592 best_parent_rate = parent->rate;
1593
1594 clk_core_get_boundaries(clk, &min_rate, &max_rate);
1595
1596 /* find the closest rate and parent clk/rate */
1597 if (clk->ops->determine_rate) {
1598 parent_hw = parent ? parent->hw : NULL;
1599 new_rate = clk->ops->determine_rate(clk->hw, rate,
1600 min_rate,
1601 max_rate,
1602 &best_parent_rate,
1603 &parent_hw);
1604 parent = parent_hw ? parent_hw->core : NULL;
1605 } else if (clk->ops->round_rate) {
1606 new_rate = clk->ops->round_rate(clk->hw, rate,
1607 &best_parent_rate);
1608 if (new_rate < min_rate || new_rate > max_rate)
1609 return NULL;
1610 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1611 /* pass-through clock without adjustable parent */
1612 clk->new_rate = clk->rate;
1613 return NULL;
1614 } else {
1615 /* pass-through clock with adjustable parent */
1616 top = clk_calc_new_rates(parent, rate);
1617 new_rate = parent->new_rate;
1618 goto out;
1619 }
1620
1621 /* some clocks must be gated to change parent */
1622 if (parent != old_parent &&
1623 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1624 pr_debug("%s: %s not gated but wants to reparent\n",
1625 __func__, clk->name);
1626 return NULL;
1627 }
1628
1629 /* try finding the new parent index */
1630 if (parent && clk->num_parents > 1) {
1631 p_index = clk_fetch_parent_index(clk, parent);
1632 if (p_index < 0) {
1633 pr_debug("%s: clk %s can not be parent of clk %s\n",
1634 __func__, parent->name, clk->name);
1635 return NULL;
1636 }
1637 }
1638
1639 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1640 best_parent_rate != parent->rate)
1641 top = clk_calc_new_rates(parent, best_parent_rate);
1642
1643 out:
1644 clk_calc_subtree(clk, new_rate, parent, p_index);
1645
1646 return top;
1647 }
1648
1649 /*
1650 * Notify about rate changes in a subtree. Always walk down the whole tree
1651 * so that in case of an error we can walk down the whole tree again and
1652 * abort the change.
1653 */
1654 static struct clk_core *clk_propagate_rate_change(struct clk_core *clk,
1655 unsigned long event)
1656 {
1657 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1658 int ret = NOTIFY_DONE;
1659
1660 if (clk->rate == clk->new_rate)
1661 return NULL;
1662
1663 if (clk->notifier_count) {
1664 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1665 if (ret & NOTIFY_STOP_MASK)
1666 fail_clk = clk;
1667 }
1668
1669 hlist_for_each_entry(child, &clk->children, child_node) {
1670 /* Skip children who will be reparented to another clock */
1671 if (child->new_parent && child->new_parent != clk)
1672 continue;
1673 tmp_clk = clk_propagate_rate_change(child, event);
1674 if (tmp_clk)
1675 fail_clk = tmp_clk;
1676 }
1677
1678 /* handle the new child who might not be in clk->children yet */
1679 if (clk->new_child) {
1680 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1681 if (tmp_clk)
1682 fail_clk = tmp_clk;
1683 }
1684
1685 return fail_clk;
1686 }
1687
1688 /*
1689 * walk down a subtree and set the new rates notifying the rate
1690 * change on the way
1691 */
1692 static void clk_change_rate(struct clk_core *clk)
1693 {
1694 struct clk_core *child;
1695 struct hlist_node *tmp;
1696 unsigned long old_rate;
1697 unsigned long best_parent_rate = 0;
1698 bool skip_set_rate = false;
1699 struct clk_core *old_parent;
1700
1701 old_rate = clk->rate;
1702
1703 if (clk->new_parent)
1704 best_parent_rate = clk->new_parent->rate;
1705 else if (clk->parent)
1706 best_parent_rate = clk->parent->rate;
1707
1708 if (clk->new_parent && clk->new_parent != clk->parent) {
1709 old_parent = __clk_set_parent_before(clk, clk->new_parent);
1710
1711 if (clk->ops->set_rate_and_parent) {
1712 skip_set_rate = true;
1713 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1714 best_parent_rate,
1715 clk->new_parent_index);
1716 } else if (clk->ops->set_parent) {
1717 clk->ops->set_parent(clk->hw, clk->new_parent_index);
1718 }
1719
1720 __clk_set_parent_after(clk, clk->new_parent, old_parent);
1721 }
1722
1723 if (!skip_set_rate && clk->ops->set_rate)
1724 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1725
1726 clk->rate = clk_recalc(clk, best_parent_rate);
1727
1728 if (clk->notifier_count && old_rate != clk->rate)
1729 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1730
1731 /*
1732 * Use safe iteration, as change_rate can actually swap parents
1733 * for certain clock types.
1734 */
1735 hlist_for_each_entry_safe(child, tmp, &clk->children, child_node) {
1736 /* Skip children who will be reparented to another clock */
1737 if (child->new_parent && child->new_parent != clk)
1738 continue;
1739 clk_change_rate(child);
1740 }
1741
1742 /* handle the new child who might not be in clk->children yet */
1743 if (clk->new_child)
1744 clk_change_rate(clk->new_child);
1745 }
1746
1747 static int clk_core_set_rate_nolock(struct clk_core *clk,
1748 unsigned long req_rate)
1749 {
1750 struct clk_core *top, *fail_clk;
1751 unsigned long rate = req_rate;
1752 int ret = 0;
1753
1754 if (!clk)
1755 return 0;
1756
1757 /* bail early if nothing to do */
1758 if (rate == clk_core_get_rate_nolock(clk))
1759 return 0;
1760
1761 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count)
1762 return -EBUSY;
1763
1764 /* calculate new rates and get the topmost changed clock */
1765 top = clk_calc_new_rates(clk, rate);
1766 if (!top)
1767 return -EINVAL;
1768
1769 /* notify that we are about to change rates */
1770 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1771 if (fail_clk) {
1772 pr_debug("%s: failed to set %s rate\n", __func__,
1773 fail_clk->name);
1774 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1775 return -EBUSY;
1776 }
1777
1778 /* change the rates */
1779 clk_change_rate(top);
1780
1781 clk->req_rate = req_rate;
1782
1783 return ret;
1784 }
1785
1786 /**
1787 * clk_set_rate - specify a new rate for clk
1788 * @clk: the clk whose rate is being changed
1789 * @rate: the new rate for clk
1790 *
1791 * In the simplest case clk_set_rate will only adjust the rate of clk.
1792 *
1793 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1794 * propagate up to clk's parent; whether or not this happens depends on the
1795 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1796 * after calling .round_rate then upstream parent propagation is ignored. If
1797 * *parent_rate comes back with a new rate for clk's parent then we propagate
1798 * up to clk's parent and set its rate. Upward propagation will continue
1799 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1800 * .round_rate stops requesting changes to clk's parent_rate.
1801 *
1802 * Rate changes are accomplished via tree traversal that also recalculates the
1803 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1804 *
1805 * Returns 0 on success, -EERROR otherwise.
1806 */
1807 int clk_set_rate(struct clk *clk, unsigned long rate)
1808 {
1809 int ret;
1810
1811 if (!clk)
1812 return 0;
1813
1814 /* prevent racing with updates to the clock topology */
1815 clk_prepare_lock();
1816
1817 ret = clk_core_set_rate_nolock(clk->core, rate);
1818
1819 clk_prepare_unlock();
1820
1821 return ret;
1822 }
1823 EXPORT_SYMBOL_GPL(clk_set_rate);
1824
1825 /**
1826 * clk_set_rate_range - set a rate range for a clock source
1827 * @clk: clock source
1828 * @min: desired minimum clock rate in Hz, inclusive
1829 * @max: desired maximum clock rate in Hz, inclusive
1830 *
1831 * Returns success (0) or negative errno.
1832 */
1833 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1834 {
1835 int ret = 0;
1836
1837 if (!clk)
1838 return 0;
1839
1840 if (min > max) {
1841 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1842 __func__, clk->core->name, clk->dev_id, clk->con_id,
1843 min, max);
1844 return -EINVAL;
1845 }
1846
1847 clk_prepare_lock();
1848
1849 if (min != clk->min_rate || max != clk->max_rate) {
1850 clk->min_rate = min;
1851 clk->max_rate = max;
1852 ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1853 }
1854
1855 clk_prepare_unlock();
1856
1857 return ret;
1858 }
1859 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1860
1861 /**
1862 * clk_set_min_rate - set a minimum clock rate for a clock source
1863 * @clk: clock source
1864 * @rate: desired minimum clock rate in Hz, inclusive
1865 *
1866 * Returns success (0) or negative errno.
1867 */
1868 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1869 {
1870 if (!clk)
1871 return 0;
1872
1873 return clk_set_rate_range(clk, rate, clk->max_rate);
1874 }
1875 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1876
1877 /**
1878 * clk_set_max_rate - set a maximum clock rate for a clock source
1879 * @clk: clock source
1880 * @rate: desired maximum clock rate in Hz, inclusive
1881 *
1882 * Returns success (0) or negative errno.
1883 */
1884 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1885 {
1886 if (!clk)
1887 return 0;
1888
1889 return clk_set_rate_range(clk, clk->min_rate, rate);
1890 }
1891 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1892
1893 /**
1894 * clk_get_parent - return the parent of a clk
1895 * @clk: the clk whose parent gets returned
1896 *
1897 * Simply returns clk->parent. Returns NULL if clk is NULL.
1898 */
1899 struct clk *clk_get_parent(struct clk *clk)
1900 {
1901 struct clk *parent;
1902
1903 clk_prepare_lock();
1904 parent = __clk_get_parent(clk);
1905 clk_prepare_unlock();
1906
1907 return parent;
1908 }
1909 EXPORT_SYMBOL_GPL(clk_get_parent);
1910
1911 /*
1912 * .get_parent is mandatory for clocks with multiple possible parents. It is
1913 * optional for single-parent clocks. Always call .get_parent if it is
1914 * available and WARN if it is missing for multi-parent clocks.
1915 *
1916 * For single-parent clocks without .get_parent, first check to see if the
1917 * .parents array exists, and if so use it to avoid an expensive tree
1918 * traversal. If .parents does not exist then walk the tree.
1919 */
1920 static struct clk_core *__clk_init_parent(struct clk_core *clk)
1921 {
1922 struct clk_core *ret = NULL;
1923 u8 index;
1924
1925 /* handle the trivial cases */
1926
1927 if (!clk->num_parents)
1928 goto out;
1929
1930 if (clk->num_parents == 1) {
1931 if (IS_ERR_OR_NULL(clk->parent))
1932 clk->parent = clk_core_lookup(clk->parent_names[0]);
1933 ret = clk->parent;
1934 goto out;
1935 }
1936
1937 if (!clk->ops->get_parent) {
1938 WARN(!clk->ops->get_parent,
1939 "%s: multi-parent clocks must implement .get_parent\n",
1940 __func__);
1941 goto out;
1942 };
1943
1944 /*
1945 * Do our best to cache parent clocks in clk->parents. This prevents
1946 * unnecessary and expensive lookups. We don't set clk->parent here;
1947 * that is done by the calling function.
1948 */
1949
1950 index = clk->ops->get_parent(clk->hw);
1951
1952 if (!clk->parents)
1953 clk->parents =
1954 kcalloc(clk->num_parents, sizeof(struct clk *),
1955 GFP_KERNEL);
1956
1957 ret = clk_core_get_parent_by_index(clk, index);
1958
1959 out:
1960 return ret;
1961 }
1962
1963 static void clk_core_reparent(struct clk_core *clk,
1964 struct clk_core *new_parent)
1965 {
1966 clk_reparent(clk, new_parent);
1967 __clk_recalc_accuracies(clk);
1968 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1969 }
1970
1971 /**
1972 * clk_has_parent - check if a clock is a possible parent for another
1973 * @clk: clock source
1974 * @parent: parent clock source
1975 *
1976 * This function can be used in drivers that need to check that a clock can be
1977 * the parent of another without actually changing the parent.
1978 *
1979 * Returns true if @parent is a possible parent for @clk, false otherwise.
1980 */
1981 bool clk_has_parent(struct clk *clk, struct clk *parent)
1982 {
1983 struct clk_core *core, *parent_core;
1984 unsigned int i;
1985
1986 /* NULL clocks should be nops, so return success if either is NULL. */
1987 if (!clk || !parent)
1988 return true;
1989
1990 core = clk->core;
1991 parent_core = parent->core;
1992
1993 /* Optimize for the case where the parent is already the parent. */
1994 if (core->parent == parent_core)
1995 return true;
1996
1997 for (i = 0; i < core->num_parents; i++)
1998 if (strcmp(core->parent_names[i], parent_core->name) == 0)
1999 return true;
2000
2001 return false;
2002 }
2003 EXPORT_SYMBOL_GPL(clk_has_parent);
2004
2005 static int clk_core_set_parent(struct clk_core *clk, struct clk_core *parent)
2006 {
2007 int ret = 0;
2008 int p_index = 0;
2009 unsigned long p_rate = 0;
2010
2011 if (!clk)
2012 return 0;
2013
2014 /* verify ops for for multi-parent clks */
2015 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
2016 return -ENOSYS;
2017
2018 /* prevent racing with updates to the clock topology */
2019 clk_prepare_lock();
2020
2021 if (clk->parent == parent)
2022 goto out;
2023
2024 /* check that we are allowed to re-parent if the clock is in use */
2025 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
2026 ret = -EBUSY;
2027 goto out;
2028 }
2029
2030 /* try finding the new parent index */
2031 if (parent) {
2032 p_index = clk_fetch_parent_index(clk, parent);
2033 p_rate = parent->rate;
2034 if (p_index < 0) {
2035 pr_debug("%s: clk %s can not be parent of clk %s\n",
2036 __func__, parent->name, clk->name);
2037 ret = p_index;
2038 goto out;
2039 }
2040 }
2041
2042 /* propagate PRE_RATE_CHANGE notifications */
2043 ret = __clk_speculate_rates(clk, p_rate);
2044
2045 /* abort if a driver objects */
2046 if (ret & NOTIFY_STOP_MASK)
2047 goto out;
2048
2049 /* do the re-parent */
2050 ret = __clk_set_parent(clk, parent, p_index);
2051
2052 /* propagate rate an accuracy recalculation accordingly */
2053 if (ret) {
2054 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
2055 } else {
2056 __clk_recalc_rates(clk, POST_RATE_CHANGE);
2057 __clk_recalc_accuracies(clk);
2058 }
2059
2060 out:
2061 clk_prepare_unlock();
2062
2063 return ret;
2064 }
2065
2066 /**
2067 * clk_set_parent - switch the parent of a mux clk
2068 * @clk: the mux clk whose input we are switching
2069 * @parent: the new input to clk
2070 *
2071 * Re-parent clk to use parent as its new input source. If clk is in
2072 * prepared state, the clk will get enabled for the duration of this call. If
2073 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2074 * that, the reparenting is glitchy in hardware, etc), use the
2075 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2076 *
2077 * After successfully changing clk's parent clk_set_parent will update the
2078 * clk topology, sysfs topology and propagate rate recalculation via
2079 * __clk_recalc_rates.
2080 *
2081 * Returns 0 on success, -EERROR otherwise.
2082 */
2083 int clk_set_parent(struct clk *clk, struct clk *parent)
2084 {
2085 if (!clk)
2086 return 0;
2087
2088 return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
2089 }
2090 EXPORT_SYMBOL_GPL(clk_set_parent);
2091
2092 /**
2093 * clk_set_phase - adjust the phase shift of a clock signal
2094 * @clk: clock signal source
2095 * @degrees: number of degrees the signal is shifted
2096 *
2097 * Shifts the phase of a clock signal by the specified
2098 * degrees. Returns 0 on success, -EERROR otherwise.
2099 *
2100 * This function makes no distinction about the input or reference
2101 * signal that we adjust the clock signal phase against. For example
2102 * phase locked-loop clock signal generators we may shift phase with
2103 * respect to feedback clock signal input, but for other cases the
2104 * clock phase may be shifted with respect to some other, unspecified
2105 * signal.
2106 *
2107 * Additionally the concept of phase shift does not propagate through
2108 * the clock tree hierarchy, which sets it apart from clock rates and
2109 * clock accuracy. A parent clock phase attribute does not have an
2110 * impact on the phase attribute of a child clock.
2111 */
2112 int clk_set_phase(struct clk *clk, int degrees)
2113 {
2114 int ret = 0;
2115
2116 if (!clk)
2117 goto out;
2118
2119 /* sanity check degrees */
2120 degrees %= 360;
2121 if (degrees < 0)
2122 degrees += 360;
2123
2124 clk_prepare_lock();
2125
2126 if (!clk->core->ops->set_phase)
2127 goto out_unlock;
2128
2129 ret = clk->core->ops->set_phase(clk->core->hw, degrees);
2130
2131 if (!ret)
2132 clk->core->phase = degrees;
2133
2134 out_unlock:
2135 clk_prepare_unlock();
2136
2137 out:
2138 return ret;
2139 }
2140 EXPORT_SYMBOL_GPL(clk_set_phase);
2141
2142 static int clk_core_get_phase(struct clk_core *clk)
2143 {
2144 int ret = 0;
2145
2146 if (!clk)
2147 goto out;
2148
2149 clk_prepare_lock();
2150 ret = clk->phase;
2151 clk_prepare_unlock();
2152
2153 out:
2154 return ret;
2155 }
2156 EXPORT_SYMBOL_GPL(clk_get_phase);
2157
2158 /**
2159 * clk_get_phase - return the phase shift of a clock signal
2160 * @clk: clock signal source
2161 *
2162 * Returns the phase shift of a clock node in degrees, otherwise returns
2163 * -EERROR.
2164 */
2165 int clk_get_phase(struct clk *clk)
2166 {
2167 if (!clk)
2168 return 0;
2169
2170 return clk_core_get_phase(clk->core);
2171 }
2172
2173 /**
2174 * __clk_init - initialize the data structures in a struct clk
2175 * @dev: device initializing this clk, placeholder for now
2176 * @clk: clk being initialized
2177 *
2178 * Initializes the lists in struct clk_core, queries the hardware for the
2179 * parent and rate and sets them both.
2180 */
2181 static int __clk_init(struct device *dev, struct clk *clk_user)
2182 {
2183 int i, ret = 0;
2184 struct clk_core *orphan;
2185 struct hlist_node *tmp2;
2186 struct clk_core *clk;
2187 unsigned long rate;
2188
2189 if (!clk_user)
2190 return -EINVAL;
2191
2192 clk = clk_user->core;
2193
2194 clk_prepare_lock();
2195
2196 /* check to see if a clock with this name is already registered */
2197 if (clk_core_lookup(clk->name)) {
2198 pr_debug("%s: clk %s already initialized\n",
2199 __func__, clk->name);
2200 ret = -EEXIST;
2201 goto out;
2202 }
2203
2204 /* check that clk_ops are sane. See Documentation/clk.txt */
2205 if (clk->ops->set_rate &&
2206 !((clk->ops->round_rate || clk->ops->determine_rate) &&
2207 clk->ops->recalc_rate)) {
2208 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2209 __func__, clk->name);
2210 ret = -EINVAL;
2211 goto out;
2212 }
2213
2214 if (clk->ops->set_parent && !clk->ops->get_parent) {
2215 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2216 __func__, clk->name);
2217 ret = -EINVAL;
2218 goto out;
2219 }
2220
2221 if (clk->ops->set_rate_and_parent &&
2222 !(clk->ops->set_parent && clk->ops->set_rate)) {
2223 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2224 __func__, clk->name);
2225 ret = -EINVAL;
2226 goto out;
2227 }
2228
2229 /* throw a WARN if any entries in parent_names are NULL */
2230 for (i = 0; i < clk->num_parents; i++)
2231 WARN(!clk->parent_names[i],
2232 "%s: invalid NULL in %s's .parent_names\n",
2233 __func__, clk->name);
2234
2235 /*
2236 * Allocate an array of struct clk *'s to avoid unnecessary string
2237 * look-ups of clk's possible parents. This can fail for clocks passed
2238 * in to clk_init during early boot; thus any access to clk->parents[]
2239 * must always check for a NULL pointer and try to populate it if
2240 * necessary.
2241 *
2242 * If clk->parents is not NULL we skip this entire block. This allows
2243 * for clock drivers to statically initialize clk->parents.
2244 */
2245 if (clk->num_parents > 1 && !clk->parents) {
2246 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
2247 GFP_KERNEL);
2248 /*
2249 * clk_core_lookup returns NULL for parents that have not been
2250 * clk_init'd; thus any access to clk->parents[] must check
2251 * for a NULL pointer. We can always perform lazy lookups for
2252 * missing parents later on.
2253 */
2254 if (clk->parents)
2255 for (i = 0; i < clk->num_parents; i++)
2256 clk->parents[i] =
2257 clk_core_lookup(clk->parent_names[i]);
2258 }
2259
2260 clk->parent = __clk_init_parent(clk);
2261
2262 /*
2263 * Populate clk->parent if parent has already been __clk_init'd. If
2264 * parent has not yet been __clk_init'd then place clk in the orphan
2265 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
2266 * clk list.
2267 *
2268 * Every time a new clk is clk_init'd then we walk the list of orphan
2269 * clocks and re-parent any that are children of the clock currently
2270 * being clk_init'd.
2271 */
2272 if (clk->parent)
2273 hlist_add_head(&clk->child_node,
2274 &clk->parent->children);
2275 else if (clk->flags & CLK_IS_ROOT)
2276 hlist_add_head(&clk->child_node, &clk_root_list);
2277 else
2278 hlist_add_head(&clk->child_node, &clk_orphan_list);
2279
2280 /*
2281 * Set clk's accuracy. The preferred method is to use
2282 * .recalc_accuracy. For simple clocks and lazy developers the default
2283 * fallback is to use the parent's accuracy. If a clock doesn't have a
2284 * parent (or is orphaned) then accuracy is set to zero (perfect
2285 * clock).
2286 */
2287 if (clk->ops->recalc_accuracy)
2288 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
2289 __clk_get_accuracy(clk->parent));
2290 else if (clk->parent)
2291 clk->accuracy = clk->parent->accuracy;
2292 else
2293 clk->accuracy = 0;
2294
2295 /*
2296 * Set clk's phase.
2297 * Since a phase is by definition relative to its parent, just
2298 * query the current clock phase, or just assume it's in phase.
2299 */
2300 if (clk->ops->get_phase)
2301 clk->phase = clk->ops->get_phase(clk->hw);
2302 else
2303 clk->phase = 0;
2304
2305 /*
2306 * Set clk's rate. The preferred method is to use .recalc_rate. For
2307 * simple clocks and lazy developers the default fallback is to use the
2308 * parent's rate. If a clock doesn't have a parent (or is orphaned)
2309 * then rate is set to zero.
2310 */
2311 if (clk->ops->recalc_rate)
2312 rate = clk->ops->recalc_rate(clk->hw,
2313 clk_core_get_rate_nolock(clk->parent));
2314 else if (clk->parent)
2315 rate = clk->parent->rate;
2316 else
2317 rate = 0;
2318 clk->rate = clk->req_rate = rate;
2319
2320 /*
2321 * walk the list of orphan clocks and reparent any that are children of
2322 * this clock
2323 */
2324 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2325 if (orphan->num_parents && orphan->ops->get_parent) {
2326 i = orphan->ops->get_parent(orphan->hw);
2327 if (!strcmp(clk->name, orphan->parent_names[i]))
2328 clk_core_reparent(orphan, clk);
2329 continue;
2330 }
2331
2332 for (i = 0; i < orphan->num_parents; i++)
2333 if (!strcmp(clk->name, orphan->parent_names[i])) {
2334 clk_core_reparent(orphan, clk);
2335 break;
2336 }
2337 }
2338
2339 /*
2340 * optional platform-specific magic
2341 *
2342 * The .init callback is not used by any of the basic clock types, but
2343 * exists for weird hardware that must perform initialization magic.
2344 * Please consider other ways of solving initialization problems before
2345 * using this callback, as its use is discouraged.
2346 */
2347 if (clk->ops->init)
2348 clk->ops->init(clk->hw);
2349
2350 kref_init(&clk->ref);
2351 out:
2352 clk_prepare_unlock();
2353
2354 if (!ret)
2355 clk_debug_register(clk);
2356
2357 return ret;
2358 }
2359
2360 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2361 const char *con_id)
2362 {
2363 struct clk *clk;
2364
2365 /* This is to allow this function to be chained to others */
2366 if (!hw || IS_ERR(hw))
2367 return (struct clk *) hw;
2368
2369 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2370 if (!clk)
2371 return ERR_PTR(-ENOMEM);
2372
2373 clk->core = hw->core;
2374 clk->dev_id = dev_id;
2375 clk->con_id = con_id;
2376 clk->max_rate = ULONG_MAX;
2377
2378 clk_prepare_lock();
2379 hlist_add_head(&clk->child_node, &hw->core->clks);
2380 clk_prepare_unlock();
2381
2382 return clk;
2383 }
2384
2385 void __clk_free_clk(struct clk *clk)
2386 {
2387 clk_prepare_lock();
2388 hlist_del(&clk->child_node);
2389 clk_prepare_unlock();
2390
2391 kfree(clk);
2392 }
2393
2394 /**
2395 * clk_register - allocate a new clock, register it and return an opaque cookie
2396 * @dev: device that is registering this clock
2397 * @hw: link to hardware-specific clock data
2398 *
2399 * clk_register is the primary interface for populating the clock tree with new
2400 * clock nodes. It returns a pointer to the newly allocated struct clk which
2401 * cannot be dereferenced by driver code but may be used in conjuction with the
2402 * rest of the clock API. In the event of an error clk_register will return an
2403 * error code; drivers must test for an error code after calling clk_register.
2404 */
2405 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2406 {
2407 int i, ret;
2408 struct clk_core *clk;
2409
2410 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2411 if (!clk) {
2412 pr_err("%s: could not allocate clk\n", __func__);
2413 ret = -ENOMEM;
2414 goto fail_out;
2415 }
2416
2417 clk->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2418 if (!clk->name) {
2419 pr_err("%s: could not allocate clk->name\n", __func__);
2420 ret = -ENOMEM;
2421 goto fail_name;
2422 }
2423 clk->ops = hw->init->ops;
2424 if (dev && dev->driver)
2425 clk->owner = dev->driver->owner;
2426 clk->hw = hw;
2427 clk->flags = hw->init->flags;
2428 clk->num_parents = hw->init->num_parents;
2429 hw->core = clk;
2430
2431 /* allocate local copy in case parent_names is __initdata */
2432 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
2433 GFP_KERNEL);
2434
2435 if (!clk->parent_names) {
2436 pr_err("%s: could not allocate clk->parent_names\n", __func__);
2437 ret = -ENOMEM;
2438 goto fail_parent_names;
2439 }
2440
2441
2442 /* copy each string name in case parent_names is __initdata */
2443 for (i = 0; i < clk->num_parents; i++) {
2444 clk->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2445 GFP_KERNEL);
2446 if (!clk->parent_names[i]) {
2447 pr_err("%s: could not copy parent_names\n", __func__);
2448 ret = -ENOMEM;
2449 goto fail_parent_names_copy;
2450 }
2451 }
2452
2453 INIT_HLIST_HEAD(&clk->clks);
2454
2455 hw->clk = __clk_create_clk(hw, NULL, NULL);
2456 if (IS_ERR(hw->clk)) {
2457 pr_err("%s: could not allocate per-user clk\n", __func__);
2458 ret = PTR_ERR(hw->clk);
2459 goto fail_parent_names_copy;
2460 }
2461
2462 ret = __clk_init(dev, hw->clk);
2463 if (!ret)
2464 return hw->clk;
2465
2466 __clk_free_clk(hw->clk);
2467 hw->clk = NULL;
2468
2469 fail_parent_names_copy:
2470 while (--i >= 0)
2471 kfree_const(clk->parent_names[i]);
2472 kfree(clk->parent_names);
2473 fail_parent_names:
2474 kfree_const(clk->name);
2475 fail_name:
2476 kfree(clk);
2477 fail_out:
2478 return ERR_PTR(ret);
2479 }
2480 EXPORT_SYMBOL_GPL(clk_register);
2481
2482 /*
2483 * Free memory allocated for a clock.
2484 * Caller must hold prepare_lock.
2485 */
2486 static void __clk_release(struct kref *ref)
2487 {
2488 struct clk_core *clk = container_of(ref, struct clk_core, ref);
2489 int i = clk->num_parents;
2490
2491 kfree(clk->parents);
2492 while (--i >= 0)
2493 kfree_const(clk->parent_names[i]);
2494
2495 kfree(clk->parent_names);
2496 kfree_const(clk->name);
2497 kfree(clk);
2498 }
2499
2500 /*
2501 * Empty clk_ops for unregistered clocks. These are used temporarily
2502 * after clk_unregister() was called on a clock and until last clock
2503 * consumer calls clk_put() and the struct clk object is freed.
2504 */
2505 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2506 {
2507 return -ENXIO;
2508 }
2509
2510 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2511 {
2512 WARN_ON_ONCE(1);
2513 }
2514
2515 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2516 unsigned long parent_rate)
2517 {
2518 return -ENXIO;
2519 }
2520
2521 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2522 {
2523 return -ENXIO;
2524 }
2525
2526 static const struct clk_ops clk_nodrv_ops = {
2527 .enable = clk_nodrv_prepare_enable,
2528 .disable = clk_nodrv_disable_unprepare,
2529 .prepare = clk_nodrv_prepare_enable,
2530 .unprepare = clk_nodrv_disable_unprepare,
2531 .set_rate = clk_nodrv_set_rate,
2532 .set_parent = clk_nodrv_set_parent,
2533 };
2534
2535 /**
2536 * clk_unregister - unregister a currently registered clock
2537 * @clk: clock to unregister
2538 */
2539 void clk_unregister(struct clk *clk)
2540 {
2541 unsigned long flags;
2542
2543 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2544 return;
2545
2546 clk_debug_unregister(clk->core);
2547
2548 clk_prepare_lock();
2549
2550 if (clk->core->ops == &clk_nodrv_ops) {
2551 pr_err("%s: unregistered clock: %s\n", __func__,
2552 clk->core->name);
2553 return;
2554 }
2555 /*
2556 * Assign empty clock ops for consumers that might still hold
2557 * a reference to this clock.
2558 */
2559 flags = clk_enable_lock();
2560 clk->core->ops = &clk_nodrv_ops;
2561 clk_enable_unlock(flags);
2562
2563 if (!hlist_empty(&clk->core->children)) {
2564 struct clk_core *child;
2565 struct hlist_node *t;
2566
2567 /* Reparent all children to the orphan list. */
2568 hlist_for_each_entry_safe(child, t, &clk->core->children,
2569 child_node)
2570 clk_core_set_parent(child, NULL);
2571 }
2572
2573 hlist_del_init(&clk->core->child_node);
2574
2575 if (clk->core->prepare_count)
2576 pr_warn("%s: unregistering prepared clock: %s\n",
2577 __func__, clk->core->name);
2578 kref_put(&clk->core->ref, __clk_release);
2579
2580 clk_prepare_unlock();
2581 }
2582 EXPORT_SYMBOL_GPL(clk_unregister);
2583
2584 static void devm_clk_release(struct device *dev, void *res)
2585 {
2586 clk_unregister(*(struct clk **)res);
2587 }
2588
2589 /**
2590 * devm_clk_register - resource managed clk_register()
2591 * @dev: device that is registering this clock
2592 * @hw: link to hardware-specific clock data
2593 *
2594 * Managed clk_register(). Clocks returned from this function are
2595 * automatically clk_unregister()ed on driver detach. See clk_register() for
2596 * more information.
2597 */
2598 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2599 {
2600 struct clk *clk;
2601 struct clk **clkp;
2602
2603 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2604 if (!clkp)
2605 return ERR_PTR(-ENOMEM);
2606
2607 clk = clk_register(dev, hw);
2608 if (!IS_ERR(clk)) {
2609 *clkp = clk;
2610 devres_add(dev, clkp);
2611 } else {
2612 devres_free(clkp);
2613 }
2614
2615 return clk;
2616 }
2617 EXPORT_SYMBOL_GPL(devm_clk_register);
2618
2619 static int devm_clk_match(struct device *dev, void *res, void *data)
2620 {
2621 struct clk *c = res;
2622 if (WARN_ON(!c))
2623 return 0;
2624 return c == data;
2625 }
2626
2627 /**
2628 * devm_clk_unregister - resource managed clk_unregister()
2629 * @clk: clock to unregister
2630 *
2631 * Deallocate a clock allocated with devm_clk_register(). Normally
2632 * this function will not need to be called and the resource management
2633 * code will ensure that the resource is freed.
2634 */
2635 void devm_clk_unregister(struct device *dev, struct clk *clk)
2636 {
2637 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2638 }
2639 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2640
2641 /*
2642 * clkdev helpers
2643 */
2644 int __clk_get(struct clk *clk)
2645 {
2646 struct clk_core *core = !clk ? NULL : clk->core;
2647
2648 if (core) {
2649 if (!try_module_get(core->owner))
2650 return 0;
2651
2652 kref_get(&core->ref);
2653 }
2654 return 1;
2655 }
2656
2657 void __clk_put(struct clk *clk)
2658 {
2659 struct module *owner;
2660
2661 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2662 return;
2663
2664 clk_prepare_lock();
2665
2666 hlist_del(&clk->child_node);
2667 if (clk->min_rate > clk->core->req_rate ||
2668 clk->max_rate < clk->core->req_rate)
2669 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2670
2671 owner = clk->core->owner;
2672 kref_put(&clk->core->ref, __clk_release);
2673
2674 clk_prepare_unlock();
2675
2676 module_put(owner);
2677
2678 kfree(clk);
2679 }
2680
2681 /*** clk rate change notifiers ***/
2682
2683 /**
2684 * clk_notifier_register - add a clk rate change notifier
2685 * @clk: struct clk * to watch
2686 * @nb: struct notifier_block * with callback info
2687 *
2688 * Request notification when clk's rate changes. This uses an SRCU
2689 * notifier because we want it to block and notifier unregistrations are
2690 * uncommon. The callbacks associated with the notifier must not
2691 * re-enter into the clk framework by calling any top-level clk APIs;
2692 * this will cause a nested prepare_lock mutex.
2693 *
2694 * In all notification cases cases (pre, post and abort rate change) the
2695 * original clock rate is passed to the callback via struct
2696 * clk_notifier_data.old_rate and the new frequency is passed via struct
2697 * clk_notifier_data.new_rate.
2698 *
2699 * clk_notifier_register() must be called from non-atomic context.
2700 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2701 * allocation failure; otherwise, passes along the return value of
2702 * srcu_notifier_chain_register().
2703 */
2704 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2705 {
2706 struct clk_notifier *cn;
2707 int ret = -ENOMEM;
2708
2709 if (!clk || !nb)
2710 return -EINVAL;
2711
2712 clk_prepare_lock();
2713
2714 /* search the list of notifiers for this clk */
2715 list_for_each_entry(cn, &clk_notifier_list, node)
2716 if (cn->clk == clk)
2717 break;
2718
2719 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2720 if (cn->clk != clk) {
2721 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2722 if (!cn)
2723 goto out;
2724
2725 cn->clk = clk;
2726 srcu_init_notifier_head(&cn->notifier_head);
2727
2728 list_add(&cn->node, &clk_notifier_list);
2729 }
2730
2731 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2732
2733 clk->core->notifier_count++;
2734
2735 out:
2736 clk_prepare_unlock();
2737
2738 return ret;
2739 }
2740 EXPORT_SYMBOL_GPL(clk_notifier_register);
2741
2742 /**
2743 * clk_notifier_unregister - remove a clk rate change notifier
2744 * @clk: struct clk *
2745 * @nb: struct notifier_block * with callback info
2746 *
2747 * Request no further notification for changes to 'clk' and frees memory
2748 * allocated in clk_notifier_register.
2749 *
2750 * Returns -EINVAL if called with null arguments; otherwise, passes
2751 * along the return value of srcu_notifier_chain_unregister().
2752 */
2753 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2754 {
2755 struct clk_notifier *cn = NULL;
2756 int ret = -EINVAL;
2757
2758 if (!clk || !nb)
2759 return -EINVAL;
2760
2761 clk_prepare_lock();
2762
2763 list_for_each_entry(cn, &clk_notifier_list, node)
2764 if (cn->clk == clk)
2765 break;
2766
2767 if (cn->clk == clk) {
2768 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2769
2770 clk->core->notifier_count--;
2771
2772 /* XXX the notifier code should handle this better */
2773 if (!cn->notifier_head.head) {
2774 srcu_cleanup_notifier_head(&cn->notifier_head);
2775 list_del(&cn->node);
2776 kfree(cn);
2777 }
2778
2779 } else {
2780 ret = -ENOENT;
2781 }
2782
2783 clk_prepare_unlock();
2784
2785 return ret;
2786 }
2787 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2788
2789 #ifdef CONFIG_OF
2790 /**
2791 * struct of_clk_provider - Clock provider registration structure
2792 * @link: Entry in global list of clock providers
2793 * @node: Pointer to device tree node of clock provider
2794 * @get: Get clock callback. Returns NULL or a struct clk for the
2795 * given clock specifier
2796 * @data: context pointer to be passed into @get callback
2797 */
2798 struct of_clk_provider {
2799 struct list_head link;
2800
2801 struct device_node *node;
2802 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2803 void *data;
2804 };
2805
2806 static const struct of_device_id __clk_of_table_sentinel
2807 __used __section(__clk_of_table_end);
2808
2809 static LIST_HEAD(of_clk_providers);
2810 static DEFINE_MUTEX(of_clk_mutex);
2811
2812 /* of_clk_provider list locking helpers */
2813 void of_clk_lock(void)
2814 {
2815 mutex_lock(&of_clk_mutex);
2816 }
2817
2818 void of_clk_unlock(void)
2819 {
2820 mutex_unlock(&of_clk_mutex);
2821 }
2822
2823 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2824 void *data)
2825 {
2826 return data;
2827 }
2828 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2829
2830 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2831 {
2832 struct clk_onecell_data *clk_data = data;
2833 unsigned int idx = clkspec->args[0];
2834
2835 if (idx >= clk_data->clk_num) {
2836 pr_err("%s: invalid clock index %d\n", __func__, idx);
2837 return ERR_PTR(-EINVAL);
2838 }
2839
2840 return clk_data->clks[idx];
2841 }
2842 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2843
2844 /**
2845 * of_clk_add_provider() - Register a clock provider for a node
2846 * @np: Device node pointer associated with clock provider
2847 * @clk_src_get: callback for decoding clock
2848 * @data: context pointer for @clk_src_get callback.
2849 */
2850 int of_clk_add_provider(struct device_node *np,
2851 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2852 void *data),
2853 void *data)
2854 {
2855 struct of_clk_provider *cp;
2856 int ret;
2857
2858 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2859 if (!cp)
2860 return -ENOMEM;
2861
2862 cp->node = of_node_get(np);
2863 cp->data = data;
2864 cp->get = clk_src_get;
2865
2866 mutex_lock(&of_clk_mutex);
2867 list_add(&cp->link, &of_clk_providers);
2868 mutex_unlock(&of_clk_mutex);
2869 pr_debug("Added clock from %s\n", np->full_name);
2870
2871 ret = of_clk_set_defaults(np, true);
2872 if (ret < 0)
2873 of_clk_del_provider(np);
2874
2875 return ret;
2876 }
2877 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2878
2879 /**
2880 * of_clk_del_provider() - Remove a previously registered clock provider
2881 * @np: Device node pointer associated with clock provider
2882 */
2883 void of_clk_del_provider(struct device_node *np)
2884 {
2885 struct of_clk_provider *cp;
2886
2887 mutex_lock(&of_clk_mutex);
2888 list_for_each_entry(cp, &of_clk_providers, link) {
2889 if (cp->node == np) {
2890 list_del(&cp->link);
2891 of_node_put(cp->node);
2892 kfree(cp);
2893 break;
2894 }
2895 }
2896 mutex_unlock(&of_clk_mutex);
2897 }
2898 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2899
2900 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2901 const char *dev_id, const char *con_id)
2902 {
2903 struct of_clk_provider *provider;
2904 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2905
2906 /* Check if we have such a provider in our array */
2907 list_for_each_entry(provider, &of_clk_providers, link) {
2908 if (provider->node == clkspec->np)
2909 clk = provider->get(clkspec, provider->data);
2910 if (!IS_ERR(clk)) {
2911 clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2912 con_id);
2913
2914 if (!IS_ERR(clk) && !__clk_get(clk)) {
2915 __clk_free_clk(clk);
2916 clk = ERR_PTR(-ENOENT);
2917 }
2918
2919 break;
2920 }
2921 }
2922
2923 return clk;
2924 }
2925
2926 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2927 {
2928 struct clk *clk;
2929
2930 mutex_lock(&of_clk_mutex);
2931 clk = __of_clk_get_from_provider(clkspec, NULL, __func__);
2932 mutex_unlock(&of_clk_mutex);
2933
2934 return clk;
2935 }
2936
2937 int of_clk_get_parent_count(struct device_node *np)
2938 {
2939 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2940 }
2941 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2942
2943 const char *of_clk_get_parent_name(struct device_node *np, int index)
2944 {
2945 struct of_phandle_args clkspec;
2946 struct property *prop;
2947 const char *clk_name;
2948 const __be32 *vp;
2949 u32 pv;
2950 int rc;
2951 int count;
2952
2953 if (index < 0)
2954 return NULL;
2955
2956 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2957 &clkspec);
2958 if (rc)
2959 return NULL;
2960
2961 index = clkspec.args_count ? clkspec.args[0] : 0;
2962 count = 0;
2963
2964 /* if there is an indices property, use it to transfer the index
2965 * specified into an array offset for the clock-output-names property.
2966 */
2967 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2968 if (index == pv) {
2969 index = count;
2970 break;
2971 }
2972 count++;
2973 }
2974
2975 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2976 index,
2977 &clk_name) < 0)
2978 clk_name = clkspec.np->name;
2979
2980 of_node_put(clkspec.np);
2981 return clk_name;
2982 }
2983 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2984
2985 struct clock_provider {
2986 of_clk_init_cb_t clk_init_cb;
2987 struct device_node *np;
2988 struct list_head node;
2989 };
2990
2991 static LIST_HEAD(clk_provider_list);
2992
2993 /*
2994 * This function looks for a parent clock. If there is one, then it
2995 * checks that the provider for this parent clock was initialized, in
2996 * this case the parent clock will be ready.
2997 */
2998 static int parent_ready(struct device_node *np)
2999 {
3000 int i = 0;
3001
3002 while (true) {
3003 struct clk *clk = of_clk_get(np, i);
3004
3005 /* this parent is ready we can check the next one */
3006 if (!IS_ERR(clk)) {
3007 clk_put(clk);
3008 i++;
3009 continue;
3010 }
3011
3012 /* at least one parent is not ready, we exit now */
3013 if (PTR_ERR(clk) == -EPROBE_DEFER)
3014 return 0;
3015
3016 /*
3017 * Here we make assumption that the device tree is
3018 * written correctly. So an error means that there is
3019 * no more parent. As we didn't exit yet, then the
3020 * previous parent are ready. If there is no clock
3021 * parent, no need to wait for them, then we can
3022 * consider their absence as being ready
3023 */
3024 return 1;
3025 }
3026 }
3027
3028 /**
3029 * of_clk_init() - Scan and init clock providers from the DT
3030 * @matches: array of compatible values and init functions for providers.
3031 *
3032 * This function scans the device tree for matching clock providers
3033 * and calls their initialization functions. It also does it by trying
3034 * to follow the dependencies.
3035 */
3036 void __init of_clk_init(const struct of_device_id *matches)
3037 {
3038 const struct of_device_id *match;
3039 struct device_node *np;
3040 struct clock_provider *clk_provider, *next;
3041 bool is_init_done;
3042 bool force = false;
3043
3044 if (!matches)
3045 matches = &__clk_of_table;
3046
3047 /* First prepare the list of the clocks providers */
3048 for_each_matching_node_and_match(np, matches, &match) {
3049 struct clock_provider *parent =
3050 kzalloc(sizeof(struct clock_provider), GFP_KERNEL);
3051
3052 parent->clk_init_cb = match->data;
3053 parent->np = np;
3054 list_add_tail(&parent->node, &clk_provider_list);
3055 }
3056
3057 while (!list_empty(&clk_provider_list)) {
3058 is_init_done = false;
3059 list_for_each_entry_safe(clk_provider, next,
3060 &clk_provider_list, node) {
3061 if (force || parent_ready(clk_provider->np)) {
3062
3063 clk_provider->clk_init_cb(clk_provider->np);
3064 of_clk_set_defaults(clk_provider->np, true);
3065
3066 list_del(&clk_provider->node);
3067 kfree(clk_provider);
3068 is_init_done = true;
3069 }
3070 }
3071
3072 /*
3073 * We didn't manage to initialize any of the
3074 * remaining providers during the last loop, so now we
3075 * initialize all the remaining ones unconditionally
3076 * in case the clock parent was not mandatory
3077 */
3078 if (!is_init_done)
3079 force = true;
3080 }
3081 }
3082 #endif