]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/clk/clk.c
Merge branch 'for-next' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / drivers / clk / clk.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5 *
6 * Standard functionality for the common clock API. See Documentation/driver-api/clk.rst
7 */
8
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 static struct hlist_head *all_lists[] = {
41 &clk_root_list,
42 &clk_orphan_list,
43 NULL,
44 };
45
46 /*** private data structures ***/
47
48 struct clk_parent_map {
49 const struct clk_hw *hw;
50 struct clk_core *core;
51 const char *fw_name;
52 const char *name;
53 int index;
54 };
55
56 struct clk_core {
57 const char *name;
58 const struct clk_ops *ops;
59 struct clk_hw *hw;
60 struct module *owner;
61 struct device *dev;
62 struct device_node *of_node;
63 struct clk_core *parent;
64 struct clk_parent_map *parents;
65 u8 num_parents;
66 u8 new_parent_index;
67 unsigned long rate;
68 unsigned long req_rate;
69 unsigned long new_rate;
70 struct clk_core *new_parent;
71 struct clk_core *new_child;
72 unsigned long flags;
73 bool orphan;
74 bool rpm_enabled;
75 unsigned int enable_count;
76 unsigned int prepare_count;
77 unsigned int protect_count;
78 unsigned long min_rate;
79 unsigned long max_rate;
80 unsigned long accuracy;
81 int phase;
82 struct clk_duty duty;
83 struct hlist_head children;
84 struct hlist_node child_node;
85 struct hlist_head clks;
86 unsigned int notifier_count;
87 #ifdef CONFIG_DEBUG_FS
88 struct dentry *dentry;
89 struct hlist_node debug_node;
90 #endif
91 struct kref ref;
92 };
93
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/clk.h>
96
97 struct clk {
98 struct clk_core *core;
99 struct device *dev;
100 const char *dev_id;
101 const char *con_id;
102 unsigned long min_rate;
103 unsigned long max_rate;
104 unsigned int exclusive_count;
105 struct hlist_node clks_node;
106 };
107
108 /*** runtime pm ***/
109 static int clk_pm_runtime_get(struct clk_core *core)
110 {
111 int ret;
112
113 if (!core->rpm_enabled)
114 return 0;
115
116 ret = pm_runtime_get_sync(core->dev);
117 return ret < 0 ? ret : 0;
118 }
119
120 static void clk_pm_runtime_put(struct clk_core *core)
121 {
122 if (!core->rpm_enabled)
123 return;
124
125 pm_runtime_put_sync(core->dev);
126 }
127
128 /*** locking ***/
129 static void clk_prepare_lock(void)
130 {
131 if (!mutex_trylock(&prepare_lock)) {
132 if (prepare_owner == current) {
133 prepare_refcnt++;
134 return;
135 }
136 mutex_lock(&prepare_lock);
137 }
138 WARN_ON_ONCE(prepare_owner != NULL);
139 WARN_ON_ONCE(prepare_refcnt != 0);
140 prepare_owner = current;
141 prepare_refcnt = 1;
142 }
143
144 static void clk_prepare_unlock(void)
145 {
146 WARN_ON_ONCE(prepare_owner != current);
147 WARN_ON_ONCE(prepare_refcnt == 0);
148
149 if (--prepare_refcnt)
150 return;
151 prepare_owner = NULL;
152 mutex_unlock(&prepare_lock);
153 }
154
155 static unsigned long clk_enable_lock(void)
156 __acquires(enable_lock)
157 {
158 unsigned long flags;
159
160 /*
161 * On UP systems, spin_trylock_irqsave() always returns true, even if
162 * we already hold the lock. So, in that case, we rely only on
163 * reference counting.
164 */
165 if (!IS_ENABLED(CONFIG_SMP) ||
166 !spin_trylock_irqsave(&enable_lock, flags)) {
167 if (enable_owner == current) {
168 enable_refcnt++;
169 __acquire(enable_lock);
170 if (!IS_ENABLED(CONFIG_SMP))
171 local_save_flags(flags);
172 return flags;
173 }
174 spin_lock_irqsave(&enable_lock, flags);
175 }
176 WARN_ON_ONCE(enable_owner != NULL);
177 WARN_ON_ONCE(enable_refcnt != 0);
178 enable_owner = current;
179 enable_refcnt = 1;
180 return flags;
181 }
182
183 static void clk_enable_unlock(unsigned long flags)
184 __releases(enable_lock)
185 {
186 WARN_ON_ONCE(enable_owner != current);
187 WARN_ON_ONCE(enable_refcnt == 0);
188
189 if (--enable_refcnt) {
190 __release(enable_lock);
191 return;
192 }
193 enable_owner = NULL;
194 spin_unlock_irqrestore(&enable_lock, flags);
195 }
196
197 static bool clk_core_rate_is_protected(struct clk_core *core)
198 {
199 return core->protect_count;
200 }
201
202 static bool clk_core_is_prepared(struct clk_core *core)
203 {
204 bool ret = false;
205
206 /*
207 * .is_prepared is optional for clocks that can prepare
208 * fall back to software usage counter if it is missing
209 */
210 if (!core->ops->is_prepared)
211 return core->prepare_count;
212
213 if (!clk_pm_runtime_get(core)) {
214 ret = core->ops->is_prepared(core->hw);
215 clk_pm_runtime_put(core);
216 }
217
218 return ret;
219 }
220
221 static bool clk_core_is_enabled(struct clk_core *core)
222 {
223 bool ret = false;
224
225 /*
226 * .is_enabled is only mandatory for clocks that gate
227 * fall back to software usage counter if .is_enabled is missing
228 */
229 if (!core->ops->is_enabled)
230 return core->enable_count;
231
232 /*
233 * Check if clock controller's device is runtime active before
234 * calling .is_enabled callback. If not, assume that clock is
235 * disabled, because we might be called from atomic context, from
236 * which pm_runtime_get() is not allowed.
237 * This function is called mainly from clk_disable_unused_subtree,
238 * which ensures proper runtime pm activation of controller before
239 * taking enable spinlock, but the below check is needed if one tries
240 * to call it from other places.
241 */
242 if (core->rpm_enabled) {
243 pm_runtime_get_noresume(core->dev);
244 if (!pm_runtime_active(core->dev)) {
245 ret = false;
246 goto done;
247 }
248 }
249
250 ret = core->ops->is_enabled(core->hw);
251 done:
252 if (core->rpm_enabled)
253 pm_runtime_put(core->dev);
254
255 return ret;
256 }
257
258 /*** helper functions ***/
259
260 const char *__clk_get_name(const struct clk *clk)
261 {
262 return !clk ? NULL : clk->core->name;
263 }
264 EXPORT_SYMBOL_GPL(__clk_get_name);
265
266 const char *clk_hw_get_name(const struct clk_hw *hw)
267 {
268 return hw->core->name;
269 }
270 EXPORT_SYMBOL_GPL(clk_hw_get_name);
271
272 struct clk_hw *__clk_get_hw(struct clk *clk)
273 {
274 return !clk ? NULL : clk->core->hw;
275 }
276 EXPORT_SYMBOL_GPL(__clk_get_hw);
277
278 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
279 {
280 return hw->core->num_parents;
281 }
282 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
283
284 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
285 {
286 return hw->core->parent ? hw->core->parent->hw : NULL;
287 }
288 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
289
290 static struct clk_core *__clk_lookup_subtree(const char *name,
291 struct clk_core *core)
292 {
293 struct clk_core *child;
294 struct clk_core *ret;
295
296 if (!strcmp(core->name, name))
297 return core;
298
299 hlist_for_each_entry(child, &core->children, child_node) {
300 ret = __clk_lookup_subtree(name, child);
301 if (ret)
302 return ret;
303 }
304
305 return NULL;
306 }
307
308 static struct clk_core *clk_core_lookup(const char *name)
309 {
310 struct clk_core *root_clk;
311 struct clk_core *ret;
312
313 if (!name)
314 return NULL;
315
316 /* search the 'proper' clk tree first */
317 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
318 ret = __clk_lookup_subtree(name, root_clk);
319 if (ret)
320 return ret;
321 }
322
323 /* if not found, then search the orphan tree */
324 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
325 ret = __clk_lookup_subtree(name, root_clk);
326 if (ret)
327 return ret;
328 }
329
330 return NULL;
331 }
332
333 #ifdef CONFIG_OF
334 static int of_parse_clkspec(const struct device_node *np, int index,
335 const char *name, struct of_phandle_args *out_args);
336 static struct clk_hw *
337 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
338 #else
339 static inline int of_parse_clkspec(const struct device_node *np, int index,
340 const char *name,
341 struct of_phandle_args *out_args)
342 {
343 return -ENOENT;
344 }
345 static inline struct clk_hw *
346 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
347 {
348 return ERR_PTR(-ENOENT);
349 }
350 #endif
351
352 /**
353 * clk_core_get - Find the clk_core parent of a clk
354 * @core: clk to find parent of
355 * @p_index: parent index to search for
356 *
357 * This is the preferred method for clk providers to find the parent of a
358 * clk when that parent is external to the clk controller. The parent_names
359 * array is indexed and treated as a local name matching a string in the device
360 * node's 'clock-names' property or as the 'con_id' matching the device's
361 * dev_name() in a clk_lookup. This allows clk providers to use their own
362 * namespace instead of looking for a globally unique parent string.
363 *
364 * For example the following DT snippet would allow a clock registered by the
365 * clock-controller@c001 that has a clk_init_data::parent_data array
366 * with 'xtal' in the 'name' member to find the clock provided by the
367 * clock-controller@f00abcd without needing to get the globally unique name of
368 * the xtal clk.
369 *
370 * parent: clock-controller@f00abcd {
371 * reg = <0xf00abcd 0xabcd>;
372 * #clock-cells = <0>;
373 * };
374 *
375 * clock-controller@c001 {
376 * reg = <0xc001 0xf00d>;
377 * clocks = <&parent>;
378 * clock-names = "xtal";
379 * #clock-cells = <1>;
380 * };
381 *
382 * Returns: -ENOENT when the provider can't be found or the clk doesn't
383 * exist in the provider or the name can't be found in the DT node or
384 * in a clkdev lookup. NULL when the provider knows about the clk but it
385 * isn't provided on this system.
386 * A valid clk_core pointer when the clk can be found in the provider.
387 */
388 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
389 {
390 const char *name = core->parents[p_index].fw_name;
391 int index = core->parents[p_index].index;
392 struct clk_hw *hw = ERR_PTR(-ENOENT);
393 struct device *dev = core->dev;
394 const char *dev_id = dev ? dev_name(dev) : NULL;
395 struct device_node *np = core->of_node;
396 struct of_phandle_args clkspec;
397
398 if (np && (name || index >= 0) &&
399 !of_parse_clkspec(np, index, name, &clkspec)) {
400 hw = of_clk_get_hw_from_clkspec(&clkspec);
401 of_node_put(clkspec.np);
402 } else if (name) {
403 /*
404 * If the DT search above couldn't find the provider fallback to
405 * looking up via clkdev based clk_lookups.
406 */
407 hw = clk_find_hw(dev_id, name);
408 }
409
410 if (IS_ERR(hw))
411 return ERR_CAST(hw);
412
413 return hw->core;
414 }
415
416 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
417 {
418 struct clk_parent_map *entry = &core->parents[index];
419 struct clk_core *parent = ERR_PTR(-ENOENT);
420
421 if (entry->hw) {
422 parent = entry->hw->core;
423 /*
424 * We have a direct reference but it isn't registered yet?
425 * Orphan it and let clk_reparent() update the orphan status
426 * when the parent is registered.
427 */
428 if (!parent)
429 parent = ERR_PTR(-EPROBE_DEFER);
430 } else {
431 parent = clk_core_get(core, index);
432 if (PTR_ERR(parent) == -ENOENT && entry->name)
433 parent = clk_core_lookup(entry->name);
434 }
435
436 /* Only cache it if it's not an error */
437 if (!IS_ERR(parent))
438 entry->core = parent;
439 }
440
441 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
442 u8 index)
443 {
444 if (!core || index >= core->num_parents || !core->parents)
445 return NULL;
446
447 if (!core->parents[index].core)
448 clk_core_fill_parent_index(core, index);
449
450 return core->parents[index].core;
451 }
452
453 struct clk_hw *
454 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
455 {
456 struct clk_core *parent;
457
458 parent = clk_core_get_parent_by_index(hw->core, index);
459
460 return !parent ? NULL : parent->hw;
461 }
462 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
463
464 unsigned int __clk_get_enable_count(struct clk *clk)
465 {
466 return !clk ? 0 : clk->core->enable_count;
467 }
468
469 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
470 {
471 if (!core)
472 return 0;
473
474 if (!core->num_parents || core->parent)
475 return core->rate;
476
477 /*
478 * Clk must have a parent because num_parents > 0 but the parent isn't
479 * known yet. Best to return 0 as the rate of this clk until we can
480 * properly recalc the rate based on the parent's rate.
481 */
482 return 0;
483 }
484
485 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
486 {
487 return clk_core_get_rate_nolock(hw->core);
488 }
489 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
490
491 static unsigned long __clk_get_accuracy(struct clk_core *core)
492 {
493 if (!core)
494 return 0;
495
496 return core->accuracy;
497 }
498
499 unsigned long __clk_get_flags(struct clk *clk)
500 {
501 return !clk ? 0 : clk->core->flags;
502 }
503 EXPORT_SYMBOL_GPL(__clk_get_flags);
504
505 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
506 {
507 return hw->core->flags;
508 }
509 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
510
511 bool clk_hw_is_prepared(const struct clk_hw *hw)
512 {
513 return clk_core_is_prepared(hw->core);
514 }
515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
516
517 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
518 {
519 return clk_core_rate_is_protected(hw->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
522
523 bool clk_hw_is_enabled(const struct clk_hw *hw)
524 {
525 return clk_core_is_enabled(hw->core);
526 }
527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
528
529 bool __clk_is_enabled(struct clk *clk)
530 {
531 if (!clk)
532 return false;
533
534 return clk_core_is_enabled(clk->core);
535 }
536 EXPORT_SYMBOL_GPL(__clk_is_enabled);
537
538 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
539 unsigned long best, unsigned long flags)
540 {
541 if (flags & CLK_MUX_ROUND_CLOSEST)
542 return abs(now - rate) < abs(best - rate);
543
544 return now <= rate && now > best;
545 }
546
547 int clk_mux_determine_rate_flags(struct clk_hw *hw,
548 struct clk_rate_request *req,
549 unsigned long flags)
550 {
551 struct clk_core *core = hw->core, *parent, *best_parent = NULL;
552 int i, num_parents, ret;
553 unsigned long best = 0;
554 struct clk_rate_request parent_req = *req;
555
556 /* if NO_REPARENT flag set, pass through to current parent */
557 if (core->flags & CLK_SET_RATE_NO_REPARENT) {
558 parent = core->parent;
559 if (core->flags & CLK_SET_RATE_PARENT) {
560 ret = __clk_determine_rate(parent ? parent->hw : NULL,
561 &parent_req);
562 if (ret)
563 return ret;
564
565 best = parent_req.rate;
566 } else if (parent) {
567 best = clk_core_get_rate_nolock(parent);
568 } else {
569 best = clk_core_get_rate_nolock(core);
570 }
571
572 goto out;
573 }
574
575 /* find the parent that can provide the fastest rate <= rate */
576 num_parents = core->num_parents;
577 for (i = 0; i < num_parents; i++) {
578 parent = clk_core_get_parent_by_index(core, i);
579 if (!parent)
580 continue;
581
582 if (core->flags & CLK_SET_RATE_PARENT) {
583 parent_req = *req;
584 ret = __clk_determine_rate(parent->hw, &parent_req);
585 if (ret)
586 continue;
587 } else {
588 parent_req.rate = clk_core_get_rate_nolock(parent);
589 }
590
591 if (mux_is_better_rate(req->rate, parent_req.rate,
592 best, flags)) {
593 best_parent = parent;
594 best = parent_req.rate;
595 }
596 }
597
598 if (!best_parent)
599 return -EINVAL;
600
601 out:
602 if (best_parent)
603 req->best_parent_hw = best_parent->hw;
604 req->best_parent_rate = best;
605 req->rate = best;
606
607 return 0;
608 }
609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
610
611 struct clk *__clk_lookup(const char *name)
612 {
613 struct clk_core *core = clk_core_lookup(name);
614
615 return !core ? NULL : core->hw->clk;
616 }
617
618 static void clk_core_get_boundaries(struct clk_core *core,
619 unsigned long *min_rate,
620 unsigned long *max_rate)
621 {
622 struct clk *clk_user;
623
624 lockdep_assert_held(&prepare_lock);
625
626 *min_rate = core->min_rate;
627 *max_rate = core->max_rate;
628
629 hlist_for_each_entry(clk_user, &core->clks, clks_node)
630 *min_rate = max(*min_rate, clk_user->min_rate);
631
632 hlist_for_each_entry(clk_user, &core->clks, clks_node)
633 *max_rate = min(*max_rate, clk_user->max_rate);
634 }
635
636 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
637 unsigned long max_rate)
638 {
639 hw->core->min_rate = min_rate;
640 hw->core->max_rate = max_rate;
641 }
642 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
643
644 /*
645 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
646 * @hw: mux type clk to determine rate on
647 * @req: rate request, also used to return preferred parent and frequencies
648 *
649 * Helper for finding best parent to provide a given frequency. This can be used
650 * directly as a determine_rate callback (e.g. for a mux), or from a more
651 * complex clock that may combine a mux with other operations.
652 *
653 * Returns: 0 on success, -EERROR value on error
654 */
655 int __clk_mux_determine_rate(struct clk_hw *hw,
656 struct clk_rate_request *req)
657 {
658 return clk_mux_determine_rate_flags(hw, req, 0);
659 }
660 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
661
662 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
663 struct clk_rate_request *req)
664 {
665 return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
666 }
667 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
668
669 /*** clk api ***/
670
671 static void clk_core_rate_unprotect(struct clk_core *core)
672 {
673 lockdep_assert_held(&prepare_lock);
674
675 if (!core)
676 return;
677
678 if (WARN(core->protect_count == 0,
679 "%s already unprotected\n", core->name))
680 return;
681
682 if (--core->protect_count > 0)
683 return;
684
685 clk_core_rate_unprotect(core->parent);
686 }
687
688 static int clk_core_rate_nuke_protect(struct clk_core *core)
689 {
690 int ret;
691
692 lockdep_assert_held(&prepare_lock);
693
694 if (!core)
695 return -EINVAL;
696
697 if (core->protect_count == 0)
698 return 0;
699
700 ret = core->protect_count;
701 core->protect_count = 1;
702 clk_core_rate_unprotect(core);
703
704 return ret;
705 }
706
707 /**
708 * clk_rate_exclusive_put - release exclusivity over clock rate control
709 * @clk: the clk over which the exclusivity is released
710 *
711 * clk_rate_exclusive_put() completes a critical section during which a clock
712 * consumer cannot tolerate any other consumer making any operation on the
713 * clock which could result in a rate change or rate glitch. Exclusive clocks
714 * cannot have their rate changed, either directly or indirectly due to changes
715 * further up the parent chain of clocks. As a result, clocks up parent chain
716 * also get under exclusive control of the calling consumer.
717 *
718 * If exlusivity is claimed more than once on clock, even by the same consumer,
719 * the rate effectively gets locked as exclusivity can't be preempted.
720 *
721 * Calls to clk_rate_exclusive_put() must be balanced with calls to
722 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
723 * error status.
724 */
725 void clk_rate_exclusive_put(struct clk *clk)
726 {
727 if (!clk)
728 return;
729
730 clk_prepare_lock();
731
732 /*
733 * if there is something wrong with this consumer protect count, stop
734 * here before messing with the provider
735 */
736 if (WARN_ON(clk->exclusive_count <= 0))
737 goto out;
738
739 clk_core_rate_unprotect(clk->core);
740 clk->exclusive_count--;
741 out:
742 clk_prepare_unlock();
743 }
744 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
745
746 static void clk_core_rate_protect(struct clk_core *core)
747 {
748 lockdep_assert_held(&prepare_lock);
749
750 if (!core)
751 return;
752
753 if (core->protect_count == 0)
754 clk_core_rate_protect(core->parent);
755
756 core->protect_count++;
757 }
758
759 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
760 {
761 lockdep_assert_held(&prepare_lock);
762
763 if (!core)
764 return;
765
766 if (count == 0)
767 return;
768
769 clk_core_rate_protect(core);
770 core->protect_count = count;
771 }
772
773 /**
774 * clk_rate_exclusive_get - get exclusivity over the clk rate control
775 * @clk: the clk over which the exclusity of rate control is requested
776 *
777 * clk_rate_exlusive_get() begins a critical section during which a clock
778 * consumer cannot tolerate any other consumer making any operation on the
779 * clock which could result in a rate change or rate glitch. Exclusive clocks
780 * cannot have their rate changed, either directly or indirectly due to changes
781 * further up the parent chain of clocks. As a result, clocks up parent chain
782 * also get under exclusive control of the calling consumer.
783 *
784 * If exlusivity is claimed more than once on clock, even by the same consumer,
785 * the rate effectively gets locked as exclusivity can't be preempted.
786 *
787 * Calls to clk_rate_exclusive_get() should be balanced with calls to
788 * clk_rate_exclusive_put(). Calls to this function may sleep.
789 * Returns 0 on success, -EERROR otherwise
790 */
791 int clk_rate_exclusive_get(struct clk *clk)
792 {
793 if (!clk)
794 return 0;
795
796 clk_prepare_lock();
797 clk_core_rate_protect(clk->core);
798 clk->exclusive_count++;
799 clk_prepare_unlock();
800
801 return 0;
802 }
803 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
804
805 static void clk_core_unprepare(struct clk_core *core)
806 {
807 lockdep_assert_held(&prepare_lock);
808
809 if (!core)
810 return;
811
812 if (WARN(core->prepare_count == 0,
813 "%s already unprepared\n", core->name))
814 return;
815
816 if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
817 "Unpreparing critical %s\n", core->name))
818 return;
819
820 if (core->flags & CLK_SET_RATE_GATE)
821 clk_core_rate_unprotect(core);
822
823 if (--core->prepare_count > 0)
824 return;
825
826 WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
827
828 trace_clk_unprepare(core);
829
830 if (core->ops->unprepare)
831 core->ops->unprepare(core->hw);
832
833 clk_pm_runtime_put(core);
834
835 trace_clk_unprepare_complete(core);
836 clk_core_unprepare(core->parent);
837 }
838
839 static void clk_core_unprepare_lock(struct clk_core *core)
840 {
841 clk_prepare_lock();
842 clk_core_unprepare(core);
843 clk_prepare_unlock();
844 }
845
846 /**
847 * clk_unprepare - undo preparation of a clock source
848 * @clk: the clk being unprepared
849 *
850 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
851 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
852 * if the operation may sleep. One example is a clk which is accessed over
853 * I2c. In the complex case a clk gate operation may require a fast and a slow
854 * part. It is this reason that clk_unprepare and clk_disable are not mutually
855 * exclusive. In fact clk_disable must be called before clk_unprepare.
856 */
857 void clk_unprepare(struct clk *clk)
858 {
859 if (IS_ERR_OR_NULL(clk))
860 return;
861
862 clk_core_unprepare_lock(clk->core);
863 }
864 EXPORT_SYMBOL_GPL(clk_unprepare);
865
866 static int clk_core_prepare(struct clk_core *core)
867 {
868 int ret = 0;
869
870 lockdep_assert_held(&prepare_lock);
871
872 if (!core)
873 return 0;
874
875 if (core->prepare_count == 0) {
876 ret = clk_pm_runtime_get(core);
877 if (ret)
878 return ret;
879
880 ret = clk_core_prepare(core->parent);
881 if (ret)
882 goto runtime_put;
883
884 trace_clk_prepare(core);
885
886 if (core->ops->prepare)
887 ret = core->ops->prepare(core->hw);
888
889 trace_clk_prepare_complete(core);
890
891 if (ret)
892 goto unprepare;
893 }
894
895 core->prepare_count++;
896
897 /*
898 * CLK_SET_RATE_GATE is a special case of clock protection
899 * Instead of a consumer claiming exclusive rate control, it is
900 * actually the provider which prevents any consumer from making any
901 * operation which could result in a rate change or rate glitch while
902 * the clock is prepared.
903 */
904 if (core->flags & CLK_SET_RATE_GATE)
905 clk_core_rate_protect(core);
906
907 return 0;
908 unprepare:
909 clk_core_unprepare(core->parent);
910 runtime_put:
911 clk_pm_runtime_put(core);
912 return ret;
913 }
914
915 static int clk_core_prepare_lock(struct clk_core *core)
916 {
917 int ret;
918
919 clk_prepare_lock();
920 ret = clk_core_prepare(core);
921 clk_prepare_unlock();
922
923 return ret;
924 }
925
926 /**
927 * clk_prepare - prepare a clock source
928 * @clk: the clk being prepared
929 *
930 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
931 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
932 * operation may sleep. One example is a clk which is accessed over I2c. In
933 * the complex case a clk ungate operation may require a fast and a slow part.
934 * It is this reason that clk_prepare and clk_enable are not mutually
935 * exclusive. In fact clk_prepare must be called before clk_enable.
936 * Returns 0 on success, -EERROR otherwise.
937 */
938 int clk_prepare(struct clk *clk)
939 {
940 if (!clk)
941 return 0;
942
943 return clk_core_prepare_lock(clk->core);
944 }
945 EXPORT_SYMBOL_GPL(clk_prepare);
946
947 static void clk_core_disable(struct clk_core *core)
948 {
949 lockdep_assert_held(&enable_lock);
950
951 if (!core)
952 return;
953
954 if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
955 return;
956
957 if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
958 "Disabling critical %s\n", core->name))
959 return;
960
961 if (--core->enable_count > 0)
962 return;
963
964 trace_clk_disable_rcuidle(core);
965
966 if (core->ops->disable)
967 core->ops->disable(core->hw);
968
969 trace_clk_disable_complete_rcuidle(core);
970
971 clk_core_disable(core->parent);
972 }
973
974 static void clk_core_disable_lock(struct clk_core *core)
975 {
976 unsigned long flags;
977
978 flags = clk_enable_lock();
979 clk_core_disable(core);
980 clk_enable_unlock(flags);
981 }
982
983 /**
984 * clk_disable - gate a clock
985 * @clk: the clk being gated
986 *
987 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
988 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
989 * clk if the operation is fast and will never sleep. One example is a
990 * SoC-internal clk which is controlled via simple register writes. In the
991 * complex case a clk gate operation may require a fast and a slow part. It is
992 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
993 * In fact clk_disable must be called before clk_unprepare.
994 */
995 void clk_disable(struct clk *clk)
996 {
997 if (IS_ERR_OR_NULL(clk))
998 return;
999
1000 clk_core_disable_lock(clk->core);
1001 }
1002 EXPORT_SYMBOL_GPL(clk_disable);
1003
1004 static int clk_core_enable(struct clk_core *core)
1005 {
1006 int ret = 0;
1007
1008 lockdep_assert_held(&enable_lock);
1009
1010 if (!core)
1011 return 0;
1012
1013 if (WARN(core->prepare_count == 0,
1014 "Enabling unprepared %s\n", core->name))
1015 return -ESHUTDOWN;
1016
1017 if (core->enable_count == 0) {
1018 ret = clk_core_enable(core->parent);
1019
1020 if (ret)
1021 return ret;
1022
1023 trace_clk_enable_rcuidle(core);
1024
1025 if (core->ops->enable)
1026 ret = core->ops->enable(core->hw);
1027
1028 trace_clk_enable_complete_rcuidle(core);
1029
1030 if (ret) {
1031 clk_core_disable(core->parent);
1032 return ret;
1033 }
1034 }
1035
1036 core->enable_count++;
1037 return 0;
1038 }
1039
1040 static int clk_core_enable_lock(struct clk_core *core)
1041 {
1042 unsigned long flags;
1043 int ret;
1044
1045 flags = clk_enable_lock();
1046 ret = clk_core_enable(core);
1047 clk_enable_unlock(flags);
1048
1049 return ret;
1050 }
1051
1052 /**
1053 * clk_gate_restore_context - restore context for poweroff
1054 * @hw: the clk_hw pointer of clock whose state is to be restored
1055 *
1056 * The clock gate restore context function enables or disables
1057 * the gate clocks based on the enable_count. This is done in cases
1058 * where the clock context is lost and based on the enable_count
1059 * the clock either needs to be enabled/disabled. This
1060 * helps restore the state of gate clocks.
1061 */
1062 void clk_gate_restore_context(struct clk_hw *hw)
1063 {
1064 struct clk_core *core = hw->core;
1065
1066 if (core->enable_count)
1067 core->ops->enable(hw);
1068 else
1069 core->ops->disable(hw);
1070 }
1071 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1072
1073 static int clk_core_save_context(struct clk_core *core)
1074 {
1075 struct clk_core *child;
1076 int ret = 0;
1077
1078 hlist_for_each_entry(child, &core->children, child_node) {
1079 ret = clk_core_save_context(child);
1080 if (ret < 0)
1081 return ret;
1082 }
1083
1084 if (core->ops && core->ops->save_context)
1085 ret = core->ops->save_context(core->hw);
1086
1087 return ret;
1088 }
1089
1090 static void clk_core_restore_context(struct clk_core *core)
1091 {
1092 struct clk_core *child;
1093
1094 if (core->ops && core->ops->restore_context)
1095 core->ops->restore_context(core->hw);
1096
1097 hlist_for_each_entry(child, &core->children, child_node)
1098 clk_core_restore_context(child);
1099 }
1100
1101 /**
1102 * clk_save_context - save clock context for poweroff
1103 *
1104 * Saves the context of the clock register for powerstates in which the
1105 * contents of the registers will be lost. Occurs deep within the suspend
1106 * code. Returns 0 on success.
1107 */
1108 int clk_save_context(void)
1109 {
1110 struct clk_core *clk;
1111 int ret;
1112
1113 hlist_for_each_entry(clk, &clk_root_list, child_node) {
1114 ret = clk_core_save_context(clk);
1115 if (ret < 0)
1116 return ret;
1117 }
1118
1119 hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1120 ret = clk_core_save_context(clk);
1121 if (ret < 0)
1122 return ret;
1123 }
1124
1125 return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(clk_save_context);
1128
1129 /**
1130 * clk_restore_context - restore clock context after poweroff
1131 *
1132 * Restore the saved clock context upon resume.
1133 *
1134 */
1135 void clk_restore_context(void)
1136 {
1137 struct clk_core *core;
1138
1139 hlist_for_each_entry(core, &clk_root_list, child_node)
1140 clk_core_restore_context(core);
1141
1142 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1143 clk_core_restore_context(core);
1144 }
1145 EXPORT_SYMBOL_GPL(clk_restore_context);
1146
1147 /**
1148 * clk_enable - ungate a clock
1149 * @clk: the clk being ungated
1150 *
1151 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
1152 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1153 * if the operation will never sleep. One example is a SoC-internal clk which
1154 * is controlled via simple register writes. In the complex case a clk ungate
1155 * operation may require a fast and a slow part. It is this reason that
1156 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
1157 * must be called before clk_enable. Returns 0 on success, -EERROR
1158 * otherwise.
1159 */
1160 int clk_enable(struct clk *clk)
1161 {
1162 if (!clk)
1163 return 0;
1164
1165 return clk_core_enable_lock(clk->core);
1166 }
1167 EXPORT_SYMBOL_GPL(clk_enable);
1168
1169 static int clk_core_prepare_enable(struct clk_core *core)
1170 {
1171 int ret;
1172
1173 ret = clk_core_prepare_lock(core);
1174 if (ret)
1175 return ret;
1176
1177 ret = clk_core_enable_lock(core);
1178 if (ret)
1179 clk_core_unprepare_lock(core);
1180
1181 return ret;
1182 }
1183
1184 static void clk_core_disable_unprepare(struct clk_core *core)
1185 {
1186 clk_core_disable_lock(core);
1187 clk_core_unprepare_lock(core);
1188 }
1189
1190 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1191 {
1192 struct clk_core *child;
1193
1194 lockdep_assert_held(&prepare_lock);
1195
1196 hlist_for_each_entry(child, &core->children, child_node)
1197 clk_unprepare_unused_subtree(child);
1198
1199 if (core->prepare_count)
1200 return;
1201
1202 if (core->flags & CLK_IGNORE_UNUSED)
1203 return;
1204
1205 if (clk_pm_runtime_get(core))
1206 return;
1207
1208 if (clk_core_is_prepared(core)) {
1209 trace_clk_unprepare(core);
1210 if (core->ops->unprepare_unused)
1211 core->ops->unprepare_unused(core->hw);
1212 else if (core->ops->unprepare)
1213 core->ops->unprepare(core->hw);
1214 trace_clk_unprepare_complete(core);
1215 }
1216
1217 clk_pm_runtime_put(core);
1218 }
1219
1220 static void __init clk_disable_unused_subtree(struct clk_core *core)
1221 {
1222 struct clk_core *child;
1223 unsigned long flags;
1224
1225 lockdep_assert_held(&prepare_lock);
1226
1227 hlist_for_each_entry(child, &core->children, child_node)
1228 clk_disable_unused_subtree(child);
1229
1230 if (core->flags & CLK_OPS_PARENT_ENABLE)
1231 clk_core_prepare_enable(core->parent);
1232
1233 if (clk_pm_runtime_get(core))
1234 goto unprepare_out;
1235
1236 flags = clk_enable_lock();
1237
1238 if (core->enable_count)
1239 goto unlock_out;
1240
1241 if (core->flags & CLK_IGNORE_UNUSED)
1242 goto unlock_out;
1243
1244 /*
1245 * some gate clocks have special needs during the disable-unused
1246 * sequence. call .disable_unused if available, otherwise fall
1247 * back to .disable
1248 */
1249 if (clk_core_is_enabled(core)) {
1250 trace_clk_disable(core);
1251 if (core->ops->disable_unused)
1252 core->ops->disable_unused(core->hw);
1253 else if (core->ops->disable)
1254 core->ops->disable(core->hw);
1255 trace_clk_disable_complete(core);
1256 }
1257
1258 unlock_out:
1259 clk_enable_unlock(flags);
1260 clk_pm_runtime_put(core);
1261 unprepare_out:
1262 if (core->flags & CLK_OPS_PARENT_ENABLE)
1263 clk_core_disable_unprepare(core->parent);
1264 }
1265
1266 static bool clk_ignore_unused __initdata;
1267 static int __init clk_ignore_unused_setup(char *__unused)
1268 {
1269 clk_ignore_unused = true;
1270 return 1;
1271 }
1272 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1273
1274 static int __init clk_disable_unused(void)
1275 {
1276 struct clk_core *core;
1277
1278 if (clk_ignore_unused) {
1279 pr_warn("clk: Not disabling unused clocks\n");
1280 return 0;
1281 }
1282
1283 clk_prepare_lock();
1284
1285 hlist_for_each_entry(core, &clk_root_list, child_node)
1286 clk_disable_unused_subtree(core);
1287
1288 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1289 clk_disable_unused_subtree(core);
1290
1291 hlist_for_each_entry(core, &clk_root_list, child_node)
1292 clk_unprepare_unused_subtree(core);
1293
1294 hlist_for_each_entry(core, &clk_orphan_list, child_node)
1295 clk_unprepare_unused_subtree(core);
1296
1297 clk_prepare_unlock();
1298
1299 return 0;
1300 }
1301 late_initcall_sync(clk_disable_unused);
1302
1303 static int clk_core_determine_round_nolock(struct clk_core *core,
1304 struct clk_rate_request *req)
1305 {
1306 long rate;
1307
1308 lockdep_assert_held(&prepare_lock);
1309
1310 if (!core)
1311 return 0;
1312
1313 /*
1314 * At this point, core protection will be disabled if
1315 * - if the provider is not protected at all
1316 * - if the calling consumer is the only one which has exclusivity
1317 * over the provider
1318 */
1319 if (clk_core_rate_is_protected(core)) {
1320 req->rate = core->rate;
1321 } else if (core->ops->determine_rate) {
1322 return core->ops->determine_rate(core->hw, req);
1323 } else if (core->ops->round_rate) {
1324 rate = core->ops->round_rate(core->hw, req->rate,
1325 &req->best_parent_rate);
1326 if (rate < 0)
1327 return rate;
1328
1329 req->rate = rate;
1330 } else {
1331 return -EINVAL;
1332 }
1333
1334 return 0;
1335 }
1336
1337 static void clk_core_init_rate_req(struct clk_core * const core,
1338 struct clk_rate_request *req)
1339 {
1340 struct clk_core *parent;
1341
1342 if (WARN_ON(!core || !req))
1343 return;
1344
1345 parent = core->parent;
1346 if (parent) {
1347 req->best_parent_hw = parent->hw;
1348 req->best_parent_rate = parent->rate;
1349 } else {
1350 req->best_parent_hw = NULL;
1351 req->best_parent_rate = 0;
1352 }
1353 }
1354
1355 static bool clk_core_can_round(struct clk_core * const core)
1356 {
1357 return core->ops->determine_rate || core->ops->round_rate;
1358 }
1359
1360 static int clk_core_round_rate_nolock(struct clk_core *core,
1361 struct clk_rate_request *req)
1362 {
1363 lockdep_assert_held(&prepare_lock);
1364
1365 if (!core) {
1366 req->rate = 0;
1367 return 0;
1368 }
1369
1370 clk_core_init_rate_req(core, req);
1371
1372 if (clk_core_can_round(core))
1373 return clk_core_determine_round_nolock(core, req);
1374 else if (core->flags & CLK_SET_RATE_PARENT)
1375 return clk_core_round_rate_nolock(core->parent, req);
1376
1377 req->rate = core->rate;
1378 return 0;
1379 }
1380
1381 /**
1382 * __clk_determine_rate - get the closest rate actually supported by a clock
1383 * @hw: determine the rate of this clock
1384 * @req: target rate request
1385 *
1386 * Useful for clk_ops such as .set_rate and .determine_rate.
1387 */
1388 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1389 {
1390 if (!hw) {
1391 req->rate = 0;
1392 return 0;
1393 }
1394
1395 return clk_core_round_rate_nolock(hw->core, req);
1396 }
1397 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1398
1399 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1400 {
1401 int ret;
1402 struct clk_rate_request req;
1403
1404 clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1405 req.rate = rate;
1406
1407 ret = clk_core_round_rate_nolock(hw->core, &req);
1408 if (ret)
1409 return 0;
1410
1411 return req.rate;
1412 }
1413 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1414
1415 /**
1416 * clk_round_rate - round the given rate for a clk
1417 * @clk: the clk for which we are rounding a rate
1418 * @rate: the rate which is to be rounded
1419 *
1420 * Takes in a rate as input and rounds it to a rate that the clk can actually
1421 * use which is then returned. If clk doesn't support round_rate operation
1422 * then the parent rate is returned.
1423 */
1424 long clk_round_rate(struct clk *clk, unsigned long rate)
1425 {
1426 struct clk_rate_request req;
1427 int ret;
1428
1429 if (!clk)
1430 return 0;
1431
1432 clk_prepare_lock();
1433
1434 if (clk->exclusive_count)
1435 clk_core_rate_unprotect(clk->core);
1436
1437 clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1438 req.rate = rate;
1439
1440 ret = clk_core_round_rate_nolock(clk->core, &req);
1441
1442 if (clk->exclusive_count)
1443 clk_core_rate_protect(clk->core);
1444
1445 clk_prepare_unlock();
1446
1447 if (ret)
1448 return ret;
1449
1450 return req.rate;
1451 }
1452 EXPORT_SYMBOL_GPL(clk_round_rate);
1453
1454 /**
1455 * __clk_notify - call clk notifier chain
1456 * @core: clk that is changing rate
1457 * @msg: clk notifier type (see include/linux/clk.h)
1458 * @old_rate: old clk rate
1459 * @new_rate: new clk rate
1460 *
1461 * Triggers a notifier call chain on the clk rate-change notification
1462 * for 'clk'. Passes a pointer to the struct clk and the previous
1463 * and current rates to the notifier callback. Intended to be called by
1464 * internal clock code only. Returns NOTIFY_DONE from the last driver
1465 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1466 * a driver returns that.
1467 */
1468 static int __clk_notify(struct clk_core *core, unsigned long msg,
1469 unsigned long old_rate, unsigned long new_rate)
1470 {
1471 struct clk_notifier *cn;
1472 struct clk_notifier_data cnd;
1473 int ret = NOTIFY_DONE;
1474
1475 cnd.old_rate = old_rate;
1476 cnd.new_rate = new_rate;
1477
1478 list_for_each_entry(cn, &clk_notifier_list, node) {
1479 if (cn->clk->core == core) {
1480 cnd.clk = cn->clk;
1481 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1482 &cnd);
1483 if (ret & NOTIFY_STOP_MASK)
1484 return ret;
1485 }
1486 }
1487
1488 return ret;
1489 }
1490
1491 /**
1492 * __clk_recalc_accuracies
1493 * @core: first clk in the subtree
1494 *
1495 * Walks the subtree of clks starting with clk and recalculates accuracies as
1496 * it goes. Note that if a clk does not implement the .recalc_accuracy
1497 * callback then it is assumed that the clock will take on the accuracy of its
1498 * parent.
1499 */
1500 static void __clk_recalc_accuracies(struct clk_core *core)
1501 {
1502 unsigned long parent_accuracy = 0;
1503 struct clk_core *child;
1504
1505 lockdep_assert_held(&prepare_lock);
1506
1507 if (core->parent)
1508 parent_accuracy = core->parent->accuracy;
1509
1510 if (core->ops->recalc_accuracy)
1511 core->accuracy = core->ops->recalc_accuracy(core->hw,
1512 parent_accuracy);
1513 else
1514 core->accuracy = parent_accuracy;
1515
1516 hlist_for_each_entry(child, &core->children, child_node)
1517 __clk_recalc_accuracies(child);
1518 }
1519
1520 static long clk_core_get_accuracy(struct clk_core *core)
1521 {
1522 unsigned long accuracy;
1523
1524 clk_prepare_lock();
1525 if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1526 __clk_recalc_accuracies(core);
1527
1528 accuracy = __clk_get_accuracy(core);
1529 clk_prepare_unlock();
1530
1531 return accuracy;
1532 }
1533
1534 /**
1535 * clk_get_accuracy - return the accuracy of clk
1536 * @clk: the clk whose accuracy is being returned
1537 *
1538 * Simply returns the cached accuracy of the clk, unless
1539 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1540 * issued.
1541 * If clk is NULL then returns 0.
1542 */
1543 long clk_get_accuracy(struct clk *clk)
1544 {
1545 if (!clk)
1546 return 0;
1547
1548 return clk_core_get_accuracy(clk->core);
1549 }
1550 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1551
1552 static unsigned long clk_recalc(struct clk_core *core,
1553 unsigned long parent_rate)
1554 {
1555 unsigned long rate = parent_rate;
1556
1557 if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1558 rate = core->ops->recalc_rate(core->hw, parent_rate);
1559 clk_pm_runtime_put(core);
1560 }
1561 return rate;
1562 }
1563
1564 /**
1565 * __clk_recalc_rates
1566 * @core: first clk in the subtree
1567 * @msg: notification type (see include/linux/clk.h)
1568 *
1569 * Walks the subtree of clks starting with clk and recalculates rates as it
1570 * goes. Note that if a clk does not implement the .recalc_rate callback then
1571 * it is assumed that the clock will take on the rate of its parent.
1572 *
1573 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1574 * if necessary.
1575 */
1576 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1577 {
1578 unsigned long old_rate;
1579 unsigned long parent_rate = 0;
1580 struct clk_core *child;
1581
1582 lockdep_assert_held(&prepare_lock);
1583
1584 old_rate = core->rate;
1585
1586 if (core->parent)
1587 parent_rate = core->parent->rate;
1588
1589 core->rate = clk_recalc(core, parent_rate);
1590
1591 /*
1592 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1593 * & ABORT_RATE_CHANGE notifiers
1594 */
1595 if (core->notifier_count && msg)
1596 __clk_notify(core, msg, old_rate, core->rate);
1597
1598 hlist_for_each_entry(child, &core->children, child_node)
1599 __clk_recalc_rates(child, msg);
1600 }
1601
1602 static unsigned long clk_core_get_rate(struct clk_core *core)
1603 {
1604 unsigned long rate;
1605
1606 clk_prepare_lock();
1607
1608 if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1609 __clk_recalc_rates(core, 0);
1610
1611 rate = clk_core_get_rate_nolock(core);
1612 clk_prepare_unlock();
1613
1614 return rate;
1615 }
1616
1617 /**
1618 * clk_get_rate - return the rate of clk
1619 * @clk: the clk whose rate is being returned
1620 *
1621 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1622 * is set, which means a recalc_rate will be issued.
1623 * If clk is NULL then returns 0.
1624 */
1625 unsigned long clk_get_rate(struct clk *clk)
1626 {
1627 if (!clk)
1628 return 0;
1629
1630 return clk_core_get_rate(clk->core);
1631 }
1632 EXPORT_SYMBOL_GPL(clk_get_rate);
1633
1634 static int clk_fetch_parent_index(struct clk_core *core,
1635 struct clk_core *parent)
1636 {
1637 int i;
1638
1639 if (!parent)
1640 return -EINVAL;
1641
1642 for (i = 0; i < core->num_parents; i++) {
1643 /* Found it first try! */
1644 if (core->parents[i].core == parent)
1645 return i;
1646
1647 /* Something else is here, so keep looking */
1648 if (core->parents[i].core)
1649 continue;
1650
1651 /* Maybe core hasn't been cached but the hw is all we know? */
1652 if (core->parents[i].hw) {
1653 if (core->parents[i].hw == parent->hw)
1654 break;
1655
1656 /* Didn't match, but we're expecting a clk_hw */
1657 continue;
1658 }
1659
1660 /* Maybe it hasn't been cached (clk_set_parent() path) */
1661 if (parent == clk_core_get(core, i))
1662 break;
1663
1664 /* Fallback to comparing globally unique names */
1665 if (core->parents[i].name &&
1666 !strcmp(parent->name, core->parents[i].name))
1667 break;
1668 }
1669
1670 if (i == core->num_parents)
1671 return -EINVAL;
1672
1673 core->parents[i].core = parent;
1674 return i;
1675 }
1676
1677 /**
1678 * clk_hw_get_parent_index - return the index of the parent clock
1679 * @hw: clk_hw associated with the clk being consumed
1680 *
1681 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1682 * clock does not have a current parent.
1683 */
1684 int clk_hw_get_parent_index(struct clk_hw *hw)
1685 {
1686 struct clk_hw *parent = clk_hw_get_parent(hw);
1687
1688 if (WARN_ON(parent == NULL))
1689 return -EINVAL;
1690
1691 return clk_fetch_parent_index(hw->core, parent->core);
1692 }
1693 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1694
1695 /*
1696 * Update the orphan status of @core and all its children.
1697 */
1698 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1699 {
1700 struct clk_core *child;
1701
1702 core->orphan = is_orphan;
1703
1704 hlist_for_each_entry(child, &core->children, child_node)
1705 clk_core_update_orphan_status(child, is_orphan);
1706 }
1707
1708 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1709 {
1710 bool was_orphan = core->orphan;
1711
1712 hlist_del(&core->child_node);
1713
1714 if (new_parent) {
1715 bool becomes_orphan = new_parent->orphan;
1716
1717 /* avoid duplicate POST_RATE_CHANGE notifications */
1718 if (new_parent->new_child == core)
1719 new_parent->new_child = NULL;
1720
1721 hlist_add_head(&core->child_node, &new_parent->children);
1722
1723 if (was_orphan != becomes_orphan)
1724 clk_core_update_orphan_status(core, becomes_orphan);
1725 } else {
1726 hlist_add_head(&core->child_node, &clk_orphan_list);
1727 if (!was_orphan)
1728 clk_core_update_orphan_status(core, true);
1729 }
1730
1731 core->parent = new_parent;
1732 }
1733
1734 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1735 struct clk_core *parent)
1736 {
1737 unsigned long flags;
1738 struct clk_core *old_parent = core->parent;
1739
1740 /*
1741 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1742 *
1743 * 2. Migrate prepare state between parents and prevent race with
1744 * clk_enable().
1745 *
1746 * If the clock is not prepared, then a race with
1747 * clk_enable/disable() is impossible since we already have the
1748 * prepare lock (future calls to clk_enable() need to be preceded by
1749 * a clk_prepare()).
1750 *
1751 * If the clock is prepared, migrate the prepared state to the new
1752 * parent and also protect against a race with clk_enable() by
1753 * forcing the clock and the new parent on. This ensures that all
1754 * future calls to clk_enable() are practically NOPs with respect to
1755 * hardware and software states.
1756 *
1757 * See also: Comment for clk_set_parent() below.
1758 */
1759
1760 /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1761 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1762 clk_core_prepare_enable(old_parent);
1763 clk_core_prepare_enable(parent);
1764 }
1765
1766 /* migrate prepare count if > 0 */
1767 if (core->prepare_count) {
1768 clk_core_prepare_enable(parent);
1769 clk_core_enable_lock(core);
1770 }
1771
1772 /* update the clk tree topology */
1773 flags = clk_enable_lock();
1774 clk_reparent(core, parent);
1775 clk_enable_unlock(flags);
1776
1777 return old_parent;
1778 }
1779
1780 static void __clk_set_parent_after(struct clk_core *core,
1781 struct clk_core *parent,
1782 struct clk_core *old_parent)
1783 {
1784 /*
1785 * Finish the migration of prepare state and undo the changes done
1786 * for preventing a race with clk_enable().
1787 */
1788 if (core->prepare_count) {
1789 clk_core_disable_lock(core);
1790 clk_core_disable_unprepare(old_parent);
1791 }
1792
1793 /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1794 if (core->flags & CLK_OPS_PARENT_ENABLE) {
1795 clk_core_disable_unprepare(parent);
1796 clk_core_disable_unprepare(old_parent);
1797 }
1798 }
1799
1800 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1801 u8 p_index)
1802 {
1803 unsigned long flags;
1804 int ret = 0;
1805 struct clk_core *old_parent;
1806
1807 old_parent = __clk_set_parent_before(core, parent);
1808
1809 trace_clk_set_parent(core, parent);
1810
1811 /* change clock input source */
1812 if (parent && core->ops->set_parent)
1813 ret = core->ops->set_parent(core->hw, p_index);
1814
1815 trace_clk_set_parent_complete(core, parent);
1816
1817 if (ret) {
1818 flags = clk_enable_lock();
1819 clk_reparent(core, old_parent);
1820 clk_enable_unlock(flags);
1821 __clk_set_parent_after(core, old_parent, parent);
1822
1823 return ret;
1824 }
1825
1826 __clk_set_parent_after(core, parent, old_parent);
1827
1828 return 0;
1829 }
1830
1831 /**
1832 * __clk_speculate_rates
1833 * @core: first clk in the subtree
1834 * @parent_rate: the "future" rate of clk's parent
1835 *
1836 * Walks the subtree of clks starting with clk, speculating rates as it
1837 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1838 *
1839 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1840 * pre-rate change notifications and returns early if no clks in the
1841 * subtree have subscribed to the notifications. Note that if a clk does not
1842 * implement the .recalc_rate callback then it is assumed that the clock will
1843 * take on the rate of its parent.
1844 */
1845 static int __clk_speculate_rates(struct clk_core *core,
1846 unsigned long parent_rate)
1847 {
1848 struct clk_core *child;
1849 unsigned long new_rate;
1850 int ret = NOTIFY_DONE;
1851
1852 lockdep_assert_held(&prepare_lock);
1853
1854 new_rate = clk_recalc(core, parent_rate);
1855
1856 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1857 if (core->notifier_count)
1858 ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1859
1860 if (ret & NOTIFY_STOP_MASK) {
1861 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1862 __func__, core->name, ret);
1863 goto out;
1864 }
1865
1866 hlist_for_each_entry(child, &core->children, child_node) {
1867 ret = __clk_speculate_rates(child, new_rate);
1868 if (ret & NOTIFY_STOP_MASK)
1869 break;
1870 }
1871
1872 out:
1873 return ret;
1874 }
1875
1876 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1877 struct clk_core *new_parent, u8 p_index)
1878 {
1879 struct clk_core *child;
1880
1881 core->new_rate = new_rate;
1882 core->new_parent = new_parent;
1883 core->new_parent_index = p_index;
1884 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1885 core->new_child = NULL;
1886 if (new_parent && new_parent != core->parent)
1887 new_parent->new_child = core;
1888
1889 hlist_for_each_entry(child, &core->children, child_node) {
1890 child->new_rate = clk_recalc(child, new_rate);
1891 clk_calc_subtree(child, child->new_rate, NULL, 0);
1892 }
1893 }
1894
1895 /*
1896 * calculate the new rates returning the topmost clock that has to be
1897 * changed.
1898 */
1899 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1900 unsigned long rate)
1901 {
1902 struct clk_core *top = core;
1903 struct clk_core *old_parent, *parent;
1904 unsigned long best_parent_rate = 0;
1905 unsigned long new_rate;
1906 unsigned long min_rate;
1907 unsigned long max_rate;
1908 int p_index = 0;
1909 long ret;
1910
1911 /* sanity */
1912 if (IS_ERR_OR_NULL(core))
1913 return NULL;
1914
1915 /* save parent rate, if it exists */
1916 parent = old_parent = core->parent;
1917 if (parent)
1918 best_parent_rate = parent->rate;
1919
1920 clk_core_get_boundaries(core, &min_rate, &max_rate);
1921
1922 /* find the closest rate and parent clk/rate */
1923 if (clk_core_can_round(core)) {
1924 struct clk_rate_request req;
1925
1926 req.rate = rate;
1927 req.min_rate = min_rate;
1928 req.max_rate = max_rate;
1929
1930 clk_core_init_rate_req(core, &req);
1931
1932 ret = clk_core_determine_round_nolock(core, &req);
1933 if (ret < 0)
1934 return NULL;
1935
1936 best_parent_rate = req.best_parent_rate;
1937 new_rate = req.rate;
1938 parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1939
1940 if (new_rate < min_rate || new_rate > max_rate)
1941 return NULL;
1942 } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1943 /* pass-through clock without adjustable parent */
1944 core->new_rate = core->rate;
1945 return NULL;
1946 } else {
1947 /* pass-through clock with adjustable parent */
1948 top = clk_calc_new_rates(parent, rate);
1949 new_rate = parent->new_rate;
1950 goto out;
1951 }
1952
1953 /* some clocks must be gated to change parent */
1954 if (parent != old_parent &&
1955 (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1956 pr_debug("%s: %s not gated but wants to reparent\n",
1957 __func__, core->name);
1958 return NULL;
1959 }
1960
1961 /* try finding the new parent index */
1962 if (parent && core->num_parents > 1) {
1963 p_index = clk_fetch_parent_index(core, parent);
1964 if (p_index < 0) {
1965 pr_debug("%s: clk %s can not be parent of clk %s\n",
1966 __func__, parent->name, core->name);
1967 return NULL;
1968 }
1969 }
1970
1971 if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1972 best_parent_rate != parent->rate)
1973 top = clk_calc_new_rates(parent, best_parent_rate);
1974
1975 out:
1976 clk_calc_subtree(core, new_rate, parent, p_index);
1977
1978 return top;
1979 }
1980
1981 /*
1982 * Notify about rate changes in a subtree. Always walk down the whole tree
1983 * so that in case of an error we can walk down the whole tree again and
1984 * abort the change.
1985 */
1986 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1987 unsigned long event)
1988 {
1989 struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1990 int ret = NOTIFY_DONE;
1991
1992 if (core->rate == core->new_rate)
1993 return NULL;
1994
1995 if (core->notifier_count) {
1996 ret = __clk_notify(core, event, core->rate, core->new_rate);
1997 if (ret & NOTIFY_STOP_MASK)
1998 fail_clk = core;
1999 }
2000
2001 hlist_for_each_entry(child, &core->children, child_node) {
2002 /* Skip children who will be reparented to another clock */
2003 if (child->new_parent && child->new_parent != core)
2004 continue;
2005 tmp_clk = clk_propagate_rate_change(child, event);
2006 if (tmp_clk)
2007 fail_clk = tmp_clk;
2008 }
2009
2010 /* handle the new child who might not be in core->children yet */
2011 if (core->new_child) {
2012 tmp_clk = clk_propagate_rate_change(core->new_child, event);
2013 if (tmp_clk)
2014 fail_clk = tmp_clk;
2015 }
2016
2017 return fail_clk;
2018 }
2019
2020 /*
2021 * walk down a subtree and set the new rates notifying the rate
2022 * change on the way
2023 */
2024 static void clk_change_rate(struct clk_core *core)
2025 {
2026 struct clk_core *child;
2027 struct hlist_node *tmp;
2028 unsigned long old_rate;
2029 unsigned long best_parent_rate = 0;
2030 bool skip_set_rate = false;
2031 struct clk_core *old_parent;
2032 struct clk_core *parent = NULL;
2033
2034 old_rate = core->rate;
2035
2036 if (core->new_parent) {
2037 parent = core->new_parent;
2038 best_parent_rate = core->new_parent->rate;
2039 } else if (core->parent) {
2040 parent = core->parent;
2041 best_parent_rate = core->parent->rate;
2042 }
2043
2044 if (clk_pm_runtime_get(core))
2045 return;
2046
2047 if (core->flags & CLK_SET_RATE_UNGATE) {
2048 unsigned long flags;
2049
2050 clk_core_prepare(core);
2051 flags = clk_enable_lock();
2052 clk_core_enable(core);
2053 clk_enable_unlock(flags);
2054 }
2055
2056 if (core->new_parent && core->new_parent != core->parent) {
2057 old_parent = __clk_set_parent_before(core, core->new_parent);
2058 trace_clk_set_parent(core, core->new_parent);
2059
2060 if (core->ops->set_rate_and_parent) {
2061 skip_set_rate = true;
2062 core->ops->set_rate_and_parent(core->hw, core->new_rate,
2063 best_parent_rate,
2064 core->new_parent_index);
2065 } else if (core->ops->set_parent) {
2066 core->ops->set_parent(core->hw, core->new_parent_index);
2067 }
2068
2069 trace_clk_set_parent_complete(core, core->new_parent);
2070 __clk_set_parent_after(core, core->new_parent, old_parent);
2071 }
2072
2073 if (core->flags & CLK_OPS_PARENT_ENABLE)
2074 clk_core_prepare_enable(parent);
2075
2076 trace_clk_set_rate(core, core->new_rate);
2077
2078 if (!skip_set_rate && core->ops->set_rate)
2079 core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2080
2081 trace_clk_set_rate_complete(core, core->new_rate);
2082
2083 core->rate = clk_recalc(core, best_parent_rate);
2084
2085 if (core->flags & CLK_SET_RATE_UNGATE) {
2086 unsigned long flags;
2087
2088 flags = clk_enable_lock();
2089 clk_core_disable(core);
2090 clk_enable_unlock(flags);
2091 clk_core_unprepare(core);
2092 }
2093
2094 if (core->flags & CLK_OPS_PARENT_ENABLE)
2095 clk_core_disable_unprepare(parent);
2096
2097 if (core->notifier_count && old_rate != core->rate)
2098 __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2099
2100 if (core->flags & CLK_RECALC_NEW_RATES)
2101 (void)clk_calc_new_rates(core, core->new_rate);
2102
2103 /*
2104 * Use safe iteration, as change_rate can actually swap parents
2105 * for certain clock types.
2106 */
2107 hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2108 /* Skip children who will be reparented to another clock */
2109 if (child->new_parent && child->new_parent != core)
2110 continue;
2111 clk_change_rate(child);
2112 }
2113
2114 /* handle the new child who might not be in core->children yet */
2115 if (core->new_child)
2116 clk_change_rate(core->new_child);
2117
2118 clk_pm_runtime_put(core);
2119 }
2120
2121 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2122 unsigned long req_rate)
2123 {
2124 int ret, cnt;
2125 struct clk_rate_request req;
2126
2127 lockdep_assert_held(&prepare_lock);
2128
2129 if (!core)
2130 return 0;
2131
2132 /* simulate what the rate would be if it could be freely set */
2133 cnt = clk_core_rate_nuke_protect(core);
2134 if (cnt < 0)
2135 return cnt;
2136
2137 clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2138 req.rate = req_rate;
2139
2140 ret = clk_core_round_rate_nolock(core, &req);
2141
2142 /* restore the protection */
2143 clk_core_rate_restore_protect(core, cnt);
2144
2145 return ret ? 0 : req.rate;
2146 }
2147
2148 static int clk_core_set_rate_nolock(struct clk_core *core,
2149 unsigned long req_rate)
2150 {
2151 struct clk_core *top, *fail_clk;
2152 unsigned long rate;
2153 int ret = 0;
2154
2155 if (!core)
2156 return 0;
2157
2158 rate = clk_core_req_round_rate_nolock(core, req_rate);
2159
2160 /* bail early if nothing to do */
2161 if (rate == clk_core_get_rate_nolock(core))
2162 return 0;
2163
2164 /* fail on a direct rate set of a protected provider */
2165 if (clk_core_rate_is_protected(core))
2166 return -EBUSY;
2167
2168 /* calculate new rates and get the topmost changed clock */
2169 top = clk_calc_new_rates(core, req_rate);
2170 if (!top)
2171 return -EINVAL;
2172
2173 ret = clk_pm_runtime_get(core);
2174 if (ret)
2175 return ret;
2176
2177 /* notify that we are about to change rates */
2178 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2179 if (fail_clk) {
2180 pr_debug("%s: failed to set %s rate\n", __func__,
2181 fail_clk->name);
2182 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2183 ret = -EBUSY;
2184 goto err;
2185 }
2186
2187 /* change the rates */
2188 clk_change_rate(top);
2189
2190 core->req_rate = req_rate;
2191 err:
2192 clk_pm_runtime_put(core);
2193
2194 return ret;
2195 }
2196
2197 /**
2198 * clk_set_rate - specify a new rate for clk
2199 * @clk: the clk whose rate is being changed
2200 * @rate: the new rate for clk
2201 *
2202 * In the simplest case clk_set_rate will only adjust the rate of clk.
2203 *
2204 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2205 * propagate up to clk's parent; whether or not this happens depends on the
2206 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
2207 * after calling .round_rate then upstream parent propagation is ignored. If
2208 * *parent_rate comes back with a new rate for clk's parent then we propagate
2209 * up to clk's parent and set its rate. Upward propagation will continue
2210 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2211 * .round_rate stops requesting changes to clk's parent_rate.
2212 *
2213 * Rate changes are accomplished via tree traversal that also recalculates the
2214 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2215 *
2216 * Returns 0 on success, -EERROR otherwise.
2217 */
2218 int clk_set_rate(struct clk *clk, unsigned long rate)
2219 {
2220 int ret;
2221
2222 if (!clk)
2223 return 0;
2224
2225 /* prevent racing with updates to the clock topology */
2226 clk_prepare_lock();
2227
2228 if (clk->exclusive_count)
2229 clk_core_rate_unprotect(clk->core);
2230
2231 ret = clk_core_set_rate_nolock(clk->core, rate);
2232
2233 if (clk->exclusive_count)
2234 clk_core_rate_protect(clk->core);
2235
2236 clk_prepare_unlock();
2237
2238 return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(clk_set_rate);
2241
2242 /**
2243 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2244 * @clk: the clk whose rate is being changed
2245 * @rate: the new rate for clk
2246 *
2247 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2248 * within a critical section
2249 *
2250 * This can be used initially to ensure that at least 1 consumer is
2251 * satisfied when several consumers are competing for exclusivity over the
2252 * same clock provider.
2253 *
2254 * The exclusivity is not applied if setting the rate failed.
2255 *
2256 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2257 * clk_rate_exclusive_put().
2258 *
2259 * Returns 0 on success, -EERROR otherwise.
2260 */
2261 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2262 {
2263 int ret;
2264
2265 if (!clk)
2266 return 0;
2267
2268 /* prevent racing with updates to the clock topology */
2269 clk_prepare_lock();
2270
2271 /*
2272 * The temporary protection removal is not here, on purpose
2273 * This function is meant to be used instead of clk_rate_protect,
2274 * so before the consumer code path protect the clock provider
2275 */
2276
2277 ret = clk_core_set_rate_nolock(clk->core, rate);
2278 if (!ret) {
2279 clk_core_rate_protect(clk->core);
2280 clk->exclusive_count++;
2281 }
2282
2283 clk_prepare_unlock();
2284
2285 return ret;
2286 }
2287 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2288
2289 /**
2290 * clk_set_rate_range - set a rate range for a clock source
2291 * @clk: clock source
2292 * @min: desired minimum clock rate in Hz, inclusive
2293 * @max: desired maximum clock rate in Hz, inclusive
2294 *
2295 * Returns success (0) or negative errno.
2296 */
2297 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2298 {
2299 int ret = 0;
2300 unsigned long old_min, old_max, rate;
2301
2302 if (!clk)
2303 return 0;
2304
2305 if (min > max) {
2306 pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2307 __func__, clk->core->name, clk->dev_id, clk->con_id,
2308 min, max);
2309 return -EINVAL;
2310 }
2311
2312 clk_prepare_lock();
2313
2314 if (clk->exclusive_count)
2315 clk_core_rate_unprotect(clk->core);
2316
2317 /* Save the current values in case we need to rollback the change */
2318 old_min = clk->min_rate;
2319 old_max = clk->max_rate;
2320 clk->min_rate = min;
2321 clk->max_rate = max;
2322
2323 rate = clk_core_get_rate_nolock(clk->core);
2324 if (rate < min || rate > max) {
2325 /*
2326 * FIXME:
2327 * We are in bit of trouble here, current rate is outside the
2328 * the requested range. We are going try to request appropriate
2329 * range boundary but there is a catch. It may fail for the
2330 * usual reason (clock broken, clock protected, etc) but also
2331 * because:
2332 * - round_rate() was not favorable and fell on the wrong
2333 * side of the boundary
2334 * - the determine_rate() callback does not really check for
2335 * this corner case when determining the rate
2336 */
2337
2338 if (rate < min)
2339 rate = min;
2340 else
2341 rate = max;
2342
2343 ret = clk_core_set_rate_nolock(clk->core, rate);
2344 if (ret) {
2345 /* rollback the changes */
2346 clk->min_rate = old_min;
2347 clk->max_rate = old_max;
2348 }
2349 }
2350
2351 if (clk->exclusive_count)
2352 clk_core_rate_protect(clk->core);
2353
2354 clk_prepare_unlock();
2355
2356 return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2359
2360 /**
2361 * clk_set_min_rate - set a minimum clock rate for a clock source
2362 * @clk: clock source
2363 * @rate: desired minimum clock rate in Hz, inclusive
2364 *
2365 * Returns success (0) or negative errno.
2366 */
2367 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2368 {
2369 if (!clk)
2370 return 0;
2371
2372 return clk_set_rate_range(clk, rate, clk->max_rate);
2373 }
2374 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2375
2376 /**
2377 * clk_set_max_rate - set a maximum clock rate for a clock source
2378 * @clk: clock source
2379 * @rate: desired maximum clock rate in Hz, inclusive
2380 *
2381 * Returns success (0) or negative errno.
2382 */
2383 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2384 {
2385 if (!clk)
2386 return 0;
2387
2388 return clk_set_rate_range(clk, clk->min_rate, rate);
2389 }
2390 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2391
2392 /**
2393 * clk_get_parent - return the parent of a clk
2394 * @clk: the clk whose parent gets returned
2395 *
2396 * Simply returns clk->parent. Returns NULL if clk is NULL.
2397 */
2398 struct clk *clk_get_parent(struct clk *clk)
2399 {
2400 struct clk *parent;
2401
2402 if (!clk)
2403 return NULL;
2404
2405 clk_prepare_lock();
2406 /* TODO: Create a per-user clk and change callers to call clk_put */
2407 parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2408 clk_prepare_unlock();
2409
2410 return parent;
2411 }
2412 EXPORT_SYMBOL_GPL(clk_get_parent);
2413
2414 static struct clk_core *__clk_init_parent(struct clk_core *core)
2415 {
2416 u8 index = 0;
2417
2418 if (core->num_parents > 1 && core->ops->get_parent)
2419 index = core->ops->get_parent(core->hw);
2420
2421 return clk_core_get_parent_by_index(core, index);
2422 }
2423
2424 static void clk_core_reparent(struct clk_core *core,
2425 struct clk_core *new_parent)
2426 {
2427 clk_reparent(core, new_parent);
2428 __clk_recalc_accuracies(core);
2429 __clk_recalc_rates(core, POST_RATE_CHANGE);
2430 }
2431
2432 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2433 {
2434 if (!hw)
2435 return;
2436
2437 clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2438 }
2439
2440 /**
2441 * clk_has_parent - check if a clock is a possible parent for another
2442 * @clk: clock source
2443 * @parent: parent clock source
2444 *
2445 * This function can be used in drivers that need to check that a clock can be
2446 * the parent of another without actually changing the parent.
2447 *
2448 * Returns true if @parent is a possible parent for @clk, false otherwise.
2449 */
2450 bool clk_has_parent(struct clk *clk, struct clk *parent)
2451 {
2452 struct clk_core *core, *parent_core;
2453 int i;
2454
2455 /* NULL clocks should be nops, so return success if either is NULL. */
2456 if (!clk || !parent)
2457 return true;
2458
2459 core = clk->core;
2460 parent_core = parent->core;
2461
2462 /* Optimize for the case where the parent is already the parent. */
2463 if (core->parent == parent_core)
2464 return true;
2465
2466 for (i = 0; i < core->num_parents; i++)
2467 if (!strcmp(core->parents[i].name, parent_core->name))
2468 return true;
2469
2470 return false;
2471 }
2472 EXPORT_SYMBOL_GPL(clk_has_parent);
2473
2474 static int clk_core_set_parent_nolock(struct clk_core *core,
2475 struct clk_core *parent)
2476 {
2477 int ret = 0;
2478 int p_index = 0;
2479 unsigned long p_rate = 0;
2480
2481 lockdep_assert_held(&prepare_lock);
2482
2483 if (!core)
2484 return 0;
2485
2486 if (core->parent == parent)
2487 return 0;
2488
2489 /* verify ops for multi-parent clks */
2490 if (core->num_parents > 1 && !core->ops->set_parent)
2491 return -EPERM;
2492
2493 /* check that we are allowed to re-parent if the clock is in use */
2494 if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2495 return -EBUSY;
2496
2497 if (clk_core_rate_is_protected(core))
2498 return -EBUSY;
2499
2500 /* try finding the new parent index */
2501 if (parent) {
2502 p_index = clk_fetch_parent_index(core, parent);
2503 if (p_index < 0) {
2504 pr_debug("%s: clk %s can not be parent of clk %s\n",
2505 __func__, parent->name, core->name);
2506 return p_index;
2507 }
2508 p_rate = parent->rate;
2509 }
2510
2511 ret = clk_pm_runtime_get(core);
2512 if (ret)
2513 return ret;
2514
2515 /* propagate PRE_RATE_CHANGE notifications */
2516 ret = __clk_speculate_rates(core, p_rate);
2517
2518 /* abort if a driver objects */
2519 if (ret & NOTIFY_STOP_MASK)
2520 goto runtime_put;
2521
2522 /* do the re-parent */
2523 ret = __clk_set_parent(core, parent, p_index);
2524
2525 /* propagate rate an accuracy recalculation accordingly */
2526 if (ret) {
2527 __clk_recalc_rates(core, ABORT_RATE_CHANGE);
2528 } else {
2529 __clk_recalc_rates(core, POST_RATE_CHANGE);
2530 __clk_recalc_accuracies(core);
2531 }
2532
2533 runtime_put:
2534 clk_pm_runtime_put(core);
2535
2536 return ret;
2537 }
2538
2539 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2540 {
2541 return clk_core_set_parent_nolock(hw->core, parent->core);
2542 }
2543 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2544
2545 /**
2546 * clk_set_parent - switch the parent of a mux clk
2547 * @clk: the mux clk whose input we are switching
2548 * @parent: the new input to clk
2549 *
2550 * Re-parent clk to use parent as its new input source. If clk is in
2551 * prepared state, the clk will get enabled for the duration of this call. If
2552 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2553 * that, the reparenting is glitchy in hardware, etc), use the
2554 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2555 *
2556 * After successfully changing clk's parent clk_set_parent will update the
2557 * clk topology, sysfs topology and propagate rate recalculation via
2558 * __clk_recalc_rates.
2559 *
2560 * Returns 0 on success, -EERROR otherwise.
2561 */
2562 int clk_set_parent(struct clk *clk, struct clk *parent)
2563 {
2564 int ret;
2565
2566 if (!clk)
2567 return 0;
2568
2569 clk_prepare_lock();
2570
2571 if (clk->exclusive_count)
2572 clk_core_rate_unprotect(clk->core);
2573
2574 ret = clk_core_set_parent_nolock(clk->core,
2575 parent ? parent->core : NULL);
2576
2577 if (clk->exclusive_count)
2578 clk_core_rate_protect(clk->core);
2579
2580 clk_prepare_unlock();
2581
2582 return ret;
2583 }
2584 EXPORT_SYMBOL_GPL(clk_set_parent);
2585
2586 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2587 {
2588 int ret = -EINVAL;
2589
2590 lockdep_assert_held(&prepare_lock);
2591
2592 if (!core)
2593 return 0;
2594
2595 if (clk_core_rate_is_protected(core))
2596 return -EBUSY;
2597
2598 trace_clk_set_phase(core, degrees);
2599
2600 if (core->ops->set_phase) {
2601 ret = core->ops->set_phase(core->hw, degrees);
2602 if (!ret)
2603 core->phase = degrees;
2604 }
2605
2606 trace_clk_set_phase_complete(core, degrees);
2607
2608 return ret;
2609 }
2610
2611 /**
2612 * clk_set_phase - adjust the phase shift of a clock signal
2613 * @clk: clock signal source
2614 * @degrees: number of degrees the signal is shifted
2615 *
2616 * Shifts the phase of a clock signal by the specified
2617 * degrees. Returns 0 on success, -EERROR otherwise.
2618 *
2619 * This function makes no distinction about the input or reference
2620 * signal that we adjust the clock signal phase against. For example
2621 * phase locked-loop clock signal generators we may shift phase with
2622 * respect to feedback clock signal input, but for other cases the
2623 * clock phase may be shifted with respect to some other, unspecified
2624 * signal.
2625 *
2626 * Additionally the concept of phase shift does not propagate through
2627 * the clock tree hierarchy, which sets it apart from clock rates and
2628 * clock accuracy. A parent clock phase attribute does not have an
2629 * impact on the phase attribute of a child clock.
2630 */
2631 int clk_set_phase(struct clk *clk, int degrees)
2632 {
2633 int ret;
2634
2635 if (!clk)
2636 return 0;
2637
2638 /* sanity check degrees */
2639 degrees %= 360;
2640 if (degrees < 0)
2641 degrees += 360;
2642
2643 clk_prepare_lock();
2644
2645 if (clk->exclusive_count)
2646 clk_core_rate_unprotect(clk->core);
2647
2648 ret = clk_core_set_phase_nolock(clk->core, degrees);
2649
2650 if (clk->exclusive_count)
2651 clk_core_rate_protect(clk->core);
2652
2653 clk_prepare_unlock();
2654
2655 return ret;
2656 }
2657 EXPORT_SYMBOL_GPL(clk_set_phase);
2658
2659 static int clk_core_get_phase(struct clk_core *core)
2660 {
2661 int ret;
2662
2663 clk_prepare_lock();
2664 /* Always try to update cached phase if possible */
2665 if (core->ops->get_phase)
2666 core->phase = core->ops->get_phase(core->hw);
2667 ret = core->phase;
2668 clk_prepare_unlock();
2669
2670 return ret;
2671 }
2672
2673 /**
2674 * clk_get_phase - return the phase shift of a clock signal
2675 * @clk: clock signal source
2676 *
2677 * Returns the phase shift of a clock node in degrees, otherwise returns
2678 * -EERROR.
2679 */
2680 int clk_get_phase(struct clk *clk)
2681 {
2682 if (!clk)
2683 return 0;
2684
2685 return clk_core_get_phase(clk->core);
2686 }
2687 EXPORT_SYMBOL_GPL(clk_get_phase);
2688
2689 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2690 {
2691 /* Assume a default value of 50% */
2692 core->duty.num = 1;
2693 core->duty.den = 2;
2694 }
2695
2696 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2697
2698 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2699 {
2700 struct clk_duty *duty = &core->duty;
2701 int ret = 0;
2702
2703 if (!core->ops->get_duty_cycle)
2704 return clk_core_update_duty_cycle_parent_nolock(core);
2705
2706 ret = core->ops->get_duty_cycle(core->hw, duty);
2707 if (ret)
2708 goto reset;
2709
2710 /* Don't trust the clock provider too much */
2711 if (duty->den == 0 || duty->num > duty->den) {
2712 ret = -EINVAL;
2713 goto reset;
2714 }
2715
2716 return 0;
2717
2718 reset:
2719 clk_core_reset_duty_cycle_nolock(core);
2720 return ret;
2721 }
2722
2723 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2724 {
2725 int ret = 0;
2726
2727 if (core->parent &&
2728 core->flags & CLK_DUTY_CYCLE_PARENT) {
2729 ret = clk_core_update_duty_cycle_nolock(core->parent);
2730 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2731 } else {
2732 clk_core_reset_duty_cycle_nolock(core);
2733 }
2734
2735 return ret;
2736 }
2737
2738 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2739 struct clk_duty *duty);
2740
2741 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2742 struct clk_duty *duty)
2743 {
2744 int ret;
2745
2746 lockdep_assert_held(&prepare_lock);
2747
2748 if (clk_core_rate_is_protected(core))
2749 return -EBUSY;
2750
2751 trace_clk_set_duty_cycle(core, duty);
2752
2753 if (!core->ops->set_duty_cycle)
2754 return clk_core_set_duty_cycle_parent_nolock(core, duty);
2755
2756 ret = core->ops->set_duty_cycle(core->hw, duty);
2757 if (!ret)
2758 memcpy(&core->duty, duty, sizeof(*duty));
2759
2760 trace_clk_set_duty_cycle_complete(core, duty);
2761
2762 return ret;
2763 }
2764
2765 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2766 struct clk_duty *duty)
2767 {
2768 int ret = 0;
2769
2770 if (core->parent &&
2771 core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2772 ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2773 memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2774 }
2775
2776 return ret;
2777 }
2778
2779 /**
2780 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2781 * @clk: clock signal source
2782 * @num: numerator of the duty cycle ratio to be applied
2783 * @den: denominator of the duty cycle ratio to be applied
2784 *
2785 * Apply the duty cycle ratio if the ratio is valid and the clock can
2786 * perform this operation
2787 *
2788 * Returns (0) on success, a negative errno otherwise.
2789 */
2790 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2791 {
2792 int ret;
2793 struct clk_duty duty;
2794
2795 if (!clk)
2796 return 0;
2797
2798 /* sanity check the ratio */
2799 if (den == 0 || num > den)
2800 return -EINVAL;
2801
2802 duty.num = num;
2803 duty.den = den;
2804
2805 clk_prepare_lock();
2806
2807 if (clk->exclusive_count)
2808 clk_core_rate_unprotect(clk->core);
2809
2810 ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2811
2812 if (clk->exclusive_count)
2813 clk_core_rate_protect(clk->core);
2814
2815 clk_prepare_unlock();
2816
2817 return ret;
2818 }
2819 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2820
2821 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2822 unsigned int scale)
2823 {
2824 struct clk_duty *duty = &core->duty;
2825 int ret;
2826
2827 clk_prepare_lock();
2828
2829 ret = clk_core_update_duty_cycle_nolock(core);
2830 if (!ret)
2831 ret = mult_frac(scale, duty->num, duty->den);
2832
2833 clk_prepare_unlock();
2834
2835 return ret;
2836 }
2837
2838 /**
2839 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2840 * @clk: clock signal source
2841 * @scale: scaling factor to be applied to represent the ratio as an integer
2842 *
2843 * Returns the duty cycle ratio of a clock node multiplied by the provided
2844 * scaling factor, or negative errno on error.
2845 */
2846 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2847 {
2848 if (!clk)
2849 return 0;
2850
2851 return clk_core_get_scaled_duty_cycle(clk->core, scale);
2852 }
2853 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2854
2855 /**
2856 * clk_is_match - check if two clk's point to the same hardware clock
2857 * @p: clk compared against q
2858 * @q: clk compared against p
2859 *
2860 * Returns true if the two struct clk pointers both point to the same hardware
2861 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2862 * share the same struct clk_core object.
2863 *
2864 * Returns false otherwise. Note that two NULL clks are treated as matching.
2865 */
2866 bool clk_is_match(const struct clk *p, const struct clk *q)
2867 {
2868 /* trivial case: identical struct clk's or both NULL */
2869 if (p == q)
2870 return true;
2871
2872 /* true if clk->core pointers match. Avoid dereferencing garbage */
2873 if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2874 if (p->core == q->core)
2875 return true;
2876
2877 return false;
2878 }
2879 EXPORT_SYMBOL_GPL(clk_is_match);
2880
2881 /*** debugfs support ***/
2882
2883 #ifdef CONFIG_DEBUG_FS
2884 #include <linux/debugfs.h>
2885
2886 static struct dentry *rootdir;
2887 static int inited = 0;
2888 static DEFINE_MUTEX(clk_debug_lock);
2889 static HLIST_HEAD(clk_debug_list);
2890
2891 static struct hlist_head *orphan_list[] = {
2892 &clk_orphan_list,
2893 NULL,
2894 };
2895
2896 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2897 int level)
2898 {
2899 seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
2900 level * 3 + 1, "",
2901 30 - level * 3, c->name,
2902 c->enable_count, c->prepare_count, c->protect_count,
2903 clk_core_get_rate(c), clk_core_get_accuracy(c),
2904 clk_core_get_phase(c),
2905 clk_core_get_scaled_duty_cycle(c, 100000));
2906 }
2907
2908 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2909 int level)
2910 {
2911 struct clk_core *child;
2912
2913 clk_summary_show_one(s, c, level);
2914
2915 hlist_for_each_entry(child, &c->children, child_node)
2916 clk_summary_show_subtree(s, child, level + 1);
2917 }
2918
2919 static int clk_summary_show(struct seq_file *s, void *data)
2920 {
2921 struct clk_core *c;
2922 struct hlist_head **lists = (struct hlist_head **)s->private;
2923
2924 seq_puts(s, " enable prepare protect duty\n");
2925 seq_puts(s, " clock count count count rate accuracy phase cycle\n");
2926 seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2927
2928 clk_prepare_lock();
2929
2930 for (; *lists; lists++)
2931 hlist_for_each_entry(c, *lists, child_node)
2932 clk_summary_show_subtree(s, c, 0);
2933
2934 clk_prepare_unlock();
2935
2936 return 0;
2937 }
2938 DEFINE_SHOW_ATTRIBUTE(clk_summary);
2939
2940 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2941 {
2942 unsigned long min_rate, max_rate;
2943
2944 clk_core_get_boundaries(c, &min_rate, &max_rate);
2945
2946 /* This should be JSON format, i.e. elements separated with a comma */
2947 seq_printf(s, "\"%s\": { ", c->name);
2948 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2949 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2950 seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2951 seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2952 seq_printf(s, "\"min_rate\": %lu,", min_rate);
2953 seq_printf(s, "\"max_rate\": %lu,", max_rate);
2954 seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2955 seq_printf(s, "\"phase\": %d,", clk_core_get_phase(c));
2956 seq_printf(s, "\"duty_cycle\": %u",
2957 clk_core_get_scaled_duty_cycle(c, 100000));
2958 }
2959
2960 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2961 {
2962 struct clk_core *child;
2963
2964 clk_dump_one(s, c, level);
2965
2966 hlist_for_each_entry(child, &c->children, child_node) {
2967 seq_putc(s, ',');
2968 clk_dump_subtree(s, child, level + 1);
2969 }
2970
2971 seq_putc(s, '}');
2972 }
2973
2974 static int clk_dump_show(struct seq_file *s, void *data)
2975 {
2976 struct clk_core *c;
2977 bool first_node = true;
2978 struct hlist_head **lists = (struct hlist_head **)s->private;
2979
2980 seq_putc(s, '{');
2981 clk_prepare_lock();
2982
2983 for (; *lists; lists++) {
2984 hlist_for_each_entry(c, *lists, child_node) {
2985 if (!first_node)
2986 seq_putc(s, ',');
2987 first_node = false;
2988 clk_dump_subtree(s, c, 0);
2989 }
2990 }
2991
2992 clk_prepare_unlock();
2993
2994 seq_puts(s, "}\n");
2995 return 0;
2996 }
2997 DEFINE_SHOW_ATTRIBUTE(clk_dump);
2998
2999 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3000 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3001 /*
3002 * This can be dangerous, therefore don't provide any real compile time
3003 * configuration option for this feature.
3004 * People who want to use this will need to modify the source code directly.
3005 */
3006 static int clk_rate_set(void *data, u64 val)
3007 {
3008 struct clk_core *core = data;
3009 int ret;
3010
3011 clk_prepare_lock();
3012 ret = clk_core_set_rate_nolock(core, val);
3013 clk_prepare_unlock();
3014
3015 return ret;
3016 }
3017
3018 #define clk_rate_mode 0644
3019 #else
3020 #define clk_rate_set NULL
3021 #define clk_rate_mode 0444
3022 #endif
3023
3024 static int clk_rate_get(void *data, u64 *val)
3025 {
3026 struct clk_core *core = data;
3027
3028 *val = core->rate;
3029 return 0;
3030 }
3031
3032 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3033
3034 static const struct {
3035 unsigned long flag;
3036 const char *name;
3037 } clk_flags[] = {
3038 #define ENTRY(f) { f, #f }
3039 ENTRY(CLK_SET_RATE_GATE),
3040 ENTRY(CLK_SET_PARENT_GATE),
3041 ENTRY(CLK_SET_RATE_PARENT),
3042 ENTRY(CLK_IGNORE_UNUSED),
3043 ENTRY(CLK_GET_RATE_NOCACHE),
3044 ENTRY(CLK_SET_RATE_NO_REPARENT),
3045 ENTRY(CLK_GET_ACCURACY_NOCACHE),
3046 ENTRY(CLK_RECALC_NEW_RATES),
3047 ENTRY(CLK_SET_RATE_UNGATE),
3048 ENTRY(CLK_IS_CRITICAL),
3049 ENTRY(CLK_OPS_PARENT_ENABLE),
3050 ENTRY(CLK_DUTY_CYCLE_PARENT),
3051 #undef ENTRY
3052 };
3053
3054 static int clk_flags_show(struct seq_file *s, void *data)
3055 {
3056 struct clk_core *core = s->private;
3057 unsigned long flags = core->flags;
3058 unsigned int i;
3059
3060 for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3061 if (flags & clk_flags[i].flag) {
3062 seq_printf(s, "%s\n", clk_flags[i].name);
3063 flags &= ~clk_flags[i].flag;
3064 }
3065 }
3066 if (flags) {
3067 /* Unknown flags */
3068 seq_printf(s, "0x%lx\n", flags);
3069 }
3070
3071 return 0;
3072 }
3073 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3074
3075 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3076 unsigned int i, char terminator)
3077 {
3078 struct clk_core *parent;
3079
3080 /*
3081 * Go through the following options to fetch a parent's name.
3082 *
3083 * 1. Fetch the registered parent clock and use its name
3084 * 2. Use the global (fallback) name if specified
3085 * 3. Use the local fw_name if provided
3086 * 4. Fetch parent clock's clock-output-name if DT index was set
3087 *
3088 * This may still fail in some cases, such as when the parent is
3089 * specified directly via a struct clk_hw pointer, but it isn't
3090 * registered (yet).
3091 */
3092 parent = clk_core_get_parent_by_index(core, i);
3093 if (parent)
3094 seq_puts(s, parent->name);
3095 else if (core->parents[i].name)
3096 seq_puts(s, core->parents[i].name);
3097 else if (core->parents[i].fw_name)
3098 seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3099 else if (core->parents[i].index >= 0)
3100 seq_puts(s,
3101 of_clk_get_parent_name(core->of_node,
3102 core->parents[i].index));
3103 else
3104 seq_puts(s, "(missing)");
3105
3106 seq_putc(s, terminator);
3107 }
3108
3109 static int possible_parents_show(struct seq_file *s, void *data)
3110 {
3111 struct clk_core *core = s->private;
3112 int i;
3113
3114 for (i = 0; i < core->num_parents - 1; i++)
3115 possible_parent_show(s, core, i, ' ');
3116
3117 possible_parent_show(s, core, i, '\n');
3118
3119 return 0;
3120 }
3121 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3122
3123 static int current_parent_show(struct seq_file *s, void *data)
3124 {
3125 struct clk_core *core = s->private;
3126
3127 if (core->parent)
3128 seq_printf(s, "%s\n", core->parent->name);
3129
3130 return 0;
3131 }
3132 DEFINE_SHOW_ATTRIBUTE(current_parent);
3133
3134 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3135 {
3136 struct clk_core *core = s->private;
3137 struct clk_duty *duty = &core->duty;
3138
3139 seq_printf(s, "%u/%u\n", duty->num, duty->den);
3140
3141 return 0;
3142 }
3143 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3144
3145 static int clk_min_rate_show(struct seq_file *s, void *data)
3146 {
3147 struct clk_core *core = s->private;
3148 unsigned long min_rate, max_rate;
3149
3150 clk_prepare_lock();
3151 clk_core_get_boundaries(core, &min_rate, &max_rate);
3152 clk_prepare_unlock();
3153 seq_printf(s, "%lu\n", min_rate);
3154
3155 return 0;
3156 }
3157 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3158
3159 static int clk_max_rate_show(struct seq_file *s, void *data)
3160 {
3161 struct clk_core *core = s->private;
3162 unsigned long min_rate, max_rate;
3163
3164 clk_prepare_lock();
3165 clk_core_get_boundaries(core, &min_rate, &max_rate);
3166 clk_prepare_unlock();
3167 seq_printf(s, "%lu\n", max_rate);
3168
3169 return 0;
3170 }
3171 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3172
3173 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3174 {
3175 struct dentry *root;
3176
3177 if (!core || !pdentry)
3178 return;
3179
3180 root = debugfs_create_dir(core->name, pdentry);
3181 core->dentry = root;
3182
3183 debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3184 &clk_rate_fops);
3185 debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3186 debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3187 debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3188 debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3189 debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3190 debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3191 debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3192 debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3193 debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3194 debugfs_create_file("clk_duty_cycle", 0444, root, core,
3195 &clk_duty_cycle_fops);
3196
3197 if (core->num_parents > 0)
3198 debugfs_create_file("clk_parent", 0444, root, core,
3199 &current_parent_fops);
3200
3201 if (core->num_parents > 1)
3202 debugfs_create_file("clk_possible_parents", 0444, root, core,
3203 &possible_parents_fops);
3204
3205 if (core->ops->debug_init)
3206 core->ops->debug_init(core->hw, core->dentry);
3207 }
3208
3209 /**
3210 * clk_debug_register - add a clk node to the debugfs clk directory
3211 * @core: the clk being added to the debugfs clk directory
3212 *
3213 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3214 * initialized. Otherwise it bails out early since the debugfs clk directory
3215 * will be created lazily by clk_debug_init as part of a late_initcall.
3216 */
3217 static void clk_debug_register(struct clk_core *core)
3218 {
3219 mutex_lock(&clk_debug_lock);
3220 hlist_add_head(&core->debug_node, &clk_debug_list);
3221 if (inited)
3222 clk_debug_create_one(core, rootdir);
3223 mutex_unlock(&clk_debug_lock);
3224 }
3225
3226 /**
3227 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3228 * @core: the clk being removed from the debugfs clk directory
3229 *
3230 * Dynamically removes a clk and all its child nodes from the
3231 * debugfs clk directory if clk->dentry points to debugfs created by
3232 * clk_debug_register in __clk_core_init.
3233 */
3234 static void clk_debug_unregister(struct clk_core *core)
3235 {
3236 mutex_lock(&clk_debug_lock);
3237 hlist_del_init(&core->debug_node);
3238 debugfs_remove_recursive(core->dentry);
3239 core->dentry = NULL;
3240 mutex_unlock(&clk_debug_lock);
3241 }
3242
3243 /**
3244 * clk_debug_init - lazily populate the debugfs clk directory
3245 *
3246 * clks are often initialized very early during boot before memory can be
3247 * dynamically allocated and well before debugfs is setup. This function
3248 * populates the debugfs clk directory once at boot-time when we know that
3249 * debugfs is setup. It should only be called once at boot-time, all other clks
3250 * added dynamically will be done so with clk_debug_register.
3251 */
3252 static int __init clk_debug_init(void)
3253 {
3254 struct clk_core *core;
3255
3256 rootdir = debugfs_create_dir("clk", NULL);
3257
3258 debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3259 &clk_summary_fops);
3260 debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3261 &clk_dump_fops);
3262 debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3263 &clk_summary_fops);
3264 debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3265 &clk_dump_fops);
3266
3267 mutex_lock(&clk_debug_lock);
3268 hlist_for_each_entry(core, &clk_debug_list, debug_node)
3269 clk_debug_create_one(core, rootdir);
3270
3271 inited = 1;
3272 mutex_unlock(&clk_debug_lock);
3273
3274 return 0;
3275 }
3276 late_initcall(clk_debug_init);
3277 #else
3278 static inline void clk_debug_register(struct clk_core *core) { }
3279 static inline void clk_debug_reparent(struct clk_core *core,
3280 struct clk_core *new_parent)
3281 {
3282 }
3283 static inline void clk_debug_unregister(struct clk_core *core)
3284 {
3285 }
3286 #endif
3287
3288 static void clk_core_reparent_orphans_nolock(void)
3289 {
3290 struct clk_core *orphan;
3291 struct hlist_node *tmp2;
3292
3293 /*
3294 * walk the list of orphan clocks and reparent any that newly finds a
3295 * parent.
3296 */
3297 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3298 struct clk_core *parent = __clk_init_parent(orphan);
3299
3300 /*
3301 * We need to use __clk_set_parent_before() and _after() to
3302 * to properly migrate any prepare/enable count of the orphan
3303 * clock. This is important for CLK_IS_CRITICAL clocks, which
3304 * are enabled during init but might not have a parent yet.
3305 */
3306 if (parent) {
3307 /* update the clk tree topology */
3308 __clk_set_parent_before(orphan, parent);
3309 __clk_set_parent_after(orphan, parent, NULL);
3310 __clk_recalc_accuracies(orphan);
3311 __clk_recalc_rates(orphan, 0);
3312 }
3313 }
3314 }
3315
3316 /**
3317 * __clk_core_init - initialize the data structures in a struct clk_core
3318 * @core: clk_core being initialized
3319 *
3320 * Initializes the lists in struct clk_core, queries the hardware for the
3321 * parent and rate and sets them both.
3322 */
3323 static int __clk_core_init(struct clk_core *core)
3324 {
3325 int ret;
3326 unsigned long rate;
3327
3328 if (!core)
3329 return -EINVAL;
3330
3331 clk_prepare_lock();
3332
3333 ret = clk_pm_runtime_get(core);
3334 if (ret)
3335 goto unlock;
3336
3337 /* check to see if a clock with this name is already registered */
3338 if (clk_core_lookup(core->name)) {
3339 pr_debug("%s: clk %s already initialized\n",
3340 __func__, core->name);
3341 ret = -EEXIST;
3342 goto out;
3343 }
3344
3345 /* check that clk_ops are sane. See Documentation/driver-api/clk.rst */
3346 if (core->ops->set_rate &&
3347 !((core->ops->round_rate || core->ops->determine_rate) &&
3348 core->ops->recalc_rate)) {
3349 pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3350 __func__, core->name);
3351 ret = -EINVAL;
3352 goto out;
3353 }
3354
3355 if (core->ops->set_parent && !core->ops->get_parent) {
3356 pr_err("%s: %s must implement .get_parent & .set_parent\n",
3357 __func__, core->name);
3358 ret = -EINVAL;
3359 goto out;
3360 }
3361
3362 if (core->num_parents > 1 && !core->ops->get_parent) {
3363 pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3364 __func__, core->name);
3365 ret = -EINVAL;
3366 goto out;
3367 }
3368
3369 if (core->ops->set_rate_and_parent &&
3370 !(core->ops->set_parent && core->ops->set_rate)) {
3371 pr_err("%s: %s must implement .set_parent & .set_rate\n",
3372 __func__, core->name);
3373 ret = -EINVAL;
3374 goto out;
3375 }
3376
3377 /*
3378 * optional platform-specific magic
3379 *
3380 * The .init callback is not used by any of the basic clock types, but
3381 * exists for weird hardware that must perform initialization magic for
3382 * CCF to get an accurate view of clock for any other callbacks. It may
3383 * also be used needs to perform dynamic allocations. Such allocation
3384 * must be freed in the terminate() callback.
3385 * This callback shall not be used to initialize the parameters state,
3386 * such as rate, parent, etc ...
3387 *
3388 * If it exist, this callback should called before any other callback of
3389 * the clock
3390 */
3391 if (core->ops->init) {
3392 ret = core->ops->init(core->hw);
3393 if (ret)
3394 goto out;
3395 }
3396
3397 core->parent = __clk_init_parent(core);
3398
3399 /*
3400 * Populate core->parent if parent has already been clk_core_init'd. If
3401 * parent has not yet been clk_core_init'd then place clk in the orphan
3402 * list. If clk doesn't have any parents then place it in the root
3403 * clk list.
3404 *
3405 * Every time a new clk is clk_init'd then we walk the list of orphan
3406 * clocks and re-parent any that are children of the clock currently
3407 * being clk_init'd.
3408 */
3409 if (core->parent) {
3410 hlist_add_head(&core->child_node,
3411 &core->parent->children);
3412 core->orphan = core->parent->orphan;
3413 } else if (!core->num_parents) {
3414 hlist_add_head(&core->child_node, &clk_root_list);
3415 core->orphan = false;
3416 } else {
3417 hlist_add_head(&core->child_node, &clk_orphan_list);
3418 core->orphan = true;
3419 }
3420
3421 /*
3422 * Set clk's accuracy. The preferred method is to use
3423 * .recalc_accuracy. For simple clocks and lazy developers the default
3424 * fallback is to use the parent's accuracy. If a clock doesn't have a
3425 * parent (or is orphaned) then accuracy is set to zero (perfect
3426 * clock).
3427 */
3428 if (core->ops->recalc_accuracy)
3429 core->accuracy = core->ops->recalc_accuracy(core->hw,
3430 __clk_get_accuracy(core->parent));
3431 else if (core->parent)
3432 core->accuracy = core->parent->accuracy;
3433 else
3434 core->accuracy = 0;
3435
3436 /*
3437 * Set clk's phase.
3438 * Since a phase is by definition relative to its parent, just
3439 * query the current clock phase, or just assume it's in phase.
3440 */
3441 if (core->ops->get_phase)
3442 core->phase = core->ops->get_phase(core->hw);
3443 else
3444 core->phase = 0;
3445
3446 /*
3447 * Set clk's duty cycle.
3448 */
3449 clk_core_update_duty_cycle_nolock(core);
3450
3451 /*
3452 * Set clk's rate. The preferred method is to use .recalc_rate. For
3453 * simple clocks and lazy developers the default fallback is to use the
3454 * parent's rate. If a clock doesn't have a parent (or is orphaned)
3455 * then rate is set to zero.
3456 */
3457 if (core->ops->recalc_rate)
3458 rate = core->ops->recalc_rate(core->hw,
3459 clk_core_get_rate_nolock(core->parent));
3460 else if (core->parent)
3461 rate = core->parent->rate;
3462 else
3463 rate = 0;
3464 core->rate = core->req_rate = rate;
3465
3466 /*
3467 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3468 * don't get accidentally disabled when walking the orphan tree and
3469 * reparenting clocks
3470 */
3471 if (core->flags & CLK_IS_CRITICAL) {
3472 unsigned long flags;
3473
3474 ret = clk_core_prepare(core);
3475 if (ret) {
3476 pr_warn("%s: critical clk '%s' failed to prepare\n",
3477 __func__, core->name);
3478 goto out;
3479 }
3480
3481 flags = clk_enable_lock();
3482 ret = clk_core_enable(core);
3483 clk_enable_unlock(flags);
3484 if (ret) {
3485 pr_warn("%s: critical clk '%s' failed to enable\n",
3486 __func__, core->name);
3487 clk_core_unprepare(core);
3488 goto out;
3489 }
3490 }
3491
3492 clk_core_reparent_orphans_nolock();
3493
3494
3495 kref_init(&core->ref);
3496 out:
3497 clk_pm_runtime_put(core);
3498 unlock:
3499 clk_prepare_unlock();
3500
3501 if (!ret)
3502 clk_debug_register(core);
3503
3504 return ret;
3505 }
3506
3507 /**
3508 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3509 * @core: clk to add consumer to
3510 * @clk: consumer to link to a clk
3511 */
3512 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3513 {
3514 clk_prepare_lock();
3515 hlist_add_head(&clk->clks_node, &core->clks);
3516 clk_prepare_unlock();
3517 }
3518
3519 /**
3520 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3521 * @clk: consumer to unlink
3522 */
3523 static void clk_core_unlink_consumer(struct clk *clk)
3524 {
3525 lockdep_assert_held(&prepare_lock);
3526 hlist_del(&clk->clks_node);
3527 }
3528
3529 /**
3530 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3531 * @core: clk to allocate a consumer for
3532 * @dev_id: string describing device name
3533 * @con_id: connection ID string on device
3534 *
3535 * Returns: clk consumer left unlinked from the consumer list
3536 */
3537 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3538 const char *con_id)
3539 {
3540 struct clk *clk;
3541
3542 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3543 if (!clk)
3544 return ERR_PTR(-ENOMEM);
3545
3546 clk->core = core;
3547 clk->dev_id = dev_id;
3548 clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3549 clk->max_rate = ULONG_MAX;
3550
3551 return clk;
3552 }
3553
3554 /**
3555 * free_clk - Free a clk consumer
3556 * @clk: clk consumer to free
3557 *
3558 * Note, this assumes the clk has been unlinked from the clk_core consumer
3559 * list.
3560 */
3561 static void free_clk(struct clk *clk)
3562 {
3563 kfree_const(clk->con_id);
3564 kfree(clk);
3565 }
3566
3567 /**
3568 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3569 * a clk_hw
3570 * @dev: clk consumer device
3571 * @hw: clk_hw associated with the clk being consumed
3572 * @dev_id: string describing device name
3573 * @con_id: connection ID string on device
3574 *
3575 * This is the main function used to create a clk pointer for use by clk
3576 * consumers. It connects a consumer to the clk_core and clk_hw structures
3577 * used by the framework and clk provider respectively.
3578 */
3579 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3580 const char *dev_id, const char *con_id)
3581 {
3582 struct clk *clk;
3583 struct clk_core *core;
3584
3585 /* This is to allow this function to be chained to others */
3586 if (IS_ERR_OR_NULL(hw))
3587 return ERR_CAST(hw);
3588
3589 core = hw->core;
3590 clk = alloc_clk(core, dev_id, con_id);
3591 if (IS_ERR(clk))
3592 return clk;
3593 clk->dev = dev;
3594
3595 if (!try_module_get(core->owner)) {
3596 free_clk(clk);
3597 return ERR_PTR(-ENOENT);
3598 }
3599
3600 kref_get(&core->ref);
3601 clk_core_link_consumer(core, clk);
3602
3603 return clk;
3604 }
3605
3606 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3607 {
3608 const char *dst;
3609
3610 if (!src) {
3611 if (must_exist)
3612 return -EINVAL;
3613 return 0;
3614 }
3615
3616 *dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3617 if (!dst)
3618 return -ENOMEM;
3619
3620 return 0;
3621 }
3622
3623 static int clk_core_populate_parent_map(struct clk_core *core,
3624 const struct clk_init_data *init)
3625 {
3626 u8 num_parents = init->num_parents;
3627 const char * const *parent_names = init->parent_names;
3628 const struct clk_hw **parent_hws = init->parent_hws;
3629 const struct clk_parent_data *parent_data = init->parent_data;
3630 int i, ret = 0;
3631 struct clk_parent_map *parents, *parent;
3632
3633 if (!num_parents)
3634 return 0;
3635
3636 /*
3637 * Avoid unnecessary string look-ups of clk_core's possible parents by
3638 * having a cache of names/clk_hw pointers to clk_core pointers.
3639 */
3640 parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3641 core->parents = parents;
3642 if (!parents)
3643 return -ENOMEM;
3644
3645 /* Copy everything over because it might be __initdata */
3646 for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3647 parent->index = -1;
3648 if (parent_names) {
3649 /* throw a WARN if any entries are NULL */
3650 WARN(!parent_names[i],
3651 "%s: invalid NULL in %s's .parent_names\n",
3652 __func__, core->name);
3653 ret = clk_cpy_name(&parent->name, parent_names[i],
3654 true);
3655 } else if (parent_data) {
3656 parent->hw = parent_data[i].hw;
3657 parent->index = parent_data[i].index;
3658 ret = clk_cpy_name(&parent->fw_name,
3659 parent_data[i].fw_name, false);
3660 if (!ret)
3661 ret = clk_cpy_name(&parent->name,
3662 parent_data[i].name,
3663 false);
3664 } else if (parent_hws) {
3665 parent->hw = parent_hws[i];
3666 } else {
3667 ret = -EINVAL;
3668 WARN(1, "Must specify parents if num_parents > 0\n");
3669 }
3670
3671 if (ret) {
3672 do {
3673 kfree_const(parents[i].name);
3674 kfree_const(parents[i].fw_name);
3675 } while (--i >= 0);
3676 kfree(parents);
3677
3678 return ret;
3679 }
3680 }
3681
3682 return 0;
3683 }
3684
3685 static void clk_core_free_parent_map(struct clk_core *core)
3686 {
3687 int i = core->num_parents;
3688
3689 if (!core->num_parents)
3690 return;
3691
3692 while (--i >= 0) {
3693 kfree_const(core->parents[i].name);
3694 kfree_const(core->parents[i].fw_name);
3695 }
3696
3697 kfree(core->parents);
3698 }
3699
3700 static struct clk *
3701 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3702 {
3703 int ret;
3704 struct clk_core *core;
3705 const struct clk_init_data *init = hw->init;
3706
3707 /*
3708 * The init data is not supposed to be used outside of registration path.
3709 * Set it to NULL so that provider drivers can't use it either and so that
3710 * we catch use of hw->init early on in the core.
3711 */
3712 hw->init = NULL;
3713
3714 core = kzalloc(sizeof(*core), GFP_KERNEL);
3715 if (!core) {
3716 ret = -ENOMEM;
3717 goto fail_out;
3718 }
3719
3720 core->name = kstrdup_const(init->name, GFP_KERNEL);
3721 if (!core->name) {
3722 ret = -ENOMEM;
3723 goto fail_name;
3724 }
3725
3726 if (WARN_ON(!init->ops)) {
3727 ret = -EINVAL;
3728 goto fail_ops;
3729 }
3730 core->ops = init->ops;
3731
3732 if (dev && pm_runtime_enabled(dev))
3733 core->rpm_enabled = true;
3734 core->dev = dev;
3735 core->of_node = np;
3736 if (dev && dev->driver)
3737 core->owner = dev->driver->owner;
3738 core->hw = hw;
3739 core->flags = init->flags;
3740 core->num_parents = init->num_parents;
3741 core->min_rate = 0;
3742 core->max_rate = ULONG_MAX;
3743 hw->core = core;
3744
3745 ret = clk_core_populate_parent_map(core, init);
3746 if (ret)
3747 goto fail_parents;
3748
3749 INIT_HLIST_HEAD(&core->clks);
3750
3751 /*
3752 * Don't call clk_hw_create_clk() here because that would pin the
3753 * provider module to itself and prevent it from ever being removed.
3754 */
3755 hw->clk = alloc_clk(core, NULL, NULL);
3756 if (IS_ERR(hw->clk)) {
3757 ret = PTR_ERR(hw->clk);
3758 goto fail_create_clk;
3759 }
3760
3761 clk_core_link_consumer(hw->core, hw->clk);
3762
3763 ret = __clk_core_init(core);
3764 if (!ret)
3765 return hw->clk;
3766
3767 clk_prepare_lock();
3768 clk_core_unlink_consumer(hw->clk);
3769 clk_prepare_unlock();
3770
3771 free_clk(hw->clk);
3772 hw->clk = NULL;
3773
3774 fail_create_clk:
3775 clk_core_free_parent_map(core);
3776 fail_parents:
3777 fail_ops:
3778 kfree_const(core->name);
3779 fail_name:
3780 kfree(core);
3781 fail_out:
3782 return ERR_PTR(ret);
3783 }
3784
3785 /**
3786 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3787 * @dev: Device to get device node of
3788 *
3789 * Return: device node pointer of @dev, or the device node pointer of
3790 * @dev->parent if dev doesn't have a device node, or NULL if neither
3791 * @dev or @dev->parent have a device node.
3792 */
3793 static struct device_node *dev_or_parent_of_node(struct device *dev)
3794 {
3795 struct device_node *np;
3796
3797 if (!dev)
3798 return NULL;
3799
3800 np = dev_of_node(dev);
3801 if (!np)
3802 np = dev_of_node(dev->parent);
3803
3804 return np;
3805 }
3806
3807 /**
3808 * clk_register - allocate a new clock, register it and return an opaque cookie
3809 * @dev: device that is registering this clock
3810 * @hw: link to hardware-specific clock data
3811 *
3812 * clk_register is the *deprecated* interface for populating the clock tree with
3813 * new clock nodes. Use clk_hw_register() instead.
3814 *
3815 * Returns: a pointer to the newly allocated struct clk which
3816 * cannot be dereferenced by driver code but may be used in conjunction with the
3817 * rest of the clock API. In the event of an error clk_register will return an
3818 * error code; drivers must test for an error code after calling clk_register.
3819 */
3820 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3821 {
3822 return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3823 }
3824 EXPORT_SYMBOL_GPL(clk_register);
3825
3826 /**
3827 * clk_hw_register - register a clk_hw and return an error code
3828 * @dev: device that is registering this clock
3829 * @hw: link to hardware-specific clock data
3830 *
3831 * clk_hw_register is the primary interface for populating the clock tree with
3832 * new clock nodes. It returns an integer equal to zero indicating success or
3833 * less than zero indicating failure. Drivers must test for an error code after
3834 * calling clk_hw_register().
3835 */
3836 int clk_hw_register(struct device *dev, struct clk_hw *hw)
3837 {
3838 return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3839 hw));
3840 }
3841 EXPORT_SYMBOL_GPL(clk_hw_register);
3842
3843 /*
3844 * of_clk_hw_register - register a clk_hw and return an error code
3845 * @node: device_node of device that is registering this clock
3846 * @hw: link to hardware-specific clock data
3847 *
3848 * of_clk_hw_register() is the primary interface for populating the clock tree
3849 * with new clock nodes when a struct device is not available, but a struct
3850 * device_node is. It returns an integer equal to zero indicating success or
3851 * less than zero indicating failure. Drivers must test for an error code after
3852 * calling of_clk_hw_register().
3853 */
3854 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3855 {
3856 return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3857 }
3858 EXPORT_SYMBOL_GPL(of_clk_hw_register);
3859
3860 /* Free memory allocated for a clock. */
3861 static void __clk_release(struct kref *ref)
3862 {
3863 struct clk_core *core = container_of(ref, struct clk_core, ref);
3864
3865 lockdep_assert_held(&prepare_lock);
3866
3867 clk_core_free_parent_map(core);
3868 kfree_const(core->name);
3869 kfree(core);
3870 }
3871
3872 /*
3873 * Empty clk_ops for unregistered clocks. These are used temporarily
3874 * after clk_unregister() was called on a clock and until last clock
3875 * consumer calls clk_put() and the struct clk object is freed.
3876 */
3877 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3878 {
3879 return -ENXIO;
3880 }
3881
3882 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3883 {
3884 WARN_ON_ONCE(1);
3885 }
3886
3887 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3888 unsigned long parent_rate)
3889 {
3890 return -ENXIO;
3891 }
3892
3893 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3894 {
3895 return -ENXIO;
3896 }
3897
3898 static const struct clk_ops clk_nodrv_ops = {
3899 .enable = clk_nodrv_prepare_enable,
3900 .disable = clk_nodrv_disable_unprepare,
3901 .prepare = clk_nodrv_prepare_enable,
3902 .unprepare = clk_nodrv_disable_unprepare,
3903 .set_rate = clk_nodrv_set_rate,
3904 .set_parent = clk_nodrv_set_parent,
3905 };
3906
3907 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3908 struct clk_core *target)
3909 {
3910 int i;
3911 struct clk_core *child;
3912
3913 for (i = 0; i < root->num_parents; i++)
3914 if (root->parents[i].core == target)
3915 root->parents[i].core = NULL;
3916
3917 hlist_for_each_entry(child, &root->children, child_node)
3918 clk_core_evict_parent_cache_subtree(child, target);
3919 }
3920
3921 /* Remove this clk from all parent caches */
3922 static void clk_core_evict_parent_cache(struct clk_core *core)
3923 {
3924 struct hlist_head **lists;
3925 struct clk_core *root;
3926
3927 lockdep_assert_held(&prepare_lock);
3928
3929 for (lists = all_lists; *lists; lists++)
3930 hlist_for_each_entry(root, *lists, child_node)
3931 clk_core_evict_parent_cache_subtree(root, core);
3932
3933 }
3934
3935 /**
3936 * clk_unregister - unregister a currently registered clock
3937 * @clk: clock to unregister
3938 */
3939 void clk_unregister(struct clk *clk)
3940 {
3941 unsigned long flags;
3942 const struct clk_ops *ops;
3943
3944 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
3945 return;
3946
3947 clk_debug_unregister(clk->core);
3948
3949 clk_prepare_lock();
3950
3951 ops = clk->core->ops;
3952 if (ops == &clk_nodrv_ops) {
3953 pr_err("%s: unregistered clock: %s\n", __func__,
3954 clk->core->name);
3955 goto unlock;
3956 }
3957 /*
3958 * Assign empty clock ops for consumers that might still hold
3959 * a reference to this clock.
3960 */
3961 flags = clk_enable_lock();
3962 clk->core->ops = &clk_nodrv_ops;
3963 clk_enable_unlock(flags);
3964
3965 if (ops->terminate)
3966 ops->terminate(clk->core->hw);
3967
3968 if (!hlist_empty(&clk->core->children)) {
3969 struct clk_core *child;
3970 struct hlist_node *t;
3971
3972 /* Reparent all children to the orphan list. */
3973 hlist_for_each_entry_safe(child, t, &clk->core->children,
3974 child_node)
3975 clk_core_set_parent_nolock(child, NULL);
3976 }
3977
3978 clk_core_evict_parent_cache(clk->core);
3979
3980 hlist_del_init(&clk->core->child_node);
3981
3982 if (clk->core->prepare_count)
3983 pr_warn("%s: unregistering prepared clock: %s\n",
3984 __func__, clk->core->name);
3985
3986 if (clk->core->protect_count)
3987 pr_warn("%s: unregistering protected clock: %s\n",
3988 __func__, clk->core->name);
3989
3990 kref_put(&clk->core->ref, __clk_release);
3991 free_clk(clk);
3992 unlock:
3993 clk_prepare_unlock();
3994 }
3995 EXPORT_SYMBOL_GPL(clk_unregister);
3996
3997 /**
3998 * clk_hw_unregister - unregister a currently registered clk_hw
3999 * @hw: hardware-specific clock data to unregister
4000 */
4001 void clk_hw_unregister(struct clk_hw *hw)
4002 {
4003 clk_unregister(hw->clk);
4004 }
4005 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4006
4007 static void devm_clk_release(struct device *dev, void *res)
4008 {
4009 clk_unregister(*(struct clk **)res);
4010 }
4011
4012 static void devm_clk_hw_release(struct device *dev, void *res)
4013 {
4014 clk_hw_unregister(*(struct clk_hw **)res);
4015 }
4016
4017 /**
4018 * devm_clk_register - resource managed clk_register()
4019 * @dev: device that is registering this clock
4020 * @hw: link to hardware-specific clock data
4021 *
4022 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4023 *
4024 * Clocks returned from this function are automatically clk_unregister()ed on
4025 * driver detach. See clk_register() for more information.
4026 */
4027 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4028 {
4029 struct clk *clk;
4030 struct clk **clkp;
4031
4032 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4033 if (!clkp)
4034 return ERR_PTR(-ENOMEM);
4035
4036 clk = clk_register(dev, hw);
4037 if (!IS_ERR(clk)) {
4038 *clkp = clk;
4039 devres_add(dev, clkp);
4040 } else {
4041 devres_free(clkp);
4042 }
4043
4044 return clk;
4045 }
4046 EXPORT_SYMBOL_GPL(devm_clk_register);
4047
4048 /**
4049 * devm_clk_hw_register - resource managed clk_hw_register()
4050 * @dev: device that is registering this clock
4051 * @hw: link to hardware-specific clock data
4052 *
4053 * Managed clk_hw_register(). Clocks registered by this function are
4054 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4055 * for more information.
4056 */
4057 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4058 {
4059 struct clk_hw **hwp;
4060 int ret;
4061
4062 hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4063 if (!hwp)
4064 return -ENOMEM;
4065
4066 ret = clk_hw_register(dev, hw);
4067 if (!ret) {
4068 *hwp = hw;
4069 devres_add(dev, hwp);
4070 } else {
4071 devres_free(hwp);
4072 }
4073
4074 return ret;
4075 }
4076 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4077
4078 static int devm_clk_match(struct device *dev, void *res, void *data)
4079 {
4080 struct clk *c = res;
4081 if (WARN_ON(!c))
4082 return 0;
4083 return c == data;
4084 }
4085
4086 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4087 {
4088 struct clk_hw *hw = res;
4089
4090 if (WARN_ON(!hw))
4091 return 0;
4092 return hw == data;
4093 }
4094
4095 /**
4096 * devm_clk_unregister - resource managed clk_unregister()
4097 * @clk: clock to unregister
4098 *
4099 * Deallocate a clock allocated with devm_clk_register(). Normally
4100 * this function will not need to be called and the resource management
4101 * code will ensure that the resource is freed.
4102 */
4103 void devm_clk_unregister(struct device *dev, struct clk *clk)
4104 {
4105 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4106 }
4107 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4108
4109 /**
4110 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4111 * @dev: device that is unregistering the hardware-specific clock data
4112 * @hw: link to hardware-specific clock data
4113 *
4114 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4115 * this function will not need to be called and the resource management
4116 * code will ensure that the resource is freed.
4117 */
4118 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4119 {
4120 WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4121 hw));
4122 }
4123 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4124
4125 /*
4126 * clkdev helpers
4127 */
4128
4129 void __clk_put(struct clk *clk)
4130 {
4131 struct module *owner;
4132
4133 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4134 return;
4135
4136 clk_prepare_lock();
4137
4138 /*
4139 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4140 * given user should be balanced with calls to clk_rate_exclusive_put()
4141 * and by that same consumer
4142 */
4143 if (WARN_ON(clk->exclusive_count)) {
4144 /* We voiced our concern, let's sanitize the situation */
4145 clk->core->protect_count -= (clk->exclusive_count - 1);
4146 clk_core_rate_unprotect(clk->core);
4147 clk->exclusive_count = 0;
4148 }
4149
4150 hlist_del(&clk->clks_node);
4151 if (clk->min_rate > clk->core->req_rate ||
4152 clk->max_rate < clk->core->req_rate)
4153 clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4154
4155 owner = clk->core->owner;
4156 kref_put(&clk->core->ref, __clk_release);
4157
4158 clk_prepare_unlock();
4159
4160 module_put(owner);
4161
4162 free_clk(clk);
4163 }
4164
4165 /*** clk rate change notifiers ***/
4166
4167 /**
4168 * clk_notifier_register - add a clk rate change notifier
4169 * @clk: struct clk * to watch
4170 * @nb: struct notifier_block * with callback info
4171 *
4172 * Request notification when clk's rate changes. This uses an SRCU
4173 * notifier because we want it to block and notifier unregistrations are
4174 * uncommon. The callbacks associated with the notifier must not
4175 * re-enter into the clk framework by calling any top-level clk APIs;
4176 * this will cause a nested prepare_lock mutex.
4177 *
4178 * In all notification cases (pre, post and abort rate change) the original
4179 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4180 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4181 *
4182 * clk_notifier_register() must be called from non-atomic context.
4183 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4184 * allocation failure; otherwise, passes along the return value of
4185 * srcu_notifier_chain_register().
4186 */
4187 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4188 {
4189 struct clk_notifier *cn;
4190 int ret = -ENOMEM;
4191
4192 if (!clk || !nb)
4193 return -EINVAL;
4194
4195 clk_prepare_lock();
4196
4197 /* search the list of notifiers for this clk */
4198 list_for_each_entry(cn, &clk_notifier_list, node)
4199 if (cn->clk == clk)
4200 break;
4201
4202 /* if clk wasn't in the notifier list, allocate new clk_notifier */
4203 if (cn->clk != clk) {
4204 cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4205 if (!cn)
4206 goto out;
4207
4208 cn->clk = clk;
4209 srcu_init_notifier_head(&cn->notifier_head);
4210
4211 list_add(&cn->node, &clk_notifier_list);
4212 }
4213
4214 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4215
4216 clk->core->notifier_count++;
4217
4218 out:
4219 clk_prepare_unlock();
4220
4221 return ret;
4222 }
4223 EXPORT_SYMBOL_GPL(clk_notifier_register);
4224
4225 /**
4226 * clk_notifier_unregister - remove a clk rate change notifier
4227 * @clk: struct clk *
4228 * @nb: struct notifier_block * with callback info
4229 *
4230 * Request no further notification for changes to 'clk' and frees memory
4231 * allocated in clk_notifier_register.
4232 *
4233 * Returns -EINVAL if called with null arguments; otherwise, passes
4234 * along the return value of srcu_notifier_chain_unregister().
4235 */
4236 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4237 {
4238 struct clk_notifier *cn = NULL;
4239 int ret = -EINVAL;
4240
4241 if (!clk || !nb)
4242 return -EINVAL;
4243
4244 clk_prepare_lock();
4245
4246 list_for_each_entry(cn, &clk_notifier_list, node)
4247 if (cn->clk == clk)
4248 break;
4249
4250 if (cn->clk == clk) {
4251 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4252
4253 clk->core->notifier_count--;
4254
4255 /* XXX the notifier code should handle this better */
4256 if (!cn->notifier_head.head) {
4257 srcu_cleanup_notifier_head(&cn->notifier_head);
4258 list_del(&cn->node);
4259 kfree(cn);
4260 }
4261
4262 } else {
4263 ret = -ENOENT;
4264 }
4265
4266 clk_prepare_unlock();
4267
4268 return ret;
4269 }
4270 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4271
4272 #ifdef CONFIG_OF
4273 static void clk_core_reparent_orphans(void)
4274 {
4275 clk_prepare_lock();
4276 clk_core_reparent_orphans_nolock();
4277 clk_prepare_unlock();
4278 }
4279
4280 /**
4281 * struct of_clk_provider - Clock provider registration structure
4282 * @link: Entry in global list of clock providers
4283 * @node: Pointer to device tree node of clock provider
4284 * @get: Get clock callback. Returns NULL or a struct clk for the
4285 * given clock specifier
4286 * @data: context pointer to be passed into @get callback
4287 */
4288 struct of_clk_provider {
4289 struct list_head link;
4290
4291 struct device_node *node;
4292 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4293 struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4294 void *data;
4295 };
4296
4297 extern struct of_device_id __clk_of_table;
4298 static const struct of_device_id __clk_of_table_sentinel
4299 __used __section(__clk_of_table_end);
4300
4301 static LIST_HEAD(of_clk_providers);
4302 static DEFINE_MUTEX(of_clk_mutex);
4303
4304 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4305 void *data)
4306 {
4307 return data;
4308 }
4309 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4310
4311 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4312 {
4313 return data;
4314 }
4315 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4316
4317 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4318 {
4319 struct clk_onecell_data *clk_data = data;
4320 unsigned int idx = clkspec->args[0];
4321
4322 if (idx >= clk_data->clk_num) {
4323 pr_err("%s: invalid clock index %u\n", __func__, idx);
4324 return ERR_PTR(-EINVAL);
4325 }
4326
4327 return clk_data->clks[idx];
4328 }
4329 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4330
4331 struct clk_hw *
4332 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4333 {
4334 struct clk_hw_onecell_data *hw_data = data;
4335 unsigned int idx = clkspec->args[0];
4336
4337 if (idx >= hw_data->num) {
4338 pr_err("%s: invalid index %u\n", __func__, idx);
4339 return ERR_PTR(-EINVAL);
4340 }
4341
4342 return hw_data->hws[idx];
4343 }
4344 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4345
4346 /**
4347 * of_clk_add_provider() - Register a clock provider for a node
4348 * @np: Device node pointer associated with clock provider
4349 * @clk_src_get: callback for decoding clock
4350 * @data: context pointer for @clk_src_get callback.
4351 *
4352 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4353 */
4354 int of_clk_add_provider(struct device_node *np,
4355 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4356 void *data),
4357 void *data)
4358 {
4359 struct of_clk_provider *cp;
4360 int ret;
4361
4362 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4363 if (!cp)
4364 return -ENOMEM;
4365
4366 cp->node = of_node_get(np);
4367 cp->data = data;
4368 cp->get = clk_src_get;
4369
4370 mutex_lock(&of_clk_mutex);
4371 list_add(&cp->link, &of_clk_providers);
4372 mutex_unlock(&of_clk_mutex);
4373 pr_debug("Added clock from %pOF\n", np);
4374
4375 clk_core_reparent_orphans();
4376
4377 ret = of_clk_set_defaults(np, true);
4378 if (ret < 0)
4379 of_clk_del_provider(np);
4380
4381 return ret;
4382 }
4383 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4384
4385 /**
4386 * of_clk_add_hw_provider() - Register a clock provider for a node
4387 * @np: Device node pointer associated with clock provider
4388 * @get: callback for decoding clk_hw
4389 * @data: context pointer for @get callback.
4390 */
4391 int of_clk_add_hw_provider(struct device_node *np,
4392 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4393 void *data),
4394 void *data)
4395 {
4396 struct of_clk_provider *cp;
4397 int ret;
4398
4399 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4400 if (!cp)
4401 return -ENOMEM;
4402
4403 cp->node = of_node_get(np);
4404 cp->data = data;
4405 cp->get_hw = get;
4406
4407 mutex_lock(&of_clk_mutex);
4408 list_add(&cp->link, &of_clk_providers);
4409 mutex_unlock(&of_clk_mutex);
4410 pr_debug("Added clk_hw provider from %pOF\n", np);
4411
4412 clk_core_reparent_orphans();
4413
4414 ret = of_clk_set_defaults(np, true);
4415 if (ret < 0)
4416 of_clk_del_provider(np);
4417
4418 return ret;
4419 }
4420 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4421
4422 static void devm_of_clk_release_provider(struct device *dev, void *res)
4423 {
4424 of_clk_del_provider(*(struct device_node **)res);
4425 }
4426
4427 /*
4428 * We allow a child device to use its parent device as the clock provider node
4429 * for cases like MFD sub-devices where the child device driver wants to use
4430 * devm_*() APIs but not list the device in DT as a sub-node.
4431 */
4432 static struct device_node *get_clk_provider_node(struct device *dev)
4433 {
4434 struct device_node *np, *parent_np;
4435
4436 np = dev->of_node;
4437 parent_np = dev->parent ? dev->parent->of_node : NULL;
4438
4439 if (!of_find_property(np, "#clock-cells", NULL))
4440 if (of_find_property(parent_np, "#clock-cells", NULL))
4441 np = parent_np;
4442
4443 return np;
4444 }
4445
4446 /**
4447 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4448 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4449 * @get: callback for decoding clk_hw
4450 * @data: context pointer for @get callback
4451 *
4452 * Registers clock provider for given device's node. If the device has no DT
4453 * node or if the device node lacks of clock provider information (#clock-cells)
4454 * then the parent device's node is scanned for this information. If parent node
4455 * has the #clock-cells then it is used in registration. Provider is
4456 * automatically released at device exit.
4457 *
4458 * Return: 0 on success or an errno on failure.
4459 */
4460 int devm_of_clk_add_hw_provider(struct device *dev,
4461 struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4462 void *data),
4463 void *data)
4464 {
4465 struct device_node **ptr, *np;
4466 int ret;
4467
4468 ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4469 GFP_KERNEL);
4470 if (!ptr)
4471 return -ENOMEM;
4472
4473 np = get_clk_provider_node(dev);
4474 ret = of_clk_add_hw_provider(np, get, data);
4475 if (!ret) {
4476 *ptr = np;
4477 devres_add(dev, ptr);
4478 } else {
4479 devres_free(ptr);
4480 }
4481
4482 return ret;
4483 }
4484 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4485
4486 /**
4487 * of_clk_del_provider() - Remove a previously registered clock provider
4488 * @np: Device node pointer associated with clock provider
4489 */
4490 void of_clk_del_provider(struct device_node *np)
4491 {
4492 struct of_clk_provider *cp;
4493
4494 mutex_lock(&of_clk_mutex);
4495 list_for_each_entry(cp, &of_clk_providers, link) {
4496 if (cp->node == np) {
4497 list_del(&cp->link);
4498 of_node_put(cp->node);
4499 kfree(cp);
4500 break;
4501 }
4502 }
4503 mutex_unlock(&of_clk_mutex);
4504 }
4505 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4506
4507 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4508 {
4509 struct device_node **np = res;
4510
4511 if (WARN_ON(!np || !*np))
4512 return 0;
4513
4514 return *np == data;
4515 }
4516
4517 /**
4518 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4519 * @dev: Device to whose lifetime the clock provider was bound
4520 */
4521 void devm_of_clk_del_provider(struct device *dev)
4522 {
4523 int ret;
4524 struct device_node *np = get_clk_provider_node(dev);
4525
4526 ret = devres_release(dev, devm_of_clk_release_provider,
4527 devm_clk_provider_match, np);
4528
4529 WARN_ON(ret);
4530 }
4531 EXPORT_SYMBOL(devm_of_clk_del_provider);
4532
4533 /**
4534 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4535 * @np: device node to parse clock specifier from
4536 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4537 * @name: clock name to find and parse. If name is NULL, the index is used
4538 * @out_args: Result of parsing the clock specifier
4539 *
4540 * Parses a device node's "clocks" and "clock-names" properties to find the
4541 * phandle and cells for the index or name that is desired. The resulting clock
4542 * specifier is placed into @out_args, or an errno is returned when there's a
4543 * parsing error. The @index argument is ignored if @name is non-NULL.
4544 *
4545 * Example:
4546 *
4547 * phandle1: clock-controller@1 {
4548 * #clock-cells = <2>;
4549 * }
4550 *
4551 * phandle2: clock-controller@2 {
4552 * #clock-cells = <1>;
4553 * }
4554 *
4555 * clock-consumer@3 {
4556 * clocks = <&phandle1 1 2 &phandle2 3>;
4557 * clock-names = "name1", "name2";
4558 * }
4559 *
4560 * To get a device_node for `clock-controller@2' node you may call this
4561 * function a few different ways:
4562 *
4563 * of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4564 * of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4565 * of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4566 *
4567 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4568 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4569 * the "clock-names" property of @np.
4570 */
4571 static int of_parse_clkspec(const struct device_node *np, int index,
4572 const char *name, struct of_phandle_args *out_args)
4573 {
4574 int ret = -ENOENT;
4575
4576 /* Walk up the tree of devices looking for a clock property that matches */
4577 while (np) {
4578 /*
4579 * For named clocks, first look up the name in the
4580 * "clock-names" property. If it cannot be found, then index
4581 * will be an error code and of_parse_phandle_with_args() will
4582 * return -EINVAL.
4583 */
4584 if (name)
4585 index = of_property_match_string(np, "clock-names", name);
4586 ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4587 index, out_args);
4588 if (!ret)
4589 break;
4590 if (name && index >= 0)
4591 break;
4592
4593 /*
4594 * No matching clock found on this node. If the parent node
4595 * has a "clock-ranges" property, then we can try one of its
4596 * clocks.
4597 */
4598 np = np->parent;
4599 if (np && !of_get_property(np, "clock-ranges", NULL))
4600 break;
4601 index = 0;
4602 }
4603
4604 return ret;
4605 }
4606
4607 static struct clk_hw *
4608 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4609 struct of_phandle_args *clkspec)
4610 {
4611 struct clk *clk;
4612
4613 if (provider->get_hw)
4614 return provider->get_hw(clkspec, provider->data);
4615
4616 clk = provider->get(clkspec, provider->data);
4617 if (IS_ERR(clk))
4618 return ERR_CAST(clk);
4619 return __clk_get_hw(clk);
4620 }
4621
4622 static struct clk_hw *
4623 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4624 {
4625 struct of_clk_provider *provider;
4626 struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4627
4628 if (!clkspec)
4629 return ERR_PTR(-EINVAL);
4630
4631 mutex_lock(&of_clk_mutex);
4632 list_for_each_entry(provider, &of_clk_providers, link) {
4633 if (provider->node == clkspec->np) {
4634 hw = __of_clk_get_hw_from_provider(provider, clkspec);
4635 if (!IS_ERR(hw))
4636 break;
4637 }
4638 }
4639 mutex_unlock(&of_clk_mutex);
4640
4641 return hw;
4642 }
4643
4644 /**
4645 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4646 * @clkspec: pointer to a clock specifier data structure
4647 *
4648 * This function looks up a struct clk from the registered list of clock
4649 * providers, an input is a clock specifier data structure as returned
4650 * from the of_parse_phandle_with_args() function call.
4651 */
4652 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4653 {
4654 struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4655
4656 return clk_hw_create_clk(NULL, hw, NULL, __func__);
4657 }
4658 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4659
4660 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4661 const char *con_id)
4662 {
4663 int ret;
4664 struct clk_hw *hw;
4665 struct of_phandle_args clkspec;
4666
4667 ret = of_parse_clkspec(np, index, con_id, &clkspec);
4668 if (ret)
4669 return ERR_PTR(ret);
4670
4671 hw = of_clk_get_hw_from_clkspec(&clkspec);
4672 of_node_put(clkspec.np);
4673
4674 return hw;
4675 }
4676
4677 static struct clk *__of_clk_get(struct device_node *np,
4678 int index, const char *dev_id,
4679 const char *con_id)
4680 {
4681 struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4682
4683 return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4684 }
4685
4686 struct clk *of_clk_get(struct device_node *np, int index)
4687 {
4688 return __of_clk_get(np, index, np->full_name, NULL);
4689 }
4690 EXPORT_SYMBOL(of_clk_get);
4691
4692 /**
4693 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4694 * @np: pointer to clock consumer node
4695 * @name: name of consumer's clock input, or NULL for the first clock reference
4696 *
4697 * This function parses the clocks and clock-names properties,
4698 * and uses them to look up the struct clk from the registered list of clock
4699 * providers.
4700 */
4701 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4702 {
4703 if (!np)
4704 return ERR_PTR(-ENOENT);
4705
4706 return __of_clk_get(np, 0, np->full_name, name);
4707 }
4708 EXPORT_SYMBOL(of_clk_get_by_name);
4709
4710 /**
4711 * of_clk_get_parent_count() - Count the number of clocks a device node has
4712 * @np: device node to count
4713 *
4714 * Returns: The number of clocks that are possible parents of this node
4715 */
4716 unsigned int of_clk_get_parent_count(struct device_node *np)
4717 {
4718 int count;
4719
4720 count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4721 if (count < 0)
4722 return 0;
4723
4724 return count;
4725 }
4726 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4727
4728 const char *of_clk_get_parent_name(struct device_node *np, int index)
4729 {
4730 struct of_phandle_args clkspec;
4731 struct property *prop;
4732 const char *clk_name;
4733 const __be32 *vp;
4734 u32 pv;
4735 int rc;
4736 int count;
4737 struct clk *clk;
4738
4739 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4740 &clkspec);
4741 if (rc)
4742 return NULL;
4743
4744 index = clkspec.args_count ? clkspec.args[0] : 0;
4745 count = 0;
4746
4747 /* if there is an indices property, use it to transfer the index
4748 * specified into an array offset for the clock-output-names property.
4749 */
4750 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4751 if (index == pv) {
4752 index = count;
4753 break;
4754 }
4755 count++;
4756 }
4757 /* We went off the end of 'clock-indices' without finding it */
4758 if (prop && !vp)
4759 return NULL;
4760
4761 if (of_property_read_string_index(clkspec.np, "clock-output-names",
4762 index,
4763 &clk_name) < 0) {
4764 /*
4765 * Best effort to get the name if the clock has been
4766 * registered with the framework. If the clock isn't
4767 * registered, we return the node name as the name of
4768 * the clock as long as #clock-cells = 0.
4769 */
4770 clk = of_clk_get_from_provider(&clkspec);
4771 if (IS_ERR(clk)) {
4772 if (clkspec.args_count == 0)
4773 clk_name = clkspec.np->name;
4774 else
4775 clk_name = NULL;
4776 } else {
4777 clk_name = __clk_get_name(clk);
4778 clk_put(clk);
4779 }
4780 }
4781
4782
4783 of_node_put(clkspec.np);
4784 return clk_name;
4785 }
4786 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4787
4788 /**
4789 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4790 * number of parents
4791 * @np: Device node pointer associated with clock provider
4792 * @parents: pointer to char array that hold the parents' names
4793 * @size: size of the @parents array
4794 *
4795 * Return: number of parents for the clock node.
4796 */
4797 int of_clk_parent_fill(struct device_node *np, const char **parents,
4798 unsigned int size)
4799 {
4800 unsigned int i = 0;
4801
4802 while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4803 i++;
4804
4805 return i;
4806 }
4807 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4808
4809 struct clock_provider {
4810 void (*clk_init_cb)(struct device_node *);
4811 struct device_node *np;
4812 struct list_head node;
4813 };
4814
4815 /*
4816 * This function looks for a parent clock. If there is one, then it
4817 * checks that the provider for this parent clock was initialized, in
4818 * this case the parent clock will be ready.
4819 */
4820 static int parent_ready(struct device_node *np)
4821 {
4822 int i = 0;
4823
4824 while (true) {
4825 struct clk *clk = of_clk_get(np, i);
4826
4827 /* this parent is ready we can check the next one */
4828 if (!IS_ERR(clk)) {
4829 clk_put(clk);
4830 i++;
4831 continue;
4832 }
4833
4834 /* at least one parent is not ready, we exit now */
4835 if (PTR_ERR(clk) == -EPROBE_DEFER)
4836 return 0;
4837
4838 /*
4839 * Here we make assumption that the device tree is
4840 * written correctly. So an error means that there is
4841 * no more parent. As we didn't exit yet, then the
4842 * previous parent are ready. If there is no clock
4843 * parent, no need to wait for them, then we can
4844 * consider their absence as being ready
4845 */
4846 return 1;
4847 }
4848 }
4849
4850 /**
4851 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4852 * @np: Device node pointer associated with clock provider
4853 * @index: clock index
4854 * @flags: pointer to top-level framework flags
4855 *
4856 * Detects if the clock-critical property exists and, if so, sets the
4857 * corresponding CLK_IS_CRITICAL flag.
4858 *
4859 * Do not use this function. It exists only for legacy Device Tree
4860 * bindings, such as the one-clock-per-node style that are outdated.
4861 * Those bindings typically put all clock data into .dts and the Linux
4862 * driver has no clock data, thus making it impossible to set this flag
4863 * correctly from the driver. Only those drivers may call
4864 * of_clk_detect_critical from their setup functions.
4865 *
4866 * Return: error code or zero on success
4867 */
4868 int of_clk_detect_critical(struct device_node *np,
4869 int index, unsigned long *flags)
4870 {
4871 struct property *prop;
4872 const __be32 *cur;
4873 uint32_t idx;
4874
4875 if (!np || !flags)
4876 return -EINVAL;
4877
4878 of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4879 if (index == idx)
4880 *flags |= CLK_IS_CRITICAL;
4881
4882 return 0;
4883 }
4884
4885 /**
4886 * of_clk_init() - Scan and init clock providers from the DT
4887 * @matches: array of compatible values and init functions for providers.
4888 *
4889 * This function scans the device tree for matching clock providers
4890 * and calls their initialization functions. It also does it by trying
4891 * to follow the dependencies.
4892 */
4893 void __init of_clk_init(const struct of_device_id *matches)
4894 {
4895 const struct of_device_id *match;
4896 struct device_node *np;
4897 struct clock_provider *clk_provider, *next;
4898 bool is_init_done;
4899 bool force = false;
4900 LIST_HEAD(clk_provider_list);
4901
4902 if (!matches)
4903 matches = &__clk_of_table;
4904
4905 /* First prepare the list of the clocks providers */
4906 for_each_matching_node_and_match(np, matches, &match) {
4907 struct clock_provider *parent;
4908
4909 if (!of_device_is_available(np))
4910 continue;
4911
4912 parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4913 if (!parent) {
4914 list_for_each_entry_safe(clk_provider, next,
4915 &clk_provider_list, node) {
4916 list_del(&clk_provider->node);
4917 of_node_put(clk_provider->np);
4918 kfree(clk_provider);
4919 }
4920 of_node_put(np);
4921 return;
4922 }
4923
4924 parent->clk_init_cb = match->data;
4925 parent->np = of_node_get(np);
4926 list_add_tail(&parent->node, &clk_provider_list);
4927 }
4928
4929 while (!list_empty(&clk_provider_list)) {
4930 is_init_done = false;
4931 list_for_each_entry_safe(clk_provider, next,
4932 &clk_provider_list, node) {
4933 if (force || parent_ready(clk_provider->np)) {
4934
4935 /* Don't populate platform devices */
4936 of_node_set_flag(clk_provider->np,
4937 OF_POPULATED);
4938
4939 clk_provider->clk_init_cb(clk_provider->np);
4940 of_clk_set_defaults(clk_provider->np, true);
4941
4942 list_del(&clk_provider->node);
4943 of_node_put(clk_provider->np);
4944 kfree(clk_provider);
4945 is_init_done = true;
4946 }
4947 }
4948
4949 /*
4950 * We didn't manage to initialize any of the
4951 * remaining providers during the last loop, so now we
4952 * initialize all the remaining ones unconditionally
4953 * in case the clock parent was not mandatory
4954 */
4955 if (!is_init_done)
4956 force = true;
4957 }
4958 }
4959 #endif