]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clk/clk.c
reset: Silence warning in reset-controller.h
[mirror_ubuntu-bionic-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/spinlock.h>
16 #include <linux/err.h>
17 #include <linux/list.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/device.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23
24 #include "clk.h"
25
26 static DEFINE_SPINLOCK(enable_lock);
27 static DEFINE_MUTEX(prepare_lock);
28
29 static struct task_struct *prepare_owner;
30 static struct task_struct *enable_owner;
31
32 static int prepare_refcnt;
33 static int enable_refcnt;
34
35 static HLIST_HEAD(clk_root_list);
36 static HLIST_HEAD(clk_orphan_list);
37 static LIST_HEAD(clk_notifier_list);
38
39 /*** locking ***/
40 static void clk_prepare_lock(void)
41 {
42 if (!mutex_trylock(&prepare_lock)) {
43 if (prepare_owner == current) {
44 prepare_refcnt++;
45 return;
46 }
47 mutex_lock(&prepare_lock);
48 }
49 WARN_ON_ONCE(prepare_owner != NULL);
50 WARN_ON_ONCE(prepare_refcnt != 0);
51 prepare_owner = current;
52 prepare_refcnt = 1;
53 }
54
55 static void clk_prepare_unlock(void)
56 {
57 WARN_ON_ONCE(prepare_owner != current);
58 WARN_ON_ONCE(prepare_refcnt == 0);
59
60 if (--prepare_refcnt)
61 return;
62 prepare_owner = NULL;
63 mutex_unlock(&prepare_lock);
64 }
65
66 static unsigned long clk_enable_lock(void)
67 {
68 unsigned long flags;
69
70 if (!spin_trylock_irqsave(&enable_lock, flags)) {
71 if (enable_owner == current) {
72 enable_refcnt++;
73 return flags;
74 }
75 spin_lock_irqsave(&enable_lock, flags);
76 }
77 WARN_ON_ONCE(enable_owner != NULL);
78 WARN_ON_ONCE(enable_refcnt != 0);
79 enable_owner = current;
80 enable_refcnt = 1;
81 return flags;
82 }
83
84 static void clk_enable_unlock(unsigned long flags)
85 {
86 WARN_ON_ONCE(enable_owner != current);
87 WARN_ON_ONCE(enable_refcnt == 0);
88
89 if (--enable_refcnt)
90 return;
91 enable_owner = NULL;
92 spin_unlock_irqrestore(&enable_lock, flags);
93 }
94
95 /*** debugfs support ***/
96
97 #ifdef CONFIG_DEBUG_FS
98 #include <linux/debugfs.h>
99
100 static struct dentry *rootdir;
101 static struct dentry *orphandir;
102 static int inited = 0;
103
104 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
105 {
106 if (!c)
107 return;
108
109 seq_printf(s, "%*s%-*s %-11d %-12d %-10lu %-11lu",
110 level * 3 + 1, "",
111 30 - level * 3, c->name,
112 c->enable_count, c->prepare_count, clk_get_rate(c),
113 clk_get_accuracy(c));
114 seq_printf(s, "\n");
115 }
116
117 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
118 int level)
119 {
120 struct clk *child;
121
122 if (!c)
123 return;
124
125 clk_summary_show_one(s, c, level);
126
127 hlist_for_each_entry(child, &c->children, child_node)
128 clk_summary_show_subtree(s, child, level + 1);
129 }
130
131 static int clk_summary_show(struct seq_file *s, void *data)
132 {
133 struct clk *c;
134
135 seq_printf(s, " clock enable_cnt prepare_cnt rate accuracy\n");
136 seq_printf(s, "---------------------------------------------------------------------------------\n");
137
138 clk_prepare_lock();
139
140 hlist_for_each_entry(c, &clk_root_list, child_node)
141 clk_summary_show_subtree(s, c, 0);
142
143 hlist_for_each_entry(c, &clk_orphan_list, child_node)
144 clk_summary_show_subtree(s, c, 0);
145
146 clk_prepare_unlock();
147
148 return 0;
149 }
150
151
152 static int clk_summary_open(struct inode *inode, struct file *file)
153 {
154 return single_open(file, clk_summary_show, inode->i_private);
155 }
156
157 static const struct file_operations clk_summary_fops = {
158 .open = clk_summary_open,
159 .read = seq_read,
160 .llseek = seq_lseek,
161 .release = single_release,
162 };
163
164 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
165 {
166 if (!c)
167 return;
168
169 seq_printf(s, "\"%s\": { ", c->name);
170 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
171 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
172 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
173 seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
174 }
175
176 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
177 {
178 struct clk *child;
179
180 if (!c)
181 return;
182
183 clk_dump_one(s, c, level);
184
185 hlist_for_each_entry(child, &c->children, child_node) {
186 seq_printf(s, ",");
187 clk_dump_subtree(s, child, level + 1);
188 }
189
190 seq_printf(s, "}");
191 }
192
193 static int clk_dump(struct seq_file *s, void *data)
194 {
195 struct clk *c;
196 bool first_node = true;
197
198 seq_printf(s, "{");
199
200 clk_prepare_lock();
201
202 hlist_for_each_entry(c, &clk_root_list, child_node) {
203 if (!first_node)
204 seq_printf(s, ",");
205 first_node = false;
206 clk_dump_subtree(s, c, 0);
207 }
208
209 hlist_for_each_entry(c, &clk_orphan_list, child_node) {
210 seq_printf(s, ",");
211 clk_dump_subtree(s, c, 0);
212 }
213
214 clk_prepare_unlock();
215
216 seq_printf(s, "}");
217 return 0;
218 }
219
220
221 static int clk_dump_open(struct inode *inode, struct file *file)
222 {
223 return single_open(file, clk_dump, inode->i_private);
224 }
225
226 static const struct file_operations clk_dump_fops = {
227 .open = clk_dump_open,
228 .read = seq_read,
229 .llseek = seq_lseek,
230 .release = single_release,
231 };
232
233 /* caller must hold prepare_lock */
234 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
235 {
236 struct dentry *d;
237 int ret = -ENOMEM;
238
239 if (!clk || !pdentry) {
240 ret = -EINVAL;
241 goto out;
242 }
243
244 d = debugfs_create_dir(clk->name, pdentry);
245 if (!d)
246 goto out;
247
248 clk->dentry = d;
249
250 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
251 (u32 *)&clk->rate);
252 if (!d)
253 goto err_out;
254
255 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
256 (u32 *)&clk->accuracy);
257 if (!d)
258 goto err_out;
259
260 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
261 (u32 *)&clk->flags);
262 if (!d)
263 goto err_out;
264
265 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
266 (u32 *)&clk->prepare_count);
267 if (!d)
268 goto err_out;
269
270 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
271 (u32 *)&clk->enable_count);
272 if (!d)
273 goto err_out;
274
275 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
276 (u32 *)&clk->notifier_count);
277 if (!d)
278 goto err_out;
279
280 ret = 0;
281 goto out;
282
283 err_out:
284 debugfs_remove_recursive(clk->dentry);
285 clk->dentry = NULL;
286 out:
287 return ret;
288 }
289
290 /* caller must hold prepare_lock */
291 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
292 {
293 struct clk *child;
294 int ret = -EINVAL;;
295
296 if (!clk || !pdentry)
297 goto out;
298
299 ret = clk_debug_create_one(clk, pdentry);
300
301 if (ret)
302 goto out;
303
304 hlist_for_each_entry(child, &clk->children, child_node)
305 clk_debug_create_subtree(child, clk->dentry);
306
307 ret = 0;
308 out:
309 return ret;
310 }
311
312 /**
313 * clk_debug_register - add a clk node to the debugfs clk tree
314 * @clk: the clk being added to the debugfs clk tree
315 *
316 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
317 * initialized. Otherwise it bails out early since the debugfs clk tree
318 * will be created lazily by clk_debug_init as part of a late_initcall.
319 *
320 * Caller must hold prepare_lock. Only clk_init calls this function (so
321 * far) so this is taken care.
322 */
323 static int clk_debug_register(struct clk *clk)
324 {
325 struct clk *parent;
326 struct dentry *pdentry;
327 int ret = 0;
328
329 if (!inited)
330 goto out;
331
332 parent = clk->parent;
333
334 /*
335 * Check to see if a clk is a root clk. Also check that it is
336 * safe to add this clk to debugfs
337 */
338 if (!parent)
339 if (clk->flags & CLK_IS_ROOT)
340 pdentry = rootdir;
341 else
342 pdentry = orphandir;
343 else
344 if (parent->dentry)
345 pdentry = parent->dentry;
346 else
347 goto out;
348
349 ret = clk_debug_create_subtree(clk, pdentry);
350
351 out:
352 return ret;
353 }
354
355 /**
356 * clk_debug_unregister - remove a clk node from the debugfs clk tree
357 * @clk: the clk being removed from the debugfs clk tree
358 *
359 * Dynamically removes a clk and all it's children clk nodes from the
360 * debugfs clk tree if clk->dentry points to debugfs created by
361 * clk_debug_register in __clk_init.
362 *
363 * Caller must hold prepare_lock.
364 */
365 static void clk_debug_unregister(struct clk *clk)
366 {
367 debugfs_remove_recursive(clk->dentry);
368 }
369
370 /**
371 * clk_debug_reparent - reparent clk node in the debugfs clk tree
372 * @clk: the clk being reparented
373 * @new_parent: the new clk parent, may be NULL
374 *
375 * Rename clk entry in the debugfs clk tree if debugfs has been
376 * initialized. Otherwise it bails out early since the debugfs clk tree
377 * will be created lazily by clk_debug_init as part of a late_initcall.
378 *
379 * Caller must hold prepare_lock.
380 */
381 static void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
382 {
383 struct dentry *d;
384 struct dentry *new_parent_d;
385
386 if (!inited)
387 return;
388
389 if (new_parent)
390 new_parent_d = new_parent->dentry;
391 else
392 new_parent_d = orphandir;
393
394 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
395 new_parent_d, clk->name);
396 if (d)
397 clk->dentry = d;
398 else
399 pr_debug("%s: failed to rename debugfs entry for %s\n",
400 __func__, clk->name);
401 }
402
403 /**
404 * clk_debug_init - lazily create the debugfs clk tree visualization
405 *
406 * clks are often initialized very early during boot before memory can
407 * be dynamically allocated and well before debugfs is setup.
408 * clk_debug_init walks the clk tree hierarchy while holding
409 * prepare_lock and creates the topology as part of a late_initcall,
410 * thus insuring that clks initialized very early will still be
411 * represented in the debugfs clk tree. This function should only be
412 * called once at boot-time, and all other clks added dynamically will
413 * be done so with clk_debug_register.
414 */
415 static int __init clk_debug_init(void)
416 {
417 struct clk *clk;
418 struct dentry *d;
419
420 rootdir = debugfs_create_dir("clk", NULL);
421
422 if (!rootdir)
423 return -ENOMEM;
424
425 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, NULL,
426 &clk_summary_fops);
427 if (!d)
428 return -ENOMEM;
429
430 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, NULL,
431 &clk_dump_fops);
432 if (!d)
433 return -ENOMEM;
434
435 orphandir = debugfs_create_dir("orphans", rootdir);
436
437 if (!orphandir)
438 return -ENOMEM;
439
440 clk_prepare_lock();
441
442 hlist_for_each_entry(clk, &clk_root_list, child_node)
443 clk_debug_create_subtree(clk, rootdir);
444
445 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
446 clk_debug_create_subtree(clk, orphandir);
447
448 inited = 1;
449
450 clk_prepare_unlock();
451
452 return 0;
453 }
454 late_initcall(clk_debug_init);
455 #else
456 static inline int clk_debug_register(struct clk *clk) { return 0; }
457 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
458 {
459 }
460 static inline void clk_debug_unregister(struct clk *clk)
461 {
462 }
463 #endif
464
465 /* caller must hold prepare_lock */
466 static void clk_unprepare_unused_subtree(struct clk *clk)
467 {
468 struct clk *child;
469
470 if (!clk)
471 return;
472
473 hlist_for_each_entry(child, &clk->children, child_node)
474 clk_unprepare_unused_subtree(child);
475
476 if (clk->prepare_count)
477 return;
478
479 if (clk->flags & CLK_IGNORE_UNUSED)
480 return;
481
482 if (__clk_is_prepared(clk)) {
483 if (clk->ops->unprepare_unused)
484 clk->ops->unprepare_unused(clk->hw);
485 else if (clk->ops->unprepare)
486 clk->ops->unprepare(clk->hw);
487 }
488 }
489
490 /* caller must hold prepare_lock */
491 static void clk_disable_unused_subtree(struct clk *clk)
492 {
493 struct clk *child;
494 unsigned long flags;
495
496 if (!clk)
497 goto out;
498
499 hlist_for_each_entry(child, &clk->children, child_node)
500 clk_disable_unused_subtree(child);
501
502 flags = clk_enable_lock();
503
504 if (clk->enable_count)
505 goto unlock_out;
506
507 if (clk->flags & CLK_IGNORE_UNUSED)
508 goto unlock_out;
509
510 /*
511 * some gate clocks have special needs during the disable-unused
512 * sequence. call .disable_unused if available, otherwise fall
513 * back to .disable
514 */
515 if (__clk_is_enabled(clk)) {
516 if (clk->ops->disable_unused)
517 clk->ops->disable_unused(clk->hw);
518 else if (clk->ops->disable)
519 clk->ops->disable(clk->hw);
520 }
521
522 unlock_out:
523 clk_enable_unlock(flags);
524
525 out:
526 return;
527 }
528
529 static bool clk_ignore_unused;
530 static int __init clk_ignore_unused_setup(char *__unused)
531 {
532 clk_ignore_unused = true;
533 return 1;
534 }
535 __setup("clk_ignore_unused", clk_ignore_unused_setup);
536
537 static int clk_disable_unused(void)
538 {
539 struct clk *clk;
540
541 if (clk_ignore_unused) {
542 pr_warn("clk: Not disabling unused clocks\n");
543 return 0;
544 }
545
546 clk_prepare_lock();
547
548 hlist_for_each_entry(clk, &clk_root_list, child_node)
549 clk_disable_unused_subtree(clk);
550
551 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
552 clk_disable_unused_subtree(clk);
553
554 hlist_for_each_entry(clk, &clk_root_list, child_node)
555 clk_unprepare_unused_subtree(clk);
556
557 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
558 clk_unprepare_unused_subtree(clk);
559
560 clk_prepare_unlock();
561
562 return 0;
563 }
564 late_initcall_sync(clk_disable_unused);
565
566 /*** helper functions ***/
567
568 const char *__clk_get_name(struct clk *clk)
569 {
570 return !clk ? NULL : clk->name;
571 }
572 EXPORT_SYMBOL_GPL(__clk_get_name);
573
574 struct clk_hw *__clk_get_hw(struct clk *clk)
575 {
576 return !clk ? NULL : clk->hw;
577 }
578
579 u8 __clk_get_num_parents(struct clk *clk)
580 {
581 return !clk ? 0 : clk->num_parents;
582 }
583
584 struct clk *__clk_get_parent(struct clk *clk)
585 {
586 return !clk ? NULL : clk->parent;
587 }
588
589 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
590 {
591 if (!clk || index >= clk->num_parents)
592 return NULL;
593 else if (!clk->parents)
594 return __clk_lookup(clk->parent_names[index]);
595 else if (!clk->parents[index])
596 return clk->parents[index] =
597 __clk_lookup(clk->parent_names[index]);
598 else
599 return clk->parents[index];
600 }
601
602 unsigned int __clk_get_enable_count(struct clk *clk)
603 {
604 return !clk ? 0 : clk->enable_count;
605 }
606
607 unsigned int __clk_get_prepare_count(struct clk *clk)
608 {
609 return !clk ? 0 : clk->prepare_count;
610 }
611
612 unsigned long __clk_get_rate(struct clk *clk)
613 {
614 unsigned long ret;
615
616 if (!clk) {
617 ret = 0;
618 goto out;
619 }
620
621 ret = clk->rate;
622
623 if (clk->flags & CLK_IS_ROOT)
624 goto out;
625
626 if (!clk->parent)
627 ret = 0;
628
629 out:
630 return ret;
631 }
632
633 unsigned long __clk_get_accuracy(struct clk *clk)
634 {
635 if (!clk)
636 return 0;
637
638 return clk->accuracy;
639 }
640
641 unsigned long __clk_get_flags(struct clk *clk)
642 {
643 return !clk ? 0 : clk->flags;
644 }
645 EXPORT_SYMBOL_GPL(__clk_get_flags);
646
647 bool __clk_is_prepared(struct clk *clk)
648 {
649 int ret;
650
651 if (!clk)
652 return false;
653
654 /*
655 * .is_prepared is optional for clocks that can prepare
656 * fall back to software usage counter if it is missing
657 */
658 if (!clk->ops->is_prepared) {
659 ret = clk->prepare_count ? 1 : 0;
660 goto out;
661 }
662
663 ret = clk->ops->is_prepared(clk->hw);
664 out:
665 return !!ret;
666 }
667
668 bool __clk_is_enabled(struct clk *clk)
669 {
670 int ret;
671
672 if (!clk)
673 return false;
674
675 /*
676 * .is_enabled is only mandatory for clocks that gate
677 * fall back to software usage counter if .is_enabled is missing
678 */
679 if (!clk->ops->is_enabled) {
680 ret = clk->enable_count ? 1 : 0;
681 goto out;
682 }
683
684 ret = clk->ops->is_enabled(clk->hw);
685 out:
686 return !!ret;
687 }
688
689 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
690 {
691 struct clk *child;
692 struct clk *ret;
693
694 if (!strcmp(clk->name, name))
695 return clk;
696
697 hlist_for_each_entry(child, &clk->children, child_node) {
698 ret = __clk_lookup_subtree(name, child);
699 if (ret)
700 return ret;
701 }
702
703 return NULL;
704 }
705
706 struct clk *__clk_lookup(const char *name)
707 {
708 struct clk *root_clk;
709 struct clk *ret;
710
711 if (!name)
712 return NULL;
713
714 /* search the 'proper' clk tree first */
715 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
716 ret = __clk_lookup_subtree(name, root_clk);
717 if (ret)
718 return ret;
719 }
720
721 /* if not found, then search the orphan tree */
722 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
723 ret = __clk_lookup_subtree(name, root_clk);
724 if (ret)
725 return ret;
726 }
727
728 return NULL;
729 }
730
731 /*
732 * Helper for finding best parent to provide a given frequency. This can be used
733 * directly as a determine_rate callback (e.g. for a mux), or from a more
734 * complex clock that may combine a mux with other operations.
735 */
736 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
737 unsigned long *best_parent_rate,
738 struct clk **best_parent_p)
739 {
740 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
741 int i, num_parents;
742 unsigned long parent_rate, best = 0;
743
744 /* if NO_REPARENT flag set, pass through to current parent */
745 if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
746 parent = clk->parent;
747 if (clk->flags & CLK_SET_RATE_PARENT)
748 best = __clk_round_rate(parent, rate);
749 else if (parent)
750 best = __clk_get_rate(parent);
751 else
752 best = __clk_get_rate(clk);
753 goto out;
754 }
755
756 /* find the parent that can provide the fastest rate <= rate */
757 num_parents = clk->num_parents;
758 for (i = 0; i < num_parents; i++) {
759 parent = clk_get_parent_by_index(clk, i);
760 if (!parent)
761 continue;
762 if (clk->flags & CLK_SET_RATE_PARENT)
763 parent_rate = __clk_round_rate(parent, rate);
764 else
765 parent_rate = __clk_get_rate(parent);
766 if (parent_rate <= rate && parent_rate > best) {
767 best_parent = parent;
768 best = parent_rate;
769 }
770 }
771
772 out:
773 if (best_parent)
774 *best_parent_p = best_parent;
775 *best_parent_rate = best;
776
777 return best;
778 }
779
780 /*** clk api ***/
781
782 void __clk_unprepare(struct clk *clk)
783 {
784 if (!clk)
785 return;
786
787 if (WARN_ON(clk->prepare_count == 0))
788 return;
789
790 if (--clk->prepare_count > 0)
791 return;
792
793 WARN_ON(clk->enable_count > 0);
794
795 if (clk->ops->unprepare)
796 clk->ops->unprepare(clk->hw);
797
798 __clk_unprepare(clk->parent);
799 }
800
801 /**
802 * clk_unprepare - undo preparation of a clock source
803 * @clk: the clk being unprepared
804 *
805 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
806 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
807 * if the operation may sleep. One example is a clk which is accessed over
808 * I2c. In the complex case a clk gate operation may require a fast and a slow
809 * part. It is this reason that clk_unprepare and clk_disable are not mutually
810 * exclusive. In fact clk_disable must be called before clk_unprepare.
811 */
812 void clk_unprepare(struct clk *clk)
813 {
814 clk_prepare_lock();
815 __clk_unprepare(clk);
816 clk_prepare_unlock();
817 }
818 EXPORT_SYMBOL_GPL(clk_unprepare);
819
820 int __clk_prepare(struct clk *clk)
821 {
822 int ret = 0;
823
824 if (!clk)
825 return 0;
826
827 if (clk->prepare_count == 0) {
828 ret = __clk_prepare(clk->parent);
829 if (ret)
830 return ret;
831
832 if (clk->ops->prepare) {
833 ret = clk->ops->prepare(clk->hw);
834 if (ret) {
835 __clk_unprepare(clk->parent);
836 return ret;
837 }
838 }
839 }
840
841 clk->prepare_count++;
842
843 return 0;
844 }
845
846 /**
847 * clk_prepare - prepare a clock source
848 * @clk: the clk being prepared
849 *
850 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
851 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
852 * operation may sleep. One example is a clk which is accessed over I2c. In
853 * the complex case a clk ungate operation may require a fast and a slow part.
854 * It is this reason that clk_prepare and clk_enable are not mutually
855 * exclusive. In fact clk_prepare must be called before clk_enable.
856 * Returns 0 on success, -EERROR otherwise.
857 */
858 int clk_prepare(struct clk *clk)
859 {
860 int ret;
861
862 clk_prepare_lock();
863 ret = __clk_prepare(clk);
864 clk_prepare_unlock();
865
866 return ret;
867 }
868 EXPORT_SYMBOL_GPL(clk_prepare);
869
870 static void __clk_disable(struct clk *clk)
871 {
872 if (!clk)
873 return;
874
875 if (WARN_ON(IS_ERR(clk)))
876 return;
877
878 if (WARN_ON(clk->enable_count == 0))
879 return;
880
881 if (--clk->enable_count > 0)
882 return;
883
884 if (clk->ops->disable)
885 clk->ops->disable(clk->hw);
886
887 __clk_disable(clk->parent);
888 }
889
890 /**
891 * clk_disable - gate a clock
892 * @clk: the clk being gated
893 *
894 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
895 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
896 * clk if the operation is fast and will never sleep. One example is a
897 * SoC-internal clk which is controlled via simple register writes. In the
898 * complex case a clk gate operation may require a fast and a slow part. It is
899 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
900 * In fact clk_disable must be called before clk_unprepare.
901 */
902 void clk_disable(struct clk *clk)
903 {
904 unsigned long flags;
905
906 flags = clk_enable_lock();
907 __clk_disable(clk);
908 clk_enable_unlock(flags);
909 }
910 EXPORT_SYMBOL_GPL(clk_disable);
911
912 static int __clk_enable(struct clk *clk)
913 {
914 int ret = 0;
915
916 if (!clk)
917 return 0;
918
919 if (WARN_ON(clk->prepare_count == 0))
920 return -ESHUTDOWN;
921
922 if (clk->enable_count == 0) {
923 ret = __clk_enable(clk->parent);
924
925 if (ret)
926 return ret;
927
928 if (clk->ops->enable) {
929 ret = clk->ops->enable(clk->hw);
930 if (ret) {
931 __clk_disable(clk->parent);
932 return ret;
933 }
934 }
935 }
936
937 clk->enable_count++;
938 return 0;
939 }
940
941 /**
942 * clk_enable - ungate a clock
943 * @clk: the clk being ungated
944 *
945 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
946 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
947 * if the operation will never sleep. One example is a SoC-internal clk which
948 * is controlled via simple register writes. In the complex case a clk ungate
949 * operation may require a fast and a slow part. It is this reason that
950 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
951 * must be called before clk_enable. Returns 0 on success, -EERROR
952 * otherwise.
953 */
954 int clk_enable(struct clk *clk)
955 {
956 unsigned long flags;
957 int ret;
958
959 flags = clk_enable_lock();
960 ret = __clk_enable(clk);
961 clk_enable_unlock(flags);
962
963 return ret;
964 }
965 EXPORT_SYMBOL_GPL(clk_enable);
966
967 /**
968 * __clk_round_rate - round the given rate for a clk
969 * @clk: round the rate of this clock
970 * @rate: the rate which is to be rounded
971 *
972 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
973 */
974 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
975 {
976 unsigned long parent_rate = 0;
977 struct clk *parent;
978
979 if (!clk)
980 return 0;
981
982 parent = clk->parent;
983 if (parent)
984 parent_rate = parent->rate;
985
986 if (clk->ops->determine_rate)
987 return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
988 &parent);
989 else if (clk->ops->round_rate)
990 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
991 else if (clk->flags & CLK_SET_RATE_PARENT)
992 return __clk_round_rate(clk->parent, rate);
993 else
994 return clk->rate;
995 }
996
997 /**
998 * clk_round_rate - round the given rate for a clk
999 * @clk: the clk for which we are rounding a rate
1000 * @rate: the rate which is to be rounded
1001 *
1002 * Takes in a rate as input and rounds it to a rate that the clk can actually
1003 * use which is then returned. If clk doesn't support round_rate operation
1004 * then the parent rate is returned.
1005 */
1006 long clk_round_rate(struct clk *clk, unsigned long rate)
1007 {
1008 unsigned long ret;
1009
1010 clk_prepare_lock();
1011 ret = __clk_round_rate(clk, rate);
1012 clk_prepare_unlock();
1013
1014 return ret;
1015 }
1016 EXPORT_SYMBOL_GPL(clk_round_rate);
1017
1018 /**
1019 * __clk_notify - call clk notifier chain
1020 * @clk: struct clk * that is changing rate
1021 * @msg: clk notifier type (see include/linux/clk.h)
1022 * @old_rate: old clk rate
1023 * @new_rate: new clk rate
1024 *
1025 * Triggers a notifier call chain on the clk rate-change notification
1026 * for 'clk'. Passes a pointer to the struct clk and the previous
1027 * and current rates to the notifier callback. Intended to be called by
1028 * internal clock code only. Returns NOTIFY_DONE from the last driver
1029 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1030 * a driver returns that.
1031 */
1032 static int __clk_notify(struct clk *clk, unsigned long msg,
1033 unsigned long old_rate, unsigned long new_rate)
1034 {
1035 struct clk_notifier *cn;
1036 struct clk_notifier_data cnd;
1037 int ret = NOTIFY_DONE;
1038
1039 cnd.clk = clk;
1040 cnd.old_rate = old_rate;
1041 cnd.new_rate = new_rate;
1042
1043 list_for_each_entry(cn, &clk_notifier_list, node) {
1044 if (cn->clk == clk) {
1045 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1046 &cnd);
1047 break;
1048 }
1049 }
1050
1051 return ret;
1052 }
1053
1054 /**
1055 * __clk_recalc_accuracies
1056 * @clk: first clk in the subtree
1057 *
1058 * Walks the subtree of clks starting with clk and recalculates accuracies as
1059 * it goes. Note that if a clk does not implement the .recalc_accuracy
1060 * callback then it is assumed that the clock will take on the accuracy of it's
1061 * parent.
1062 *
1063 * Caller must hold prepare_lock.
1064 */
1065 static void __clk_recalc_accuracies(struct clk *clk)
1066 {
1067 unsigned long parent_accuracy = 0;
1068 struct clk *child;
1069
1070 if (clk->parent)
1071 parent_accuracy = clk->parent->accuracy;
1072
1073 if (clk->ops->recalc_accuracy)
1074 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1075 parent_accuracy);
1076 else
1077 clk->accuracy = parent_accuracy;
1078
1079 hlist_for_each_entry(child, &clk->children, child_node)
1080 __clk_recalc_accuracies(child);
1081 }
1082
1083 /**
1084 * clk_get_accuracy - return the accuracy of clk
1085 * @clk: the clk whose accuracy is being returned
1086 *
1087 * Simply returns the cached accuracy of the clk, unless
1088 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1089 * issued.
1090 * If clk is NULL then returns 0.
1091 */
1092 long clk_get_accuracy(struct clk *clk)
1093 {
1094 unsigned long accuracy;
1095
1096 clk_prepare_lock();
1097 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1098 __clk_recalc_accuracies(clk);
1099
1100 accuracy = __clk_get_accuracy(clk);
1101 clk_prepare_unlock();
1102
1103 return accuracy;
1104 }
1105 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1106
1107 /**
1108 * __clk_recalc_rates
1109 * @clk: first clk in the subtree
1110 * @msg: notification type (see include/linux/clk.h)
1111 *
1112 * Walks the subtree of clks starting with clk and recalculates rates as it
1113 * goes. Note that if a clk does not implement the .recalc_rate callback then
1114 * it is assumed that the clock will take on the rate of its parent.
1115 *
1116 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1117 * if necessary.
1118 *
1119 * Caller must hold prepare_lock.
1120 */
1121 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1122 {
1123 unsigned long old_rate;
1124 unsigned long parent_rate = 0;
1125 struct clk *child;
1126
1127 old_rate = clk->rate;
1128
1129 if (clk->parent)
1130 parent_rate = clk->parent->rate;
1131
1132 if (clk->ops->recalc_rate)
1133 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1134 else
1135 clk->rate = parent_rate;
1136
1137 /*
1138 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1139 * & ABORT_RATE_CHANGE notifiers
1140 */
1141 if (clk->notifier_count && msg)
1142 __clk_notify(clk, msg, old_rate, clk->rate);
1143
1144 hlist_for_each_entry(child, &clk->children, child_node)
1145 __clk_recalc_rates(child, msg);
1146 }
1147
1148 /**
1149 * clk_get_rate - return the rate of clk
1150 * @clk: the clk whose rate is being returned
1151 *
1152 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1153 * is set, which means a recalc_rate will be issued.
1154 * If clk is NULL then returns 0.
1155 */
1156 unsigned long clk_get_rate(struct clk *clk)
1157 {
1158 unsigned long rate;
1159
1160 clk_prepare_lock();
1161
1162 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1163 __clk_recalc_rates(clk, 0);
1164
1165 rate = __clk_get_rate(clk);
1166 clk_prepare_unlock();
1167
1168 return rate;
1169 }
1170 EXPORT_SYMBOL_GPL(clk_get_rate);
1171
1172 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1173 {
1174 int i;
1175
1176 if (!clk->parents) {
1177 clk->parents = kcalloc(clk->num_parents,
1178 sizeof(struct clk *), GFP_KERNEL);
1179 if (!clk->parents)
1180 return -ENOMEM;
1181 }
1182
1183 /*
1184 * find index of new parent clock using cached parent ptrs,
1185 * or if not yet cached, use string name comparison and cache
1186 * them now to avoid future calls to __clk_lookup.
1187 */
1188 for (i = 0; i < clk->num_parents; i++) {
1189 if (clk->parents[i] == parent)
1190 return i;
1191
1192 if (clk->parents[i])
1193 continue;
1194
1195 if (!strcmp(clk->parent_names[i], parent->name)) {
1196 clk->parents[i] = __clk_lookup(parent->name);
1197 return i;
1198 }
1199 }
1200
1201 return -EINVAL;
1202 }
1203
1204 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1205 {
1206 hlist_del(&clk->child_node);
1207
1208 if (new_parent) {
1209 /* avoid duplicate POST_RATE_CHANGE notifications */
1210 if (new_parent->new_child == clk)
1211 new_parent->new_child = NULL;
1212
1213 hlist_add_head(&clk->child_node, &new_parent->children);
1214 } else {
1215 hlist_add_head(&clk->child_node, &clk_orphan_list);
1216 }
1217
1218 clk->parent = new_parent;
1219 }
1220
1221 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1222 {
1223 unsigned long flags;
1224 int ret = 0;
1225 struct clk *old_parent = clk->parent;
1226
1227 /*
1228 * Migrate prepare state between parents and prevent race with
1229 * clk_enable().
1230 *
1231 * If the clock is not prepared, then a race with
1232 * clk_enable/disable() is impossible since we already have the
1233 * prepare lock (future calls to clk_enable() need to be preceded by
1234 * a clk_prepare()).
1235 *
1236 * If the clock is prepared, migrate the prepared state to the new
1237 * parent and also protect against a race with clk_enable() by
1238 * forcing the clock and the new parent on. This ensures that all
1239 * future calls to clk_enable() are practically NOPs with respect to
1240 * hardware and software states.
1241 *
1242 * See also: Comment for clk_set_parent() below.
1243 */
1244 if (clk->prepare_count) {
1245 __clk_prepare(parent);
1246 clk_enable(parent);
1247 clk_enable(clk);
1248 }
1249
1250 /* update the clk tree topology */
1251 flags = clk_enable_lock();
1252 clk_reparent(clk, parent);
1253 clk_enable_unlock(flags);
1254
1255 /* change clock input source */
1256 if (parent && clk->ops->set_parent)
1257 ret = clk->ops->set_parent(clk->hw, p_index);
1258
1259 if (ret) {
1260 flags = clk_enable_lock();
1261 clk_reparent(clk, old_parent);
1262 clk_enable_unlock(flags);
1263
1264 if (clk->prepare_count) {
1265 clk_disable(clk);
1266 clk_disable(parent);
1267 __clk_unprepare(parent);
1268 }
1269 return ret;
1270 }
1271
1272 /*
1273 * Finish the migration of prepare state and undo the changes done
1274 * for preventing a race with clk_enable().
1275 */
1276 if (clk->prepare_count) {
1277 clk_disable(clk);
1278 clk_disable(old_parent);
1279 __clk_unprepare(old_parent);
1280 }
1281
1282 /* update debugfs with new clk tree topology */
1283 clk_debug_reparent(clk, parent);
1284 return 0;
1285 }
1286
1287 /**
1288 * __clk_speculate_rates
1289 * @clk: first clk in the subtree
1290 * @parent_rate: the "future" rate of clk's parent
1291 *
1292 * Walks the subtree of clks starting with clk, speculating rates as it
1293 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1294 *
1295 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1296 * pre-rate change notifications and returns early if no clks in the
1297 * subtree have subscribed to the notifications. Note that if a clk does not
1298 * implement the .recalc_rate callback then it is assumed that the clock will
1299 * take on the rate of its parent.
1300 *
1301 * Caller must hold prepare_lock.
1302 */
1303 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1304 {
1305 struct clk *child;
1306 unsigned long new_rate;
1307 int ret = NOTIFY_DONE;
1308
1309 if (clk->ops->recalc_rate)
1310 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
1311 else
1312 new_rate = parent_rate;
1313
1314 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1315 if (clk->notifier_count)
1316 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1317
1318 if (ret & NOTIFY_STOP_MASK)
1319 goto out;
1320
1321 hlist_for_each_entry(child, &clk->children, child_node) {
1322 ret = __clk_speculate_rates(child, new_rate);
1323 if (ret & NOTIFY_STOP_MASK)
1324 break;
1325 }
1326
1327 out:
1328 return ret;
1329 }
1330
1331 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1332 struct clk *new_parent, u8 p_index)
1333 {
1334 struct clk *child;
1335
1336 clk->new_rate = new_rate;
1337 clk->new_parent = new_parent;
1338 clk->new_parent_index = p_index;
1339 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1340 clk->new_child = NULL;
1341 if (new_parent && new_parent != clk->parent)
1342 new_parent->new_child = clk;
1343
1344 hlist_for_each_entry(child, &clk->children, child_node) {
1345 if (child->ops->recalc_rate)
1346 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
1347 else
1348 child->new_rate = new_rate;
1349 clk_calc_subtree(child, child->new_rate, NULL, 0);
1350 }
1351 }
1352
1353 /*
1354 * calculate the new rates returning the topmost clock that has to be
1355 * changed.
1356 */
1357 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1358 {
1359 struct clk *top = clk;
1360 struct clk *old_parent, *parent;
1361 unsigned long best_parent_rate = 0;
1362 unsigned long new_rate;
1363 int p_index = 0;
1364
1365 /* sanity */
1366 if (IS_ERR_OR_NULL(clk))
1367 return NULL;
1368
1369 /* save parent rate, if it exists */
1370 parent = old_parent = clk->parent;
1371 if (parent)
1372 best_parent_rate = parent->rate;
1373
1374 /* find the closest rate and parent clk/rate */
1375 if (clk->ops->determine_rate) {
1376 new_rate = clk->ops->determine_rate(clk->hw, rate,
1377 &best_parent_rate,
1378 &parent);
1379 } else if (clk->ops->round_rate) {
1380 new_rate = clk->ops->round_rate(clk->hw, rate,
1381 &best_parent_rate);
1382 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1383 /* pass-through clock without adjustable parent */
1384 clk->new_rate = clk->rate;
1385 return NULL;
1386 } else {
1387 /* pass-through clock with adjustable parent */
1388 top = clk_calc_new_rates(parent, rate);
1389 new_rate = parent->new_rate;
1390 goto out;
1391 }
1392
1393 /* some clocks must be gated to change parent */
1394 if (parent != old_parent &&
1395 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1396 pr_debug("%s: %s not gated but wants to reparent\n",
1397 __func__, clk->name);
1398 return NULL;
1399 }
1400
1401 /* try finding the new parent index */
1402 if (parent) {
1403 p_index = clk_fetch_parent_index(clk, parent);
1404 if (p_index < 0) {
1405 pr_debug("%s: clk %s can not be parent of clk %s\n",
1406 __func__, parent->name, clk->name);
1407 return NULL;
1408 }
1409 }
1410
1411 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1412 best_parent_rate != parent->rate)
1413 top = clk_calc_new_rates(parent, best_parent_rate);
1414
1415 out:
1416 clk_calc_subtree(clk, new_rate, parent, p_index);
1417
1418 return top;
1419 }
1420
1421 /*
1422 * Notify about rate changes in a subtree. Always walk down the whole tree
1423 * so that in case of an error we can walk down the whole tree again and
1424 * abort the change.
1425 */
1426 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1427 {
1428 struct clk *child, *tmp_clk, *fail_clk = NULL;
1429 int ret = NOTIFY_DONE;
1430
1431 if (clk->rate == clk->new_rate)
1432 return NULL;
1433
1434 if (clk->notifier_count) {
1435 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1436 if (ret & NOTIFY_STOP_MASK)
1437 fail_clk = clk;
1438 }
1439
1440 hlist_for_each_entry(child, &clk->children, child_node) {
1441 /* Skip children who will be reparented to another clock */
1442 if (child->new_parent && child->new_parent != clk)
1443 continue;
1444 tmp_clk = clk_propagate_rate_change(child, event);
1445 if (tmp_clk)
1446 fail_clk = tmp_clk;
1447 }
1448
1449 /* handle the new child who might not be in clk->children yet */
1450 if (clk->new_child) {
1451 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1452 if (tmp_clk)
1453 fail_clk = tmp_clk;
1454 }
1455
1456 return fail_clk;
1457 }
1458
1459 /*
1460 * walk down a subtree and set the new rates notifying the rate
1461 * change on the way
1462 */
1463 static void clk_change_rate(struct clk *clk)
1464 {
1465 struct clk *child;
1466 unsigned long old_rate;
1467 unsigned long best_parent_rate = 0;
1468
1469 old_rate = clk->rate;
1470
1471 /* set parent */
1472 if (clk->new_parent && clk->new_parent != clk->parent)
1473 __clk_set_parent(clk, clk->new_parent, clk->new_parent_index);
1474
1475 if (clk->parent)
1476 best_parent_rate = clk->parent->rate;
1477
1478 if (clk->ops->set_rate)
1479 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1480
1481 if (clk->ops->recalc_rate)
1482 clk->rate = clk->ops->recalc_rate(clk->hw, best_parent_rate);
1483 else
1484 clk->rate = best_parent_rate;
1485
1486 if (clk->notifier_count && old_rate != clk->rate)
1487 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1488
1489 hlist_for_each_entry(child, &clk->children, child_node) {
1490 /* Skip children who will be reparented to another clock */
1491 if (child->new_parent && child->new_parent != clk)
1492 continue;
1493 clk_change_rate(child);
1494 }
1495
1496 /* handle the new child who might not be in clk->children yet */
1497 if (clk->new_child)
1498 clk_change_rate(clk->new_child);
1499 }
1500
1501 /**
1502 * clk_set_rate - specify a new rate for clk
1503 * @clk: the clk whose rate is being changed
1504 * @rate: the new rate for clk
1505 *
1506 * In the simplest case clk_set_rate will only adjust the rate of clk.
1507 *
1508 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1509 * propagate up to clk's parent; whether or not this happens depends on the
1510 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1511 * after calling .round_rate then upstream parent propagation is ignored. If
1512 * *parent_rate comes back with a new rate for clk's parent then we propagate
1513 * up to clk's parent and set its rate. Upward propagation will continue
1514 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1515 * .round_rate stops requesting changes to clk's parent_rate.
1516 *
1517 * Rate changes are accomplished via tree traversal that also recalculates the
1518 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1519 *
1520 * Returns 0 on success, -EERROR otherwise.
1521 */
1522 int clk_set_rate(struct clk *clk, unsigned long rate)
1523 {
1524 struct clk *top, *fail_clk;
1525 int ret = 0;
1526
1527 if (!clk)
1528 return 0;
1529
1530 /* prevent racing with updates to the clock topology */
1531 clk_prepare_lock();
1532
1533 /* bail early if nothing to do */
1534 if (rate == clk_get_rate(clk))
1535 goto out;
1536
1537 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1538 ret = -EBUSY;
1539 goto out;
1540 }
1541
1542 /* calculate new rates and get the topmost changed clock */
1543 top = clk_calc_new_rates(clk, rate);
1544 if (!top) {
1545 ret = -EINVAL;
1546 goto out;
1547 }
1548
1549 /* notify that we are about to change rates */
1550 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1551 if (fail_clk) {
1552 pr_warn("%s: failed to set %s rate\n", __func__,
1553 fail_clk->name);
1554 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1555 ret = -EBUSY;
1556 goto out;
1557 }
1558
1559 /* change the rates */
1560 clk_change_rate(top);
1561
1562 out:
1563 clk_prepare_unlock();
1564
1565 return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(clk_set_rate);
1568
1569 /**
1570 * clk_get_parent - return the parent of a clk
1571 * @clk: the clk whose parent gets returned
1572 *
1573 * Simply returns clk->parent. Returns NULL if clk is NULL.
1574 */
1575 struct clk *clk_get_parent(struct clk *clk)
1576 {
1577 struct clk *parent;
1578
1579 clk_prepare_lock();
1580 parent = __clk_get_parent(clk);
1581 clk_prepare_unlock();
1582
1583 return parent;
1584 }
1585 EXPORT_SYMBOL_GPL(clk_get_parent);
1586
1587 /*
1588 * .get_parent is mandatory for clocks with multiple possible parents. It is
1589 * optional for single-parent clocks. Always call .get_parent if it is
1590 * available and WARN if it is missing for multi-parent clocks.
1591 *
1592 * For single-parent clocks without .get_parent, first check to see if the
1593 * .parents array exists, and if so use it to avoid an expensive tree
1594 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1595 */
1596 static struct clk *__clk_init_parent(struct clk *clk)
1597 {
1598 struct clk *ret = NULL;
1599 u8 index;
1600
1601 /* handle the trivial cases */
1602
1603 if (!clk->num_parents)
1604 goto out;
1605
1606 if (clk->num_parents == 1) {
1607 if (IS_ERR_OR_NULL(clk->parent))
1608 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1609 ret = clk->parent;
1610 goto out;
1611 }
1612
1613 if (!clk->ops->get_parent) {
1614 WARN(!clk->ops->get_parent,
1615 "%s: multi-parent clocks must implement .get_parent\n",
1616 __func__);
1617 goto out;
1618 };
1619
1620 /*
1621 * Do our best to cache parent clocks in clk->parents. This prevents
1622 * unnecessary and expensive calls to __clk_lookup. We don't set
1623 * clk->parent here; that is done by the calling function
1624 */
1625
1626 index = clk->ops->get_parent(clk->hw);
1627
1628 if (!clk->parents)
1629 clk->parents =
1630 kcalloc(clk->num_parents, sizeof(struct clk *),
1631 GFP_KERNEL);
1632
1633 ret = clk_get_parent_by_index(clk, index);
1634
1635 out:
1636 return ret;
1637 }
1638
1639 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1640 {
1641 clk_reparent(clk, new_parent);
1642 clk_debug_reparent(clk, new_parent);
1643 __clk_recalc_accuracies(clk);
1644 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1645 }
1646
1647 /**
1648 * clk_set_parent - switch the parent of a mux clk
1649 * @clk: the mux clk whose input we are switching
1650 * @parent: the new input to clk
1651 *
1652 * Re-parent clk to use parent as its new input source. If clk is in
1653 * prepared state, the clk will get enabled for the duration of this call. If
1654 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1655 * that, the reparenting is glitchy in hardware, etc), use the
1656 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1657 *
1658 * After successfully changing clk's parent clk_set_parent will update the
1659 * clk topology, sysfs topology and propagate rate recalculation via
1660 * __clk_recalc_rates.
1661 *
1662 * Returns 0 on success, -EERROR otherwise.
1663 */
1664 int clk_set_parent(struct clk *clk, struct clk *parent)
1665 {
1666 int ret = 0;
1667 int p_index = 0;
1668 unsigned long p_rate = 0;
1669
1670 if (!clk)
1671 return 0;
1672
1673 if (!clk->ops)
1674 return -EINVAL;
1675
1676 /* verify ops for for multi-parent clks */
1677 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1678 return -ENOSYS;
1679
1680 /* prevent racing with updates to the clock topology */
1681 clk_prepare_lock();
1682
1683 if (clk->parent == parent)
1684 goto out;
1685
1686 /* check that we are allowed to re-parent if the clock is in use */
1687 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1688 ret = -EBUSY;
1689 goto out;
1690 }
1691
1692 /* try finding the new parent index */
1693 if (parent) {
1694 p_index = clk_fetch_parent_index(clk, parent);
1695 p_rate = parent->rate;
1696 if (p_index < 0) {
1697 pr_debug("%s: clk %s can not be parent of clk %s\n",
1698 __func__, parent->name, clk->name);
1699 ret = p_index;
1700 goto out;
1701 }
1702 }
1703
1704 /* propagate PRE_RATE_CHANGE notifications */
1705 ret = __clk_speculate_rates(clk, p_rate);
1706
1707 /* abort if a driver objects */
1708 if (ret & NOTIFY_STOP_MASK)
1709 goto out;
1710
1711 /* do the re-parent */
1712 ret = __clk_set_parent(clk, parent, p_index);
1713
1714 /* propagate rate an accuracy recalculation accordingly */
1715 if (ret) {
1716 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1717 } else {
1718 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1719 __clk_recalc_accuracies(clk);
1720 }
1721
1722 out:
1723 clk_prepare_unlock();
1724
1725 return ret;
1726 }
1727 EXPORT_SYMBOL_GPL(clk_set_parent);
1728
1729 /**
1730 * __clk_init - initialize the data structures in a struct clk
1731 * @dev: device initializing this clk, placeholder for now
1732 * @clk: clk being initialized
1733 *
1734 * Initializes the lists in struct clk, queries the hardware for the
1735 * parent and rate and sets them both.
1736 */
1737 int __clk_init(struct device *dev, struct clk *clk)
1738 {
1739 int i, ret = 0;
1740 struct clk *orphan;
1741 struct hlist_node *tmp2;
1742
1743 if (!clk)
1744 return -EINVAL;
1745
1746 clk_prepare_lock();
1747
1748 /* check to see if a clock with this name is already registered */
1749 if (__clk_lookup(clk->name)) {
1750 pr_debug("%s: clk %s already initialized\n",
1751 __func__, clk->name);
1752 ret = -EEXIST;
1753 goto out;
1754 }
1755
1756 /* check that clk_ops are sane. See Documentation/clk.txt */
1757 if (clk->ops->set_rate &&
1758 !((clk->ops->round_rate || clk->ops->determine_rate) &&
1759 clk->ops->recalc_rate)) {
1760 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1761 __func__, clk->name);
1762 ret = -EINVAL;
1763 goto out;
1764 }
1765
1766 if (clk->ops->set_parent && !clk->ops->get_parent) {
1767 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1768 __func__, clk->name);
1769 ret = -EINVAL;
1770 goto out;
1771 }
1772
1773 /* throw a WARN if any entries in parent_names are NULL */
1774 for (i = 0; i < clk->num_parents; i++)
1775 WARN(!clk->parent_names[i],
1776 "%s: invalid NULL in %s's .parent_names\n",
1777 __func__, clk->name);
1778
1779 /*
1780 * Allocate an array of struct clk *'s to avoid unnecessary string
1781 * look-ups of clk's possible parents. This can fail for clocks passed
1782 * in to clk_init during early boot; thus any access to clk->parents[]
1783 * must always check for a NULL pointer and try to populate it if
1784 * necessary.
1785 *
1786 * If clk->parents is not NULL we skip this entire block. This allows
1787 * for clock drivers to statically initialize clk->parents.
1788 */
1789 if (clk->num_parents > 1 && !clk->parents) {
1790 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1791 GFP_KERNEL);
1792 /*
1793 * __clk_lookup returns NULL for parents that have not been
1794 * clk_init'd; thus any access to clk->parents[] must check
1795 * for a NULL pointer. We can always perform lazy lookups for
1796 * missing parents later on.
1797 */
1798 if (clk->parents)
1799 for (i = 0; i < clk->num_parents; i++)
1800 clk->parents[i] =
1801 __clk_lookup(clk->parent_names[i]);
1802 }
1803
1804 clk->parent = __clk_init_parent(clk);
1805
1806 /*
1807 * Populate clk->parent if parent has already been __clk_init'd. If
1808 * parent has not yet been __clk_init'd then place clk in the orphan
1809 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1810 * clk list.
1811 *
1812 * Every time a new clk is clk_init'd then we walk the list of orphan
1813 * clocks and re-parent any that are children of the clock currently
1814 * being clk_init'd.
1815 */
1816 if (clk->parent)
1817 hlist_add_head(&clk->child_node,
1818 &clk->parent->children);
1819 else if (clk->flags & CLK_IS_ROOT)
1820 hlist_add_head(&clk->child_node, &clk_root_list);
1821 else
1822 hlist_add_head(&clk->child_node, &clk_orphan_list);
1823
1824 /*
1825 * Set clk's accuracy. The preferred method is to use
1826 * .recalc_accuracy. For simple clocks and lazy developers the default
1827 * fallback is to use the parent's accuracy. If a clock doesn't have a
1828 * parent (or is orphaned) then accuracy is set to zero (perfect
1829 * clock).
1830 */
1831 if (clk->ops->recalc_accuracy)
1832 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1833 __clk_get_accuracy(clk->parent));
1834 else if (clk->parent)
1835 clk->accuracy = clk->parent->accuracy;
1836 else
1837 clk->accuracy = 0;
1838
1839 /*
1840 * Set clk's rate. The preferred method is to use .recalc_rate. For
1841 * simple clocks and lazy developers the default fallback is to use the
1842 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1843 * then rate is set to zero.
1844 */
1845 if (clk->ops->recalc_rate)
1846 clk->rate = clk->ops->recalc_rate(clk->hw,
1847 __clk_get_rate(clk->parent));
1848 else if (clk->parent)
1849 clk->rate = clk->parent->rate;
1850 else
1851 clk->rate = 0;
1852
1853 clk_debug_register(clk);
1854 /*
1855 * walk the list of orphan clocks and reparent any that are children of
1856 * this clock
1857 */
1858 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1859 if (orphan->num_parents && orphan->ops->get_parent) {
1860 i = orphan->ops->get_parent(orphan->hw);
1861 if (!strcmp(clk->name, orphan->parent_names[i]))
1862 __clk_reparent(orphan, clk);
1863 continue;
1864 }
1865
1866 for (i = 0; i < orphan->num_parents; i++)
1867 if (!strcmp(clk->name, orphan->parent_names[i])) {
1868 __clk_reparent(orphan, clk);
1869 break;
1870 }
1871 }
1872
1873 /*
1874 * optional platform-specific magic
1875 *
1876 * The .init callback is not used by any of the basic clock types, but
1877 * exists for weird hardware that must perform initialization magic.
1878 * Please consider other ways of solving initialization problems before
1879 * using this callback, as its use is discouraged.
1880 */
1881 if (clk->ops->init)
1882 clk->ops->init(clk->hw);
1883
1884 kref_init(&clk->ref);
1885 out:
1886 clk_prepare_unlock();
1887
1888 return ret;
1889 }
1890
1891 /**
1892 * __clk_register - register a clock and return a cookie.
1893 *
1894 * Same as clk_register, except that the .clk field inside hw shall point to a
1895 * preallocated (generally statically allocated) struct clk. None of the fields
1896 * of the struct clk need to be initialized.
1897 *
1898 * The data pointed to by .init and .clk field shall NOT be marked as init
1899 * data.
1900 *
1901 * __clk_register is only exposed via clk-private.h and is intended for use with
1902 * very large numbers of clocks that need to be statically initialized. It is
1903 * a layering violation to include clk-private.h from any code which implements
1904 * a clock's .ops; as such any statically initialized clock data MUST be in a
1905 * separate C file from the logic that implements its operations. Returns 0
1906 * on success, otherwise an error code.
1907 */
1908 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1909 {
1910 int ret;
1911 struct clk *clk;
1912
1913 clk = hw->clk;
1914 clk->name = hw->init->name;
1915 clk->ops = hw->init->ops;
1916 clk->hw = hw;
1917 clk->flags = hw->init->flags;
1918 clk->parent_names = hw->init->parent_names;
1919 clk->num_parents = hw->init->num_parents;
1920 if (dev && dev->driver)
1921 clk->owner = dev->driver->owner;
1922 else
1923 clk->owner = NULL;
1924
1925 ret = __clk_init(dev, clk);
1926 if (ret)
1927 return ERR_PTR(ret);
1928
1929 return clk;
1930 }
1931 EXPORT_SYMBOL_GPL(__clk_register);
1932
1933 static int _clk_register(struct device *dev, struct clk_hw *hw, struct clk *clk)
1934 {
1935 int i, ret;
1936
1937 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1938 if (!clk->name) {
1939 pr_err("%s: could not allocate clk->name\n", __func__);
1940 ret = -ENOMEM;
1941 goto fail_name;
1942 }
1943 clk->ops = hw->init->ops;
1944 if (dev && dev->driver)
1945 clk->owner = dev->driver->owner;
1946 clk->hw = hw;
1947 clk->flags = hw->init->flags;
1948 clk->num_parents = hw->init->num_parents;
1949 hw->clk = clk;
1950
1951 /* allocate local copy in case parent_names is __initdata */
1952 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
1953 GFP_KERNEL);
1954
1955 if (!clk->parent_names) {
1956 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1957 ret = -ENOMEM;
1958 goto fail_parent_names;
1959 }
1960
1961
1962 /* copy each string name in case parent_names is __initdata */
1963 for (i = 0; i < clk->num_parents; i++) {
1964 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
1965 GFP_KERNEL);
1966 if (!clk->parent_names[i]) {
1967 pr_err("%s: could not copy parent_names\n", __func__);
1968 ret = -ENOMEM;
1969 goto fail_parent_names_copy;
1970 }
1971 }
1972
1973 ret = __clk_init(dev, clk);
1974 if (!ret)
1975 return 0;
1976
1977 fail_parent_names_copy:
1978 while (--i >= 0)
1979 kfree(clk->parent_names[i]);
1980 kfree(clk->parent_names);
1981 fail_parent_names:
1982 kfree(clk->name);
1983 fail_name:
1984 return ret;
1985 }
1986
1987 /**
1988 * clk_register - allocate a new clock, register it and return an opaque cookie
1989 * @dev: device that is registering this clock
1990 * @hw: link to hardware-specific clock data
1991 *
1992 * clk_register is the primary interface for populating the clock tree with new
1993 * clock nodes. It returns a pointer to the newly allocated struct clk which
1994 * cannot be dereferenced by driver code but may be used in conjuction with the
1995 * rest of the clock API. In the event of an error clk_register will return an
1996 * error code; drivers must test for an error code after calling clk_register.
1997 */
1998 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1999 {
2000 int ret;
2001 struct clk *clk;
2002
2003 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2004 if (!clk) {
2005 pr_err("%s: could not allocate clk\n", __func__);
2006 ret = -ENOMEM;
2007 goto fail_out;
2008 }
2009
2010 ret = _clk_register(dev, hw, clk);
2011 if (!ret)
2012 return clk;
2013
2014 kfree(clk);
2015 fail_out:
2016 return ERR_PTR(ret);
2017 }
2018 EXPORT_SYMBOL_GPL(clk_register);
2019
2020 /*
2021 * Free memory allocated for a clock.
2022 * Caller must hold prepare_lock.
2023 */
2024 static void __clk_release(struct kref *ref)
2025 {
2026 struct clk *clk = container_of(ref, struct clk, ref);
2027 int i = clk->num_parents;
2028
2029 kfree(clk->parents);
2030 while (--i >= 0)
2031 kfree(clk->parent_names[i]);
2032
2033 kfree(clk->parent_names);
2034 kfree(clk->name);
2035 kfree(clk);
2036 }
2037
2038 /*
2039 * Empty clk_ops for unregistered clocks. These are used temporarily
2040 * after clk_unregister() was called on a clock and until last clock
2041 * consumer calls clk_put() and the struct clk object is freed.
2042 */
2043 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2044 {
2045 return -ENXIO;
2046 }
2047
2048 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2049 {
2050 WARN_ON_ONCE(1);
2051 }
2052
2053 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2054 unsigned long parent_rate)
2055 {
2056 return -ENXIO;
2057 }
2058
2059 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2060 {
2061 return -ENXIO;
2062 }
2063
2064 static const struct clk_ops clk_nodrv_ops = {
2065 .enable = clk_nodrv_prepare_enable,
2066 .disable = clk_nodrv_disable_unprepare,
2067 .prepare = clk_nodrv_prepare_enable,
2068 .unprepare = clk_nodrv_disable_unprepare,
2069 .set_rate = clk_nodrv_set_rate,
2070 .set_parent = clk_nodrv_set_parent,
2071 };
2072
2073 /**
2074 * clk_unregister - unregister a currently registered clock
2075 * @clk: clock to unregister
2076 */
2077 void clk_unregister(struct clk *clk)
2078 {
2079 unsigned long flags;
2080
2081 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2082 return;
2083
2084 clk_prepare_lock();
2085
2086 if (clk->ops == &clk_nodrv_ops) {
2087 pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2088 goto out;
2089 }
2090 /*
2091 * Assign empty clock ops for consumers that might still hold
2092 * a reference to this clock.
2093 */
2094 flags = clk_enable_lock();
2095 clk->ops = &clk_nodrv_ops;
2096 clk_enable_unlock(flags);
2097
2098 if (!hlist_empty(&clk->children)) {
2099 struct clk *child;
2100
2101 /* Reparent all children to the orphan list. */
2102 hlist_for_each_entry(child, &clk->children, child_node)
2103 clk_set_parent(child, NULL);
2104 }
2105
2106 clk_debug_unregister(clk);
2107
2108 hlist_del_init(&clk->child_node);
2109
2110 if (clk->prepare_count)
2111 pr_warn("%s: unregistering prepared clock: %s\n",
2112 __func__, clk->name);
2113
2114 kref_put(&clk->ref, __clk_release);
2115 out:
2116 clk_prepare_unlock();
2117 }
2118 EXPORT_SYMBOL_GPL(clk_unregister);
2119
2120 static void devm_clk_release(struct device *dev, void *res)
2121 {
2122 clk_unregister(res);
2123 }
2124
2125 /**
2126 * devm_clk_register - resource managed clk_register()
2127 * @dev: device that is registering this clock
2128 * @hw: link to hardware-specific clock data
2129 *
2130 * Managed clk_register(). Clocks returned from this function are
2131 * automatically clk_unregister()ed on driver detach. See clk_register() for
2132 * more information.
2133 */
2134 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2135 {
2136 struct clk *clk;
2137 int ret;
2138
2139 clk = devres_alloc(devm_clk_release, sizeof(*clk), GFP_KERNEL);
2140 if (!clk)
2141 return ERR_PTR(-ENOMEM);
2142
2143 ret = _clk_register(dev, hw, clk);
2144 if (!ret) {
2145 devres_add(dev, clk);
2146 } else {
2147 devres_free(clk);
2148 clk = ERR_PTR(ret);
2149 }
2150
2151 return clk;
2152 }
2153 EXPORT_SYMBOL_GPL(devm_clk_register);
2154
2155 static int devm_clk_match(struct device *dev, void *res, void *data)
2156 {
2157 struct clk *c = res;
2158 if (WARN_ON(!c))
2159 return 0;
2160 return c == data;
2161 }
2162
2163 /**
2164 * devm_clk_unregister - resource managed clk_unregister()
2165 * @clk: clock to unregister
2166 *
2167 * Deallocate a clock allocated with devm_clk_register(). Normally
2168 * this function will not need to be called and the resource management
2169 * code will ensure that the resource is freed.
2170 */
2171 void devm_clk_unregister(struct device *dev, struct clk *clk)
2172 {
2173 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2174 }
2175 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2176
2177 /*
2178 * clkdev helpers
2179 */
2180 int __clk_get(struct clk *clk)
2181 {
2182 if (clk && !try_module_get(clk->owner))
2183 return 0;
2184
2185 kref_get(&clk->ref);
2186 return 1;
2187 }
2188
2189 void __clk_put(struct clk *clk)
2190 {
2191 if (WARN_ON_ONCE(IS_ERR(clk)))
2192 return;
2193
2194 clk_prepare_lock();
2195 kref_put(&clk->ref, __clk_release);
2196 clk_prepare_unlock();
2197
2198 if (clk)
2199 module_put(clk->owner);
2200 }
2201
2202 /*** clk rate change notifiers ***/
2203
2204 /**
2205 * clk_notifier_register - add a clk rate change notifier
2206 * @clk: struct clk * to watch
2207 * @nb: struct notifier_block * with callback info
2208 *
2209 * Request notification when clk's rate changes. This uses an SRCU
2210 * notifier because we want it to block and notifier unregistrations are
2211 * uncommon. The callbacks associated with the notifier must not
2212 * re-enter into the clk framework by calling any top-level clk APIs;
2213 * this will cause a nested prepare_lock mutex.
2214 *
2215 * Pre-change notifier callbacks will be passed the current, pre-change
2216 * rate of the clk via struct clk_notifier_data.old_rate. The new,
2217 * post-change rate of the clk is passed via struct
2218 * clk_notifier_data.new_rate.
2219 *
2220 * Post-change notifiers will pass the now-current, post-change rate of
2221 * the clk in both struct clk_notifier_data.old_rate and struct
2222 * clk_notifier_data.new_rate.
2223 *
2224 * Abort-change notifiers are effectively the opposite of pre-change
2225 * notifiers: the original pre-change clk rate is passed in via struct
2226 * clk_notifier_data.new_rate and the failed post-change rate is passed
2227 * in via struct clk_notifier_data.old_rate.
2228 *
2229 * clk_notifier_register() must be called from non-atomic context.
2230 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2231 * allocation failure; otherwise, passes along the return value of
2232 * srcu_notifier_chain_register().
2233 */
2234 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2235 {
2236 struct clk_notifier *cn;
2237 int ret = -ENOMEM;
2238
2239 if (!clk || !nb)
2240 return -EINVAL;
2241
2242 clk_prepare_lock();
2243
2244 /* search the list of notifiers for this clk */
2245 list_for_each_entry(cn, &clk_notifier_list, node)
2246 if (cn->clk == clk)
2247 break;
2248
2249 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2250 if (cn->clk != clk) {
2251 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2252 if (!cn)
2253 goto out;
2254
2255 cn->clk = clk;
2256 srcu_init_notifier_head(&cn->notifier_head);
2257
2258 list_add(&cn->node, &clk_notifier_list);
2259 }
2260
2261 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2262
2263 clk->notifier_count++;
2264
2265 out:
2266 clk_prepare_unlock();
2267
2268 return ret;
2269 }
2270 EXPORT_SYMBOL_GPL(clk_notifier_register);
2271
2272 /**
2273 * clk_notifier_unregister - remove a clk rate change notifier
2274 * @clk: struct clk *
2275 * @nb: struct notifier_block * with callback info
2276 *
2277 * Request no further notification for changes to 'clk' and frees memory
2278 * allocated in clk_notifier_register.
2279 *
2280 * Returns -EINVAL if called with null arguments; otherwise, passes
2281 * along the return value of srcu_notifier_chain_unregister().
2282 */
2283 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2284 {
2285 struct clk_notifier *cn = NULL;
2286 int ret = -EINVAL;
2287
2288 if (!clk || !nb)
2289 return -EINVAL;
2290
2291 clk_prepare_lock();
2292
2293 list_for_each_entry(cn, &clk_notifier_list, node)
2294 if (cn->clk == clk)
2295 break;
2296
2297 if (cn->clk == clk) {
2298 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2299
2300 clk->notifier_count--;
2301
2302 /* XXX the notifier code should handle this better */
2303 if (!cn->notifier_head.head) {
2304 srcu_cleanup_notifier_head(&cn->notifier_head);
2305 list_del(&cn->node);
2306 kfree(cn);
2307 }
2308
2309 } else {
2310 ret = -ENOENT;
2311 }
2312
2313 clk_prepare_unlock();
2314
2315 return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2318
2319 #ifdef CONFIG_OF
2320 /**
2321 * struct of_clk_provider - Clock provider registration structure
2322 * @link: Entry in global list of clock providers
2323 * @node: Pointer to device tree node of clock provider
2324 * @get: Get clock callback. Returns NULL or a struct clk for the
2325 * given clock specifier
2326 * @data: context pointer to be passed into @get callback
2327 */
2328 struct of_clk_provider {
2329 struct list_head link;
2330
2331 struct device_node *node;
2332 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2333 void *data;
2334 };
2335
2336 extern struct of_device_id __clk_of_table[];
2337
2338 static const struct of_device_id __clk_of_table_sentinel
2339 __used __section(__clk_of_table_end);
2340
2341 static LIST_HEAD(of_clk_providers);
2342 static DEFINE_MUTEX(of_clk_mutex);
2343
2344 /* of_clk_provider list locking helpers */
2345 void of_clk_lock(void)
2346 {
2347 mutex_lock(&of_clk_mutex);
2348 }
2349
2350 void of_clk_unlock(void)
2351 {
2352 mutex_unlock(&of_clk_mutex);
2353 }
2354
2355 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2356 void *data)
2357 {
2358 return data;
2359 }
2360 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2361
2362 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2363 {
2364 struct clk_onecell_data *clk_data = data;
2365 unsigned int idx = clkspec->args[0];
2366
2367 if (idx >= clk_data->clk_num) {
2368 pr_err("%s: invalid clock index %d\n", __func__, idx);
2369 return ERR_PTR(-EINVAL);
2370 }
2371
2372 return clk_data->clks[idx];
2373 }
2374 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2375
2376 /**
2377 * of_clk_add_provider() - Register a clock provider for a node
2378 * @np: Device node pointer associated with clock provider
2379 * @clk_src_get: callback for decoding clock
2380 * @data: context pointer for @clk_src_get callback.
2381 */
2382 int of_clk_add_provider(struct device_node *np,
2383 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2384 void *data),
2385 void *data)
2386 {
2387 struct of_clk_provider *cp;
2388
2389 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2390 if (!cp)
2391 return -ENOMEM;
2392
2393 cp->node = of_node_get(np);
2394 cp->data = data;
2395 cp->get = clk_src_get;
2396
2397 mutex_lock(&of_clk_mutex);
2398 list_add(&cp->link, &of_clk_providers);
2399 mutex_unlock(&of_clk_mutex);
2400 pr_debug("Added clock from %s\n", np->full_name);
2401
2402 return 0;
2403 }
2404 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2405
2406 /**
2407 * of_clk_del_provider() - Remove a previously registered clock provider
2408 * @np: Device node pointer associated with clock provider
2409 */
2410 void of_clk_del_provider(struct device_node *np)
2411 {
2412 struct of_clk_provider *cp;
2413
2414 mutex_lock(&of_clk_mutex);
2415 list_for_each_entry(cp, &of_clk_providers, link) {
2416 if (cp->node == np) {
2417 list_del(&cp->link);
2418 of_node_put(cp->node);
2419 kfree(cp);
2420 break;
2421 }
2422 }
2423 mutex_unlock(&of_clk_mutex);
2424 }
2425 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2426
2427 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2428 {
2429 struct of_clk_provider *provider;
2430 struct clk *clk = ERR_PTR(-ENOENT);
2431
2432 /* Check if we have such a provider in our array */
2433 list_for_each_entry(provider, &of_clk_providers, link) {
2434 if (provider->node == clkspec->np)
2435 clk = provider->get(clkspec, provider->data);
2436 if (!IS_ERR(clk))
2437 break;
2438 }
2439
2440 return clk;
2441 }
2442
2443 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2444 {
2445 struct clk *clk;
2446
2447 mutex_lock(&of_clk_mutex);
2448 clk = __of_clk_get_from_provider(clkspec);
2449 mutex_unlock(&of_clk_mutex);
2450
2451 return clk;
2452 }
2453
2454 int of_clk_get_parent_count(struct device_node *np)
2455 {
2456 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2457 }
2458 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2459
2460 const char *of_clk_get_parent_name(struct device_node *np, int index)
2461 {
2462 struct of_phandle_args clkspec;
2463 const char *clk_name;
2464 int rc;
2465
2466 if (index < 0)
2467 return NULL;
2468
2469 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2470 &clkspec);
2471 if (rc)
2472 return NULL;
2473
2474 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2475 clkspec.args_count ? clkspec.args[0] : 0,
2476 &clk_name) < 0)
2477 clk_name = clkspec.np->name;
2478
2479 of_node_put(clkspec.np);
2480 return clk_name;
2481 }
2482 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2483
2484 /**
2485 * of_clk_init() - Scan and init clock providers from the DT
2486 * @matches: array of compatible values and init functions for providers.
2487 *
2488 * This function scans the device tree for matching clock providers and
2489 * calls their initialization functions
2490 */
2491 void __init of_clk_init(const struct of_device_id *matches)
2492 {
2493 const struct of_device_id *match;
2494 struct device_node *np;
2495
2496 if (!matches)
2497 matches = __clk_of_table;
2498
2499 for_each_matching_node_and_match(np, matches, &match) {
2500 of_clk_init_cb_t clk_init_cb = match->data;
2501 clk_init_cb(np);
2502 }
2503 }
2504 #endif