]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clk/clk.c
clk: clps711x: Add DT bindings documentation
[mirror_ubuntu-bionic-kernel.git] / drivers / clk / clk.c
1 /*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12 #include <linux/clk-private.h>
13 #include <linux/clk/clk-conf.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/list.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/sched.h>
24
25 #include "clk.h"
26
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32
33 static int prepare_refcnt;
34 static int enable_refcnt;
35
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39
40 /*** locking ***/
41 static void clk_prepare_lock(void)
42 {
43 if (!mutex_trylock(&prepare_lock)) {
44 if (prepare_owner == current) {
45 prepare_refcnt++;
46 return;
47 }
48 mutex_lock(&prepare_lock);
49 }
50 WARN_ON_ONCE(prepare_owner != NULL);
51 WARN_ON_ONCE(prepare_refcnt != 0);
52 prepare_owner = current;
53 prepare_refcnt = 1;
54 }
55
56 static void clk_prepare_unlock(void)
57 {
58 WARN_ON_ONCE(prepare_owner != current);
59 WARN_ON_ONCE(prepare_refcnt == 0);
60
61 if (--prepare_refcnt)
62 return;
63 prepare_owner = NULL;
64 mutex_unlock(&prepare_lock);
65 }
66
67 static unsigned long clk_enable_lock(void)
68 {
69 unsigned long flags;
70
71 if (!spin_trylock_irqsave(&enable_lock, flags)) {
72 if (enable_owner == current) {
73 enable_refcnt++;
74 return flags;
75 }
76 spin_lock_irqsave(&enable_lock, flags);
77 }
78 WARN_ON_ONCE(enable_owner != NULL);
79 WARN_ON_ONCE(enable_refcnt != 0);
80 enable_owner = current;
81 enable_refcnt = 1;
82 return flags;
83 }
84
85 static void clk_enable_unlock(unsigned long flags)
86 {
87 WARN_ON_ONCE(enable_owner != current);
88 WARN_ON_ONCE(enable_refcnt == 0);
89
90 if (--enable_refcnt)
91 return;
92 enable_owner = NULL;
93 spin_unlock_irqrestore(&enable_lock, flags);
94 }
95
96 /*** debugfs support ***/
97
98 #ifdef CONFIG_DEBUG_FS
99 #include <linux/debugfs.h>
100
101 static struct dentry *rootdir;
102 static int inited = 0;
103
104 static struct hlist_head *all_lists[] = {
105 &clk_root_list,
106 &clk_orphan_list,
107 NULL,
108 };
109
110 static struct hlist_head *orphan_list[] = {
111 &clk_orphan_list,
112 NULL,
113 };
114
115 static void clk_summary_show_one(struct seq_file *s, struct clk *c, int level)
116 {
117 if (!c)
118 return;
119
120 seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu\n",
121 level * 3 + 1, "",
122 30 - level * 3, c->name,
123 c->enable_count, c->prepare_count, clk_get_rate(c),
124 clk_get_accuracy(c));
125 }
126
127 static void clk_summary_show_subtree(struct seq_file *s, struct clk *c,
128 int level)
129 {
130 struct clk *child;
131
132 if (!c)
133 return;
134
135 clk_summary_show_one(s, c, level);
136
137 hlist_for_each_entry(child, &c->children, child_node)
138 clk_summary_show_subtree(s, child, level + 1);
139 }
140
141 static int clk_summary_show(struct seq_file *s, void *data)
142 {
143 struct clk *c;
144 struct hlist_head **lists = (struct hlist_head **)s->private;
145
146 seq_puts(s, " clock enable_cnt prepare_cnt rate accuracy\n");
147 seq_puts(s, "--------------------------------------------------------------------------------\n");
148
149 clk_prepare_lock();
150
151 for (; *lists; lists++)
152 hlist_for_each_entry(c, *lists, child_node)
153 clk_summary_show_subtree(s, c, 0);
154
155 clk_prepare_unlock();
156
157 return 0;
158 }
159
160
161 static int clk_summary_open(struct inode *inode, struct file *file)
162 {
163 return single_open(file, clk_summary_show, inode->i_private);
164 }
165
166 static const struct file_operations clk_summary_fops = {
167 .open = clk_summary_open,
168 .read = seq_read,
169 .llseek = seq_lseek,
170 .release = single_release,
171 };
172
173 static void clk_dump_one(struct seq_file *s, struct clk *c, int level)
174 {
175 if (!c)
176 return;
177
178 seq_printf(s, "\"%s\": { ", c->name);
179 seq_printf(s, "\"enable_count\": %d,", c->enable_count);
180 seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
181 seq_printf(s, "\"rate\": %lu", clk_get_rate(c));
182 seq_printf(s, "\"accuracy\": %lu", clk_get_accuracy(c));
183 }
184
185 static void clk_dump_subtree(struct seq_file *s, struct clk *c, int level)
186 {
187 struct clk *child;
188
189 if (!c)
190 return;
191
192 clk_dump_one(s, c, level);
193
194 hlist_for_each_entry(child, &c->children, child_node) {
195 seq_printf(s, ",");
196 clk_dump_subtree(s, child, level + 1);
197 }
198
199 seq_printf(s, "}");
200 }
201
202 static int clk_dump(struct seq_file *s, void *data)
203 {
204 struct clk *c;
205 bool first_node = true;
206 struct hlist_head **lists = (struct hlist_head **)s->private;
207
208 seq_printf(s, "{");
209
210 clk_prepare_lock();
211
212 for (; *lists; lists++) {
213 hlist_for_each_entry(c, *lists, child_node) {
214 if (!first_node)
215 seq_puts(s, ",");
216 first_node = false;
217 clk_dump_subtree(s, c, 0);
218 }
219 }
220
221 clk_prepare_unlock();
222
223 seq_printf(s, "}");
224 return 0;
225 }
226
227
228 static int clk_dump_open(struct inode *inode, struct file *file)
229 {
230 return single_open(file, clk_dump, inode->i_private);
231 }
232
233 static const struct file_operations clk_dump_fops = {
234 .open = clk_dump_open,
235 .read = seq_read,
236 .llseek = seq_lseek,
237 .release = single_release,
238 };
239
240 /* caller must hold prepare_lock */
241 static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
242 {
243 struct dentry *d;
244 int ret = -ENOMEM;
245
246 if (!clk || !pdentry) {
247 ret = -EINVAL;
248 goto out;
249 }
250
251 d = debugfs_create_dir(clk->name, pdentry);
252 if (!d)
253 goto out;
254
255 clk->dentry = d;
256
257 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
258 (u32 *)&clk->rate);
259 if (!d)
260 goto err_out;
261
262 d = debugfs_create_u32("clk_accuracy", S_IRUGO, clk->dentry,
263 (u32 *)&clk->accuracy);
264 if (!d)
265 goto err_out;
266
267 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
268 (u32 *)&clk->flags);
269 if (!d)
270 goto err_out;
271
272 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
273 (u32 *)&clk->prepare_count);
274 if (!d)
275 goto err_out;
276
277 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
278 (u32 *)&clk->enable_count);
279 if (!d)
280 goto err_out;
281
282 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
283 (u32 *)&clk->notifier_count);
284 if (!d)
285 goto err_out;
286
287 if (clk->ops->debug_init)
288 if (clk->ops->debug_init(clk->hw, clk->dentry))
289 goto err_out;
290
291 ret = 0;
292 goto out;
293
294 err_out:
295 debugfs_remove_recursive(clk->dentry);
296 clk->dentry = NULL;
297 out:
298 return ret;
299 }
300
301 /* caller must hold prepare_lock */
302 static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
303 {
304 struct clk *child;
305 int ret = -EINVAL;;
306
307 if (!clk || !pdentry)
308 goto out;
309
310 ret = clk_debug_create_one(clk, pdentry);
311
312 if (ret)
313 goto out;
314
315 hlist_for_each_entry(child, &clk->children, child_node)
316 clk_debug_create_subtree(child, pdentry);
317
318 ret = 0;
319 out:
320 return ret;
321 }
322
323 /**
324 * clk_debug_register - add a clk node to the debugfs clk tree
325 * @clk: the clk being added to the debugfs clk tree
326 *
327 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
328 * initialized. Otherwise it bails out early since the debugfs clk tree
329 * will be created lazily by clk_debug_init as part of a late_initcall.
330 *
331 * Caller must hold prepare_lock. Only clk_init calls this function (so
332 * far) so this is taken care.
333 */
334 static int clk_debug_register(struct clk *clk)
335 {
336 int ret = 0;
337
338 if (!inited)
339 goto out;
340
341 ret = clk_debug_create_subtree(clk, rootdir);
342
343 out:
344 return ret;
345 }
346
347 /**
348 * clk_debug_unregister - remove a clk node from the debugfs clk tree
349 * @clk: the clk being removed from the debugfs clk tree
350 *
351 * Dynamically removes a clk and all it's children clk nodes from the
352 * debugfs clk tree if clk->dentry points to debugfs created by
353 * clk_debug_register in __clk_init.
354 *
355 * Caller must hold prepare_lock.
356 */
357 static void clk_debug_unregister(struct clk *clk)
358 {
359 debugfs_remove_recursive(clk->dentry);
360 }
361
362 struct dentry *clk_debugfs_add_file(struct clk *clk, char *name, umode_t mode,
363 void *data, const struct file_operations *fops)
364 {
365 struct dentry *d = NULL;
366
367 if (clk->dentry)
368 d = debugfs_create_file(name, mode, clk->dentry, data, fops);
369
370 return d;
371 }
372 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
373
374 /**
375 * clk_debug_init - lazily create the debugfs clk tree visualization
376 *
377 * clks are often initialized very early during boot before memory can
378 * be dynamically allocated and well before debugfs is setup.
379 * clk_debug_init walks the clk tree hierarchy while holding
380 * prepare_lock and creates the topology as part of a late_initcall,
381 * thus insuring that clks initialized very early will still be
382 * represented in the debugfs clk tree. This function should only be
383 * called once at boot-time, and all other clks added dynamically will
384 * be done so with clk_debug_register.
385 */
386 static int __init clk_debug_init(void)
387 {
388 struct clk *clk;
389 struct dentry *d;
390
391 rootdir = debugfs_create_dir("clk", NULL);
392
393 if (!rootdir)
394 return -ENOMEM;
395
396 d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
397 &clk_summary_fops);
398 if (!d)
399 return -ENOMEM;
400
401 d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
402 &clk_dump_fops);
403 if (!d)
404 return -ENOMEM;
405
406 d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
407 &orphan_list, &clk_summary_fops);
408 if (!d)
409 return -ENOMEM;
410
411 d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
412 &orphan_list, &clk_dump_fops);
413 if (!d)
414 return -ENOMEM;
415
416 clk_prepare_lock();
417
418 hlist_for_each_entry(clk, &clk_root_list, child_node)
419 clk_debug_create_subtree(clk, rootdir);
420
421 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
422 clk_debug_create_subtree(clk, rootdir);
423
424 inited = 1;
425
426 clk_prepare_unlock();
427
428 return 0;
429 }
430 late_initcall(clk_debug_init);
431 #else
432 static inline int clk_debug_register(struct clk *clk) { return 0; }
433 static inline void clk_debug_reparent(struct clk *clk, struct clk *new_parent)
434 {
435 }
436 static inline void clk_debug_unregister(struct clk *clk)
437 {
438 }
439 #endif
440
441 /* caller must hold prepare_lock */
442 static void clk_unprepare_unused_subtree(struct clk *clk)
443 {
444 struct clk *child;
445
446 if (!clk)
447 return;
448
449 hlist_for_each_entry(child, &clk->children, child_node)
450 clk_unprepare_unused_subtree(child);
451
452 if (clk->prepare_count)
453 return;
454
455 if (clk->flags & CLK_IGNORE_UNUSED)
456 return;
457
458 if (__clk_is_prepared(clk)) {
459 if (clk->ops->unprepare_unused)
460 clk->ops->unprepare_unused(clk->hw);
461 else if (clk->ops->unprepare)
462 clk->ops->unprepare(clk->hw);
463 }
464 }
465
466 /* caller must hold prepare_lock */
467 static void clk_disable_unused_subtree(struct clk *clk)
468 {
469 struct clk *child;
470 unsigned long flags;
471
472 if (!clk)
473 goto out;
474
475 hlist_for_each_entry(child, &clk->children, child_node)
476 clk_disable_unused_subtree(child);
477
478 flags = clk_enable_lock();
479
480 if (clk->enable_count)
481 goto unlock_out;
482
483 if (clk->flags & CLK_IGNORE_UNUSED)
484 goto unlock_out;
485
486 /*
487 * some gate clocks have special needs during the disable-unused
488 * sequence. call .disable_unused if available, otherwise fall
489 * back to .disable
490 */
491 if (__clk_is_enabled(clk)) {
492 if (clk->ops->disable_unused)
493 clk->ops->disable_unused(clk->hw);
494 else if (clk->ops->disable)
495 clk->ops->disable(clk->hw);
496 }
497
498 unlock_out:
499 clk_enable_unlock(flags);
500
501 out:
502 return;
503 }
504
505 static bool clk_ignore_unused;
506 static int __init clk_ignore_unused_setup(char *__unused)
507 {
508 clk_ignore_unused = true;
509 return 1;
510 }
511 __setup("clk_ignore_unused", clk_ignore_unused_setup);
512
513 static int clk_disable_unused(void)
514 {
515 struct clk *clk;
516
517 if (clk_ignore_unused) {
518 pr_warn("clk: Not disabling unused clocks\n");
519 return 0;
520 }
521
522 clk_prepare_lock();
523
524 hlist_for_each_entry(clk, &clk_root_list, child_node)
525 clk_disable_unused_subtree(clk);
526
527 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
528 clk_disable_unused_subtree(clk);
529
530 hlist_for_each_entry(clk, &clk_root_list, child_node)
531 clk_unprepare_unused_subtree(clk);
532
533 hlist_for_each_entry(clk, &clk_orphan_list, child_node)
534 clk_unprepare_unused_subtree(clk);
535
536 clk_prepare_unlock();
537
538 return 0;
539 }
540 late_initcall_sync(clk_disable_unused);
541
542 /*** helper functions ***/
543
544 const char *__clk_get_name(struct clk *clk)
545 {
546 return !clk ? NULL : clk->name;
547 }
548 EXPORT_SYMBOL_GPL(__clk_get_name);
549
550 struct clk_hw *__clk_get_hw(struct clk *clk)
551 {
552 return !clk ? NULL : clk->hw;
553 }
554 EXPORT_SYMBOL_GPL(__clk_get_hw);
555
556 u8 __clk_get_num_parents(struct clk *clk)
557 {
558 return !clk ? 0 : clk->num_parents;
559 }
560 EXPORT_SYMBOL_GPL(__clk_get_num_parents);
561
562 struct clk *__clk_get_parent(struct clk *clk)
563 {
564 return !clk ? NULL : clk->parent;
565 }
566 EXPORT_SYMBOL_GPL(__clk_get_parent);
567
568 struct clk *clk_get_parent_by_index(struct clk *clk, u8 index)
569 {
570 if (!clk || index >= clk->num_parents)
571 return NULL;
572 else if (!clk->parents)
573 return __clk_lookup(clk->parent_names[index]);
574 else if (!clk->parents[index])
575 return clk->parents[index] =
576 __clk_lookup(clk->parent_names[index]);
577 else
578 return clk->parents[index];
579 }
580 EXPORT_SYMBOL_GPL(clk_get_parent_by_index);
581
582 unsigned int __clk_get_enable_count(struct clk *clk)
583 {
584 return !clk ? 0 : clk->enable_count;
585 }
586
587 unsigned int __clk_get_prepare_count(struct clk *clk)
588 {
589 return !clk ? 0 : clk->prepare_count;
590 }
591
592 unsigned long __clk_get_rate(struct clk *clk)
593 {
594 unsigned long ret;
595
596 if (!clk) {
597 ret = 0;
598 goto out;
599 }
600
601 ret = clk->rate;
602
603 if (clk->flags & CLK_IS_ROOT)
604 goto out;
605
606 if (!clk->parent)
607 ret = 0;
608
609 out:
610 return ret;
611 }
612 EXPORT_SYMBOL_GPL(__clk_get_rate);
613
614 unsigned long __clk_get_accuracy(struct clk *clk)
615 {
616 if (!clk)
617 return 0;
618
619 return clk->accuracy;
620 }
621
622 unsigned long __clk_get_flags(struct clk *clk)
623 {
624 return !clk ? 0 : clk->flags;
625 }
626 EXPORT_SYMBOL_GPL(__clk_get_flags);
627
628 bool __clk_is_prepared(struct clk *clk)
629 {
630 int ret;
631
632 if (!clk)
633 return false;
634
635 /*
636 * .is_prepared is optional for clocks that can prepare
637 * fall back to software usage counter if it is missing
638 */
639 if (!clk->ops->is_prepared) {
640 ret = clk->prepare_count ? 1 : 0;
641 goto out;
642 }
643
644 ret = clk->ops->is_prepared(clk->hw);
645 out:
646 return !!ret;
647 }
648
649 bool __clk_is_enabled(struct clk *clk)
650 {
651 int ret;
652
653 if (!clk)
654 return false;
655
656 /*
657 * .is_enabled is only mandatory for clocks that gate
658 * fall back to software usage counter if .is_enabled is missing
659 */
660 if (!clk->ops->is_enabled) {
661 ret = clk->enable_count ? 1 : 0;
662 goto out;
663 }
664
665 ret = clk->ops->is_enabled(clk->hw);
666 out:
667 return !!ret;
668 }
669 EXPORT_SYMBOL_GPL(__clk_is_enabled);
670
671 static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
672 {
673 struct clk *child;
674 struct clk *ret;
675
676 if (!strcmp(clk->name, name))
677 return clk;
678
679 hlist_for_each_entry(child, &clk->children, child_node) {
680 ret = __clk_lookup_subtree(name, child);
681 if (ret)
682 return ret;
683 }
684
685 return NULL;
686 }
687
688 struct clk *__clk_lookup(const char *name)
689 {
690 struct clk *root_clk;
691 struct clk *ret;
692
693 if (!name)
694 return NULL;
695
696 /* search the 'proper' clk tree first */
697 hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
698 ret = __clk_lookup_subtree(name, root_clk);
699 if (ret)
700 return ret;
701 }
702
703 /* if not found, then search the orphan tree */
704 hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
705 ret = __clk_lookup_subtree(name, root_clk);
706 if (ret)
707 return ret;
708 }
709
710 return NULL;
711 }
712
713 /*
714 * Helper for finding best parent to provide a given frequency. This can be used
715 * directly as a determine_rate callback (e.g. for a mux), or from a more
716 * complex clock that may combine a mux with other operations.
717 */
718 long __clk_mux_determine_rate(struct clk_hw *hw, unsigned long rate,
719 unsigned long *best_parent_rate,
720 struct clk **best_parent_p)
721 {
722 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
723 int i, num_parents;
724 unsigned long parent_rate, best = 0;
725
726 /* if NO_REPARENT flag set, pass through to current parent */
727 if (clk->flags & CLK_SET_RATE_NO_REPARENT) {
728 parent = clk->parent;
729 if (clk->flags & CLK_SET_RATE_PARENT)
730 best = __clk_round_rate(parent, rate);
731 else if (parent)
732 best = __clk_get_rate(parent);
733 else
734 best = __clk_get_rate(clk);
735 goto out;
736 }
737
738 /* find the parent that can provide the fastest rate <= rate */
739 num_parents = clk->num_parents;
740 for (i = 0; i < num_parents; i++) {
741 parent = clk_get_parent_by_index(clk, i);
742 if (!parent)
743 continue;
744 if (clk->flags & CLK_SET_RATE_PARENT)
745 parent_rate = __clk_round_rate(parent, rate);
746 else
747 parent_rate = __clk_get_rate(parent);
748 if (parent_rate <= rate && parent_rate > best) {
749 best_parent = parent;
750 best = parent_rate;
751 }
752 }
753
754 out:
755 if (best_parent)
756 *best_parent_p = best_parent;
757 *best_parent_rate = best;
758
759 return best;
760 }
761 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
762
763 /*** clk api ***/
764
765 void __clk_unprepare(struct clk *clk)
766 {
767 if (!clk)
768 return;
769
770 if (WARN_ON(clk->prepare_count == 0))
771 return;
772
773 if (--clk->prepare_count > 0)
774 return;
775
776 WARN_ON(clk->enable_count > 0);
777
778 if (clk->ops->unprepare)
779 clk->ops->unprepare(clk->hw);
780
781 __clk_unprepare(clk->parent);
782 }
783
784 /**
785 * clk_unprepare - undo preparation of a clock source
786 * @clk: the clk being unprepared
787 *
788 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
789 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
790 * if the operation may sleep. One example is a clk which is accessed over
791 * I2c. In the complex case a clk gate operation may require a fast and a slow
792 * part. It is this reason that clk_unprepare and clk_disable are not mutually
793 * exclusive. In fact clk_disable must be called before clk_unprepare.
794 */
795 void clk_unprepare(struct clk *clk)
796 {
797 if (IS_ERR_OR_NULL(clk))
798 return;
799
800 clk_prepare_lock();
801 __clk_unprepare(clk);
802 clk_prepare_unlock();
803 }
804 EXPORT_SYMBOL_GPL(clk_unprepare);
805
806 int __clk_prepare(struct clk *clk)
807 {
808 int ret = 0;
809
810 if (!clk)
811 return 0;
812
813 if (clk->prepare_count == 0) {
814 ret = __clk_prepare(clk->parent);
815 if (ret)
816 return ret;
817
818 if (clk->ops->prepare) {
819 ret = clk->ops->prepare(clk->hw);
820 if (ret) {
821 __clk_unprepare(clk->parent);
822 return ret;
823 }
824 }
825 }
826
827 clk->prepare_count++;
828
829 return 0;
830 }
831
832 /**
833 * clk_prepare - prepare a clock source
834 * @clk: the clk being prepared
835 *
836 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
837 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
838 * operation may sleep. One example is a clk which is accessed over I2c. In
839 * the complex case a clk ungate operation may require a fast and a slow part.
840 * It is this reason that clk_prepare and clk_enable are not mutually
841 * exclusive. In fact clk_prepare must be called before clk_enable.
842 * Returns 0 on success, -EERROR otherwise.
843 */
844 int clk_prepare(struct clk *clk)
845 {
846 int ret;
847
848 clk_prepare_lock();
849 ret = __clk_prepare(clk);
850 clk_prepare_unlock();
851
852 return ret;
853 }
854 EXPORT_SYMBOL_GPL(clk_prepare);
855
856 static void __clk_disable(struct clk *clk)
857 {
858 if (!clk)
859 return;
860
861 if (WARN_ON(clk->enable_count == 0))
862 return;
863
864 if (--clk->enable_count > 0)
865 return;
866
867 if (clk->ops->disable)
868 clk->ops->disable(clk->hw);
869
870 __clk_disable(clk->parent);
871 }
872
873 /**
874 * clk_disable - gate a clock
875 * @clk: the clk being gated
876 *
877 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
878 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
879 * clk if the operation is fast and will never sleep. One example is a
880 * SoC-internal clk which is controlled via simple register writes. In the
881 * complex case a clk gate operation may require a fast and a slow part. It is
882 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
883 * In fact clk_disable must be called before clk_unprepare.
884 */
885 void clk_disable(struct clk *clk)
886 {
887 unsigned long flags;
888
889 if (IS_ERR_OR_NULL(clk))
890 return;
891
892 flags = clk_enable_lock();
893 __clk_disable(clk);
894 clk_enable_unlock(flags);
895 }
896 EXPORT_SYMBOL_GPL(clk_disable);
897
898 static int __clk_enable(struct clk *clk)
899 {
900 int ret = 0;
901
902 if (!clk)
903 return 0;
904
905 if (WARN_ON(clk->prepare_count == 0))
906 return -ESHUTDOWN;
907
908 if (clk->enable_count == 0) {
909 ret = __clk_enable(clk->parent);
910
911 if (ret)
912 return ret;
913
914 if (clk->ops->enable) {
915 ret = clk->ops->enable(clk->hw);
916 if (ret) {
917 __clk_disable(clk->parent);
918 return ret;
919 }
920 }
921 }
922
923 clk->enable_count++;
924 return 0;
925 }
926
927 /**
928 * clk_enable - ungate a clock
929 * @clk: the clk being ungated
930 *
931 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
932 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
933 * if the operation will never sleep. One example is a SoC-internal clk which
934 * is controlled via simple register writes. In the complex case a clk ungate
935 * operation may require a fast and a slow part. It is this reason that
936 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
937 * must be called before clk_enable. Returns 0 on success, -EERROR
938 * otherwise.
939 */
940 int clk_enable(struct clk *clk)
941 {
942 unsigned long flags;
943 int ret;
944
945 flags = clk_enable_lock();
946 ret = __clk_enable(clk);
947 clk_enable_unlock(flags);
948
949 return ret;
950 }
951 EXPORT_SYMBOL_GPL(clk_enable);
952
953 /**
954 * __clk_round_rate - round the given rate for a clk
955 * @clk: round the rate of this clock
956 * @rate: the rate which is to be rounded
957 *
958 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
959 */
960 unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
961 {
962 unsigned long parent_rate = 0;
963 struct clk *parent;
964
965 if (!clk)
966 return 0;
967
968 parent = clk->parent;
969 if (parent)
970 parent_rate = parent->rate;
971
972 if (clk->ops->determine_rate)
973 return clk->ops->determine_rate(clk->hw, rate, &parent_rate,
974 &parent);
975 else if (clk->ops->round_rate)
976 return clk->ops->round_rate(clk->hw, rate, &parent_rate);
977 else if (clk->flags & CLK_SET_RATE_PARENT)
978 return __clk_round_rate(clk->parent, rate);
979 else
980 return clk->rate;
981 }
982 EXPORT_SYMBOL_GPL(__clk_round_rate);
983
984 /**
985 * clk_round_rate - round the given rate for a clk
986 * @clk: the clk for which we are rounding a rate
987 * @rate: the rate which is to be rounded
988 *
989 * Takes in a rate as input and rounds it to a rate that the clk can actually
990 * use which is then returned. If clk doesn't support round_rate operation
991 * then the parent rate is returned.
992 */
993 long clk_round_rate(struct clk *clk, unsigned long rate)
994 {
995 unsigned long ret;
996
997 clk_prepare_lock();
998 ret = __clk_round_rate(clk, rate);
999 clk_prepare_unlock();
1000
1001 return ret;
1002 }
1003 EXPORT_SYMBOL_GPL(clk_round_rate);
1004
1005 /**
1006 * __clk_notify - call clk notifier chain
1007 * @clk: struct clk * that is changing rate
1008 * @msg: clk notifier type (see include/linux/clk.h)
1009 * @old_rate: old clk rate
1010 * @new_rate: new clk rate
1011 *
1012 * Triggers a notifier call chain on the clk rate-change notification
1013 * for 'clk'. Passes a pointer to the struct clk and the previous
1014 * and current rates to the notifier callback. Intended to be called by
1015 * internal clock code only. Returns NOTIFY_DONE from the last driver
1016 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1017 * a driver returns that.
1018 */
1019 static int __clk_notify(struct clk *clk, unsigned long msg,
1020 unsigned long old_rate, unsigned long new_rate)
1021 {
1022 struct clk_notifier *cn;
1023 struct clk_notifier_data cnd;
1024 int ret = NOTIFY_DONE;
1025
1026 cnd.clk = clk;
1027 cnd.old_rate = old_rate;
1028 cnd.new_rate = new_rate;
1029
1030 list_for_each_entry(cn, &clk_notifier_list, node) {
1031 if (cn->clk == clk) {
1032 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1033 &cnd);
1034 break;
1035 }
1036 }
1037
1038 return ret;
1039 }
1040
1041 /**
1042 * __clk_recalc_accuracies
1043 * @clk: first clk in the subtree
1044 *
1045 * Walks the subtree of clks starting with clk and recalculates accuracies as
1046 * it goes. Note that if a clk does not implement the .recalc_accuracy
1047 * callback then it is assumed that the clock will take on the accuracy of it's
1048 * parent.
1049 *
1050 * Caller must hold prepare_lock.
1051 */
1052 static void __clk_recalc_accuracies(struct clk *clk)
1053 {
1054 unsigned long parent_accuracy = 0;
1055 struct clk *child;
1056
1057 if (clk->parent)
1058 parent_accuracy = clk->parent->accuracy;
1059
1060 if (clk->ops->recalc_accuracy)
1061 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1062 parent_accuracy);
1063 else
1064 clk->accuracy = parent_accuracy;
1065
1066 hlist_for_each_entry(child, &clk->children, child_node)
1067 __clk_recalc_accuracies(child);
1068 }
1069
1070 /**
1071 * clk_get_accuracy - return the accuracy of clk
1072 * @clk: the clk whose accuracy is being returned
1073 *
1074 * Simply returns the cached accuracy of the clk, unless
1075 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1076 * issued.
1077 * If clk is NULL then returns 0.
1078 */
1079 long clk_get_accuracy(struct clk *clk)
1080 {
1081 unsigned long accuracy;
1082
1083 clk_prepare_lock();
1084 if (clk && (clk->flags & CLK_GET_ACCURACY_NOCACHE))
1085 __clk_recalc_accuracies(clk);
1086
1087 accuracy = __clk_get_accuracy(clk);
1088 clk_prepare_unlock();
1089
1090 return accuracy;
1091 }
1092 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1093
1094 static unsigned long clk_recalc(struct clk *clk, unsigned long parent_rate)
1095 {
1096 if (clk->ops->recalc_rate)
1097 return clk->ops->recalc_rate(clk->hw, parent_rate);
1098 return parent_rate;
1099 }
1100
1101 /**
1102 * __clk_recalc_rates
1103 * @clk: first clk in the subtree
1104 * @msg: notification type (see include/linux/clk.h)
1105 *
1106 * Walks the subtree of clks starting with clk and recalculates rates as it
1107 * goes. Note that if a clk does not implement the .recalc_rate callback then
1108 * it is assumed that the clock will take on the rate of its parent.
1109 *
1110 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1111 * if necessary.
1112 *
1113 * Caller must hold prepare_lock.
1114 */
1115 static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
1116 {
1117 unsigned long old_rate;
1118 unsigned long parent_rate = 0;
1119 struct clk *child;
1120
1121 old_rate = clk->rate;
1122
1123 if (clk->parent)
1124 parent_rate = clk->parent->rate;
1125
1126 clk->rate = clk_recalc(clk, parent_rate);
1127
1128 /*
1129 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1130 * & ABORT_RATE_CHANGE notifiers
1131 */
1132 if (clk->notifier_count && msg)
1133 __clk_notify(clk, msg, old_rate, clk->rate);
1134
1135 hlist_for_each_entry(child, &clk->children, child_node)
1136 __clk_recalc_rates(child, msg);
1137 }
1138
1139 /**
1140 * clk_get_rate - return the rate of clk
1141 * @clk: the clk whose rate is being returned
1142 *
1143 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1144 * is set, which means a recalc_rate will be issued.
1145 * If clk is NULL then returns 0.
1146 */
1147 unsigned long clk_get_rate(struct clk *clk)
1148 {
1149 unsigned long rate;
1150
1151 clk_prepare_lock();
1152
1153 if (clk && (clk->flags & CLK_GET_RATE_NOCACHE))
1154 __clk_recalc_rates(clk, 0);
1155
1156 rate = __clk_get_rate(clk);
1157 clk_prepare_unlock();
1158
1159 return rate;
1160 }
1161 EXPORT_SYMBOL_GPL(clk_get_rate);
1162
1163 static int clk_fetch_parent_index(struct clk *clk, struct clk *parent)
1164 {
1165 int i;
1166
1167 if (!clk->parents) {
1168 clk->parents = kcalloc(clk->num_parents,
1169 sizeof(struct clk *), GFP_KERNEL);
1170 if (!clk->parents)
1171 return -ENOMEM;
1172 }
1173
1174 /*
1175 * find index of new parent clock using cached parent ptrs,
1176 * or if not yet cached, use string name comparison and cache
1177 * them now to avoid future calls to __clk_lookup.
1178 */
1179 for (i = 0; i < clk->num_parents; i++) {
1180 if (clk->parents[i] == parent)
1181 return i;
1182
1183 if (clk->parents[i])
1184 continue;
1185
1186 if (!strcmp(clk->parent_names[i], parent->name)) {
1187 clk->parents[i] = __clk_lookup(parent->name);
1188 return i;
1189 }
1190 }
1191
1192 return -EINVAL;
1193 }
1194
1195 static void clk_reparent(struct clk *clk, struct clk *new_parent)
1196 {
1197 hlist_del(&clk->child_node);
1198
1199 if (new_parent) {
1200 /* avoid duplicate POST_RATE_CHANGE notifications */
1201 if (new_parent->new_child == clk)
1202 new_parent->new_child = NULL;
1203
1204 hlist_add_head(&clk->child_node, &new_parent->children);
1205 } else {
1206 hlist_add_head(&clk->child_node, &clk_orphan_list);
1207 }
1208
1209 clk->parent = new_parent;
1210 }
1211
1212 static struct clk *__clk_set_parent_before(struct clk *clk, struct clk *parent)
1213 {
1214 unsigned long flags;
1215 struct clk *old_parent = clk->parent;
1216
1217 /*
1218 * Migrate prepare state between parents and prevent race with
1219 * clk_enable().
1220 *
1221 * If the clock is not prepared, then a race with
1222 * clk_enable/disable() is impossible since we already have the
1223 * prepare lock (future calls to clk_enable() need to be preceded by
1224 * a clk_prepare()).
1225 *
1226 * If the clock is prepared, migrate the prepared state to the new
1227 * parent and also protect against a race with clk_enable() by
1228 * forcing the clock and the new parent on. This ensures that all
1229 * future calls to clk_enable() are practically NOPs with respect to
1230 * hardware and software states.
1231 *
1232 * See also: Comment for clk_set_parent() below.
1233 */
1234 if (clk->prepare_count) {
1235 __clk_prepare(parent);
1236 clk_enable(parent);
1237 clk_enable(clk);
1238 }
1239
1240 /* update the clk tree topology */
1241 flags = clk_enable_lock();
1242 clk_reparent(clk, parent);
1243 clk_enable_unlock(flags);
1244
1245 return old_parent;
1246 }
1247
1248 static void __clk_set_parent_after(struct clk *clk, struct clk *parent,
1249 struct clk *old_parent)
1250 {
1251 /*
1252 * Finish the migration of prepare state and undo the changes done
1253 * for preventing a race with clk_enable().
1254 */
1255 if (clk->prepare_count) {
1256 clk_disable(clk);
1257 clk_disable(old_parent);
1258 __clk_unprepare(old_parent);
1259 }
1260 }
1261
1262 static int __clk_set_parent(struct clk *clk, struct clk *parent, u8 p_index)
1263 {
1264 unsigned long flags;
1265 int ret = 0;
1266 struct clk *old_parent;
1267
1268 old_parent = __clk_set_parent_before(clk, parent);
1269
1270 /* change clock input source */
1271 if (parent && clk->ops->set_parent)
1272 ret = clk->ops->set_parent(clk->hw, p_index);
1273
1274 if (ret) {
1275 flags = clk_enable_lock();
1276 clk_reparent(clk, old_parent);
1277 clk_enable_unlock(flags);
1278
1279 if (clk->prepare_count) {
1280 clk_disable(clk);
1281 clk_disable(parent);
1282 __clk_unprepare(parent);
1283 }
1284 return ret;
1285 }
1286
1287 __clk_set_parent_after(clk, parent, old_parent);
1288
1289 return 0;
1290 }
1291
1292 /**
1293 * __clk_speculate_rates
1294 * @clk: first clk in the subtree
1295 * @parent_rate: the "future" rate of clk's parent
1296 *
1297 * Walks the subtree of clks starting with clk, speculating rates as it
1298 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1299 *
1300 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1301 * pre-rate change notifications and returns early if no clks in the
1302 * subtree have subscribed to the notifications. Note that if a clk does not
1303 * implement the .recalc_rate callback then it is assumed that the clock will
1304 * take on the rate of its parent.
1305 *
1306 * Caller must hold prepare_lock.
1307 */
1308 static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
1309 {
1310 struct clk *child;
1311 unsigned long new_rate;
1312 int ret = NOTIFY_DONE;
1313
1314 new_rate = clk_recalc(clk, parent_rate);
1315
1316 /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1317 if (clk->notifier_count)
1318 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
1319
1320 if (ret & NOTIFY_STOP_MASK) {
1321 pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1322 __func__, clk->name, ret);
1323 goto out;
1324 }
1325
1326 hlist_for_each_entry(child, &clk->children, child_node) {
1327 ret = __clk_speculate_rates(child, new_rate);
1328 if (ret & NOTIFY_STOP_MASK)
1329 break;
1330 }
1331
1332 out:
1333 return ret;
1334 }
1335
1336 static void clk_calc_subtree(struct clk *clk, unsigned long new_rate,
1337 struct clk *new_parent, u8 p_index)
1338 {
1339 struct clk *child;
1340
1341 clk->new_rate = new_rate;
1342 clk->new_parent = new_parent;
1343 clk->new_parent_index = p_index;
1344 /* include clk in new parent's PRE_RATE_CHANGE notifications */
1345 clk->new_child = NULL;
1346 if (new_parent && new_parent != clk->parent)
1347 new_parent->new_child = clk;
1348
1349 hlist_for_each_entry(child, &clk->children, child_node) {
1350 child->new_rate = clk_recalc(child, new_rate);
1351 clk_calc_subtree(child, child->new_rate, NULL, 0);
1352 }
1353 }
1354
1355 /*
1356 * calculate the new rates returning the topmost clock that has to be
1357 * changed.
1358 */
1359 static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
1360 {
1361 struct clk *top = clk;
1362 struct clk *old_parent, *parent;
1363 unsigned long best_parent_rate = 0;
1364 unsigned long new_rate;
1365 int p_index = 0;
1366
1367 /* sanity */
1368 if (IS_ERR_OR_NULL(clk))
1369 return NULL;
1370
1371 /* save parent rate, if it exists */
1372 parent = old_parent = clk->parent;
1373 if (parent)
1374 best_parent_rate = parent->rate;
1375
1376 /* find the closest rate and parent clk/rate */
1377 if (clk->ops->determine_rate) {
1378 new_rate = clk->ops->determine_rate(clk->hw, rate,
1379 &best_parent_rate,
1380 &parent);
1381 } else if (clk->ops->round_rate) {
1382 new_rate = clk->ops->round_rate(clk->hw, rate,
1383 &best_parent_rate);
1384 } else if (!parent || !(clk->flags & CLK_SET_RATE_PARENT)) {
1385 /* pass-through clock without adjustable parent */
1386 clk->new_rate = clk->rate;
1387 return NULL;
1388 } else {
1389 /* pass-through clock with adjustable parent */
1390 top = clk_calc_new_rates(parent, rate);
1391 new_rate = parent->new_rate;
1392 goto out;
1393 }
1394
1395 /* some clocks must be gated to change parent */
1396 if (parent != old_parent &&
1397 (clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1398 pr_debug("%s: %s not gated but wants to reparent\n",
1399 __func__, clk->name);
1400 return NULL;
1401 }
1402
1403 /* try finding the new parent index */
1404 if (parent) {
1405 p_index = clk_fetch_parent_index(clk, parent);
1406 if (p_index < 0) {
1407 pr_debug("%s: clk %s can not be parent of clk %s\n",
1408 __func__, parent->name, clk->name);
1409 return NULL;
1410 }
1411 }
1412
1413 if ((clk->flags & CLK_SET_RATE_PARENT) && parent &&
1414 best_parent_rate != parent->rate)
1415 top = clk_calc_new_rates(parent, best_parent_rate);
1416
1417 out:
1418 clk_calc_subtree(clk, new_rate, parent, p_index);
1419
1420 return top;
1421 }
1422
1423 /*
1424 * Notify about rate changes in a subtree. Always walk down the whole tree
1425 * so that in case of an error we can walk down the whole tree again and
1426 * abort the change.
1427 */
1428 static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
1429 {
1430 struct clk *child, *tmp_clk, *fail_clk = NULL;
1431 int ret = NOTIFY_DONE;
1432
1433 if (clk->rate == clk->new_rate)
1434 return NULL;
1435
1436 if (clk->notifier_count) {
1437 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
1438 if (ret & NOTIFY_STOP_MASK)
1439 fail_clk = clk;
1440 }
1441
1442 hlist_for_each_entry(child, &clk->children, child_node) {
1443 /* Skip children who will be reparented to another clock */
1444 if (child->new_parent && child->new_parent != clk)
1445 continue;
1446 tmp_clk = clk_propagate_rate_change(child, event);
1447 if (tmp_clk)
1448 fail_clk = tmp_clk;
1449 }
1450
1451 /* handle the new child who might not be in clk->children yet */
1452 if (clk->new_child) {
1453 tmp_clk = clk_propagate_rate_change(clk->new_child, event);
1454 if (tmp_clk)
1455 fail_clk = tmp_clk;
1456 }
1457
1458 return fail_clk;
1459 }
1460
1461 /*
1462 * walk down a subtree and set the new rates notifying the rate
1463 * change on the way
1464 */
1465 static void clk_change_rate(struct clk *clk)
1466 {
1467 struct clk *child;
1468 unsigned long old_rate;
1469 unsigned long best_parent_rate = 0;
1470 bool skip_set_rate = false;
1471 struct clk *old_parent;
1472
1473 old_rate = clk->rate;
1474
1475 if (clk->new_parent)
1476 best_parent_rate = clk->new_parent->rate;
1477 else if (clk->parent)
1478 best_parent_rate = clk->parent->rate;
1479
1480 if (clk->new_parent && clk->new_parent != clk->parent) {
1481 old_parent = __clk_set_parent_before(clk, clk->new_parent);
1482
1483 if (clk->ops->set_rate_and_parent) {
1484 skip_set_rate = true;
1485 clk->ops->set_rate_and_parent(clk->hw, clk->new_rate,
1486 best_parent_rate,
1487 clk->new_parent_index);
1488 } else if (clk->ops->set_parent) {
1489 clk->ops->set_parent(clk->hw, clk->new_parent_index);
1490 }
1491
1492 __clk_set_parent_after(clk, clk->new_parent, old_parent);
1493 }
1494
1495 if (!skip_set_rate && clk->ops->set_rate)
1496 clk->ops->set_rate(clk->hw, clk->new_rate, best_parent_rate);
1497
1498 clk->rate = clk_recalc(clk, best_parent_rate);
1499
1500 if (clk->notifier_count && old_rate != clk->rate)
1501 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
1502
1503 hlist_for_each_entry(child, &clk->children, child_node) {
1504 /* Skip children who will be reparented to another clock */
1505 if (child->new_parent && child->new_parent != clk)
1506 continue;
1507 clk_change_rate(child);
1508 }
1509
1510 /* handle the new child who might not be in clk->children yet */
1511 if (clk->new_child)
1512 clk_change_rate(clk->new_child);
1513 }
1514
1515 /**
1516 * clk_set_rate - specify a new rate for clk
1517 * @clk: the clk whose rate is being changed
1518 * @rate: the new rate for clk
1519 *
1520 * In the simplest case clk_set_rate will only adjust the rate of clk.
1521 *
1522 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1523 * propagate up to clk's parent; whether or not this happens depends on the
1524 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
1525 * after calling .round_rate then upstream parent propagation is ignored. If
1526 * *parent_rate comes back with a new rate for clk's parent then we propagate
1527 * up to clk's parent and set its rate. Upward propagation will continue
1528 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1529 * .round_rate stops requesting changes to clk's parent_rate.
1530 *
1531 * Rate changes are accomplished via tree traversal that also recalculates the
1532 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1533 *
1534 * Returns 0 on success, -EERROR otherwise.
1535 */
1536 int clk_set_rate(struct clk *clk, unsigned long rate)
1537 {
1538 struct clk *top, *fail_clk;
1539 int ret = 0;
1540
1541 if (!clk)
1542 return 0;
1543
1544 /* prevent racing with updates to the clock topology */
1545 clk_prepare_lock();
1546
1547 /* bail early if nothing to do */
1548 if (rate == clk_get_rate(clk))
1549 goto out;
1550
1551 if ((clk->flags & CLK_SET_RATE_GATE) && clk->prepare_count) {
1552 ret = -EBUSY;
1553 goto out;
1554 }
1555
1556 /* calculate new rates and get the topmost changed clock */
1557 top = clk_calc_new_rates(clk, rate);
1558 if (!top) {
1559 ret = -EINVAL;
1560 goto out;
1561 }
1562
1563 /* notify that we are about to change rates */
1564 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1565 if (fail_clk) {
1566 pr_debug("%s: failed to set %s rate\n", __func__,
1567 fail_clk->name);
1568 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1569 ret = -EBUSY;
1570 goto out;
1571 }
1572
1573 /* change the rates */
1574 clk_change_rate(top);
1575
1576 out:
1577 clk_prepare_unlock();
1578
1579 return ret;
1580 }
1581 EXPORT_SYMBOL_GPL(clk_set_rate);
1582
1583 /**
1584 * clk_get_parent - return the parent of a clk
1585 * @clk: the clk whose parent gets returned
1586 *
1587 * Simply returns clk->parent. Returns NULL if clk is NULL.
1588 */
1589 struct clk *clk_get_parent(struct clk *clk)
1590 {
1591 struct clk *parent;
1592
1593 clk_prepare_lock();
1594 parent = __clk_get_parent(clk);
1595 clk_prepare_unlock();
1596
1597 return parent;
1598 }
1599 EXPORT_SYMBOL_GPL(clk_get_parent);
1600
1601 /*
1602 * .get_parent is mandatory for clocks with multiple possible parents. It is
1603 * optional for single-parent clocks. Always call .get_parent if it is
1604 * available and WARN if it is missing for multi-parent clocks.
1605 *
1606 * For single-parent clocks without .get_parent, first check to see if the
1607 * .parents array exists, and if so use it to avoid an expensive tree
1608 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
1609 */
1610 static struct clk *__clk_init_parent(struct clk *clk)
1611 {
1612 struct clk *ret = NULL;
1613 u8 index;
1614
1615 /* handle the trivial cases */
1616
1617 if (!clk->num_parents)
1618 goto out;
1619
1620 if (clk->num_parents == 1) {
1621 if (IS_ERR_OR_NULL(clk->parent))
1622 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
1623 ret = clk->parent;
1624 goto out;
1625 }
1626
1627 if (!clk->ops->get_parent) {
1628 WARN(!clk->ops->get_parent,
1629 "%s: multi-parent clocks must implement .get_parent\n",
1630 __func__);
1631 goto out;
1632 };
1633
1634 /*
1635 * Do our best to cache parent clocks in clk->parents. This prevents
1636 * unnecessary and expensive calls to __clk_lookup. We don't set
1637 * clk->parent here; that is done by the calling function
1638 */
1639
1640 index = clk->ops->get_parent(clk->hw);
1641
1642 if (!clk->parents)
1643 clk->parents =
1644 kcalloc(clk->num_parents, sizeof(struct clk *),
1645 GFP_KERNEL);
1646
1647 ret = clk_get_parent_by_index(clk, index);
1648
1649 out:
1650 return ret;
1651 }
1652
1653 void __clk_reparent(struct clk *clk, struct clk *new_parent)
1654 {
1655 clk_reparent(clk, new_parent);
1656 __clk_recalc_accuracies(clk);
1657 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1658 }
1659
1660 /**
1661 * clk_set_parent - switch the parent of a mux clk
1662 * @clk: the mux clk whose input we are switching
1663 * @parent: the new input to clk
1664 *
1665 * Re-parent clk to use parent as its new input source. If clk is in
1666 * prepared state, the clk will get enabled for the duration of this call. If
1667 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1668 * that, the reparenting is glitchy in hardware, etc), use the
1669 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1670 *
1671 * After successfully changing clk's parent clk_set_parent will update the
1672 * clk topology, sysfs topology and propagate rate recalculation via
1673 * __clk_recalc_rates.
1674 *
1675 * Returns 0 on success, -EERROR otherwise.
1676 */
1677 int clk_set_parent(struct clk *clk, struct clk *parent)
1678 {
1679 int ret = 0;
1680 int p_index = 0;
1681 unsigned long p_rate = 0;
1682
1683 if (!clk)
1684 return 0;
1685
1686 /* verify ops for for multi-parent clks */
1687 if ((clk->num_parents > 1) && (!clk->ops->set_parent))
1688 return -ENOSYS;
1689
1690 /* prevent racing with updates to the clock topology */
1691 clk_prepare_lock();
1692
1693 if (clk->parent == parent)
1694 goto out;
1695
1696 /* check that we are allowed to re-parent if the clock is in use */
1697 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count) {
1698 ret = -EBUSY;
1699 goto out;
1700 }
1701
1702 /* try finding the new parent index */
1703 if (parent) {
1704 p_index = clk_fetch_parent_index(clk, parent);
1705 p_rate = parent->rate;
1706 if (p_index < 0) {
1707 pr_debug("%s: clk %s can not be parent of clk %s\n",
1708 __func__, parent->name, clk->name);
1709 ret = p_index;
1710 goto out;
1711 }
1712 }
1713
1714 /* propagate PRE_RATE_CHANGE notifications */
1715 ret = __clk_speculate_rates(clk, p_rate);
1716
1717 /* abort if a driver objects */
1718 if (ret & NOTIFY_STOP_MASK)
1719 goto out;
1720
1721 /* do the re-parent */
1722 ret = __clk_set_parent(clk, parent, p_index);
1723
1724 /* propagate rate an accuracy recalculation accordingly */
1725 if (ret) {
1726 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1727 } else {
1728 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1729 __clk_recalc_accuracies(clk);
1730 }
1731
1732 out:
1733 clk_prepare_unlock();
1734
1735 return ret;
1736 }
1737 EXPORT_SYMBOL_GPL(clk_set_parent);
1738
1739 /**
1740 * __clk_init - initialize the data structures in a struct clk
1741 * @dev: device initializing this clk, placeholder for now
1742 * @clk: clk being initialized
1743 *
1744 * Initializes the lists in struct clk, queries the hardware for the
1745 * parent and rate and sets them both.
1746 */
1747 int __clk_init(struct device *dev, struct clk *clk)
1748 {
1749 int i, ret = 0;
1750 struct clk *orphan;
1751 struct hlist_node *tmp2;
1752
1753 if (!clk)
1754 return -EINVAL;
1755
1756 clk_prepare_lock();
1757
1758 /* check to see if a clock with this name is already registered */
1759 if (__clk_lookup(clk->name)) {
1760 pr_debug("%s: clk %s already initialized\n",
1761 __func__, clk->name);
1762 ret = -EEXIST;
1763 goto out;
1764 }
1765
1766 /* check that clk_ops are sane. See Documentation/clk.txt */
1767 if (clk->ops->set_rate &&
1768 !((clk->ops->round_rate || clk->ops->determine_rate) &&
1769 clk->ops->recalc_rate)) {
1770 pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
1771 __func__, clk->name);
1772 ret = -EINVAL;
1773 goto out;
1774 }
1775
1776 if (clk->ops->set_parent && !clk->ops->get_parent) {
1777 pr_warning("%s: %s must implement .get_parent & .set_parent\n",
1778 __func__, clk->name);
1779 ret = -EINVAL;
1780 goto out;
1781 }
1782
1783 if (clk->ops->set_rate_and_parent &&
1784 !(clk->ops->set_parent && clk->ops->set_rate)) {
1785 pr_warn("%s: %s must implement .set_parent & .set_rate\n",
1786 __func__, clk->name);
1787 ret = -EINVAL;
1788 goto out;
1789 }
1790
1791 /* throw a WARN if any entries in parent_names are NULL */
1792 for (i = 0; i < clk->num_parents; i++)
1793 WARN(!clk->parent_names[i],
1794 "%s: invalid NULL in %s's .parent_names\n",
1795 __func__, clk->name);
1796
1797 /*
1798 * Allocate an array of struct clk *'s to avoid unnecessary string
1799 * look-ups of clk's possible parents. This can fail for clocks passed
1800 * in to clk_init during early boot; thus any access to clk->parents[]
1801 * must always check for a NULL pointer and try to populate it if
1802 * necessary.
1803 *
1804 * If clk->parents is not NULL we skip this entire block. This allows
1805 * for clock drivers to statically initialize clk->parents.
1806 */
1807 if (clk->num_parents > 1 && !clk->parents) {
1808 clk->parents = kcalloc(clk->num_parents, sizeof(struct clk *),
1809 GFP_KERNEL);
1810 /*
1811 * __clk_lookup returns NULL for parents that have not been
1812 * clk_init'd; thus any access to clk->parents[] must check
1813 * for a NULL pointer. We can always perform lazy lookups for
1814 * missing parents later on.
1815 */
1816 if (clk->parents)
1817 for (i = 0; i < clk->num_parents; i++)
1818 clk->parents[i] =
1819 __clk_lookup(clk->parent_names[i]);
1820 }
1821
1822 clk->parent = __clk_init_parent(clk);
1823
1824 /*
1825 * Populate clk->parent if parent has already been __clk_init'd. If
1826 * parent has not yet been __clk_init'd then place clk in the orphan
1827 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1828 * clk list.
1829 *
1830 * Every time a new clk is clk_init'd then we walk the list of orphan
1831 * clocks and re-parent any that are children of the clock currently
1832 * being clk_init'd.
1833 */
1834 if (clk->parent)
1835 hlist_add_head(&clk->child_node,
1836 &clk->parent->children);
1837 else if (clk->flags & CLK_IS_ROOT)
1838 hlist_add_head(&clk->child_node, &clk_root_list);
1839 else
1840 hlist_add_head(&clk->child_node, &clk_orphan_list);
1841
1842 /*
1843 * Set clk's accuracy. The preferred method is to use
1844 * .recalc_accuracy. For simple clocks and lazy developers the default
1845 * fallback is to use the parent's accuracy. If a clock doesn't have a
1846 * parent (or is orphaned) then accuracy is set to zero (perfect
1847 * clock).
1848 */
1849 if (clk->ops->recalc_accuracy)
1850 clk->accuracy = clk->ops->recalc_accuracy(clk->hw,
1851 __clk_get_accuracy(clk->parent));
1852 else if (clk->parent)
1853 clk->accuracy = clk->parent->accuracy;
1854 else
1855 clk->accuracy = 0;
1856
1857 /*
1858 * Set clk's rate. The preferred method is to use .recalc_rate. For
1859 * simple clocks and lazy developers the default fallback is to use the
1860 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1861 * then rate is set to zero.
1862 */
1863 if (clk->ops->recalc_rate)
1864 clk->rate = clk->ops->recalc_rate(clk->hw,
1865 __clk_get_rate(clk->parent));
1866 else if (clk->parent)
1867 clk->rate = clk->parent->rate;
1868 else
1869 clk->rate = 0;
1870
1871 clk_debug_register(clk);
1872 /*
1873 * walk the list of orphan clocks and reparent any that are children of
1874 * this clock
1875 */
1876 hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
1877 if (orphan->num_parents && orphan->ops->get_parent) {
1878 i = orphan->ops->get_parent(orphan->hw);
1879 if (!strcmp(clk->name, orphan->parent_names[i]))
1880 __clk_reparent(orphan, clk);
1881 continue;
1882 }
1883
1884 for (i = 0; i < orphan->num_parents; i++)
1885 if (!strcmp(clk->name, orphan->parent_names[i])) {
1886 __clk_reparent(orphan, clk);
1887 break;
1888 }
1889 }
1890
1891 /*
1892 * optional platform-specific magic
1893 *
1894 * The .init callback is not used by any of the basic clock types, but
1895 * exists for weird hardware that must perform initialization magic.
1896 * Please consider other ways of solving initialization problems before
1897 * using this callback, as its use is discouraged.
1898 */
1899 if (clk->ops->init)
1900 clk->ops->init(clk->hw);
1901
1902 kref_init(&clk->ref);
1903 out:
1904 clk_prepare_unlock();
1905
1906 return ret;
1907 }
1908
1909 /**
1910 * __clk_register - register a clock and return a cookie.
1911 *
1912 * Same as clk_register, except that the .clk field inside hw shall point to a
1913 * preallocated (generally statically allocated) struct clk. None of the fields
1914 * of the struct clk need to be initialized.
1915 *
1916 * The data pointed to by .init and .clk field shall NOT be marked as init
1917 * data.
1918 *
1919 * __clk_register is only exposed via clk-private.h and is intended for use with
1920 * very large numbers of clocks that need to be statically initialized. It is
1921 * a layering violation to include clk-private.h from any code which implements
1922 * a clock's .ops; as such any statically initialized clock data MUST be in a
1923 * separate C file from the logic that implements its operations. Returns 0
1924 * on success, otherwise an error code.
1925 */
1926 struct clk *__clk_register(struct device *dev, struct clk_hw *hw)
1927 {
1928 int ret;
1929 struct clk *clk;
1930
1931 clk = hw->clk;
1932 clk->name = hw->init->name;
1933 clk->ops = hw->init->ops;
1934 clk->hw = hw;
1935 clk->flags = hw->init->flags;
1936 clk->parent_names = hw->init->parent_names;
1937 clk->num_parents = hw->init->num_parents;
1938 if (dev && dev->driver)
1939 clk->owner = dev->driver->owner;
1940 else
1941 clk->owner = NULL;
1942
1943 ret = __clk_init(dev, clk);
1944 if (ret)
1945 return ERR_PTR(ret);
1946
1947 return clk;
1948 }
1949 EXPORT_SYMBOL_GPL(__clk_register);
1950
1951 /**
1952 * clk_register - allocate a new clock, register it and return an opaque cookie
1953 * @dev: device that is registering this clock
1954 * @hw: link to hardware-specific clock data
1955 *
1956 * clk_register is the primary interface for populating the clock tree with new
1957 * clock nodes. It returns a pointer to the newly allocated struct clk which
1958 * cannot be dereferenced by driver code but may be used in conjuction with the
1959 * rest of the clock API. In the event of an error clk_register will return an
1960 * error code; drivers must test for an error code after calling clk_register.
1961 */
1962 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
1963 {
1964 int i, ret;
1965 struct clk *clk;
1966
1967 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1968 if (!clk) {
1969 pr_err("%s: could not allocate clk\n", __func__);
1970 ret = -ENOMEM;
1971 goto fail_out;
1972 }
1973
1974 clk->name = kstrdup(hw->init->name, GFP_KERNEL);
1975 if (!clk->name) {
1976 pr_err("%s: could not allocate clk->name\n", __func__);
1977 ret = -ENOMEM;
1978 goto fail_name;
1979 }
1980 clk->ops = hw->init->ops;
1981 if (dev && dev->driver)
1982 clk->owner = dev->driver->owner;
1983 clk->hw = hw;
1984 clk->flags = hw->init->flags;
1985 clk->num_parents = hw->init->num_parents;
1986 hw->clk = clk;
1987
1988 /* allocate local copy in case parent_names is __initdata */
1989 clk->parent_names = kcalloc(clk->num_parents, sizeof(char *),
1990 GFP_KERNEL);
1991
1992 if (!clk->parent_names) {
1993 pr_err("%s: could not allocate clk->parent_names\n", __func__);
1994 ret = -ENOMEM;
1995 goto fail_parent_names;
1996 }
1997
1998
1999 /* copy each string name in case parent_names is __initdata */
2000 for (i = 0; i < clk->num_parents; i++) {
2001 clk->parent_names[i] = kstrdup(hw->init->parent_names[i],
2002 GFP_KERNEL);
2003 if (!clk->parent_names[i]) {
2004 pr_err("%s: could not copy parent_names\n", __func__);
2005 ret = -ENOMEM;
2006 goto fail_parent_names_copy;
2007 }
2008 }
2009
2010 ret = __clk_init(dev, clk);
2011 if (!ret)
2012 return clk;
2013
2014 fail_parent_names_copy:
2015 while (--i >= 0)
2016 kfree(clk->parent_names[i]);
2017 kfree(clk->parent_names);
2018 fail_parent_names:
2019 kfree(clk->name);
2020 fail_name:
2021 kfree(clk);
2022 fail_out:
2023 return ERR_PTR(ret);
2024 }
2025 EXPORT_SYMBOL_GPL(clk_register);
2026
2027 /*
2028 * Free memory allocated for a clock.
2029 * Caller must hold prepare_lock.
2030 */
2031 static void __clk_release(struct kref *ref)
2032 {
2033 struct clk *clk = container_of(ref, struct clk, ref);
2034 int i = clk->num_parents;
2035
2036 kfree(clk->parents);
2037 while (--i >= 0)
2038 kfree(clk->parent_names[i]);
2039
2040 kfree(clk->parent_names);
2041 kfree(clk->name);
2042 kfree(clk);
2043 }
2044
2045 /*
2046 * Empty clk_ops for unregistered clocks. These are used temporarily
2047 * after clk_unregister() was called on a clock and until last clock
2048 * consumer calls clk_put() and the struct clk object is freed.
2049 */
2050 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2051 {
2052 return -ENXIO;
2053 }
2054
2055 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2056 {
2057 WARN_ON_ONCE(1);
2058 }
2059
2060 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2061 unsigned long parent_rate)
2062 {
2063 return -ENXIO;
2064 }
2065
2066 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2067 {
2068 return -ENXIO;
2069 }
2070
2071 static const struct clk_ops clk_nodrv_ops = {
2072 .enable = clk_nodrv_prepare_enable,
2073 .disable = clk_nodrv_disable_unprepare,
2074 .prepare = clk_nodrv_prepare_enable,
2075 .unprepare = clk_nodrv_disable_unprepare,
2076 .set_rate = clk_nodrv_set_rate,
2077 .set_parent = clk_nodrv_set_parent,
2078 };
2079
2080 /**
2081 * clk_unregister - unregister a currently registered clock
2082 * @clk: clock to unregister
2083 */
2084 void clk_unregister(struct clk *clk)
2085 {
2086 unsigned long flags;
2087
2088 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2089 return;
2090
2091 clk_prepare_lock();
2092
2093 if (clk->ops == &clk_nodrv_ops) {
2094 pr_err("%s: unregistered clock: %s\n", __func__, clk->name);
2095 goto out;
2096 }
2097 /*
2098 * Assign empty clock ops for consumers that might still hold
2099 * a reference to this clock.
2100 */
2101 flags = clk_enable_lock();
2102 clk->ops = &clk_nodrv_ops;
2103 clk_enable_unlock(flags);
2104
2105 if (!hlist_empty(&clk->children)) {
2106 struct clk *child;
2107 struct hlist_node *t;
2108
2109 /* Reparent all children to the orphan list. */
2110 hlist_for_each_entry_safe(child, t, &clk->children, child_node)
2111 clk_set_parent(child, NULL);
2112 }
2113
2114 clk_debug_unregister(clk);
2115
2116 hlist_del_init(&clk->child_node);
2117
2118 if (clk->prepare_count)
2119 pr_warn("%s: unregistering prepared clock: %s\n",
2120 __func__, clk->name);
2121
2122 kref_put(&clk->ref, __clk_release);
2123 out:
2124 clk_prepare_unlock();
2125 }
2126 EXPORT_SYMBOL_GPL(clk_unregister);
2127
2128 static void devm_clk_release(struct device *dev, void *res)
2129 {
2130 clk_unregister(*(struct clk **)res);
2131 }
2132
2133 /**
2134 * devm_clk_register - resource managed clk_register()
2135 * @dev: device that is registering this clock
2136 * @hw: link to hardware-specific clock data
2137 *
2138 * Managed clk_register(). Clocks returned from this function are
2139 * automatically clk_unregister()ed on driver detach. See clk_register() for
2140 * more information.
2141 */
2142 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2143 {
2144 struct clk *clk;
2145 struct clk **clkp;
2146
2147 clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2148 if (!clkp)
2149 return ERR_PTR(-ENOMEM);
2150
2151 clk = clk_register(dev, hw);
2152 if (!IS_ERR(clk)) {
2153 *clkp = clk;
2154 devres_add(dev, clkp);
2155 } else {
2156 devres_free(clkp);
2157 }
2158
2159 return clk;
2160 }
2161 EXPORT_SYMBOL_GPL(devm_clk_register);
2162
2163 static int devm_clk_match(struct device *dev, void *res, void *data)
2164 {
2165 struct clk *c = res;
2166 if (WARN_ON(!c))
2167 return 0;
2168 return c == data;
2169 }
2170
2171 /**
2172 * devm_clk_unregister - resource managed clk_unregister()
2173 * @clk: clock to unregister
2174 *
2175 * Deallocate a clock allocated with devm_clk_register(). Normally
2176 * this function will not need to be called and the resource management
2177 * code will ensure that the resource is freed.
2178 */
2179 void devm_clk_unregister(struct device *dev, struct clk *clk)
2180 {
2181 WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2182 }
2183 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2184
2185 /*
2186 * clkdev helpers
2187 */
2188 int __clk_get(struct clk *clk)
2189 {
2190 if (clk) {
2191 if (!try_module_get(clk->owner))
2192 return 0;
2193
2194 kref_get(&clk->ref);
2195 }
2196 return 1;
2197 }
2198
2199 void __clk_put(struct clk *clk)
2200 {
2201 if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2202 return;
2203
2204 clk_prepare_lock();
2205 kref_put(&clk->ref, __clk_release);
2206 clk_prepare_unlock();
2207
2208 module_put(clk->owner);
2209 }
2210
2211 /*** clk rate change notifiers ***/
2212
2213 /**
2214 * clk_notifier_register - add a clk rate change notifier
2215 * @clk: struct clk * to watch
2216 * @nb: struct notifier_block * with callback info
2217 *
2218 * Request notification when clk's rate changes. This uses an SRCU
2219 * notifier because we want it to block and notifier unregistrations are
2220 * uncommon. The callbacks associated with the notifier must not
2221 * re-enter into the clk framework by calling any top-level clk APIs;
2222 * this will cause a nested prepare_lock mutex.
2223 *
2224 * In all notification cases cases (pre, post and abort rate change) the
2225 * original clock rate is passed to the callback via struct
2226 * clk_notifier_data.old_rate and the new frequency is passed via struct
2227 * clk_notifier_data.new_rate.
2228 *
2229 * clk_notifier_register() must be called from non-atomic context.
2230 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2231 * allocation failure; otherwise, passes along the return value of
2232 * srcu_notifier_chain_register().
2233 */
2234 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2235 {
2236 struct clk_notifier *cn;
2237 int ret = -ENOMEM;
2238
2239 if (!clk || !nb)
2240 return -EINVAL;
2241
2242 clk_prepare_lock();
2243
2244 /* search the list of notifiers for this clk */
2245 list_for_each_entry(cn, &clk_notifier_list, node)
2246 if (cn->clk == clk)
2247 break;
2248
2249 /* if clk wasn't in the notifier list, allocate new clk_notifier */
2250 if (cn->clk != clk) {
2251 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2252 if (!cn)
2253 goto out;
2254
2255 cn->clk = clk;
2256 srcu_init_notifier_head(&cn->notifier_head);
2257
2258 list_add(&cn->node, &clk_notifier_list);
2259 }
2260
2261 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2262
2263 clk->notifier_count++;
2264
2265 out:
2266 clk_prepare_unlock();
2267
2268 return ret;
2269 }
2270 EXPORT_SYMBOL_GPL(clk_notifier_register);
2271
2272 /**
2273 * clk_notifier_unregister - remove a clk rate change notifier
2274 * @clk: struct clk *
2275 * @nb: struct notifier_block * with callback info
2276 *
2277 * Request no further notification for changes to 'clk' and frees memory
2278 * allocated in clk_notifier_register.
2279 *
2280 * Returns -EINVAL if called with null arguments; otherwise, passes
2281 * along the return value of srcu_notifier_chain_unregister().
2282 */
2283 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2284 {
2285 struct clk_notifier *cn = NULL;
2286 int ret = -EINVAL;
2287
2288 if (!clk || !nb)
2289 return -EINVAL;
2290
2291 clk_prepare_lock();
2292
2293 list_for_each_entry(cn, &clk_notifier_list, node)
2294 if (cn->clk == clk)
2295 break;
2296
2297 if (cn->clk == clk) {
2298 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2299
2300 clk->notifier_count--;
2301
2302 /* XXX the notifier code should handle this better */
2303 if (!cn->notifier_head.head) {
2304 srcu_cleanup_notifier_head(&cn->notifier_head);
2305 list_del(&cn->node);
2306 kfree(cn);
2307 }
2308
2309 } else {
2310 ret = -ENOENT;
2311 }
2312
2313 clk_prepare_unlock();
2314
2315 return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2318
2319 #ifdef CONFIG_OF
2320 /**
2321 * struct of_clk_provider - Clock provider registration structure
2322 * @link: Entry in global list of clock providers
2323 * @node: Pointer to device tree node of clock provider
2324 * @get: Get clock callback. Returns NULL or a struct clk for the
2325 * given clock specifier
2326 * @data: context pointer to be passed into @get callback
2327 */
2328 struct of_clk_provider {
2329 struct list_head link;
2330
2331 struct device_node *node;
2332 struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2333 void *data;
2334 };
2335
2336 static const struct of_device_id __clk_of_table_sentinel
2337 __used __section(__clk_of_table_end);
2338
2339 static LIST_HEAD(of_clk_providers);
2340 static DEFINE_MUTEX(of_clk_mutex);
2341
2342 /* of_clk_provider list locking helpers */
2343 void of_clk_lock(void)
2344 {
2345 mutex_lock(&of_clk_mutex);
2346 }
2347
2348 void of_clk_unlock(void)
2349 {
2350 mutex_unlock(&of_clk_mutex);
2351 }
2352
2353 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2354 void *data)
2355 {
2356 return data;
2357 }
2358 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2359
2360 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2361 {
2362 struct clk_onecell_data *clk_data = data;
2363 unsigned int idx = clkspec->args[0];
2364
2365 if (idx >= clk_data->clk_num) {
2366 pr_err("%s: invalid clock index %d\n", __func__, idx);
2367 return ERR_PTR(-EINVAL);
2368 }
2369
2370 return clk_data->clks[idx];
2371 }
2372 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2373
2374 /**
2375 * of_clk_add_provider() - Register a clock provider for a node
2376 * @np: Device node pointer associated with clock provider
2377 * @clk_src_get: callback for decoding clock
2378 * @data: context pointer for @clk_src_get callback.
2379 */
2380 int of_clk_add_provider(struct device_node *np,
2381 struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2382 void *data),
2383 void *data)
2384 {
2385 struct of_clk_provider *cp;
2386 int ret;
2387
2388 cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2389 if (!cp)
2390 return -ENOMEM;
2391
2392 cp->node = of_node_get(np);
2393 cp->data = data;
2394 cp->get = clk_src_get;
2395
2396 mutex_lock(&of_clk_mutex);
2397 list_add(&cp->link, &of_clk_providers);
2398 mutex_unlock(&of_clk_mutex);
2399 pr_debug("Added clock from %s\n", np->full_name);
2400
2401 ret = of_clk_set_defaults(np, true);
2402 if (ret < 0)
2403 of_clk_del_provider(np);
2404
2405 return ret;
2406 }
2407 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2408
2409 /**
2410 * of_clk_del_provider() - Remove a previously registered clock provider
2411 * @np: Device node pointer associated with clock provider
2412 */
2413 void of_clk_del_provider(struct device_node *np)
2414 {
2415 struct of_clk_provider *cp;
2416
2417 mutex_lock(&of_clk_mutex);
2418 list_for_each_entry(cp, &of_clk_providers, link) {
2419 if (cp->node == np) {
2420 list_del(&cp->link);
2421 of_node_put(cp->node);
2422 kfree(cp);
2423 break;
2424 }
2425 }
2426 mutex_unlock(&of_clk_mutex);
2427 }
2428 EXPORT_SYMBOL_GPL(of_clk_del_provider);
2429
2430 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec)
2431 {
2432 struct of_clk_provider *provider;
2433 struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2434
2435 /* Check if we have such a provider in our array */
2436 list_for_each_entry(provider, &of_clk_providers, link) {
2437 if (provider->node == clkspec->np)
2438 clk = provider->get(clkspec, provider->data);
2439 if (!IS_ERR(clk))
2440 break;
2441 }
2442
2443 return clk;
2444 }
2445
2446 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2447 {
2448 struct clk *clk;
2449
2450 mutex_lock(&of_clk_mutex);
2451 clk = __of_clk_get_from_provider(clkspec);
2452 mutex_unlock(&of_clk_mutex);
2453
2454 return clk;
2455 }
2456
2457 int of_clk_get_parent_count(struct device_node *np)
2458 {
2459 return of_count_phandle_with_args(np, "clocks", "#clock-cells");
2460 }
2461 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
2462
2463 const char *of_clk_get_parent_name(struct device_node *np, int index)
2464 {
2465 struct of_phandle_args clkspec;
2466 struct property *prop;
2467 const char *clk_name;
2468 const __be32 *vp;
2469 u32 pv;
2470 int rc;
2471 int count;
2472
2473 if (index < 0)
2474 return NULL;
2475
2476 rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
2477 &clkspec);
2478 if (rc)
2479 return NULL;
2480
2481 index = clkspec.args_count ? clkspec.args[0] : 0;
2482 count = 0;
2483
2484 /* if there is an indices property, use it to transfer the index
2485 * specified into an array offset for the clock-output-names property.
2486 */
2487 of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
2488 if (index == pv) {
2489 index = count;
2490 break;
2491 }
2492 count++;
2493 }
2494
2495 if (of_property_read_string_index(clkspec.np, "clock-output-names",
2496 index,
2497 &clk_name) < 0)
2498 clk_name = clkspec.np->name;
2499
2500 of_node_put(clkspec.np);
2501 return clk_name;
2502 }
2503 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
2504
2505 struct clock_provider {
2506 of_clk_init_cb_t clk_init_cb;
2507 struct device_node *np;
2508 struct list_head node;
2509 };
2510
2511 static LIST_HEAD(clk_provider_list);
2512
2513 /*
2514 * This function looks for a parent clock. If there is one, then it
2515 * checks that the provider for this parent clock was initialized, in
2516 * this case the parent clock will be ready.
2517 */
2518 static int parent_ready(struct device_node *np)
2519 {
2520 int i = 0;
2521
2522 while (true) {
2523 struct clk *clk = of_clk_get(np, i);
2524
2525 /* this parent is ready we can check the next one */
2526 if (!IS_ERR(clk)) {
2527 clk_put(clk);
2528 i++;
2529 continue;
2530 }
2531
2532 /* at least one parent is not ready, we exit now */
2533 if (PTR_ERR(clk) == -EPROBE_DEFER)
2534 return 0;
2535
2536 /*
2537 * Here we make assumption that the device tree is
2538 * written correctly. So an error means that there is
2539 * no more parent. As we didn't exit yet, then the
2540 * previous parent are ready. If there is no clock
2541 * parent, no need to wait for them, then we can
2542 * consider their absence as being ready
2543 */
2544 return 1;
2545 }
2546 }
2547
2548 /**
2549 * of_clk_init() - Scan and init clock providers from the DT
2550 * @matches: array of compatible values and init functions for providers.
2551 *
2552 * This function scans the device tree for matching clock providers
2553 * and calls their initialization functions. It also does it by trying
2554 * to follow the dependencies.
2555 */
2556 void __init of_clk_init(const struct of_device_id *matches)
2557 {
2558 const struct of_device_id *match;
2559 struct device_node *np;
2560 struct clock_provider *clk_provider, *next;
2561 bool is_init_done;
2562 bool force = false;
2563
2564 if (!matches)
2565 matches = &__clk_of_table;
2566
2567 /* First prepare the list of the clocks providers */
2568 for_each_matching_node_and_match(np, matches, &match) {
2569 struct clock_provider *parent =
2570 kzalloc(sizeof(struct clock_provider), GFP_KERNEL);
2571
2572 parent->clk_init_cb = match->data;
2573 parent->np = np;
2574 list_add_tail(&parent->node, &clk_provider_list);
2575 }
2576
2577 while (!list_empty(&clk_provider_list)) {
2578 is_init_done = false;
2579 list_for_each_entry_safe(clk_provider, next,
2580 &clk_provider_list, node) {
2581 if (force || parent_ready(clk_provider->np)) {
2582
2583 clk_provider->clk_init_cb(clk_provider->np);
2584 of_clk_set_defaults(clk_provider->np, true);
2585
2586 list_del(&clk_provider->node);
2587 kfree(clk_provider);
2588 is_init_done = true;
2589 }
2590 }
2591
2592 /*
2593 * We didn't manage to initialize any of the
2594 * remaining providers during the last loop, so now we
2595 * initialize all the remaining ones unconditionally
2596 * in case the clock parent was not mandatory
2597 */
2598 if (!is_init_done)
2599 force = true;
2600 }
2601 }
2602 #endif