]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/clk/sunxi/clk-sunxi.c
clk: change clk_ops' ->determine_rate() prototype
[mirror_ubuntu-zesty-kernel.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2 * Copyright 2013 Emilio López
3 *
4 * Emilio López <emilio@elopez.com.ar>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/clk-provider.h>
18 #include <linux/clkdev.h>
19 #include <linux/of.h>
20 #include <linux/of_address.h>
21 #include <linux/reset-controller.h>
22 #include <linux/spinlock.h>
23 #include <linux/log2.h>
24
25 #include "clk-factors.h"
26
27 static DEFINE_SPINLOCK(clk_lock);
28
29 /**
30 * sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk
31 */
32
33 #define SUN6I_AHB1_MAX_PARENTS 4
34 #define SUN6I_AHB1_MUX_PARENT_PLL6 3
35 #define SUN6I_AHB1_MUX_SHIFT 12
36 /* un-shifted mask is what mux_clk expects */
37 #define SUN6I_AHB1_MUX_MASK 0x3
38 #define SUN6I_AHB1_MUX_GET_PARENT(reg) ((reg >> SUN6I_AHB1_MUX_SHIFT) & \
39 SUN6I_AHB1_MUX_MASK)
40
41 #define SUN6I_AHB1_DIV_SHIFT 4
42 #define SUN6I_AHB1_DIV_MASK (0x3 << SUN6I_AHB1_DIV_SHIFT)
43 #define SUN6I_AHB1_DIV_GET(reg) ((reg & SUN6I_AHB1_DIV_MASK) >> \
44 SUN6I_AHB1_DIV_SHIFT)
45 #define SUN6I_AHB1_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_DIV_MASK) | \
46 (div << SUN6I_AHB1_DIV_SHIFT))
47 #define SUN6I_AHB1_PLL6_DIV_SHIFT 6
48 #define SUN6I_AHB1_PLL6_DIV_MASK (0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT)
49 #define SUN6I_AHB1_PLL6_DIV_GET(reg) ((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \
50 SUN6I_AHB1_PLL6_DIV_SHIFT)
51 #define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \
52 (div << SUN6I_AHB1_PLL6_DIV_SHIFT))
53
54 struct sun6i_ahb1_clk {
55 struct clk_hw hw;
56 void __iomem *reg;
57 };
58
59 #define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw)
60
61 static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw,
62 unsigned long parent_rate)
63 {
64 struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
65 unsigned long rate;
66 u32 reg;
67
68 /* Fetch the register value */
69 reg = readl(ahb1->reg);
70
71 /* apply pre-divider first if parent is pll6 */
72 if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6)
73 parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1;
74
75 /* clk divider */
76 rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg);
77
78 return rate;
79 }
80
81 static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp,
82 u8 parent, unsigned long parent_rate)
83 {
84 u8 div, calcp, calcm = 1;
85
86 /*
87 * clock can only divide, so we will never be able to achieve
88 * frequencies higher than the parent frequency
89 */
90 if (parent_rate && rate > parent_rate)
91 rate = parent_rate;
92
93 div = DIV_ROUND_UP(parent_rate, rate);
94
95 /* calculate pre-divider if parent is pll6 */
96 if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) {
97 if (div < 4)
98 calcp = 0;
99 else if (div / 2 < 4)
100 calcp = 1;
101 else if (div / 4 < 4)
102 calcp = 2;
103 else
104 calcp = 3;
105
106 calcm = DIV_ROUND_UP(div, 1 << calcp);
107 } else {
108 calcp = __roundup_pow_of_two(div);
109 calcp = calcp > 3 ? 3 : calcp;
110 }
111
112 /* we were asked to pass back divider values */
113 if (divp) {
114 *divp = calcp;
115 *pre_divp = calcm - 1;
116 }
117
118 return (parent_rate / calcm) >> calcp;
119 }
120
121 static int sun6i_ahb1_clk_determine_rate(struct clk_hw *hw,
122 struct clk_rate_request *req)
123 {
124 struct clk *clk = hw->clk, *parent, *best_parent = NULL;
125 int i, num_parents;
126 unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0;
127
128 /* find the parent that can help provide the fastest rate <= rate */
129 num_parents = __clk_get_num_parents(clk);
130 for (i = 0; i < num_parents; i++) {
131 parent = clk_get_parent_by_index(clk, i);
132 if (!parent)
133 continue;
134 if (__clk_get_flags(clk) & CLK_SET_RATE_PARENT)
135 parent_rate = __clk_round_rate(parent, req->rate);
136 else
137 parent_rate = __clk_get_rate(parent);
138
139 child_rate = sun6i_ahb1_clk_round(req->rate, NULL, NULL, i,
140 parent_rate);
141
142 if (child_rate <= req->rate && child_rate > best_child_rate) {
143 best_parent = parent;
144 best = parent_rate;
145 best_child_rate = child_rate;
146 }
147 }
148
149 if (best_parent)
150 req->best_parent_hw = __clk_get_hw(best_parent);
151 req->best_parent_rate = best;
152 req->rate = best_child_rate;
153
154 return 0;
155 }
156
157 static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate,
158 unsigned long parent_rate)
159 {
160 struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
161 unsigned long flags;
162 u8 div, pre_div, parent;
163 u32 reg;
164
165 spin_lock_irqsave(&clk_lock, flags);
166
167 reg = readl(ahb1->reg);
168
169 /* need to know which parent is used to apply pre-divider */
170 parent = SUN6I_AHB1_MUX_GET_PARENT(reg);
171 sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate);
172
173 reg = SUN6I_AHB1_DIV_SET(reg, div);
174 reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div);
175 writel(reg, ahb1->reg);
176
177 spin_unlock_irqrestore(&clk_lock, flags);
178
179 return 0;
180 }
181
182 static const struct clk_ops sun6i_ahb1_clk_ops = {
183 .determine_rate = sun6i_ahb1_clk_determine_rate,
184 .recalc_rate = sun6i_ahb1_clk_recalc_rate,
185 .set_rate = sun6i_ahb1_clk_set_rate,
186 };
187
188 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
189 {
190 struct clk *clk;
191 struct sun6i_ahb1_clk *ahb1;
192 struct clk_mux *mux;
193 const char *clk_name = node->name;
194 const char *parents[SUN6I_AHB1_MAX_PARENTS];
195 void __iomem *reg;
196 int i = 0;
197
198 reg = of_io_request_and_map(node, 0, of_node_full_name(node));
199 if (IS_ERR(reg))
200 return;
201
202 /* we have a mux, we will have >1 parents */
203 while (i < SUN6I_AHB1_MAX_PARENTS &&
204 (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
205 i++;
206
207 of_property_read_string(node, "clock-output-names", &clk_name);
208
209 ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL);
210 if (!ahb1)
211 return;
212
213 mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
214 if (!mux) {
215 kfree(ahb1);
216 return;
217 }
218
219 /* set up clock properties */
220 mux->reg = reg;
221 mux->shift = SUN6I_AHB1_MUX_SHIFT;
222 mux->mask = SUN6I_AHB1_MUX_MASK;
223 mux->lock = &clk_lock;
224 ahb1->reg = reg;
225
226 clk = clk_register_composite(NULL, clk_name, parents, i,
227 &mux->hw, &clk_mux_ops,
228 &ahb1->hw, &sun6i_ahb1_clk_ops,
229 NULL, NULL, 0);
230
231 if (!IS_ERR(clk)) {
232 of_clk_add_provider(node, of_clk_src_simple_get, clk);
233 clk_register_clkdev(clk, clk_name, NULL);
234 }
235 }
236 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup);
237
238 /* Maximum number of parents our clocks have */
239 #define SUNXI_MAX_PARENTS 5
240
241 /**
242 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
243 * PLL1 rate is calculated as follows
244 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
245 * parent_rate is always 24Mhz
246 */
247
248 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
249 u8 *n, u8 *k, u8 *m, u8 *p)
250 {
251 u8 div;
252
253 /* Normalize value to a 6M multiple */
254 div = *freq / 6000000;
255 *freq = 6000000 * div;
256
257 /* we were called to round the frequency, we can now return */
258 if (n == NULL)
259 return;
260
261 /* m is always zero for pll1 */
262 *m = 0;
263
264 /* k is 1 only on these cases */
265 if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
266 *k = 1;
267 else
268 *k = 0;
269
270 /* p will be 3 for divs under 10 */
271 if (div < 10)
272 *p = 3;
273
274 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
275 else if (div < 20 || (div < 32 && (div & 1)))
276 *p = 2;
277
278 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
279 * of divs between 40-62 */
280 else if (div < 40 || (div < 64 && (div & 2)))
281 *p = 1;
282
283 /* any other entries have p = 0 */
284 else
285 *p = 0;
286
287 /* calculate a suitable n based on k and p */
288 div <<= *p;
289 div /= (*k + 1);
290 *n = div / 4;
291 }
292
293 /**
294 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
295 * PLL1 rate is calculated as follows
296 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
297 * parent_rate should always be 24MHz
298 */
299 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
300 u8 *n, u8 *k, u8 *m, u8 *p)
301 {
302 /*
303 * We can operate only on MHz, this will make our life easier
304 * later.
305 */
306 u32 freq_mhz = *freq / 1000000;
307 u32 parent_freq_mhz = parent_rate / 1000000;
308
309 /*
310 * Round down the frequency to the closest multiple of either
311 * 6 or 16
312 */
313 u32 round_freq_6 = round_down(freq_mhz, 6);
314 u32 round_freq_16 = round_down(freq_mhz, 16);
315
316 if (round_freq_6 > round_freq_16)
317 freq_mhz = round_freq_6;
318 else
319 freq_mhz = round_freq_16;
320
321 *freq = freq_mhz * 1000000;
322
323 /*
324 * If the factors pointer are null, we were just called to
325 * round down the frequency.
326 * Exit.
327 */
328 if (n == NULL)
329 return;
330
331 /* If the frequency is a multiple of 32 MHz, k is always 3 */
332 if (!(freq_mhz % 32))
333 *k = 3;
334 /* If the frequency is a multiple of 9 MHz, k is always 2 */
335 else if (!(freq_mhz % 9))
336 *k = 2;
337 /* If the frequency is a multiple of 8 MHz, k is always 1 */
338 else if (!(freq_mhz % 8))
339 *k = 1;
340 /* Otherwise, we don't use the k factor */
341 else
342 *k = 0;
343
344 /*
345 * If the frequency is a multiple of 2 but not a multiple of
346 * 3, m is 3. This is the first time we use 6 here, yet we
347 * will use it on several other places.
348 * We use this number because it's the lowest frequency we can
349 * generate (with n = 0, k = 0, m = 3), so every other frequency
350 * somehow relates to this frequency.
351 */
352 if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
353 *m = 2;
354 /*
355 * If the frequency is a multiple of 6MHz, but the factor is
356 * odd, m will be 3
357 */
358 else if ((freq_mhz / 6) & 1)
359 *m = 3;
360 /* Otherwise, we end up with m = 1 */
361 else
362 *m = 1;
363
364 /* Calculate n thanks to the above factors we already got */
365 *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
366
367 /*
368 * If n end up being outbound, and that we can still decrease
369 * m, do it.
370 */
371 if ((*n + 1) > 31 && (*m + 1) > 1) {
372 *n = (*n + 1) / 2 - 1;
373 *m = (*m + 1) / 2 - 1;
374 }
375 }
376
377 /**
378 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
379 * PLL1 rate is calculated as follows
380 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
381 * parent_rate is always 24Mhz
382 */
383
384 static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
385 u8 *n, u8 *k, u8 *m, u8 *p)
386 {
387 u8 div;
388
389 /* Normalize value to a 6M multiple */
390 div = *freq / 6000000;
391 *freq = 6000000 * div;
392
393 /* we were called to round the frequency, we can now return */
394 if (n == NULL)
395 return;
396
397 /* m is always zero for pll1 */
398 *m = 0;
399
400 /* k is 1 only on these cases */
401 if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
402 *k = 1;
403 else
404 *k = 0;
405
406 /* p will be 2 for divs under 20 and odd divs under 32 */
407 if (div < 20 || (div < 32 && (div & 1)))
408 *p = 2;
409
410 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
411 * of divs between 40-62 */
412 else if (div < 40 || (div < 64 && (div & 2)))
413 *p = 1;
414
415 /* any other entries have p = 0 */
416 else
417 *p = 0;
418
419 /* calculate a suitable n based on k and p */
420 div <<= *p;
421 div /= (*k + 1);
422 *n = div / 4 - 1;
423 }
424
425 /**
426 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
427 * PLL5 rate is calculated as follows
428 * rate = parent_rate * n * (k + 1)
429 * parent_rate is always 24Mhz
430 */
431
432 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
433 u8 *n, u8 *k, u8 *m, u8 *p)
434 {
435 u8 div;
436
437 /* Normalize value to a parent_rate multiple (24M) */
438 div = *freq / parent_rate;
439 *freq = parent_rate * div;
440
441 /* we were called to round the frequency, we can now return */
442 if (n == NULL)
443 return;
444
445 if (div < 31)
446 *k = 0;
447 else if (div / 2 < 31)
448 *k = 1;
449 else if (div / 3 < 31)
450 *k = 2;
451 else
452 *k = 3;
453
454 *n = DIV_ROUND_UP(div, (*k+1));
455 }
456
457 /**
458 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
459 * PLL6x2 rate is calculated as follows
460 * rate = parent_rate * (n + 1) * (k + 1)
461 * parent_rate is always 24Mhz
462 */
463
464 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
465 u8 *n, u8 *k, u8 *m, u8 *p)
466 {
467 u8 div;
468
469 /* Normalize value to a parent_rate multiple (24M) */
470 div = *freq / parent_rate;
471 *freq = parent_rate * div;
472
473 /* we were called to round the frequency, we can now return */
474 if (n == NULL)
475 return;
476
477 *k = div / 32;
478 if (*k > 3)
479 *k = 3;
480
481 *n = DIV_ROUND_UP(div, (*k+1)) - 1;
482 }
483
484 /**
485 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
486 * AHB rate is calculated as follows
487 * rate = parent_rate >> p
488 */
489
490 static void sun5i_a13_get_ahb_factors(u32 *freq, u32 parent_rate,
491 u8 *n, u8 *k, u8 *m, u8 *p)
492 {
493 u32 div;
494
495 /* divide only */
496 if (parent_rate < *freq)
497 *freq = parent_rate;
498
499 /*
500 * user manual says valid speed is 8k ~ 276M, but tests show it
501 * can work at speeds up to 300M, just after reparenting to pll6
502 */
503 if (*freq < 8000)
504 *freq = 8000;
505 if (*freq > 300000000)
506 *freq = 300000000;
507
508 div = order_base_2(DIV_ROUND_UP(parent_rate, *freq));
509
510 /* p = 0 ~ 3 */
511 if (div > 3)
512 div = 3;
513
514 *freq = parent_rate >> div;
515
516 /* we were called to round the frequency, we can now return */
517 if (p == NULL)
518 return;
519
520 *p = div;
521 }
522
523 /**
524 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
525 * APB1 rate is calculated as follows
526 * rate = (parent_rate >> p) / (m + 1);
527 */
528
529 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
530 u8 *n, u8 *k, u8 *m, u8 *p)
531 {
532 u8 calcm, calcp;
533
534 if (parent_rate < *freq)
535 *freq = parent_rate;
536
537 parent_rate = DIV_ROUND_UP(parent_rate, *freq);
538
539 /* Invalid rate! */
540 if (parent_rate > 32)
541 return;
542
543 if (parent_rate <= 4)
544 calcp = 0;
545 else if (parent_rate <= 8)
546 calcp = 1;
547 else if (parent_rate <= 16)
548 calcp = 2;
549 else
550 calcp = 3;
551
552 calcm = (parent_rate >> calcp) - 1;
553
554 *freq = (parent_rate >> calcp) / (calcm + 1);
555
556 /* we were called to round the frequency, we can now return */
557 if (n == NULL)
558 return;
559
560 *m = calcm;
561 *p = calcp;
562 }
563
564
565
566
567 /**
568 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
569 * CLK_OUT rate is calculated as follows
570 * rate = (parent_rate >> p) / (m + 1);
571 */
572
573 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
574 u8 *n, u8 *k, u8 *m, u8 *p)
575 {
576 u8 div, calcm, calcp;
577
578 /* These clocks can only divide, so we will never be able to achieve
579 * frequencies higher than the parent frequency */
580 if (*freq > parent_rate)
581 *freq = parent_rate;
582
583 div = DIV_ROUND_UP(parent_rate, *freq);
584
585 if (div < 32)
586 calcp = 0;
587 else if (div / 2 < 32)
588 calcp = 1;
589 else if (div / 4 < 32)
590 calcp = 2;
591 else
592 calcp = 3;
593
594 calcm = DIV_ROUND_UP(div, 1 << calcp);
595
596 *freq = (parent_rate >> calcp) / calcm;
597
598 /* we were called to round the frequency, we can now return */
599 if (n == NULL)
600 return;
601
602 *m = calcm - 1;
603 *p = calcp;
604 }
605
606 /**
607 * sunxi_factors_clk_setup() - Setup function for factor clocks
608 */
609
610 static struct clk_factors_config sun4i_pll1_config = {
611 .nshift = 8,
612 .nwidth = 5,
613 .kshift = 4,
614 .kwidth = 2,
615 .mshift = 0,
616 .mwidth = 2,
617 .pshift = 16,
618 .pwidth = 2,
619 };
620
621 static struct clk_factors_config sun6i_a31_pll1_config = {
622 .nshift = 8,
623 .nwidth = 5,
624 .kshift = 4,
625 .kwidth = 2,
626 .mshift = 0,
627 .mwidth = 2,
628 .n_start = 1,
629 };
630
631 static struct clk_factors_config sun8i_a23_pll1_config = {
632 .nshift = 8,
633 .nwidth = 5,
634 .kshift = 4,
635 .kwidth = 2,
636 .mshift = 0,
637 .mwidth = 2,
638 .pshift = 16,
639 .pwidth = 2,
640 .n_start = 1,
641 };
642
643 static struct clk_factors_config sun4i_pll5_config = {
644 .nshift = 8,
645 .nwidth = 5,
646 .kshift = 4,
647 .kwidth = 2,
648 };
649
650 static struct clk_factors_config sun6i_a31_pll6_config = {
651 .nshift = 8,
652 .nwidth = 5,
653 .kshift = 4,
654 .kwidth = 2,
655 .n_start = 1,
656 };
657
658 static struct clk_factors_config sun5i_a13_ahb_config = {
659 .pshift = 4,
660 .pwidth = 2,
661 };
662
663 static struct clk_factors_config sun4i_apb1_config = {
664 .mshift = 0,
665 .mwidth = 5,
666 .pshift = 16,
667 .pwidth = 2,
668 };
669
670 /* user manual says "n" but it's really "p" */
671 static struct clk_factors_config sun7i_a20_out_config = {
672 .mshift = 8,
673 .mwidth = 5,
674 .pshift = 20,
675 .pwidth = 2,
676 };
677
678 static const struct factors_data sun4i_pll1_data __initconst = {
679 .enable = 31,
680 .table = &sun4i_pll1_config,
681 .getter = sun4i_get_pll1_factors,
682 };
683
684 static const struct factors_data sun6i_a31_pll1_data __initconst = {
685 .enable = 31,
686 .table = &sun6i_a31_pll1_config,
687 .getter = sun6i_a31_get_pll1_factors,
688 };
689
690 static const struct factors_data sun8i_a23_pll1_data __initconst = {
691 .enable = 31,
692 .table = &sun8i_a23_pll1_config,
693 .getter = sun8i_a23_get_pll1_factors,
694 };
695
696 static const struct factors_data sun7i_a20_pll4_data __initconst = {
697 .enable = 31,
698 .table = &sun4i_pll5_config,
699 .getter = sun4i_get_pll5_factors,
700 };
701
702 static const struct factors_data sun4i_pll5_data __initconst = {
703 .enable = 31,
704 .table = &sun4i_pll5_config,
705 .getter = sun4i_get_pll5_factors,
706 .name = "pll5",
707 };
708
709 static const struct factors_data sun4i_pll6_data __initconst = {
710 .enable = 31,
711 .table = &sun4i_pll5_config,
712 .getter = sun4i_get_pll5_factors,
713 .name = "pll6",
714 };
715
716 static const struct factors_data sun6i_a31_pll6_data __initconst = {
717 .enable = 31,
718 .table = &sun6i_a31_pll6_config,
719 .getter = sun6i_a31_get_pll6_factors,
720 .name = "pll6x2",
721 };
722
723 static const struct factors_data sun5i_a13_ahb_data __initconst = {
724 .mux = 6,
725 .muxmask = BIT(1) | BIT(0),
726 .table = &sun5i_a13_ahb_config,
727 .getter = sun5i_a13_get_ahb_factors,
728 };
729
730 static const struct factors_data sun4i_apb1_data __initconst = {
731 .mux = 24,
732 .muxmask = BIT(1) | BIT(0),
733 .table = &sun4i_apb1_config,
734 .getter = sun4i_get_apb1_factors,
735 };
736
737 static const struct factors_data sun7i_a20_out_data __initconst = {
738 .enable = 31,
739 .mux = 24,
740 .muxmask = BIT(1) | BIT(0),
741 .table = &sun7i_a20_out_config,
742 .getter = sun7i_a20_get_out_factors,
743 };
744
745 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
746 const struct factors_data *data)
747 {
748 void __iomem *reg;
749
750 reg = of_iomap(node, 0);
751 if (!reg) {
752 pr_err("Could not get registers for factors-clk: %s\n",
753 node->name);
754 return NULL;
755 }
756
757 return sunxi_factors_register(node, data, &clk_lock, reg);
758 }
759
760
761
762 /**
763 * sunxi_mux_clk_setup() - Setup function for muxes
764 */
765
766 #define SUNXI_MUX_GATE_WIDTH 2
767
768 struct mux_data {
769 u8 shift;
770 };
771
772 static const struct mux_data sun4i_cpu_mux_data __initconst = {
773 .shift = 16,
774 };
775
776 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
777 .shift = 12,
778 };
779
780 static void __init sunxi_mux_clk_setup(struct device_node *node,
781 struct mux_data *data)
782 {
783 struct clk *clk;
784 const char *clk_name = node->name;
785 const char *parents[SUNXI_MAX_PARENTS];
786 void __iomem *reg;
787 int i = 0;
788
789 reg = of_iomap(node, 0);
790
791 while (i < SUNXI_MAX_PARENTS &&
792 (parents[i] = of_clk_get_parent_name(node, i)) != NULL)
793 i++;
794
795 of_property_read_string(node, "clock-output-names", &clk_name);
796
797 clk = clk_register_mux(NULL, clk_name, parents, i,
798 CLK_SET_RATE_PARENT, reg,
799 data->shift, SUNXI_MUX_GATE_WIDTH,
800 0, &clk_lock);
801
802 if (clk) {
803 of_clk_add_provider(node, of_clk_src_simple_get, clk);
804 clk_register_clkdev(clk, clk_name, NULL);
805 }
806 }
807
808
809
810 /**
811 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
812 */
813
814 struct div_data {
815 u8 shift;
816 u8 pow;
817 u8 width;
818 const struct clk_div_table *table;
819 };
820
821 static const struct div_data sun4i_axi_data __initconst = {
822 .shift = 0,
823 .pow = 0,
824 .width = 2,
825 };
826
827 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
828 { .val = 0, .div = 1 },
829 { .val = 1, .div = 2 },
830 { .val = 2, .div = 3 },
831 { .val = 3, .div = 4 },
832 { .val = 4, .div = 4 },
833 { .val = 5, .div = 4 },
834 { .val = 6, .div = 4 },
835 { .val = 7, .div = 4 },
836 { } /* sentinel */
837 };
838
839 static const struct div_data sun8i_a23_axi_data __initconst = {
840 .width = 3,
841 .table = sun8i_a23_axi_table,
842 };
843
844 static const struct div_data sun4i_ahb_data __initconst = {
845 .shift = 4,
846 .pow = 1,
847 .width = 2,
848 };
849
850 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
851 { .val = 0, .div = 2 },
852 { .val = 1, .div = 2 },
853 { .val = 2, .div = 4 },
854 { .val = 3, .div = 8 },
855 { } /* sentinel */
856 };
857
858 static const struct div_data sun4i_apb0_data __initconst = {
859 .shift = 8,
860 .pow = 1,
861 .width = 2,
862 .table = sun4i_apb0_table,
863 };
864
865 static void __init sunxi_divider_clk_setup(struct device_node *node,
866 struct div_data *data)
867 {
868 struct clk *clk;
869 const char *clk_name = node->name;
870 const char *clk_parent;
871 void __iomem *reg;
872
873 reg = of_iomap(node, 0);
874
875 clk_parent = of_clk_get_parent_name(node, 0);
876
877 of_property_read_string(node, "clock-output-names", &clk_name);
878
879 clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
880 reg, data->shift, data->width,
881 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
882 data->table, &clk_lock);
883 if (clk) {
884 of_clk_add_provider(node, of_clk_src_simple_get, clk);
885 clk_register_clkdev(clk, clk_name, NULL);
886 }
887 }
888
889
890
891 /**
892 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
893 */
894
895 #define SUNXI_GATES_MAX_SIZE 64
896
897 struct gates_data {
898 DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
899 };
900
901 static const struct gates_data sun4i_axi_gates_data __initconst = {
902 .mask = {1},
903 };
904
905 static const struct gates_data sun4i_ahb_gates_data __initconst = {
906 .mask = {0x7F77FFF, 0x14FB3F},
907 };
908
909 static const struct gates_data sun5i_a10s_ahb_gates_data __initconst = {
910 .mask = {0x147667e7, 0x185915},
911 };
912
913 static const struct gates_data sun5i_a13_ahb_gates_data __initconst = {
914 .mask = {0x107067e7, 0x185111},
915 };
916
917 static const struct gates_data sun6i_a31_ahb1_gates_data __initconst = {
918 .mask = {0xEDFE7F62, 0x794F931},
919 };
920
921 static const struct gates_data sun7i_a20_ahb_gates_data __initconst = {
922 .mask = { 0x12f77fff, 0x16ff3f },
923 };
924
925 static const struct gates_data sun8i_a23_ahb1_gates_data __initconst = {
926 .mask = {0x25386742, 0x2505111},
927 };
928
929 static const struct gates_data sun9i_a80_ahb0_gates_data __initconst = {
930 .mask = {0xF5F12B},
931 };
932
933 static const struct gates_data sun9i_a80_ahb1_gates_data __initconst = {
934 .mask = {0x1E20003},
935 };
936
937 static const struct gates_data sun9i_a80_ahb2_gates_data __initconst = {
938 .mask = {0x9B7},
939 };
940
941 static const struct gates_data sun4i_apb0_gates_data __initconst = {
942 .mask = {0x4EF},
943 };
944
945 static const struct gates_data sun5i_a10s_apb0_gates_data __initconst = {
946 .mask = {0x469},
947 };
948
949 static const struct gates_data sun5i_a13_apb0_gates_data __initconst = {
950 .mask = {0x61},
951 };
952
953 static const struct gates_data sun7i_a20_apb0_gates_data __initconst = {
954 .mask = { 0x4ff },
955 };
956
957 static const struct gates_data sun9i_a80_apb0_gates_data __initconst = {
958 .mask = {0xEB822},
959 };
960
961 static const struct gates_data sun4i_apb1_gates_data __initconst = {
962 .mask = {0xFF00F7},
963 };
964
965 static const struct gates_data sun5i_a10s_apb1_gates_data __initconst = {
966 .mask = {0xf0007},
967 };
968
969 static const struct gates_data sun5i_a13_apb1_gates_data __initconst = {
970 .mask = {0xa0007},
971 };
972
973 static const struct gates_data sun6i_a31_apb1_gates_data __initconst = {
974 .mask = {0x3031},
975 };
976
977 static const struct gates_data sun8i_a23_apb1_gates_data __initconst = {
978 .mask = {0x3021},
979 };
980
981 static const struct gates_data sun6i_a31_apb2_gates_data __initconst = {
982 .mask = {0x3F000F},
983 };
984
985 static const struct gates_data sun7i_a20_apb1_gates_data __initconst = {
986 .mask = { 0xff80ff },
987 };
988
989 static const struct gates_data sun9i_a80_apb1_gates_data __initconst = {
990 .mask = {0x3F001F},
991 };
992
993 static const struct gates_data sun8i_a23_apb2_gates_data __initconst = {
994 .mask = {0x1F0007},
995 };
996
997 static void __init sunxi_gates_clk_setup(struct device_node *node,
998 struct gates_data *data)
999 {
1000 struct clk_onecell_data *clk_data;
1001 const char *clk_parent;
1002 const char *clk_name;
1003 void __iomem *reg;
1004 int qty;
1005 int i = 0;
1006 int j = 0;
1007
1008 reg = of_iomap(node, 0);
1009
1010 clk_parent = of_clk_get_parent_name(node, 0);
1011
1012 /* Worst-case size approximation and memory allocation */
1013 qty = find_last_bit(data->mask, SUNXI_GATES_MAX_SIZE);
1014 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1015 if (!clk_data)
1016 return;
1017 clk_data->clks = kzalloc((qty+1) * sizeof(struct clk *), GFP_KERNEL);
1018 if (!clk_data->clks) {
1019 kfree(clk_data);
1020 return;
1021 }
1022
1023 for_each_set_bit(i, data->mask, SUNXI_GATES_MAX_SIZE) {
1024 of_property_read_string_index(node, "clock-output-names",
1025 j, &clk_name);
1026
1027 clk_data->clks[i] = clk_register_gate(NULL, clk_name,
1028 clk_parent, 0,
1029 reg + 4 * (i/32), i % 32,
1030 0, &clk_lock);
1031 WARN_ON(IS_ERR(clk_data->clks[i]));
1032 clk_register_clkdev(clk_data->clks[i], clk_name, NULL);
1033
1034 j++;
1035 }
1036
1037 /* Adjust to the real max */
1038 clk_data->clk_num = i;
1039
1040 of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1041 }
1042
1043
1044
1045 /**
1046 * sunxi_divs_clk_setup() helper data
1047 */
1048
1049 #define SUNXI_DIVS_MAX_QTY 4
1050 #define SUNXI_DIVISOR_WIDTH 2
1051
1052 struct divs_data {
1053 const struct factors_data *factors; /* data for the factor clock */
1054 int ndivs; /* number of outputs */
1055 /*
1056 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
1057 * self or base factor clock refers to the output from the pll
1058 * itself. The remaining refer to fixed or configurable divider
1059 * outputs.
1060 */
1061 struct {
1062 u8 self; /* is it the base factor clock? (only one) */
1063 u8 fixed; /* is it a fixed divisor? if not... */
1064 struct clk_div_table *table; /* is it a table based divisor? */
1065 u8 shift; /* otherwise it's a normal divisor with this shift */
1066 u8 pow; /* is it power-of-two based? */
1067 u8 gate; /* is it independently gateable? */
1068 } div[SUNXI_DIVS_MAX_QTY];
1069 };
1070
1071 static struct clk_div_table pll6_sata_tbl[] = {
1072 { .val = 0, .div = 6, },
1073 { .val = 1, .div = 12, },
1074 { .val = 2, .div = 18, },
1075 { .val = 3, .div = 24, },
1076 { } /* sentinel */
1077 };
1078
1079 static const struct divs_data pll5_divs_data __initconst = {
1080 .factors = &sun4i_pll5_data,
1081 .ndivs = 2,
1082 .div = {
1083 { .shift = 0, .pow = 0, }, /* M, DDR */
1084 { .shift = 16, .pow = 1, }, /* P, other */
1085 /* No output for the base factor clock */
1086 }
1087 };
1088
1089 static const struct divs_data pll6_divs_data __initconst = {
1090 .factors = &sun4i_pll6_data,
1091 .ndivs = 4,
1092 .div = {
1093 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
1094 { .fixed = 2 }, /* P, other */
1095 { .self = 1 }, /* base factor clock, 2x */
1096 { .fixed = 4 }, /* pll6 / 4, used as ahb input */
1097 }
1098 };
1099
1100 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
1101 .factors = &sun6i_a31_pll6_data,
1102 .ndivs = 2,
1103 .div = {
1104 { .fixed = 2 }, /* normal output */
1105 { .self = 1 }, /* base factor clock, 2x */
1106 }
1107 };
1108
1109 /**
1110 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
1111 *
1112 * These clocks look something like this
1113 * ________________________
1114 * | ___divisor 1---|----> to consumer
1115 * parent >--| pll___/___divisor 2---|----> to consumer
1116 * | \_______________|____> to consumer
1117 * |________________________|
1118 */
1119
1120 static void __init sunxi_divs_clk_setup(struct device_node *node,
1121 struct divs_data *data)
1122 {
1123 struct clk_onecell_data *clk_data;
1124 const char *parent;
1125 const char *clk_name;
1126 struct clk **clks, *pclk;
1127 struct clk_hw *gate_hw, *rate_hw;
1128 const struct clk_ops *rate_ops;
1129 struct clk_gate *gate = NULL;
1130 struct clk_fixed_factor *fix_factor;
1131 struct clk_divider *divider;
1132 void __iomem *reg;
1133 int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
1134 int flags, clkflags;
1135
1136 /* if number of children known, use it */
1137 if (data->ndivs)
1138 ndivs = data->ndivs;
1139
1140 /* Set up factor clock that we will be dividing */
1141 pclk = sunxi_factors_clk_setup(node, data->factors);
1142 parent = __clk_get_name(pclk);
1143
1144 reg = of_iomap(node, 0);
1145
1146 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1147 if (!clk_data)
1148 return;
1149
1150 clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1151 if (!clks)
1152 goto free_clkdata;
1153
1154 clk_data->clks = clks;
1155
1156 /* It's not a good idea to have automatic reparenting changing
1157 * our RAM clock! */
1158 clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1159
1160 for (i = 0; i < ndivs; i++) {
1161 if (of_property_read_string_index(node, "clock-output-names",
1162 i, &clk_name) != 0)
1163 break;
1164
1165 /* If this is the base factor clock, only update clks */
1166 if (data->div[i].self) {
1167 clk_data->clks[i] = pclk;
1168 continue;
1169 }
1170
1171 gate_hw = NULL;
1172 rate_hw = NULL;
1173 rate_ops = NULL;
1174
1175 /* If this leaf clock can be gated, create a gate */
1176 if (data->div[i].gate) {
1177 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1178 if (!gate)
1179 goto free_clks;
1180
1181 gate->reg = reg;
1182 gate->bit_idx = data->div[i].gate;
1183 gate->lock = &clk_lock;
1184
1185 gate_hw = &gate->hw;
1186 }
1187
1188 /* Leaves can be fixed or configurable divisors */
1189 if (data->div[i].fixed) {
1190 fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1191 if (!fix_factor)
1192 goto free_gate;
1193
1194 fix_factor->mult = 1;
1195 fix_factor->div = data->div[i].fixed;
1196
1197 rate_hw = &fix_factor->hw;
1198 rate_ops = &clk_fixed_factor_ops;
1199 } else {
1200 divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1201 if (!divider)
1202 goto free_gate;
1203
1204 flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1205
1206 divider->reg = reg;
1207 divider->shift = data->div[i].shift;
1208 divider->width = SUNXI_DIVISOR_WIDTH;
1209 divider->flags = flags;
1210 divider->lock = &clk_lock;
1211 divider->table = data->div[i].table;
1212
1213 rate_hw = &divider->hw;
1214 rate_ops = &clk_divider_ops;
1215 }
1216
1217 /* Wrap the (potential) gate and the divisor on a composite
1218 * clock to unify them */
1219 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1220 NULL, NULL,
1221 rate_hw, rate_ops,
1222 gate_hw, &clk_gate_ops,
1223 clkflags);
1224
1225 WARN_ON(IS_ERR(clk_data->clks[i]));
1226 clk_register_clkdev(clks[i], clk_name, NULL);
1227 }
1228
1229 /* Adjust to the real max */
1230 clk_data->clk_num = i;
1231
1232 of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1233
1234 return;
1235
1236 free_gate:
1237 kfree(gate);
1238 free_clks:
1239 kfree(clks);
1240 free_clkdata:
1241 kfree(clk_data);
1242 }
1243
1244
1245
1246 /* Matches for factors clocks */
1247 static const struct of_device_id clk_factors_match[] __initconst = {
1248 {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1249 {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1250 {.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1251 {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1252 {.compatible = "allwinner,sun5i-a13-ahb-clk", .data = &sun5i_a13_ahb_data,},
1253 {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1254 {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1255 {}
1256 };
1257
1258 /* Matches for divider clocks */
1259 static const struct of_device_id clk_div_match[] __initconst = {
1260 {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1261 {.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1262 {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1263 {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1264 {}
1265 };
1266
1267 /* Matches for divided outputs */
1268 static const struct of_device_id clk_divs_match[] __initconst = {
1269 {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1270 {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1271 {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,},
1272 {}
1273 };
1274
1275 /* Matches for mux clocks */
1276 static const struct of_device_id clk_mux_match[] __initconst = {
1277 {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1278 {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1279 {}
1280 };
1281
1282 /* Matches for gate clocks */
1283 static const struct of_device_id clk_gates_match[] __initconst = {
1284 {.compatible = "allwinner,sun4i-a10-axi-gates-clk", .data = &sun4i_axi_gates_data,},
1285 {.compatible = "allwinner,sun4i-a10-ahb-gates-clk", .data = &sun4i_ahb_gates_data,},
1286 {.compatible = "allwinner,sun5i-a10s-ahb-gates-clk", .data = &sun5i_a10s_ahb_gates_data,},
1287 {.compatible = "allwinner,sun5i-a13-ahb-gates-clk", .data = &sun5i_a13_ahb_gates_data,},
1288 {.compatible = "allwinner,sun6i-a31-ahb1-gates-clk", .data = &sun6i_a31_ahb1_gates_data,},
1289 {.compatible = "allwinner,sun7i-a20-ahb-gates-clk", .data = &sun7i_a20_ahb_gates_data,},
1290 {.compatible = "allwinner,sun8i-a23-ahb1-gates-clk", .data = &sun8i_a23_ahb1_gates_data,},
1291 {.compatible = "allwinner,sun9i-a80-ahb0-gates-clk", .data = &sun9i_a80_ahb0_gates_data,},
1292 {.compatible = "allwinner,sun9i-a80-ahb1-gates-clk", .data = &sun9i_a80_ahb1_gates_data,},
1293 {.compatible = "allwinner,sun9i-a80-ahb2-gates-clk", .data = &sun9i_a80_ahb2_gates_data,},
1294 {.compatible = "allwinner,sun4i-a10-apb0-gates-clk", .data = &sun4i_apb0_gates_data,},
1295 {.compatible = "allwinner,sun5i-a10s-apb0-gates-clk", .data = &sun5i_a10s_apb0_gates_data,},
1296 {.compatible = "allwinner,sun5i-a13-apb0-gates-clk", .data = &sun5i_a13_apb0_gates_data,},
1297 {.compatible = "allwinner,sun7i-a20-apb0-gates-clk", .data = &sun7i_a20_apb0_gates_data,},
1298 {.compatible = "allwinner,sun9i-a80-apb0-gates-clk", .data = &sun9i_a80_apb0_gates_data,},
1299 {.compatible = "allwinner,sun4i-a10-apb1-gates-clk", .data = &sun4i_apb1_gates_data,},
1300 {.compatible = "allwinner,sun5i-a10s-apb1-gates-clk", .data = &sun5i_a10s_apb1_gates_data,},
1301 {.compatible = "allwinner,sun5i-a13-apb1-gates-clk", .data = &sun5i_a13_apb1_gates_data,},
1302 {.compatible = "allwinner,sun6i-a31-apb1-gates-clk", .data = &sun6i_a31_apb1_gates_data,},
1303 {.compatible = "allwinner,sun7i-a20-apb1-gates-clk", .data = &sun7i_a20_apb1_gates_data,},
1304 {.compatible = "allwinner,sun8i-a23-apb1-gates-clk", .data = &sun8i_a23_apb1_gates_data,},
1305 {.compatible = "allwinner,sun9i-a80-apb1-gates-clk", .data = &sun9i_a80_apb1_gates_data,},
1306 {.compatible = "allwinner,sun6i-a31-apb2-gates-clk", .data = &sun6i_a31_apb2_gates_data,},
1307 {.compatible = "allwinner,sun8i-a23-apb2-gates-clk", .data = &sun8i_a23_apb2_gates_data,},
1308 {}
1309 };
1310
1311 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1312 void *function)
1313 {
1314 struct device_node *np;
1315 const struct div_data *data;
1316 const struct of_device_id *match;
1317 void (*setup_function)(struct device_node *, const void *) = function;
1318
1319 for_each_matching_node_and_match(np, clk_match, &match) {
1320 data = match->data;
1321 setup_function(np, data);
1322 }
1323 }
1324
1325 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1326 {
1327 unsigned int i;
1328
1329 /* Register divided output clocks */
1330 of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1331
1332 /* Register factor clocks */
1333 of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1334
1335 /* Register divider clocks */
1336 of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1337
1338 /* Register mux clocks */
1339 of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1340
1341 /* Register gate clocks */
1342 of_sunxi_table_clock_setup(clk_gates_match, sunxi_gates_clk_setup);
1343
1344 /* Protect the clocks that needs to stay on */
1345 for (i = 0; i < nclocks; i++) {
1346 struct clk *clk = clk_get(NULL, clocks[i]);
1347
1348 if (!IS_ERR(clk))
1349 clk_prepare_enable(clk);
1350 }
1351 }
1352
1353 static const char *sun4i_a10_critical_clocks[] __initdata = {
1354 "pll5_ddr",
1355 "ahb_sdram",
1356 };
1357
1358 static void __init sun4i_a10_init_clocks(struct device_node *node)
1359 {
1360 sunxi_init_clocks(sun4i_a10_critical_clocks,
1361 ARRAY_SIZE(sun4i_a10_critical_clocks));
1362 }
1363 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1364
1365 static const char *sun5i_critical_clocks[] __initdata = {
1366 "cpu",
1367 "pll5_ddr",
1368 "ahb_sdram",
1369 };
1370
1371 static void __init sun5i_init_clocks(struct device_node *node)
1372 {
1373 sunxi_init_clocks(sun5i_critical_clocks,
1374 ARRAY_SIZE(sun5i_critical_clocks));
1375 }
1376 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1377 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1378 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1379
1380 static const char *sun6i_critical_clocks[] __initdata = {
1381 "cpu",
1382 };
1383
1384 static void __init sun6i_init_clocks(struct device_node *node)
1385 {
1386 sunxi_init_clocks(sun6i_critical_clocks,
1387 ARRAY_SIZE(sun6i_critical_clocks));
1388 }
1389 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1390 CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks);
1391 CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
1392
1393 static void __init sun9i_init_clocks(struct device_node *node)
1394 {
1395 sunxi_init_clocks(NULL, 0);
1396 }
1397 CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);