]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/clk/sunxi/clk-sunxi.c
Merge tag 'mmc-v4.4-rc1' of git://git.linaro.org/people/ulf.hansson/mmc
[mirror_ubuntu-artful-kernel.git] / drivers / clk / sunxi / clk-sunxi.c
1 /*
2 * Copyright 2013 Emilio López
3 *
4 * Emilio López <emilio@elopez.com.ar>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/clk.h>
18 #include <linux/clk-provider.h>
19 #include <linux/clkdev.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/reset-controller.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/log2.h>
26
27 #include "clk-factors.h"
28
29 static DEFINE_SPINLOCK(clk_lock);
30
31 /**
32 * sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk
33 */
34
35 #define SUN6I_AHB1_MAX_PARENTS 4
36 #define SUN6I_AHB1_MUX_PARENT_PLL6 3
37 #define SUN6I_AHB1_MUX_SHIFT 12
38 /* un-shifted mask is what mux_clk expects */
39 #define SUN6I_AHB1_MUX_MASK 0x3
40 #define SUN6I_AHB1_MUX_GET_PARENT(reg) ((reg >> SUN6I_AHB1_MUX_SHIFT) & \
41 SUN6I_AHB1_MUX_MASK)
42
43 #define SUN6I_AHB1_DIV_SHIFT 4
44 #define SUN6I_AHB1_DIV_MASK (0x3 << SUN6I_AHB1_DIV_SHIFT)
45 #define SUN6I_AHB1_DIV_GET(reg) ((reg & SUN6I_AHB1_DIV_MASK) >> \
46 SUN6I_AHB1_DIV_SHIFT)
47 #define SUN6I_AHB1_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_DIV_MASK) | \
48 (div << SUN6I_AHB1_DIV_SHIFT))
49 #define SUN6I_AHB1_PLL6_DIV_SHIFT 6
50 #define SUN6I_AHB1_PLL6_DIV_MASK (0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT)
51 #define SUN6I_AHB1_PLL6_DIV_GET(reg) ((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \
52 SUN6I_AHB1_PLL6_DIV_SHIFT)
53 #define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \
54 (div << SUN6I_AHB1_PLL6_DIV_SHIFT))
55
56 struct sun6i_ahb1_clk {
57 struct clk_hw hw;
58 void __iomem *reg;
59 };
60
61 #define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw)
62
63 static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw,
64 unsigned long parent_rate)
65 {
66 struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
67 unsigned long rate;
68 u32 reg;
69
70 /* Fetch the register value */
71 reg = readl(ahb1->reg);
72
73 /* apply pre-divider first if parent is pll6 */
74 if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6)
75 parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1;
76
77 /* clk divider */
78 rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg);
79
80 return rate;
81 }
82
83 static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp,
84 u8 parent, unsigned long parent_rate)
85 {
86 u8 div, calcp, calcm = 1;
87
88 /*
89 * clock can only divide, so we will never be able to achieve
90 * frequencies higher than the parent frequency
91 */
92 if (parent_rate && rate > parent_rate)
93 rate = parent_rate;
94
95 div = DIV_ROUND_UP(parent_rate, rate);
96
97 /* calculate pre-divider if parent is pll6 */
98 if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) {
99 if (div < 4)
100 calcp = 0;
101 else if (div / 2 < 4)
102 calcp = 1;
103 else if (div / 4 < 4)
104 calcp = 2;
105 else
106 calcp = 3;
107
108 calcm = DIV_ROUND_UP(div, 1 << calcp);
109 } else {
110 calcp = __roundup_pow_of_two(div);
111 calcp = calcp > 3 ? 3 : calcp;
112 }
113
114 /* we were asked to pass back divider values */
115 if (divp) {
116 *divp = calcp;
117 *pre_divp = calcm - 1;
118 }
119
120 return (parent_rate / calcm) >> calcp;
121 }
122
123 static int sun6i_ahb1_clk_determine_rate(struct clk_hw *hw,
124 struct clk_rate_request *req)
125 {
126 struct clk_hw *parent, *best_parent = NULL;
127 int i, num_parents;
128 unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0;
129
130 /* find the parent that can help provide the fastest rate <= rate */
131 num_parents = clk_hw_get_num_parents(hw);
132 for (i = 0; i < num_parents; i++) {
133 parent = clk_hw_get_parent_by_index(hw, i);
134 if (!parent)
135 continue;
136 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
137 parent_rate = clk_hw_round_rate(parent, req->rate);
138 else
139 parent_rate = clk_hw_get_rate(parent);
140
141 child_rate = sun6i_ahb1_clk_round(req->rate, NULL, NULL, i,
142 parent_rate);
143
144 if (child_rate <= req->rate && child_rate > best_child_rate) {
145 best_parent = parent;
146 best = parent_rate;
147 best_child_rate = child_rate;
148 }
149 }
150
151 if (!best_parent)
152 return -EINVAL;
153
154 req->best_parent_hw = best_parent;
155 req->best_parent_rate = best;
156 req->rate = best_child_rate;
157
158 return 0;
159 }
160
161 static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate,
162 unsigned long parent_rate)
163 {
164 struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
165 unsigned long flags;
166 u8 div, pre_div, parent;
167 u32 reg;
168
169 spin_lock_irqsave(&clk_lock, flags);
170
171 reg = readl(ahb1->reg);
172
173 /* need to know which parent is used to apply pre-divider */
174 parent = SUN6I_AHB1_MUX_GET_PARENT(reg);
175 sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate);
176
177 reg = SUN6I_AHB1_DIV_SET(reg, div);
178 reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div);
179 writel(reg, ahb1->reg);
180
181 spin_unlock_irqrestore(&clk_lock, flags);
182
183 return 0;
184 }
185
186 static const struct clk_ops sun6i_ahb1_clk_ops = {
187 .determine_rate = sun6i_ahb1_clk_determine_rate,
188 .recalc_rate = sun6i_ahb1_clk_recalc_rate,
189 .set_rate = sun6i_ahb1_clk_set_rate,
190 };
191
192 static void __init sun6i_ahb1_clk_setup(struct device_node *node)
193 {
194 struct clk *clk;
195 struct sun6i_ahb1_clk *ahb1;
196 struct clk_mux *mux;
197 const char *clk_name = node->name;
198 const char *parents[SUN6I_AHB1_MAX_PARENTS];
199 void __iomem *reg;
200 int i;
201
202 reg = of_io_request_and_map(node, 0, of_node_full_name(node));
203 if (IS_ERR(reg))
204 return;
205
206 /* we have a mux, we will have >1 parents */
207 i = of_clk_parent_fill(node, parents, SUN6I_AHB1_MAX_PARENTS);
208 of_property_read_string(node, "clock-output-names", &clk_name);
209
210 ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL);
211 if (!ahb1)
212 return;
213
214 mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
215 if (!mux) {
216 kfree(ahb1);
217 return;
218 }
219
220 /* set up clock properties */
221 mux->reg = reg;
222 mux->shift = SUN6I_AHB1_MUX_SHIFT;
223 mux->mask = SUN6I_AHB1_MUX_MASK;
224 mux->lock = &clk_lock;
225 ahb1->reg = reg;
226
227 clk = clk_register_composite(NULL, clk_name, parents, i,
228 &mux->hw, &clk_mux_ops,
229 &ahb1->hw, &sun6i_ahb1_clk_ops,
230 NULL, NULL, 0);
231
232 if (!IS_ERR(clk)) {
233 of_clk_add_provider(node, of_clk_src_simple_get, clk);
234 clk_register_clkdev(clk, clk_name, NULL);
235 }
236 }
237 CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup);
238
239 /* Maximum number of parents our clocks have */
240 #define SUNXI_MAX_PARENTS 5
241
242 /**
243 * sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
244 * PLL1 rate is calculated as follows
245 * rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
246 * parent_rate is always 24Mhz
247 */
248
249 static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
250 u8 *n, u8 *k, u8 *m, u8 *p)
251 {
252 u8 div;
253
254 /* Normalize value to a 6M multiple */
255 div = *freq / 6000000;
256 *freq = 6000000 * div;
257
258 /* we were called to round the frequency, we can now return */
259 if (n == NULL)
260 return;
261
262 /* m is always zero for pll1 */
263 *m = 0;
264
265 /* k is 1 only on these cases */
266 if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
267 *k = 1;
268 else
269 *k = 0;
270
271 /* p will be 3 for divs under 10 */
272 if (div < 10)
273 *p = 3;
274
275 /* p will be 2 for divs between 10 - 20 and odd divs under 32 */
276 else if (div < 20 || (div < 32 && (div & 1)))
277 *p = 2;
278
279 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
280 * of divs between 40-62 */
281 else if (div < 40 || (div < 64 && (div & 2)))
282 *p = 1;
283
284 /* any other entries have p = 0 */
285 else
286 *p = 0;
287
288 /* calculate a suitable n based on k and p */
289 div <<= *p;
290 div /= (*k + 1);
291 *n = div / 4;
292 }
293
294 /**
295 * sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
296 * PLL1 rate is calculated as follows
297 * rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
298 * parent_rate should always be 24MHz
299 */
300 static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
301 u8 *n, u8 *k, u8 *m, u8 *p)
302 {
303 /*
304 * We can operate only on MHz, this will make our life easier
305 * later.
306 */
307 u32 freq_mhz = *freq / 1000000;
308 u32 parent_freq_mhz = parent_rate / 1000000;
309
310 /*
311 * Round down the frequency to the closest multiple of either
312 * 6 or 16
313 */
314 u32 round_freq_6 = round_down(freq_mhz, 6);
315 u32 round_freq_16 = round_down(freq_mhz, 16);
316
317 if (round_freq_6 > round_freq_16)
318 freq_mhz = round_freq_6;
319 else
320 freq_mhz = round_freq_16;
321
322 *freq = freq_mhz * 1000000;
323
324 /*
325 * If the factors pointer are null, we were just called to
326 * round down the frequency.
327 * Exit.
328 */
329 if (n == NULL)
330 return;
331
332 /* If the frequency is a multiple of 32 MHz, k is always 3 */
333 if (!(freq_mhz % 32))
334 *k = 3;
335 /* If the frequency is a multiple of 9 MHz, k is always 2 */
336 else if (!(freq_mhz % 9))
337 *k = 2;
338 /* If the frequency is a multiple of 8 MHz, k is always 1 */
339 else if (!(freq_mhz % 8))
340 *k = 1;
341 /* Otherwise, we don't use the k factor */
342 else
343 *k = 0;
344
345 /*
346 * If the frequency is a multiple of 2 but not a multiple of
347 * 3, m is 3. This is the first time we use 6 here, yet we
348 * will use it on several other places.
349 * We use this number because it's the lowest frequency we can
350 * generate (with n = 0, k = 0, m = 3), so every other frequency
351 * somehow relates to this frequency.
352 */
353 if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
354 *m = 2;
355 /*
356 * If the frequency is a multiple of 6MHz, but the factor is
357 * odd, m will be 3
358 */
359 else if ((freq_mhz / 6) & 1)
360 *m = 3;
361 /* Otherwise, we end up with m = 1 */
362 else
363 *m = 1;
364
365 /* Calculate n thanks to the above factors we already got */
366 *n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
367
368 /*
369 * If n end up being outbound, and that we can still decrease
370 * m, do it.
371 */
372 if ((*n + 1) > 31 && (*m + 1) > 1) {
373 *n = (*n + 1) / 2 - 1;
374 *m = (*m + 1) / 2 - 1;
375 }
376 }
377
378 /**
379 * sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
380 * PLL1 rate is calculated as follows
381 * rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
382 * parent_rate is always 24Mhz
383 */
384
385 static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
386 u8 *n, u8 *k, u8 *m, u8 *p)
387 {
388 u8 div;
389
390 /* Normalize value to a 6M multiple */
391 div = *freq / 6000000;
392 *freq = 6000000 * div;
393
394 /* we were called to round the frequency, we can now return */
395 if (n == NULL)
396 return;
397
398 /* m is always zero for pll1 */
399 *m = 0;
400
401 /* k is 1 only on these cases */
402 if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
403 *k = 1;
404 else
405 *k = 0;
406
407 /* p will be 2 for divs under 20 and odd divs under 32 */
408 if (div < 20 || (div < 32 && (div & 1)))
409 *p = 2;
410
411 /* p will be 1 for even divs under 32, divs under 40 and odd pairs
412 * of divs between 40-62 */
413 else if (div < 40 || (div < 64 && (div & 2)))
414 *p = 1;
415
416 /* any other entries have p = 0 */
417 else
418 *p = 0;
419
420 /* calculate a suitable n based on k and p */
421 div <<= *p;
422 div /= (*k + 1);
423 *n = div / 4 - 1;
424 }
425
426 /**
427 * sun4i_get_pll5_factors() - calculates n, k factors for PLL5
428 * PLL5 rate is calculated as follows
429 * rate = parent_rate * n * (k + 1)
430 * parent_rate is always 24Mhz
431 */
432
433 static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
434 u8 *n, u8 *k, u8 *m, u8 *p)
435 {
436 u8 div;
437
438 /* Normalize value to a parent_rate multiple (24M) */
439 div = *freq / parent_rate;
440 *freq = parent_rate * div;
441
442 /* we were called to round the frequency, we can now return */
443 if (n == NULL)
444 return;
445
446 if (div < 31)
447 *k = 0;
448 else if (div / 2 < 31)
449 *k = 1;
450 else if (div / 3 < 31)
451 *k = 2;
452 else
453 *k = 3;
454
455 *n = DIV_ROUND_UP(div, (*k+1));
456 }
457
458 /**
459 * sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
460 * PLL6x2 rate is calculated as follows
461 * rate = parent_rate * (n + 1) * (k + 1)
462 * parent_rate is always 24Mhz
463 */
464
465 static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
466 u8 *n, u8 *k, u8 *m, u8 *p)
467 {
468 u8 div;
469
470 /* Normalize value to a parent_rate multiple (24M) */
471 div = *freq / parent_rate;
472 *freq = parent_rate * div;
473
474 /* we were called to round the frequency, we can now return */
475 if (n == NULL)
476 return;
477
478 *k = div / 32;
479 if (*k > 3)
480 *k = 3;
481
482 *n = DIV_ROUND_UP(div, (*k+1)) - 1;
483 }
484
485 /**
486 * sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
487 * AHB rate is calculated as follows
488 * rate = parent_rate >> p
489 */
490
491 static void sun5i_a13_get_ahb_factors(u32 *freq, u32 parent_rate,
492 u8 *n, u8 *k, u8 *m, u8 *p)
493 {
494 u32 div;
495
496 /* divide only */
497 if (parent_rate < *freq)
498 *freq = parent_rate;
499
500 /*
501 * user manual says valid speed is 8k ~ 276M, but tests show it
502 * can work at speeds up to 300M, just after reparenting to pll6
503 */
504 if (*freq < 8000)
505 *freq = 8000;
506 if (*freq > 300000000)
507 *freq = 300000000;
508
509 div = order_base_2(DIV_ROUND_UP(parent_rate, *freq));
510
511 /* p = 0 ~ 3 */
512 if (div > 3)
513 div = 3;
514
515 *freq = parent_rate >> div;
516
517 /* we were called to round the frequency, we can now return */
518 if (p == NULL)
519 return;
520
521 *p = div;
522 }
523
524 /**
525 * sun4i_get_apb1_factors() - calculates m, p factors for APB1
526 * APB1 rate is calculated as follows
527 * rate = (parent_rate >> p) / (m + 1);
528 */
529
530 static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
531 u8 *n, u8 *k, u8 *m, u8 *p)
532 {
533 u8 calcm, calcp;
534
535 if (parent_rate < *freq)
536 *freq = parent_rate;
537
538 parent_rate = DIV_ROUND_UP(parent_rate, *freq);
539
540 /* Invalid rate! */
541 if (parent_rate > 32)
542 return;
543
544 if (parent_rate <= 4)
545 calcp = 0;
546 else if (parent_rate <= 8)
547 calcp = 1;
548 else if (parent_rate <= 16)
549 calcp = 2;
550 else
551 calcp = 3;
552
553 calcm = (parent_rate >> calcp) - 1;
554
555 *freq = (parent_rate >> calcp) / (calcm + 1);
556
557 /* we were called to round the frequency, we can now return */
558 if (n == NULL)
559 return;
560
561 *m = calcm;
562 *p = calcp;
563 }
564
565
566
567
568 /**
569 * sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
570 * CLK_OUT rate is calculated as follows
571 * rate = (parent_rate >> p) / (m + 1);
572 */
573
574 static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
575 u8 *n, u8 *k, u8 *m, u8 *p)
576 {
577 u8 div, calcm, calcp;
578
579 /* These clocks can only divide, so we will never be able to achieve
580 * frequencies higher than the parent frequency */
581 if (*freq > parent_rate)
582 *freq = parent_rate;
583
584 div = DIV_ROUND_UP(parent_rate, *freq);
585
586 if (div < 32)
587 calcp = 0;
588 else if (div / 2 < 32)
589 calcp = 1;
590 else if (div / 4 < 32)
591 calcp = 2;
592 else
593 calcp = 3;
594
595 calcm = DIV_ROUND_UP(div, 1 << calcp);
596
597 *freq = (parent_rate >> calcp) / calcm;
598
599 /* we were called to round the frequency, we can now return */
600 if (n == NULL)
601 return;
602
603 *m = calcm - 1;
604 *p = calcp;
605 }
606
607 /**
608 * sunxi_factors_clk_setup() - Setup function for factor clocks
609 */
610
611 static struct clk_factors_config sun4i_pll1_config = {
612 .nshift = 8,
613 .nwidth = 5,
614 .kshift = 4,
615 .kwidth = 2,
616 .mshift = 0,
617 .mwidth = 2,
618 .pshift = 16,
619 .pwidth = 2,
620 };
621
622 static struct clk_factors_config sun6i_a31_pll1_config = {
623 .nshift = 8,
624 .nwidth = 5,
625 .kshift = 4,
626 .kwidth = 2,
627 .mshift = 0,
628 .mwidth = 2,
629 .n_start = 1,
630 };
631
632 static struct clk_factors_config sun8i_a23_pll1_config = {
633 .nshift = 8,
634 .nwidth = 5,
635 .kshift = 4,
636 .kwidth = 2,
637 .mshift = 0,
638 .mwidth = 2,
639 .pshift = 16,
640 .pwidth = 2,
641 .n_start = 1,
642 };
643
644 static struct clk_factors_config sun4i_pll5_config = {
645 .nshift = 8,
646 .nwidth = 5,
647 .kshift = 4,
648 .kwidth = 2,
649 };
650
651 static struct clk_factors_config sun6i_a31_pll6_config = {
652 .nshift = 8,
653 .nwidth = 5,
654 .kshift = 4,
655 .kwidth = 2,
656 .n_start = 1,
657 };
658
659 static struct clk_factors_config sun5i_a13_ahb_config = {
660 .pshift = 4,
661 .pwidth = 2,
662 };
663
664 static struct clk_factors_config sun4i_apb1_config = {
665 .mshift = 0,
666 .mwidth = 5,
667 .pshift = 16,
668 .pwidth = 2,
669 };
670
671 /* user manual says "n" but it's really "p" */
672 static struct clk_factors_config sun7i_a20_out_config = {
673 .mshift = 8,
674 .mwidth = 5,
675 .pshift = 20,
676 .pwidth = 2,
677 };
678
679 static const struct factors_data sun4i_pll1_data __initconst = {
680 .enable = 31,
681 .table = &sun4i_pll1_config,
682 .getter = sun4i_get_pll1_factors,
683 };
684
685 static const struct factors_data sun6i_a31_pll1_data __initconst = {
686 .enable = 31,
687 .table = &sun6i_a31_pll1_config,
688 .getter = sun6i_a31_get_pll1_factors,
689 };
690
691 static const struct factors_data sun8i_a23_pll1_data __initconst = {
692 .enable = 31,
693 .table = &sun8i_a23_pll1_config,
694 .getter = sun8i_a23_get_pll1_factors,
695 };
696
697 static const struct factors_data sun7i_a20_pll4_data __initconst = {
698 .enable = 31,
699 .table = &sun4i_pll5_config,
700 .getter = sun4i_get_pll5_factors,
701 };
702
703 static const struct factors_data sun4i_pll5_data __initconst = {
704 .enable = 31,
705 .table = &sun4i_pll5_config,
706 .getter = sun4i_get_pll5_factors,
707 .name = "pll5",
708 };
709
710 static const struct factors_data sun4i_pll6_data __initconst = {
711 .enable = 31,
712 .table = &sun4i_pll5_config,
713 .getter = sun4i_get_pll5_factors,
714 .name = "pll6",
715 };
716
717 static const struct factors_data sun6i_a31_pll6_data __initconst = {
718 .enable = 31,
719 .table = &sun6i_a31_pll6_config,
720 .getter = sun6i_a31_get_pll6_factors,
721 .name = "pll6x2",
722 };
723
724 static const struct factors_data sun5i_a13_ahb_data __initconst = {
725 .mux = 6,
726 .muxmask = BIT(1) | BIT(0),
727 .table = &sun5i_a13_ahb_config,
728 .getter = sun5i_a13_get_ahb_factors,
729 };
730
731 static const struct factors_data sun4i_apb1_data __initconst = {
732 .mux = 24,
733 .muxmask = BIT(1) | BIT(0),
734 .table = &sun4i_apb1_config,
735 .getter = sun4i_get_apb1_factors,
736 };
737
738 static const struct factors_data sun7i_a20_out_data __initconst = {
739 .enable = 31,
740 .mux = 24,
741 .muxmask = BIT(1) | BIT(0),
742 .table = &sun7i_a20_out_config,
743 .getter = sun7i_a20_get_out_factors,
744 };
745
746 static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
747 const struct factors_data *data)
748 {
749 void __iomem *reg;
750
751 reg = of_iomap(node, 0);
752 if (!reg) {
753 pr_err("Could not get registers for factors-clk: %s\n",
754 node->name);
755 return NULL;
756 }
757
758 return sunxi_factors_register(node, data, &clk_lock, reg);
759 }
760
761
762
763 /**
764 * sunxi_mux_clk_setup() - Setup function for muxes
765 */
766
767 #define SUNXI_MUX_GATE_WIDTH 2
768
769 struct mux_data {
770 u8 shift;
771 };
772
773 static const struct mux_data sun4i_cpu_mux_data __initconst = {
774 .shift = 16,
775 };
776
777 static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
778 .shift = 12,
779 };
780
781 static void __init sunxi_mux_clk_setup(struct device_node *node,
782 struct mux_data *data)
783 {
784 struct clk *clk;
785 const char *clk_name = node->name;
786 const char *parents[SUNXI_MAX_PARENTS];
787 void __iomem *reg;
788 int i;
789
790 reg = of_iomap(node, 0);
791
792 i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
793 of_property_read_string(node, "clock-output-names", &clk_name);
794
795 clk = clk_register_mux(NULL, clk_name, parents, i,
796 CLK_SET_RATE_PARENT, reg,
797 data->shift, SUNXI_MUX_GATE_WIDTH,
798 0, &clk_lock);
799
800 if (clk) {
801 of_clk_add_provider(node, of_clk_src_simple_get, clk);
802 clk_register_clkdev(clk, clk_name, NULL);
803 }
804 }
805
806
807
808 /**
809 * sunxi_divider_clk_setup() - Setup function for simple divider clocks
810 */
811
812 struct div_data {
813 u8 shift;
814 u8 pow;
815 u8 width;
816 const struct clk_div_table *table;
817 };
818
819 static const struct div_data sun4i_axi_data __initconst = {
820 .shift = 0,
821 .pow = 0,
822 .width = 2,
823 };
824
825 static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
826 { .val = 0, .div = 1 },
827 { .val = 1, .div = 2 },
828 { .val = 2, .div = 3 },
829 { .val = 3, .div = 4 },
830 { .val = 4, .div = 4 },
831 { .val = 5, .div = 4 },
832 { .val = 6, .div = 4 },
833 { .val = 7, .div = 4 },
834 { } /* sentinel */
835 };
836
837 static const struct div_data sun8i_a23_axi_data __initconst = {
838 .width = 3,
839 .table = sun8i_a23_axi_table,
840 };
841
842 static const struct div_data sun4i_ahb_data __initconst = {
843 .shift = 4,
844 .pow = 1,
845 .width = 2,
846 };
847
848 static const struct clk_div_table sun4i_apb0_table[] __initconst = {
849 { .val = 0, .div = 2 },
850 { .val = 1, .div = 2 },
851 { .val = 2, .div = 4 },
852 { .val = 3, .div = 8 },
853 { } /* sentinel */
854 };
855
856 static const struct div_data sun4i_apb0_data __initconst = {
857 .shift = 8,
858 .pow = 1,
859 .width = 2,
860 .table = sun4i_apb0_table,
861 };
862
863 static void __init sunxi_divider_clk_setup(struct device_node *node,
864 struct div_data *data)
865 {
866 struct clk *clk;
867 const char *clk_name = node->name;
868 const char *clk_parent;
869 void __iomem *reg;
870
871 reg = of_iomap(node, 0);
872
873 clk_parent = of_clk_get_parent_name(node, 0);
874
875 of_property_read_string(node, "clock-output-names", &clk_name);
876
877 clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
878 reg, data->shift, data->width,
879 data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
880 data->table, &clk_lock);
881 if (clk) {
882 of_clk_add_provider(node, of_clk_src_simple_get, clk);
883 clk_register_clkdev(clk, clk_name, NULL);
884 }
885 }
886
887
888
889 /**
890 * sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
891 */
892
893 #define SUNXI_GATES_MAX_SIZE 64
894
895 struct gates_data {
896 DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
897 };
898
899 /**
900 * sunxi_divs_clk_setup() helper data
901 */
902
903 #define SUNXI_DIVS_MAX_QTY 4
904 #define SUNXI_DIVISOR_WIDTH 2
905
906 struct divs_data {
907 const struct factors_data *factors; /* data for the factor clock */
908 int ndivs; /* number of outputs */
909 /*
910 * List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
911 * self or base factor clock refers to the output from the pll
912 * itself. The remaining refer to fixed or configurable divider
913 * outputs.
914 */
915 struct {
916 u8 self; /* is it the base factor clock? (only one) */
917 u8 fixed; /* is it a fixed divisor? if not... */
918 struct clk_div_table *table; /* is it a table based divisor? */
919 u8 shift; /* otherwise it's a normal divisor with this shift */
920 u8 pow; /* is it power-of-two based? */
921 u8 gate; /* is it independently gateable? */
922 } div[SUNXI_DIVS_MAX_QTY];
923 };
924
925 static struct clk_div_table pll6_sata_tbl[] = {
926 { .val = 0, .div = 6, },
927 { .val = 1, .div = 12, },
928 { .val = 2, .div = 18, },
929 { .val = 3, .div = 24, },
930 { } /* sentinel */
931 };
932
933 static const struct divs_data pll5_divs_data __initconst = {
934 .factors = &sun4i_pll5_data,
935 .ndivs = 2,
936 .div = {
937 { .shift = 0, .pow = 0, }, /* M, DDR */
938 { .shift = 16, .pow = 1, }, /* P, other */
939 /* No output for the base factor clock */
940 }
941 };
942
943 static const struct divs_data pll6_divs_data __initconst = {
944 .factors = &sun4i_pll6_data,
945 .ndivs = 4,
946 .div = {
947 { .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
948 { .fixed = 2 }, /* P, other */
949 { .self = 1 }, /* base factor clock, 2x */
950 { .fixed = 4 }, /* pll6 / 4, used as ahb input */
951 }
952 };
953
954 static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
955 .factors = &sun6i_a31_pll6_data,
956 .ndivs = 2,
957 .div = {
958 { .fixed = 2 }, /* normal output */
959 { .self = 1 }, /* base factor clock, 2x */
960 }
961 };
962
963 /**
964 * sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
965 *
966 * These clocks look something like this
967 * ________________________
968 * | ___divisor 1---|----> to consumer
969 * parent >--| pll___/___divisor 2---|----> to consumer
970 * | \_______________|____> to consumer
971 * |________________________|
972 */
973
974 static void __init sunxi_divs_clk_setup(struct device_node *node,
975 struct divs_data *data)
976 {
977 struct clk_onecell_data *clk_data;
978 const char *parent;
979 const char *clk_name;
980 struct clk **clks, *pclk;
981 struct clk_hw *gate_hw, *rate_hw;
982 const struct clk_ops *rate_ops;
983 struct clk_gate *gate = NULL;
984 struct clk_fixed_factor *fix_factor;
985 struct clk_divider *divider;
986 void __iomem *reg;
987 int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
988 int flags, clkflags;
989
990 /* if number of children known, use it */
991 if (data->ndivs)
992 ndivs = data->ndivs;
993
994 /* Set up factor clock that we will be dividing */
995 pclk = sunxi_factors_clk_setup(node, data->factors);
996 parent = __clk_get_name(pclk);
997
998 reg = of_iomap(node, 0);
999
1000 clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
1001 if (!clk_data)
1002 return;
1003
1004 clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
1005 if (!clks)
1006 goto free_clkdata;
1007
1008 clk_data->clks = clks;
1009
1010 /* It's not a good idea to have automatic reparenting changing
1011 * our RAM clock! */
1012 clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
1013
1014 for (i = 0; i < ndivs; i++) {
1015 if (of_property_read_string_index(node, "clock-output-names",
1016 i, &clk_name) != 0)
1017 break;
1018
1019 /* If this is the base factor clock, only update clks */
1020 if (data->div[i].self) {
1021 clk_data->clks[i] = pclk;
1022 continue;
1023 }
1024
1025 gate_hw = NULL;
1026 rate_hw = NULL;
1027 rate_ops = NULL;
1028
1029 /* If this leaf clock can be gated, create a gate */
1030 if (data->div[i].gate) {
1031 gate = kzalloc(sizeof(*gate), GFP_KERNEL);
1032 if (!gate)
1033 goto free_clks;
1034
1035 gate->reg = reg;
1036 gate->bit_idx = data->div[i].gate;
1037 gate->lock = &clk_lock;
1038
1039 gate_hw = &gate->hw;
1040 }
1041
1042 /* Leaves can be fixed or configurable divisors */
1043 if (data->div[i].fixed) {
1044 fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
1045 if (!fix_factor)
1046 goto free_gate;
1047
1048 fix_factor->mult = 1;
1049 fix_factor->div = data->div[i].fixed;
1050
1051 rate_hw = &fix_factor->hw;
1052 rate_ops = &clk_fixed_factor_ops;
1053 } else {
1054 divider = kzalloc(sizeof(*divider), GFP_KERNEL);
1055 if (!divider)
1056 goto free_gate;
1057
1058 flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
1059
1060 divider->reg = reg;
1061 divider->shift = data->div[i].shift;
1062 divider->width = SUNXI_DIVISOR_WIDTH;
1063 divider->flags = flags;
1064 divider->lock = &clk_lock;
1065 divider->table = data->div[i].table;
1066
1067 rate_hw = &divider->hw;
1068 rate_ops = &clk_divider_ops;
1069 }
1070
1071 /* Wrap the (potential) gate and the divisor on a composite
1072 * clock to unify them */
1073 clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
1074 NULL, NULL,
1075 rate_hw, rate_ops,
1076 gate_hw, &clk_gate_ops,
1077 clkflags);
1078
1079 WARN_ON(IS_ERR(clk_data->clks[i]));
1080 clk_register_clkdev(clks[i], clk_name, NULL);
1081 }
1082
1083 /* Adjust to the real max */
1084 clk_data->clk_num = i;
1085
1086 of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
1087
1088 return;
1089
1090 free_gate:
1091 kfree(gate);
1092 free_clks:
1093 kfree(clks);
1094 free_clkdata:
1095 kfree(clk_data);
1096 }
1097
1098
1099
1100 /* Matches for factors clocks */
1101 static const struct of_device_id clk_factors_match[] __initconst = {
1102 {.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
1103 {.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
1104 {.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
1105 {.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
1106 {.compatible = "allwinner,sun5i-a13-ahb-clk", .data = &sun5i_a13_ahb_data,},
1107 {.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
1108 {.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
1109 {}
1110 };
1111
1112 /* Matches for divider clocks */
1113 static const struct of_device_id clk_div_match[] __initconst = {
1114 {.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
1115 {.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
1116 {.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
1117 {.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
1118 {}
1119 };
1120
1121 /* Matches for divided outputs */
1122 static const struct of_device_id clk_divs_match[] __initconst = {
1123 {.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
1124 {.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
1125 {.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,},
1126 {}
1127 };
1128
1129 /* Matches for mux clocks */
1130 static const struct of_device_id clk_mux_match[] __initconst = {
1131 {.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
1132 {.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
1133 {}
1134 };
1135
1136
1137 static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
1138 void *function)
1139 {
1140 struct device_node *np;
1141 const struct div_data *data;
1142 const struct of_device_id *match;
1143 void (*setup_function)(struct device_node *, const void *) = function;
1144
1145 for_each_matching_node_and_match(np, clk_match, &match) {
1146 data = match->data;
1147 setup_function(np, data);
1148 }
1149 }
1150
1151 static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
1152 {
1153 unsigned int i;
1154
1155 /* Register divided output clocks */
1156 of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
1157
1158 /* Register factor clocks */
1159 of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
1160
1161 /* Register divider clocks */
1162 of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
1163
1164 /* Register mux clocks */
1165 of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
1166
1167 /* Protect the clocks that needs to stay on */
1168 for (i = 0; i < nclocks; i++) {
1169 struct clk *clk = clk_get(NULL, clocks[i]);
1170
1171 if (!IS_ERR(clk))
1172 clk_prepare_enable(clk);
1173 }
1174 }
1175
1176 static const char *sun4i_a10_critical_clocks[] __initdata = {
1177 "pll5_ddr",
1178 };
1179
1180 static void __init sun4i_a10_init_clocks(struct device_node *node)
1181 {
1182 sunxi_init_clocks(sun4i_a10_critical_clocks,
1183 ARRAY_SIZE(sun4i_a10_critical_clocks));
1184 }
1185 CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
1186
1187 static const char *sun5i_critical_clocks[] __initdata = {
1188 "cpu",
1189 "pll5_ddr",
1190 };
1191
1192 static void __init sun5i_init_clocks(struct device_node *node)
1193 {
1194 sunxi_init_clocks(sun5i_critical_clocks,
1195 ARRAY_SIZE(sun5i_critical_clocks));
1196 }
1197 CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
1198 CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
1199 CLK_OF_DECLARE(sun5i_r8_clk_init, "allwinner,sun5i-r8", sun5i_init_clocks);
1200 CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
1201
1202 static const char *sun6i_critical_clocks[] __initdata = {
1203 "cpu",
1204 };
1205
1206 static void __init sun6i_init_clocks(struct device_node *node)
1207 {
1208 sunxi_init_clocks(sun6i_critical_clocks,
1209 ARRAY_SIZE(sun6i_critical_clocks));
1210 }
1211 CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
1212 CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks);
1213 CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
1214 CLK_OF_DECLARE(sun8i_a33_clk_init, "allwinner,sun8i-a33", sun6i_init_clocks);
1215
1216 static void __init sun9i_init_clocks(struct device_node *node)
1217 {
1218 sunxi_init_clocks(NULL, 0);
1219 }
1220 CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);