]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/clk/ti/fapll.c
Merge branch 'next-general' of git://git.kernel.org:/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-jammy-kernel.git] / drivers / clk / ti / fapll.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License as
4 * published by the Free Software Foundation version 2.
5 *
6 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
7 * kind, whether express or implied; without even the implied warranty
8 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16 #include <linux/io.h>
17 #include <linux/math64.h>
18 #include <linux/of.h>
19 #include <linux/of_address.h>
20 #include <linux/clk/ti.h>
21
22 /* FAPLL Control Register PLL_CTRL */
23 #define FAPLL_MAIN_MULT_N_SHIFT 16
24 #define FAPLL_MAIN_DIV_P_SHIFT 8
25 #define FAPLL_MAIN_LOCK BIT(7)
26 #define FAPLL_MAIN_PLLEN BIT(3)
27 #define FAPLL_MAIN_BP BIT(2)
28 #define FAPLL_MAIN_LOC_CTL BIT(0)
29
30 #define FAPLL_MAIN_MAX_MULT_N 0xffff
31 #define FAPLL_MAIN_MAX_DIV_P 0xff
32 #define FAPLL_MAIN_CLEAR_MASK \
33 ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
34 (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
35 FAPLL_MAIN_LOC_CTL)
36
37 /* FAPLL powerdown register PWD */
38 #define FAPLL_PWD_OFFSET 4
39
40 #define MAX_FAPLL_OUTPUTS 7
41 #define FAPLL_MAX_RETRIES 1000
42
43 #define to_fapll(_hw) container_of(_hw, struct fapll_data, hw)
44 #define to_synth(_hw) container_of(_hw, struct fapll_synth, hw)
45
46 /* The bypass bit is inverted on the ddr_pll.. */
47 #define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440)
48
49 /*
50 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
51 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
52 */
53 #define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c)
54 #define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8)
55
56 /* Synthesizer divider register */
57 #define SYNTH_LDMDIV1 BIT(8)
58
59 /* Synthesizer frequency register */
60 #define SYNTH_LDFREQ BIT(31)
61
62 #define SYNTH_PHASE_K 8
63 #define SYNTH_MAX_INT_DIV 0xf
64 #define SYNTH_MAX_DIV_M 0xff
65
66 struct fapll_data {
67 struct clk_hw hw;
68 void __iomem *base;
69 const char *name;
70 struct clk *clk_ref;
71 struct clk *clk_bypass;
72 struct clk_onecell_data outputs;
73 bool bypass_bit_inverted;
74 };
75
76 struct fapll_synth {
77 struct clk_hw hw;
78 struct fapll_data *fd;
79 int index;
80 void __iomem *freq;
81 void __iomem *div;
82 const char *name;
83 struct clk *clk_pll;
84 };
85
86 static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
87 {
88 u32 v = readl_relaxed(fd->base);
89
90 if (fd->bypass_bit_inverted)
91 return !(v & FAPLL_MAIN_BP);
92 else
93 return !!(v & FAPLL_MAIN_BP);
94 }
95
96 static void ti_fapll_set_bypass(struct fapll_data *fd)
97 {
98 u32 v = readl_relaxed(fd->base);
99
100 if (fd->bypass_bit_inverted)
101 v &= ~FAPLL_MAIN_BP;
102 else
103 v |= FAPLL_MAIN_BP;
104 writel_relaxed(v, fd->base);
105 }
106
107 static void ti_fapll_clear_bypass(struct fapll_data *fd)
108 {
109 u32 v = readl_relaxed(fd->base);
110
111 if (fd->bypass_bit_inverted)
112 v |= FAPLL_MAIN_BP;
113 else
114 v &= ~FAPLL_MAIN_BP;
115 writel_relaxed(v, fd->base);
116 }
117
118 static int ti_fapll_wait_lock(struct fapll_data *fd)
119 {
120 int retries = FAPLL_MAX_RETRIES;
121 u32 v;
122
123 while ((v = readl_relaxed(fd->base))) {
124 if (v & FAPLL_MAIN_LOCK)
125 return 0;
126
127 if (retries-- <= 0)
128 break;
129
130 udelay(1);
131 }
132
133 pr_err("%s failed to lock\n", fd->name);
134
135 return -ETIMEDOUT;
136 }
137
138 static int ti_fapll_enable(struct clk_hw *hw)
139 {
140 struct fapll_data *fd = to_fapll(hw);
141 u32 v = readl_relaxed(fd->base);
142
143 v |= FAPLL_MAIN_PLLEN;
144 writel_relaxed(v, fd->base);
145 ti_fapll_wait_lock(fd);
146
147 return 0;
148 }
149
150 static void ti_fapll_disable(struct clk_hw *hw)
151 {
152 struct fapll_data *fd = to_fapll(hw);
153 u32 v = readl_relaxed(fd->base);
154
155 v &= ~FAPLL_MAIN_PLLEN;
156 writel_relaxed(v, fd->base);
157 }
158
159 static int ti_fapll_is_enabled(struct clk_hw *hw)
160 {
161 struct fapll_data *fd = to_fapll(hw);
162 u32 v = readl_relaxed(fd->base);
163
164 return v & FAPLL_MAIN_PLLEN;
165 }
166
167 static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
168 unsigned long parent_rate)
169 {
170 struct fapll_data *fd = to_fapll(hw);
171 u32 fapll_n, fapll_p, v;
172 u64 rate;
173
174 if (ti_fapll_clock_is_bypass(fd))
175 return parent_rate;
176
177 rate = parent_rate;
178
179 /* PLL pre-divider is P and multiplier is N */
180 v = readl_relaxed(fd->base);
181 fapll_p = (v >> 8) & 0xff;
182 if (fapll_p)
183 do_div(rate, fapll_p);
184 fapll_n = v >> 16;
185 if (fapll_n)
186 rate *= fapll_n;
187
188 return rate;
189 }
190
191 static u8 ti_fapll_get_parent(struct clk_hw *hw)
192 {
193 struct fapll_data *fd = to_fapll(hw);
194
195 if (ti_fapll_clock_is_bypass(fd))
196 return 1;
197
198 return 0;
199 }
200
201 static int ti_fapll_set_div_mult(unsigned long rate,
202 unsigned long parent_rate,
203 u32 *pre_div_p, u32 *mult_n)
204 {
205 /*
206 * So far no luck getting decent clock with PLL divider,
207 * PLL does not seem to lock and the signal does not look
208 * right. It seems the divider can only be used together
209 * with the multiplier?
210 */
211 if (rate < parent_rate) {
212 pr_warn("FAPLL main divider rates unsupported\n");
213 return -EINVAL;
214 }
215
216 *mult_n = rate / parent_rate;
217 if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
218 return -EINVAL;
219 *pre_div_p = 1;
220
221 return 0;
222 }
223
224 static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
225 unsigned long *parent_rate)
226 {
227 u32 pre_div_p, mult_n;
228 int error;
229
230 if (!rate)
231 return -EINVAL;
232
233 error = ti_fapll_set_div_mult(rate, *parent_rate,
234 &pre_div_p, &mult_n);
235 if (error)
236 return error;
237
238 rate = *parent_rate / pre_div_p;
239 rate *= mult_n;
240
241 return rate;
242 }
243
244 static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
245 unsigned long parent_rate)
246 {
247 struct fapll_data *fd = to_fapll(hw);
248 u32 pre_div_p, mult_n, v;
249 int error;
250
251 if (!rate)
252 return -EINVAL;
253
254 error = ti_fapll_set_div_mult(rate, parent_rate,
255 &pre_div_p, &mult_n);
256 if (error)
257 return error;
258
259 ti_fapll_set_bypass(fd);
260 v = readl_relaxed(fd->base);
261 v &= ~FAPLL_MAIN_CLEAR_MASK;
262 v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
263 v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
264 writel_relaxed(v, fd->base);
265 if (ti_fapll_is_enabled(hw))
266 ti_fapll_wait_lock(fd);
267 ti_fapll_clear_bypass(fd);
268
269 return 0;
270 }
271
272 static const struct clk_ops ti_fapll_ops = {
273 .enable = ti_fapll_enable,
274 .disable = ti_fapll_disable,
275 .is_enabled = ti_fapll_is_enabled,
276 .recalc_rate = ti_fapll_recalc_rate,
277 .get_parent = ti_fapll_get_parent,
278 .round_rate = ti_fapll_round_rate,
279 .set_rate = ti_fapll_set_rate,
280 };
281
282 static int ti_fapll_synth_enable(struct clk_hw *hw)
283 {
284 struct fapll_synth *synth = to_synth(hw);
285 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
286
287 v &= ~(1 << synth->index);
288 writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
289
290 return 0;
291 }
292
293 static void ti_fapll_synth_disable(struct clk_hw *hw)
294 {
295 struct fapll_synth *synth = to_synth(hw);
296 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
297
298 v |= 1 << synth->index;
299 writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
300 }
301
302 static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
303 {
304 struct fapll_synth *synth = to_synth(hw);
305 u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
306
307 return !(v & (1 << synth->index));
308 }
309
310 /*
311 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
312 */
313 static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
314 unsigned long parent_rate)
315 {
316 struct fapll_synth *synth = to_synth(hw);
317 u32 synth_div_m;
318 u64 rate;
319
320 /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
321 if (!synth->div)
322 return 32768;
323
324 /*
325 * PLL in bypass sets the synths in bypass mode too. The PLL rate
326 * can be also be set to 27MHz, so we can't use parent_rate to
327 * check for bypass mode.
328 */
329 if (ti_fapll_clock_is_bypass(synth->fd))
330 return parent_rate;
331
332 rate = parent_rate;
333
334 /*
335 * Synth frequency integer and fractional divider.
336 * Note that the phase output K is 8, so the result needs
337 * to be multiplied by SYNTH_PHASE_K.
338 */
339 if (synth->freq) {
340 u32 v, synth_int_div, synth_frac_div, synth_div_freq;
341
342 v = readl_relaxed(synth->freq);
343 synth_int_div = (v >> 24) & 0xf;
344 synth_frac_div = v & 0xffffff;
345 synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
346 rate *= 10000000;
347 do_div(rate, synth_div_freq);
348 rate *= SYNTH_PHASE_K;
349 }
350
351 /* Synth post-divider M */
352 synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
353
354 return DIV_ROUND_UP_ULL(rate, synth_div_m);
355 }
356
357 static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
358 unsigned long parent_rate)
359 {
360 struct fapll_synth *synth = to_synth(hw);
361 unsigned long current_rate, frac_rate;
362 u32 post_div_m;
363
364 current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
365 post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
366 frac_rate = current_rate * post_div_m;
367
368 return frac_rate;
369 }
370
371 static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
372 unsigned long rate,
373 unsigned long parent_rate)
374 {
375 u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
376
377 post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
378 post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
379 if (post_div_m > SYNTH_MAX_DIV_M)
380 return -EINVAL;
381 if (!post_div_m)
382 post_div_m = 1;
383
384 for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
385 synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
386 SYNTH_PHASE_K *
387 10000000,
388 rate * post_div_m);
389 synth_frac_div = synth_int_div % 10000000;
390 synth_int_div /= 10000000;
391
392 if (synth_int_div <= SYNTH_MAX_INT_DIV)
393 break;
394 }
395
396 if (synth_int_div > SYNTH_MAX_INT_DIV)
397 return -EINVAL;
398
399 v = readl_relaxed(synth->freq);
400 v &= ~0x1fffffff;
401 v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
402 v |= (synth_frac_div & 0xffffff);
403 v |= SYNTH_LDFREQ;
404 writel_relaxed(v, synth->freq);
405
406 return post_div_m;
407 }
408
409 static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
410 unsigned long *parent_rate)
411 {
412 struct fapll_synth *synth = to_synth(hw);
413 struct fapll_data *fd = synth->fd;
414 unsigned long r;
415
416 if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
417 return -EINVAL;
418
419 /* Only post divider m available with no fractional divider? */
420 if (!synth->freq) {
421 unsigned long frac_rate;
422 u32 synth_post_div_m;
423
424 frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
425 synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
426 r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
427 goto out;
428 }
429
430 r = *parent_rate * SYNTH_PHASE_K;
431 if (rate > r)
432 goto out;
433
434 r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
435 if (rate < r)
436 goto out;
437
438 r = rate;
439 out:
440 return r;
441 }
442
443 static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
444 unsigned long parent_rate)
445 {
446 struct fapll_synth *synth = to_synth(hw);
447 struct fapll_data *fd = synth->fd;
448 unsigned long frac_rate, post_rate = 0;
449 u32 post_div_m = 0, v;
450
451 if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
452 return -EINVAL;
453
454 /* Produce the rate with just post divider M? */
455 frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
456 if (frac_rate < rate) {
457 if (!synth->freq)
458 return -EINVAL;
459 } else {
460 post_div_m = DIV_ROUND_UP(frac_rate, rate);
461 if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
462 post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
463 if (!synth->freq && !post_rate)
464 return -EINVAL;
465 }
466
467 /* Need to recalculate the fractional divider? */
468 if ((post_rate != rate) && synth->freq)
469 post_div_m = ti_fapll_synth_set_frac_rate(synth,
470 rate,
471 parent_rate);
472
473 v = readl_relaxed(synth->div);
474 v &= ~SYNTH_MAX_DIV_M;
475 v |= post_div_m;
476 v |= SYNTH_LDMDIV1;
477 writel_relaxed(v, synth->div);
478
479 return 0;
480 }
481
482 static const struct clk_ops ti_fapll_synt_ops = {
483 .enable = ti_fapll_synth_enable,
484 .disable = ti_fapll_synth_disable,
485 .is_enabled = ti_fapll_synth_is_enabled,
486 .recalc_rate = ti_fapll_synth_recalc_rate,
487 .round_rate = ti_fapll_synth_round_rate,
488 .set_rate = ti_fapll_synth_set_rate,
489 };
490
491 static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
492 void __iomem *freq,
493 void __iomem *div,
494 int index,
495 const char *name,
496 const char *parent,
497 struct clk *pll_clk)
498 {
499 struct clk_init_data *init;
500 struct fapll_synth *synth;
501
502 init = kzalloc(sizeof(*init), GFP_KERNEL);
503 if (!init)
504 return ERR_PTR(-ENOMEM);
505
506 init->ops = &ti_fapll_synt_ops;
507 init->name = name;
508 init->parent_names = &parent;
509 init->num_parents = 1;
510
511 synth = kzalloc(sizeof(*synth), GFP_KERNEL);
512 if (!synth)
513 goto free;
514
515 synth->fd = fd;
516 synth->index = index;
517 synth->freq = freq;
518 synth->div = div;
519 synth->name = name;
520 synth->hw.init = init;
521 synth->clk_pll = pll_clk;
522
523 return clk_register(NULL, &synth->hw);
524
525 free:
526 kfree(synth);
527 kfree(init);
528
529 return ERR_PTR(-ENOMEM);
530 }
531
532 static void __init ti_fapll_setup(struct device_node *node)
533 {
534 struct fapll_data *fd;
535 struct clk_init_data *init = NULL;
536 const char *parent_name[2];
537 struct clk *pll_clk;
538 int i;
539
540 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
541 if (!fd)
542 return;
543
544 fd->outputs.clks = kzalloc(sizeof(struct clk *) *
545 MAX_FAPLL_OUTPUTS + 1,
546 GFP_KERNEL);
547 if (!fd->outputs.clks)
548 goto free;
549
550 init = kzalloc(sizeof(*init), GFP_KERNEL);
551 if (!init)
552 goto free;
553
554 init->ops = &ti_fapll_ops;
555 init->name = node->name;
556
557 init->num_parents = of_clk_get_parent_count(node);
558 if (init->num_parents != 2) {
559 pr_err("%pOFn must have two parents\n", node);
560 goto free;
561 }
562
563 of_clk_parent_fill(node, parent_name, 2);
564 init->parent_names = parent_name;
565
566 fd->clk_ref = of_clk_get(node, 0);
567 if (IS_ERR(fd->clk_ref)) {
568 pr_err("%pOFn could not get clk_ref\n", node);
569 goto free;
570 }
571
572 fd->clk_bypass = of_clk_get(node, 1);
573 if (IS_ERR(fd->clk_bypass)) {
574 pr_err("%pOFn could not get clk_bypass\n", node);
575 goto free;
576 }
577
578 fd->base = of_iomap(node, 0);
579 if (!fd->base) {
580 pr_err("%pOFn could not get IO base\n", node);
581 goto free;
582 }
583
584 if (fapll_is_ddr_pll(fd->base))
585 fd->bypass_bit_inverted = true;
586
587 fd->name = node->name;
588 fd->hw.init = init;
589
590 /* Register the parent PLL */
591 pll_clk = clk_register(NULL, &fd->hw);
592 if (IS_ERR(pll_clk))
593 goto unmap;
594
595 fd->outputs.clks[0] = pll_clk;
596 fd->outputs.clk_num++;
597
598 /*
599 * Set up the child synthesizers starting at index 1 as the
600 * PLL output is at index 0. We need to check the clock-indices
601 * for numbering in case there are holes in the synth mapping,
602 * and then probe the synth register to see if it has a FREQ
603 * register available.
604 */
605 for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
606 const char *output_name;
607 void __iomem *freq, *div;
608 struct clk *synth_clk;
609 int output_instance;
610 u32 v;
611
612 if (of_property_read_string_index(node, "clock-output-names",
613 i, &output_name))
614 continue;
615
616 if (of_property_read_u32_index(node, "clock-indices", i,
617 &output_instance))
618 output_instance = i;
619
620 freq = fd->base + (output_instance * 8);
621 div = freq + 4;
622
623 /* Check for hardwired audio_pll_clk1 */
624 if (is_audio_pll_clk1(freq)) {
625 freq = NULL;
626 div = NULL;
627 } else {
628 /* Does the synthesizer have a FREQ register? */
629 v = readl_relaxed(freq);
630 if (!v)
631 freq = NULL;
632 }
633 synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
634 output_name, node->name,
635 pll_clk);
636 if (IS_ERR(synth_clk))
637 continue;
638
639 fd->outputs.clks[output_instance] = synth_clk;
640 fd->outputs.clk_num++;
641
642 clk_register_clkdev(synth_clk, output_name, NULL);
643 }
644
645 /* Register the child synthesizers as the FAPLL outputs */
646 of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
647 /* Add clock alias for the outputs */
648
649 kfree(init);
650
651 return;
652
653 unmap:
654 iounmap(fd->base);
655 free:
656 if (fd->clk_bypass)
657 clk_put(fd->clk_bypass);
658 if (fd->clk_ref)
659 clk_put(fd->clk_ref);
660 kfree(fd->outputs.clks);
661 kfree(fd);
662 kfree(init);
663 }
664
665 CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);