]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/clocksource/arm_arch_timer.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-zesty-kernel.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29
30 #include <clocksource/arm_arch_timer.h>
31
32 #define CNTTIDR 0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
34
35 #define CNTACR(n) (0x40 + ((n) * 4))
36 #define CNTACR_RPCT BIT(0)
37 #define CNTACR_RVCT BIT(1)
38 #define CNTACR_RFRQ BIT(2)
39 #define CNTACR_RVOFF BIT(3)
40 #define CNTACR_RWVT BIT(4)
41 #define CNTACR_RWPT BIT(5)
42
43 #define CNTVCT_LO 0x08
44 #define CNTVCT_HI 0x0c
45 #define CNTFRQ 0x10
46 #define CNTP_TVAL 0x28
47 #define CNTP_CTL 0x2c
48 #define CNTV_TVAL 0x38
49 #define CNTV_CTL 0x3c
50
51 #define ARCH_CP15_TIMER BIT(0)
52 #define ARCH_MEM_TIMER BIT(1)
53 static unsigned arch_timers_present __initdata;
54
55 static void __iomem *arch_counter_base;
56
57 struct arch_timer {
58 void __iomem *base;
59 struct clock_event_device evt;
60 };
61
62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63
64 static u32 arch_timer_rate;
65
66 enum ppi_nr {
67 PHYS_SECURE_PPI,
68 PHYS_NONSECURE_PPI,
69 VIRT_PPI,
70 HYP_PPI,
71 MAX_TIMER_PPI
72 };
73
74 static int arch_timer_ppi[MAX_TIMER_PPI];
75
76 static struct clock_event_device __percpu *arch_timer_evt;
77
78 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79 static bool arch_timer_c3stop;
80 static bool arch_timer_mem_use_virtual;
81
82 /*
83 * Architected system timer support.
84 */
85
86 static __always_inline
87 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
88 struct clock_event_device *clk)
89 {
90 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
91 struct arch_timer *timer = to_arch_timer(clk);
92 switch (reg) {
93 case ARCH_TIMER_REG_CTRL:
94 writel_relaxed(val, timer->base + CNTP_CTL);
95 break;
96 case ARCH_TIMER_REG_TVAL:
97 writel_relaxed(val, timer->base + CNTP_TVAL);
98 break;
99 }
100 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
101 struct arch_timer *timer = to_arch_timer(clk);
102 switch (reg) {
103 case ARCH_TIMER_REG_CTRL:
104 writel_relaxed(val, timer->base + CNTV_CTL);
105 break;
106 case ARCH_TIMER_REG_TVAL:
107 writel_relaxed(val, timer->base + CNTV_TVAL);
108 break;
109 }
110 } else {
111 arch_timer_reg_write_cp15(access, reg, val);
112 }
113 }
114
115 static __always_inline
116 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
117 struct clock_event_device *clk)
118 {
119 u32 val;
120
121 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
122 struct arch_timer *timer = to_arch_timer(clk);
123 switch (reg) {
124 case ARCH_TIMER_REG_CTRL:
125 val = readl_relaxed(timer->base + CNTP_CTL);
126 break;
127 case ARCH_TIMER_REG_TVAL:
128 val = readl_relaxed(timer->base + CNTP_TVAL);
129 break;
130 }
131 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
132 struct arch_timer *timer = to_arch_timer(clk);
133 switch (reg) {
134 case ARCH_TIMER_REG_CTRL:
135 val = readl_relaxed(timer->base + CNTV_CTL);
136 break;
137 case ARCH_TIMER_REG_TVAL:
138 val = readl_relaxed(timer->base + CNTV_TVAL);
139 break;
140 }
141 } else {
142 val = arch_timer_reg_read_cp15(access, reg);
143 }
144
145 return val;
146 }
147
148 static __always_inline irqreturn_t timer_handler(const int access,
149 struct clock_event_device *evt)
150 {
151 unsigned long ctrl;
152
153 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
154 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
155 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
157 evt->event_handler(evt);
158 return IRQ_HANDLED;
159 }
160
161 return IRQ_NONE;
162 }
163
164 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
165 {
166 struct clock_event_device *evt = dev_id;
167
168 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
169 }
170
171 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
172 {
173 struct clock_event_device *evt = dev_id;
174
175 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
176 }
177
178 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
179 {
180 struct clock_event_device *evt = dev_id;
181
182 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
183 }
184
185 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
186 {
187 struct clock_event_device *evt = dev_id;
188
189 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
190 }
191
192 static __always_inline int timer_shutdown(const int access,
193 struct clock_event_device *clk)
194 {
195 unsigned long ctrl;
196
197 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
198 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
199 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
200
201 return 0;
202 }
203
204 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
205 {
206 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
207 }
208
209 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
210 {
211 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
212 }
213
214 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
215 {
216 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
217 }
218
219 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
220 {
221 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
222 }
223
224 static __always_inline void set_next_event(const int access, unsigned long evt,
225 struct clock_event_device *clk)
226 {
227 unsigned long ctrl;
228 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
229 ctrl |= ARCH_TIMER_CTRL_ENABLE;
230 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
231 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
232 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
233 }
234
235 static int arch_timer_set_next_event_virt(unsigned long evt,
236 struct clock_event_device *clk)
237 {
238 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
239 return 0;
240 }
241
242 static int arch_timer_set_next_event_phys(unsigned long evt,
243 struct clock_event_device *clk)
244 {
245 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
246 return 0;
247 }
248
249 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
250 struct clock_event_device *clk)
251 {
252 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
253 return 0;
254 }
255
256 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
257 struct clock_event_device *clk)
258 {
259 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
260 return 0;
261 }
262
263 static void __arch_timer_setup(unsigned type,
264 struct clock_event_device *clk)
265 {
266 clk->features = CLOCK_EVT_FEAT_ONESHOT;
267
268 if (type == ARCH_CP15_TIMER) {
269 if (arch_timer_c3stop)
270 clk->features |= CLOCK_EVT_FEAT_C3STOP;
271 clk->name = "arch_sys_timer";
272 clk->rating = 450;
273 clk->cpumask = cpumask_of(smp_processor_id());
274 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
275 switch (arch_timer_uses_ppi) {
276 case VIRT_PPI:
277 clk->set_state_shutdown = arch_timer_shutdown_virt;
278 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
279 clk->set_next_event = arch_timer_set_next_event_virt;
280 break;
281 case PHYS_SECURE_PPI:
282 case PHYS_NONSECURE_PPI:
283 case HYP_PPI:
284 clk->set_state_shutdown = arch_timer_shutdown_phys;
285 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
286 clk->set_next_event = arch_timer_set_next_event_phys;
287 break;
288 default:
289 BUG();
290 }
291 } else {
292 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
293 clk->name = "arch_mem_timer";
294 clk->rating = 400;
295 clk->cpumask = cpu_all_mask;
296 if (arch_timer_mem_use_virtual) {
297 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
298 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
299 clk->set_next_event =
300 arch_timer_set_next_event_virt_mem;
301 } else {
302 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
303 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
304 clk->set_next_event =
305 arch_timer_set_next_event_phys_mem;
306 }
307 }
308
309 clk->set_state_shutdown(clk);
310
311 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
312 }
313
314 static void arch_timer_evtstrm_enable(int divider)
315 {
316 u32 cntkctl = arch_timer_get_cntkctl();
317
318 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
319 /* Set the divider and enable virtual event stream */
320 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
321 | ARCH_TIMER_VIRT_EVT_EN;
322 arch_timer_set_cntkctl(cntkctl);
323 elf_hwcap |= HWCAP_EVTSTRM;
324 #ifdef CONFIG_COMPAT
325 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
326 #endif
327 }
328
329 static void arch_timer_configure_evtstream(void)
330 {
331 int evt_stream_div, pos;
332
333 /* Find the closest power of two to the divisor */
334 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
335 pos = fls(evt_stream_div);
336 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
337 pos--;
338 /* enable event stream */
339 arch_timer_evtstrm_enable(min(pos, 15));
340 }
341
342 static void arch_counter_set_user_access(void)
343 {
344 u32 cntkctl = arch_timer_get_cntkctl();
345
346 /* Disable user access to the timers and the physical counter */
347 /* Also disable virtual event stream */
348 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
349 | ARCH_TIMER_USR_VT_ACCESS_EN
350 | ARCH_TIMER_VIRT_EVT_EN
351 | ARCH_TIMER_USR_PCT_ACCESS_EN);
352
353 /* Enable user access to the virtual counter */
354 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
355
356 arch_timer_set_cntkctl(cntkctl);
357 }
358
359 static bool arch_timer_has_nonsecure_ppi(void)
360 {
361 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
362 arch_timer_ppi[PHYS_NONSECURE_PPI]);
363 }
364
365 static int arch_timer_setup(struct clock_event_device *clk)
366 {
367 __arch_timer_setup(ARCH_CP15_TIMER, clk);
368
369 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);
370
371 if (arch_timer_has_nonsecure_ppi())
372 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
373
374 arch_counter_set_user_access();
375 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
376 arch_timer_configure_evtstream();
377
378 return 0;
379 }
380
381 static void
382 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
383 {
384 /* Who has more than one independent system counter? */
385 if (arch_timer_rate)
386 return;
387
388 /*
389 * Try to determine the frequency from the device tree or CNTFRQ,
390 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
391 */
392 if (!acpi_disabled ||
393 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
394 if (cntbase)
395 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
396 else
397 arch_timer_rate = arch_timer_get_cntfrq();
398 }
399
400 /* Check the timer frequency. */
401 if (arch_timer_rate == 0)
402 pr_warn("Architected timer frequency not available\n");
403 }
404
405 static void arch_timer_banner(unsigned type)
406 {
407 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
408 type & ARCH_CP15_TIMER ? "cp15" : "",
409 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
410 type & ARCH_MEM_TIMER ? "mmio" : "",
411 (unsigned long)arch_timer_rate / 1000000,
412 (unsigned long)(arch_timer_rate / 10000) % 100,
413 type & ARCH_CP15_TIMER ?
414 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
415 "",
416 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
417 type & ARCH_MEM_TIMER ?
418 arch_timer_mem_use_virtual ? "virt" : "phys" :
419 "");
420 }
421
422 u32 arch_timer_get_rate(void)
423 {
424 return arch_timer_rate;
425 }
426
427 static u64 arch_counter_get_cntvct_mem(void)
428 {
429 u32 vct_lo, vct_hi, tmp_hi;
430
431 do {
432 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
433 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
434 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
435 } while (vct_hi != tmp_hi);
436
437 return ((u64) vct_hi << 32) | vct_lo;
438 }
439
440 /*
441 * Default to cp15 based access because arm64 uses this function for
442 * sched_clock() before DT is probed and the cp15 method is guaranteed
443 * to exist on arm64. arm doesn't use this before DT is probed so even
444 * if we don't have the cp15 accessors we won't have a problem.
445 */
446 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
447
448 static cycle_t arch_counter_read(struct clocksource *cs)
449 {
450 return arch_timer_read_counter();
451 }
452
453 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
454 {
455 return arch_timer_read_counter();
456 }
457
458 static struct clocksource clocksource_counter = {
459 .name = "arch_sys_counter",
460 .rating = 400,
461 .read = arch_counter_read,
462 .mask = CLOCKSOURCE_MASK(56),
463 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
464 };
465
466 static struct cyclecounter cyclecounter = {
467 .read = arch_counter_read_cc,
468 .mask = CLOCKSOURCE_MASK(56),
469 };
470
471 static struct arch_timer_kvm_info arch_timer_kvm_info;
472
473 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
474 {
475 return &arch_timer_kvm_info;
476 }
477
478 static void __init arch_counter_register(unsigned type)
479 {
480 u64 start_count;
481
482 /* Register the CP15 based counter if we have one */
483 if (type & ARCH_CP15_TIMER) {
484 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
485 arch_timer_read_counter = arch_counter_get_cntvct;
486 else
487 arch_timer_read_counter = arch_counter_get_cntpct;
488 } else {
489 arch_timer_read_counter = arch_counter_get_cntvct_mem;
490
491 /* If the clocksource name is "arch_sys_counter" the
492 * VDSO will attempt to read the CP15-based counter.
493 * Ensure this does not happen when CP15-based
494 * counter is not available.
495 */
496 clocksource_counter.name = "arch_mem_counter";
497 }
498
499 start_count = arch_timer_read_counter();
500 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
501 cyclecounter.mult = clocksource_counter.mult;
502 cyclecounter.shift = clocksource_counter.shift;
503 timecounter_init(&arch_timer_kvm_info.timecounter,
504 &cyclecounter, start_count);
505
506 /* 56 bits minimum, so we assume worst case rollover */
507 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
508 }
509
510 static void arch_timer_stop(struct clock_event_device *clk)
511 {
512 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
513 clk->irq, smp_processor_id());
514
515 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
516 if (arch_timer_has_nonsecure_ppi())
517 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
518
519 clk->set_state_shutdown(clk);
520 }
521
522 static int arch_timer_cpu_notify(struct notifier_block *self,
523 unsigned long action, void *hcpu)
524 {
525 /*
526 * Grab cpu pointer in each case to avoid spurious
527 * preemptible warnings
528 */
529 switch (action & ~CPU_TASKS_FROZEN) {
530 case CPU_STARTING:
531 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
532 break;
533 case CPU_DYING:
534 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
535 break;
536 }
537
538 return NOTIFY_OK;
539 }
540
541 static struct notifier_block arch_timer_cpu_nb = {
542 .notifier_call = arch_timer_cpu_notify,
543 };
544
545 #ifdef CONFIG_CPU_PM
546 static unsigned int saved_cntkctl;
547 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
548 unsigned long action, void *hcpu)
549 {
550 if (action == CPU_PM_ENTER)
551 saved_cntkctl = arch_timer_get_cntkctl();
552 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
553 arch_timer_set_cntkctl(saved_cntkctl);
554 return NOTIFY_OK;
555 }
556
557 static struct notifier_block arch_timer_cpu_pm_notifier = {
558 .notifier_call = arch_timer_cpu_pm_notify,
559 };
560
561 static int __init arch_timer_cpu_pm_init(void)
562 {
563 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
564 }
565 #else
566 static int __init arch_timer_cpu_pm_init(void)
567 {
568 return 0;
569 }
570 #endif
571
572 static int __init arch_timer_register(void)
573 {
574 int err;
575 int ppi;
576
577 arch_timer_evt = alloc_percpu(struct clock_event_device);
578 if (!arch_timer_evt) {
579 err = -ENOMEM;
580 goto out;
581 }
582
583 ppi = arch_timer_ppi[arch_timer_uses_ppi];
584 switch (arch_timer_uses_ppi) {
585 case VIRT_PPI:
586 err = request_percpu_irq(ppi, arch_timer_handler_virt,
587 "arch_timer", arch_timer_evt);
588 break;
589 case PHYS_SECURE_PPI:
590 case PHYS_NONSECURE_PPI:
591 err = request_percpu_irq(ppi, arch_timer_handler_phys,
592 "arch_timer", arch_timer_evt);
593 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
594 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
595 err = request_percpu_irq(ppi, arch_timer_handler_phys,
596 "arch_timer", arch_timer_evt);
597 if (err)
598 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
599 arch_timer_evt);
600 }
601 break;
602 case HYP_PPI:
603 err = request_percpu_irq(ppi, arch_timer_handler_phys,
604 "arch_timer", arch_timer_evt);
605 break;
606 default:
607 BUG();
608 }
609
610 if (err) {
611 pr_err("arch_timer: can't register interrupt %d (%d)\n",
612 ppi, err);
613 goto out_free;
614 }
615
616 err = register_cpu_notifier(&arch_timer_cpu_nb);
617 if (err)
618 goto out_free_irq;
619
620 err = arch_timer_cpu_pm_init();
621 if (err)
622 goto out_unreg_notify;
623
624 /* Immediately configure the timer on the boot CPU */
625 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
626
627 return 0;
628
629 out_unreg_notify:
630 unregister_cpu_notifier(&arch_timer_cpu_nb);
631 out_free_irq:
632 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
633 if (arch_timer_has_nonsecure_ppi())
634 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
635 arch_timer_evt);
636
637 out_free:
638 free_percpu(arch_timer_evt);
639 out:
640 return err;
641 }
642
643 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
644 {
645 int ret;
646 irq_handler_t func;
647 struct arch_timer *t;
648
649 t = kzalloc(sizeof(*t), GFP_KERNEL);
650 if (!t)
651 return -ENOMEM;
652
653 t->base = base;
654 t->evt.irq = irq;
655 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
656
657 if (arch_timer_mem_use_virtual)
658 func = arch_timer_handler_virt_mem;
659 else
660 func = arch_timer_handler_phys_mem;
661
662 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
663 if (ret) {
664 pr_err("arch_timer: Failed to request mem timer irq\n");
665 kfree(t);
666 }
667
668 return ret;
669 }
670
671 static const struct of_device_id arch_timer_of_match[] __initconst = {
672 { .compatible = "arm,armv7-timer", },
673 { .compatible = "arm,armv8-timer", },
674 {},
675 };
676
677 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
678 { .compatible = "arm,armv7-timer-mem", },
679 {},
680 };
681
682 static bool __init
683 arch_timer_needs_probing(int type, const struct of_device_id *matches)
684 {
685 struct device_node *dn;
686 bool needs_probing = false;
687
688 dn = of_find_matching_node(NULL, matches);
689 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
690 needs_probing = true;
691 of_node_put(dn);
692
693 return needs_probing;
694 }
695
696 static void __init arch_timer_common_init(void)
697 {
698 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
699
700 /* Wait until both nodes are probed if we have two timers */
701 if ((arch_timers_present & mask) != mask) {
702 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
703 return;
704 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
705 return;
706 }
707
708 arch_timer_banner(arch_timers_present);
709 arch_counter_register(arch_timers_present);
710 arch_timer_arch_init();
711 }
712
713 static void __init arch_timer_init(void)
714 {
715 /*
716 * If HYP mode is available, we know that the physical timer
717 * has been configured to be accessible from PL1. Use it, so
718 * that a guest can use the virtual timer instead.
719 *
720 * If no interrupt provided for virtual timer, we'll have to
721 * stick to the physical timer. It'd better be accessible...
722 *
723 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
724 * accesses to CNTP_*_EL1 registers are silently redirected to
725 * their CNTHP_*_EL2 counterparts, and use a different PPI
726 * number.
727 */
728 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
729 bool has_ppi;
730
731 if (is_kernel_in_hyp_mode()) {
732 arch_timer_uses_ppi = HYP_PPI;
733 has_ppi = !!arch_timer_ppi[HYP_PPI];
734 } else {
735 arch_timer_uses_ppi = PHYS_SECURE_PPI;
736 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
737 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
738 }
739
740 if (!has_ppi) {
741 pr_warn("arch_timer: No interrupt available, giving up\n");
742 return;
743 }
744 }
745
746 arch_timer_register();
747 arch_timer_common_init();
748
749 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
750 }
751
752 static void __init arch_timer_of_init(struct device_node *np)
753 {
754 int i;
755
756 if (arch_timers_present & ARCH_CP15_TIMER) {
757 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
758 return;
759 }
760
761 arch_timers_present |= ARCH_CP15_TIMER;
762 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
763 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
764
765 arch_timer_detect_rate(NULL, np);
766
767 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
768
769 /*
770 * If we cannot rely on firmware initializing the timer registers then
771 * we should use the physical timers instead.
772 */
773 if (IS_ENABLED(CONFIG_ARM) &&
774 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
775 arch_timer_uses_ppi = PHYS_SECURE_PPI;
776
777 arch_timer_init();
778 }
779 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
780 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
781
782 static void __init arch_timer_mem_init(struct device_node *np)
783 {
784 struct device_node *frame, *best_frame = NULL;
785 void __iomem *cntctlbase, *base;
786 unsigned int irq;
787 u32 cnttidr;
788
789 arch_timers_present |= ARCH_MEM_TIMER;
790 cntctlbase = of_iomap(np, 0);
791 if (!cntctlbase) {
792 pr_err("arch_timer: Can't find CNTCTLBase\n");
793 return;
794 }
795
796 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
797
798 /*
799 * Try to find a virtual capable frame. Otherwise fall back to a
800 * physical capable frame.
801 */
802 for_each_available_child_of_node(np, frame) {
803 int n;
804 u32 cntacr;
805
806 if (of_property_read_u32(frame, "frame-number", &n)) {
807 pr_err("arch_timer: Missing frame-number\n");
808 of_node_put(frame);
809 goto out;
810 }
811
812 /* Try enabling everything, and see what sticks */
813 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
814 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
815 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
816 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
817
818 if ((cnttidr & CNTTIDR_VIRT(n)) &&
819 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
820 of_node_put(best_frame);
821 best_frame = frame;
822 arch_timer_mem_use_virtual = true;
823 break;
824 }
825
826 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
827 continue;
828
829 of_node_put(best_frame);
830 best_frame = of_node_get(frame);
831 }
832
833 base = arch_counter_base = of_iomap(best_frame, 0);
834 if (!base) {
835 pr_err("arch_timer: Can't map frame's registers\n");
836 goto out;
837 }
838
839 if (arch_timer_mem_use_virtual)
840 irq = irq_of_parse_and_map(best_frame, 1);
841 else
842 irq = irq_of_parse_and_map(best_frame, 0);
843
844 if (!irq) {
845 pr_err("arch_timer: Frame missing %s irq",
846 arch_timer_mem_use_virtual ? "virt" : "phys");
847 goto out;
848 }
849
850 arch_timer_detect_rate(base, np);
851 arch_timer_mem_register(base, irq);
852 arch_timer_common_init();
853 out:
854 iounmap(cntctlbase);
855 of_node_put(best_frame);
856 }
857 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
858 arch_timer_mem_init);
859
860 #ifdef CONFIG_ACPI
861 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
862 {
863 int trigger, polarity;
864
865 if (!interrupt)
866 return 0;
867
868 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
869 : ACPI_LEVEL_SENSITIVE;
870
871 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
872 : ACPI_ACTIVE_HIGH;
873
874 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
875 }
876
877 /* Initialize per-processor generic timer */
878 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
879 {
880 struct acpi_table_gtdt *gtdt;
881
882 if (arch_timers_present & ARCH_CP15_TIMER) {
883 pr_warn("arch_timer: already initialized, skipping\n");
884 return -EINVAL;
885 }
886
887 gtdt = container_of(table, struct acpi_table_gtdt, header);
888
889 arch_timers_present |= ARCH_CP15_TIMER;
890
891 arch_timer_ppi[PHYS_SECURE_PPI] =
892 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
893 gtdt->secure_el1_flags);
894
895 arch_timer_ppi[PHYS_NONSECURE_PPI] =
896 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
897 gtdt->non_secure_el1_flags);
898
899 arch_timer_ppi[VIRT_PPI] =
900 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
901 gtdt->virtual_timer_flags);
902
903 arch_timer_ppi[HYP_PPI] =
904 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
905 gtdt->non_secure_el2_flags);
906
907 /* Get the frequency from CNTFRQ */
908 arch_timer_detect_rate(NULL, NULL);
909
910 /* Always-on capability */
911 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
912
913 arch_timer_init();
914 return 0;
915 }
916 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
917 #endif