]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/clocksource/arm_arch_timer.c
Merge tag 'drm-intel-fixes-2017-03-22' of git://anongit.freedesktop.org/git/drm-intel...
[mirror_ubuntu-artful-kernel.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR 0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n) (0x40 + ((n) * 4))
40 #define CNTACR_RPCT BIT(0)
41 #define CNTACR_RVCT BIT(1)
42 #define CNTACR_RFRQ BIT(2)
43 #define CNTACR_RVOFF BIT(3)
44 #define CNTACR_RWVT BIT(4)
45 #define CNTACR_RWPT BIT(5)
46
47 #define CNTVCT_LO 0x08
48 #define CNTVCT_HI 0x0c
49 #define CNTFRQ 0x10
50 #define CNTP_TVAL 0x28
51 #define CNTP_CTL 0x2c
52 #define CNTV_TVAL 0x38
53 #define CNTV_CTL 0x3c
54
55 #define ARCH_CP15_TIMER BIT(0)
56 #define ARCH_MEM_TIMER BIT(1)
57 static unsigned arch_timers_present __initdata;
58
59 static void __iomem *arch_counter_base;
60
61 struct arch_timer {
62 void __iomem *base;
63 struct clock_event_device evt;
64 };
65
66 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
67
68 static u32 arch_timer_rate;
69
70 enum ppi_nr {
71 PHYS_SECURE_PPI,
72 PHYS_NONSECURE_PPI,
73 VIRT_PPI,
74 HYP_PPI,
75 MAX_TIMER_PPI
76 };
77
78 static int arch_timer_ppi[MAX_TIMER_PPI];
79
80 static struct clock_event_device __percpu *arch_timer_evt;
81
82 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
83 static bool arch_timer_c3stop;
84 static bool arch_timer_mem_use_virtual;
85 static bool arch_counter_suspend_stop;
86
87 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
88
89 static int __init early_evtstrm_cfg(char *buf)
90 {
91 return strtobool(buf, &evtstrm_enable);
92 }
93 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
94
95 /*
96 * Architected system timer support.
97 */
98
99 #ifdef CONFIG_FSL_ERRATUM_A008585
100 /*
101 * The number of retries is an arbitrary value well beyond the highest number
102 * of iterations the loop has been observed to take.
103 */
104 #define __fsl_a008585_read_reg(reg) ({ \
105 u64 _old, _new; \
106 int _retries = 200; \
107 \
108 do { \
109 _old = read_sysreg(reg); \
110 _new = read_sysreg(reg); \
111 _retries--; \
112 } while (unlikely(_old != _new) && _retries); \
113 \
114 WARN_ON_ONCE(!_retries); \
115 _new; \
116 })
117
118 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
119 {
120 return __fsl_a008585_read_reg(cntp_tval_el0);
121 }
122
123 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
124 {
125 return __fsl_a008585_read_reg(cntv_tval_el0);
126 }
127
128 static u64 notrace fsl_a008585_read_cntvct_el0(void)
129 {
130 return __fsl_a008585_read_reg(cntvct_el0);
131 }
132 #endif
133
134 #ifdef CONFIG_HISILICON_ERRATUM_161010101
135 /*
136 * Verify whether the value of the second read is larger than the first by
137 * less than 32 is the only way to confirm the value is correct, so clear the
138 * lower 5 bits to check whether the difference is greater than 32 or not.
139 * Theoretically the erratum should not occur more than twice in succession
140 * when reading the system counter, but it is possible that some interrupts
141 * may lead to more than twice read errors, triggering the warning, so setting
142 * the number of retries far beyond the number of iterations the loop has been
143 * observed to take.
144 */
145 #define __hisi_161010101_read_reg(reg) ({ \
146 u64 _old, _new; \
147 int _retries = 50; \
148 \
149 do { \
150 _old = read_sysreg(reg); \
151 _new = read_sysreg(reg); \
152 _retries--; \
153 } while (unlikely((_new - _old) >> 5) && _retries); \
154 \
155 WARN_ON_ONCE(!_retries); \
156 _new; \
157 })
158
159 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
160 {
161 return __hisi_161010101_read_reg(cntp_tval_el0);
162 }
163
164 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
165 {
166 return __hisi_161010101_read_reg(cntv_tval_el0);
167 }
168
169 static u64 notrace hisi_161010101_read_cntvct_el0(void)
170 {
171 return __hisi_161010101_read_reg(cntvct_el0);
172 }
173 #endif
174
175 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
176 const struct arch_timer_erratum_workaround *timer_unstable_counter_workaround = NULL;
177 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
178
179 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
180 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
181
182 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
183 #ifdef CONFIG_FSL_ERRATUM_A008585
184 {
185 .id = "fsl,erratum-a008585",
186 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
187 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
188 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
189 },
190 #endif
191 #ifdef CONFIG_HISILICON_ERRATUM_161010101
192 {
193 .id = "hisilicon,erratum-161010101",
194 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
195 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
196 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
197 },
198 #endif
199 };
200 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
201
202 static __always_inline
203 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
204 struct clock_event_device *clk)
205 {
206 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
207 struct arch_timer *timer = to_arch_timer(clk);
208 switch (reg) {
209 case ARCH_TIMER_REG_CTRL:
210 writel_relaxed(val, timer->base + CNTP_CTL);
211 break;
212 case ARCH_TIMER_REG_TVAL:
213 writel_relaxed(val, timer->base + CNTP_TVAL);
214 break;
215 }
216 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
217 struct arch_timer *timer = to_arch_timer(clk);
218 switch (reg) {
219 case ARCH_TIMER_REG_CTRL:
220 writel_relaxed(val, timer->base + CNTV_CTL);
221 break;
222 case ARCH_TIMER_REG_TVAL:
223 writel_relaxed(val, timer->base + CNTV_TVAL);
224 break;
225 }
226 } else {
227 arch_timer_reg_write_cp15(access, reg, val);
228 }
229 }
230
231 static __always_inline
232 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
233 struct clock_event_device *clk)
234 {
235 u32 val;
236
237 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
238 struct arch_timer *timer = to_arch_timer(clk);
239 switch (reg) {
240 case ARCH_TIMER_REG_CTRL:
241 val = readl_relaxed(timer->base + CNTP_CTL);
242 break;
243 case ARCH_TIMER_REG_TVAL:
244 val = readl_relaxed(timer->base + CNTP_TVAL);
245 break;
246 }
247 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
248 struct arch_timer *timer = to_arch_timer(clk);
249 switch (reg) {
250 case ARCH_TIMER_REG_CTRL:
251 val = readl_relaxed(timer->base + CNTV_CTL);
252 break;
253 case ARCH_TIMER_REG_TVAL:
254 val = readl_relaxed(timer->base + CNTV_TVAL);
255 break;
256 }
257 } else {
258 val = arch_timer_reg_read_cp15(access, reg);
259 }
260
261 return val;
262 }
263
264 static __always_inline irqreturn_t timer_handler(const int access,
265 struct clock_event_device *evt)
266 {
267 unsigned long ctrl;
268
269 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
270 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
271 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
272 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
273 evt->event_handler(evt);
274 return IRQ_HANDLED;
275 }
276
277 return IRQ_NONE;
278 }
279
280 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
281 {
282 struct clock_event_device *evt = dev_id;
283
284 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
285 }
286
287 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
288 {
289 struct clock_event_device *evt = dev_id;
290
291 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
292 }
293
294 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
295 {
296 struct clock_event_device *evt = dev_id;
297
298 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
299 }
300
301 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
302 {
303 struct clock_event_device *evt = dev_id;
304
305 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
306 }
307
308 static __always_inline int timer_shutdown(const int access,
309 struct clock_event_device *clk)
310 {
311 unsigned long ctrl;
312
313 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
314 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
315 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
316
317 return 0;
318 }
319
320 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
321 {
322 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
323 }
324
325 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
326 {
327 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
328 }
329
330 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
331 {
332 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
333 }
334
335 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
336 {
337 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
338 }
339
340 static __always_inline void set_next_event(const int access, unsigned long evt,
341 struct clock_event_device *clk)
342 {
343 unsigned long ctrl;
344 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
345 ctrl |= ARCH_TIMER_CTRL_ENABLE;
346 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
347 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
348 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
349 }
350
351 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
352 static __always_inline void erratum_set_next_event_generic(const int access,
353 unsigned long evt, struct clock_event_device *clk)
354 {
355 unsigned long ctrl;
356 u64 cval = evt + arch_counter_get_cntvct();
357
358 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
359 ctrl |= ARCH_TIMER_CTRL_ENABLE;
360 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
361
362 if (access == ARCH_TIMER_PHYS_ACCESS)
363 write_sysreg(cval, cntp_cval_el0);
364 else if (access == ARCH_TIMER_VIRT_ACCESS)
365 write_sysreg(cval, cntv_cval_el0);
366
367 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
368 }
369
370 static int erratum_set_next_event_virt(unsigned long evt,
371 struct clock_event_device *clk)
372 {
373 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
374 return 0;
375 }
376
377 static int erratum_set_next_event_phys(unsigned long evt,
378 struct clock_event_device *clk)
379 {
380 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
381 return 0;
382 }
383 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
384
385 static int arch_timer_set_next_event_virt(unsigned long evt,
386 struct clock_event_device *clk)
387 {
388 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
389 return 0;
390 }
391
392 static int arch_timer_set_next_event_phys(unsigned long evt,
393 struct clock_event_device *clk)
394 {
395 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
396 return 0;
397 }
398
399 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
400 struct clock_event_device *clk)
401 {
402 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
403 return 0;
404 }
405
406 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
407 struct clock_event_device *clk)
408 {
409 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
410 return 0;
411 }
412
413 static void erratum_workaround_set_sne(struct clock_event_device *clk)
414 {
415 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
416 if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
417 return;
418
419 if (arch_timer_uses_ppi == VIRT_PPI)
420 clk->set_next_event = erratum_set_next_event_virt;
421 else
422 clk->set_next_event = erratum_set_next_event_phys;
423 #endif
424 }
425
426 static void __arch_timer_setup(unsigned type,
427 struct clock_event_device *clk)
428 {
429 clk->features = CLOCK_EVT_FEAT_ONESHOT;
430
431 if (type == ARCH_CP15_TIMER) {
432 if (arch_timer_c3stop)
433 clk->features |= CLOCK_EVT_FEAT_C3STOP;
434 clk->name = "arch_sys_timer";
435 clk->rating = 450;
436 clk->cpumask = cpumask_of(smp_processor_id());
437 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
438 switch (arch_timer_uses_ppi) {
439 case VIRT_PPI:
440 clk->set_state_shutdown = arch_timer_shutdown_virt;
441 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
442 clk->set_next_event = arch_timer_set_next_event_virt;
443 break;
444 case PHYS_SECURE_PPI:
445 case PHYS_NONSECURE_PPI:
446 case HYP_PPI:
447 clk->set_state_shutdown = arch_timer_shutdown_phys;
448 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
449 clk->set_next_event = arch_timer_set_next_event_phys;
450 break;
451 default:
452 BUG();
453 }
454
455 erratum_workaround_set_sne(clk);
456 } else {
457 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
458 clk->name = "arch_mem_timer";
459 clk->rating = 400;
460 clk->cpumask = cpu_all_mask;
461 if (arch_timer_mem_use_virtual) {
462 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
463 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
464 clk->set_next_event =
465 arch_timer_set_next_event_virt_mem;
466 } else {
467 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
468 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
469 clk->set_next_event =
470 arch_timer_set_next_event_phys_mem;
471 }
472 }
473
474 clk->set_state_shutdown(clk);
475
476 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
477 }
478
479 static void arch_timer_evtstrm_enable(int divider)
480 {
481 u32 cntkctl = arch_timer_get_cntkctl();
482
483 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
484 /* Set the divider and enable virtual event stream */
485 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
486 | ARCH_TIMER_VIRT_EVT_EN;
487 arch_timer_set_cntkctl(cntkctl);
488 elf_hwcap |= HWCAP_EVTSTRM;
489 #ifdef CONFIG_COMPAT
490 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
491 #endif
492 }
493
494 static void arch_timer_configure_evtstream(void)
495 {
496 int evt_stream_div, pos;
497
498 /* Find the closest power of two to the divisor */
499 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
500 pos = fls(evt_stream_div);
501 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
502 pos--;
503 /* enable event stream */
504 arch_timer_evtstrm_enable(min(pos, 15));
505 }
506
507 static void arch_counter_set_user_access(void)
508 {
509 u32 cntkctl = arch_timer_get_cntkctl();
510
511 /* Disable user access to the timers and the physical counter */
512 /* Also disable virtual event stream */
513 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
514 | ARCH_TIMER_USR_VT_ACCESS_EN
515 | ARCH_TIMER_VIRT_EVT_EN
516 | ARCH_TIMER_USR_PCT_ACCESS_EN);
517
518 /* Enable user access to the virtual counter */
519 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
520
521 arch_timer_set_cntkctl(cntkctl);
522 }
523
524 static bool arch_timer_has_nonsecure_ppi(void)
525 {
526 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
527 arch_timer_ppi[PHYS_NONSECURE_PPI]);
528 }
529
530 static u32 check_ppi_trigger(int irq)
531 {
532 u32 flags = irq_get_trigger_type(irq);
533
534 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
535 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
536 pr_warn("WARNING: Please fix your firmware\n");
537 flags = IRQF_TRIGGER_LOW;
538 }
539
540 return flags;
541 }
542
543 static int arch_timer_starting_cpu(unsigned int cpu)
544 {
545 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
546 u32 flags;
547
548 __arch_timer_setup(ARCH_CP15_TIMER, clk);
549
550 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
551 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
552
553 if (arch_timer_has_nonsecure_ppi()) {
554 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
555 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
556 }
557
558 arch_counter_set_user_access();
559 if (evtstrm_enable)
560 arch_timer_configure_evtstream();
561
562 return 0;
563 }
564
565 static void
566 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
567 {
568 /* Who has more than one independent system counter? */
569 if (arch_timer_rate)
570 return;
571
572 /*
573 * Try to determine the frequency from the device tree or CNTFRQ,
574 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
575 */
576 if (!acpi_disabled ||
577 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
578 if (cntbase)
579 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
580 else
581 arch_timer_rate = arch_timer_get_cntfrq();
582 }
583
584 /* Check the timer frequency. */
585 if (arch_timer_rate == 0)
586 pr_warn("Architected timer frequency not available\n");
587 }
588
589 static void arch_timer_banner(unsigned type)
590 {
591 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
592 type & ARCH_CP15_TIMER ? "cp15" : "",
593 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
594 type & ARCH_MEM_TIMER ? "mmio" : "",
595 (unsigned long)arch_timer_rate / 1000000,
596 (unsigned long)(arch_timer_rate / 10000) % 100,
597 type & ARCH_CP15_TIMER ?
598 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
599 "",
600 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
601 type & ARCH_MEM_TIMER ?
602 arch_timer_mem_use_virtual ? "virt" : "phys" :
603 "");
604 }
605
606 u32 arch_timer_get_rate(void)
607 {
608 return arch_timer_rate;
609 }
610
611 static u64 arch_counter_get_cntvct_mem(void)
612 {
613 u32 vct_lo, vct_hi, tmp_hi;
614
615 do {
616 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
617 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
618 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
619 } while (vct_hi != tmp_hi);
620
621 return ((u64) vct_hi << 32) | vct_lo;
622 }
623
624 /*
625 * Default to cp15 based access because arm64 uses this function for
626 * sched_clock() before DT is probed and the cp15 method is guaranteed
627 * to exist on arm64. arm doesn't use this before DT is probed so even
628 * if we don't have the cp15 accessors we won't have a problem.
629 */
630 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
631
632 static u64 arch_counter_read(struct clocksource *cs)
633 {
634 return arch_timer_read_counter();
635 }
636
637 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
638 {
639 return arch_timer_read_counter();
640 }
641
642 static struct clocksource clocksource_counter = {
643 .name = "arch_sys_counter",
644 .rating = 400,
645 .read = arch_counter_read,
646 .mask = CLOCKSOURCE_MASK(56),
647 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
648 };
649
650 static struct cyclecounter cyclecounter __ro_after_init = {
651 .read = arch_counter_read_cc,
652 .mask = CLOCKSOURCE_MASK(56),
653 };
654
655 static struct arch_timer_kvm_info arch_timer_kvm_info;
656
657 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
658 {
659 return &arch_timer_kvm_info;
660 }
661
662 static void __init arch_counter_register(unsigned type)
663 {
664 u64 start_count;
665
666 /* Register the CP15 based counter if we have one */
667 if (type & ARCH_CP15_TIMER) {
668 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
669 arch_timer_read_counter = arch_counter_get_cntvct;
670 else
671 arch_timer_read_counter = arch_counter_get_cntpct;
672
673 clocksource_counter.archdata.vdso_direct = true;
674
675 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
676 /*
677 * Don't use the vdso fastpath if errata require using
678 * the out-of-line counter accessor.
679 */
680 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
681 clocksource_counter.archdata.vdso_direct = false;
682 #endif
683 } else {
684 arch_timer_read_counter = arch_counter_get_cntvct_mem;
685 }
686
687 if (!arch_counter_suspend_stop)
688 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
689 start_count = arch_timer_read_counter();
690 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
691 cyclecounter.mult = clocksource_counter.mult;
692 cyclecounter.shift = clocksource_counter.shift;
693 timecounter_init(&arch_timer_kvm_info.timecounter,
694 &cyclecounter, start_count);
695
696 /* 56 bits minimum, so we assume worst case rollover */
697 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
698 }
699
700 static void arch_timer_stop(struct clock_event_device *clk)
701 {
702 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
703 clk->irq, smp_processor_id());
704
705 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
706 if (arch_timer_has_nonsecure_ppi())
707 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
708
709 clk->set_state_shutdown(clk);
710 }
711
712 static int arch_timer_dying_cpu(unsigned int cpu)
713 {
714 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
715
716 arch_timer_stop(clk);
717 return 0;
718 }
719
720 #ifdef CONFIG_CPU_PM
721 static unsigned int saved_cntkctl;
722 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
723 unsigned long action, void *hcpu)
724 {
725 if (action == CPU_PM_ENTER)
726 saved_cntkctl = arch_timer_get_cntkctl();
727 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
728 arch_timer_set_cntkctl(saved_cntkctl);
729 return NOTIFY_OK;
730 }
731
732 static struct notifier_block arch_timer_cpu_pm_notifier = {
733 .notifier_call = arch_timer_cpu_pm_notify,
734 };
735
736 static int __init arch_timer_cpu_pm_init(void)
737 {
738 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
739 }
740
741 static void __init arch_timer_cpu_pm_deinit(void)
742 {
743 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
744 }
745
746 #else
747 static int __init arch_timer_cpu_pm_init(void)
748 {
749 return 0;
750 }
751
752 static void __init arch_timer_cpu_pm_deinit(void)
753 {
754 }
755 #endif
756
757 static int __init arch_timer_register(void)
758 {
759 int err;
760 int ppi;
761
762 arch_timer_evt = alloc_percpu(struct clock_event_device);
763 if (!arch_timer_evt) {
764 err = -ENOMEM;
765 goto out;
766 }
767
768 ppi = arch_timer_ppi[arch_timer_uses_ppi];
769 switch (arch_timer_uses_ppi) {
770 case VIRT_PPI:
771 err = request_percpu_irq(ppi, arch_timer_handler_virt,
772 "arch_timer", arch_timer_evt);
773 break;
774 case PHYS_SECURE_PPI:
775 case PHYS_NONSECURE_PPI:
776 err = request_percpu_irq(ppi, arch_timer_handler_phys,
777 "arch_timer", arch_timer_evt);
778 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
779 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
780 err = request_percpu_irq(ppi, arch_timer_handler_phys,
781 "arch_timer", arch_timer_evt);
782 if (err)
783 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
784 arch_timer_evt);
785 }
786 break;
787 case HYP_PPI:
788 err = request_percpu_irq(ppi, arch_timer_handler_phys,
789 "arch_timer", arch_timer_evt);
790 break;
791 default:
792 BUG();
793 }
794
795 if (err) {
796 pr_err("arch_timer: can't register interrupt %d (%d)\n",
797 ppi, err);
798 goto out_free;
799 }
800
801 err = arch_timer_cpu_pm_init();
802 if (err)
803 goto out_unreg_notify;
804
805
806 /* Register and immediately configure the timer on the boot CPU */
807 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
808 "clockevents/arm/arch_timer:starting",
809 arch_timer_starting_cpu, arch_timer_dying_cpu);
810 if (err)
811 goto out_unreg_cpupm;
812 return 0;
813
814 out_unreg_cpupm:
815 arch_timer_cpu_pm_deinit();
816
817 out_unreg_notify:
818 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
819 if (arch_timer_has_nonsecure_ppi())
820 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
821 arch_timer_evt);
822
823 out_free:
824 free_percpu(arch_timer_evt);
825 out:
826 return err;
827 }
828
829 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
830 {
831 int ret;
832 irq_handler_t func;
833 struct arch_timer *t;
834
835 t = kzalloc(sizeof(*t), GFP_KERNEL);
836 if (!t)
837 return -ENOMEM;
838
839 t->base = base;
840 t->evt.irq = irq;
841 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
842
843 if (arch_timer_mem_use_virtual)
844 func = arch_timer_handler_virt_mem;
845 else
846 func = arch_timer_handler_phys_mem;
847
848 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
849 if (ret) {
850 pr_err("arch_timer: Failed to request mem timer irq\n");
851 kfree(t);
852 }
853
854 return ret;
855 }
856
857 static const struct of_device_id arch_timer_of_match[] __initconst = {
858 { .compatible = "arm,armv7-timer", },
859 { .compatible = "arm,armv8-timer", },
860 {},
861 };
862
863 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
864 { .compatible = "arm,armv7-timer-mem", },
865 {},
866 };
867
868 static bool __init
869 arch_timer_needs_probing(int type, const struct of_device_id *matches)
870 {
871 struct device_node *dn;
872 bool needs_probing = false;
873
874 dn = of_find_matching_node(NULL, matches);
875 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
876 needs_probing = true;
877 of_node_put(dn);
878
879 return needs_probing;
880 }
881
882 static int __init arch_timer_common_init(void)
883 {
884 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
885
886 /* Wait until both nodes are probed if we have two timers */
887 if ((arch_timers_present & mask) != mask) {
888 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
889 return 0;
890 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
891 return 0;
892 }
893
894 arch_timer_banner(arch_timers_present);
895 arch_counter_register(arch_timers_present);
896 return arch_timer_arch_init();
897 }
898
899 static int __init arch_timer_init(void)
900 {
901 int ret;
902 /*
903 * If HYP mode is available, we know that the physical timer
904 * has been configured to be accessible from PL1. Use it, so
905 * that a guest can use the virtual timer instead.
906 *
907 * If no interrupt provided for virtual timer, we'll have to
908 * stick to the physical timer. It'd better be accessible...
909 *
910 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
911 * accesses to CNTP_*_EL1 registers are silently redirected to
912 * their CNTHP_*_EL2 counterparts, and use a different PPI
913 * number.
914 */
915 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
916 bool has_ppi;
917
918 if (is_kernel_in_hyp_mode()) {
919 arch_timer_uses_ppi = HYP_PPI;
920 has_ppi = !!arch_timer_ppi[HYP_PPI];
921 } else {
922 arch_timer_uses_ppi = PHYS_SECURE_PPI;
923 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
924 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
925 }
926
927 if (!has_ppi) {
928 pr_warn("arch_timer: No interrupt available, giving up\n");
929 return -EINVAL;
930 }
931 }
932
933 ret = arch_timer_register();
934 if (ret)
935 return ret;
936
937 ret = arch_timer_common_init();
938 if (ret)
939 return ret;
940
941 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
942
943 return 0;
944 }
945
946 static int __init arch_timer_of_init(struct device_node *np)
947 {
948 int i;
949
950 if (arch_timers_present & ARCH_CP15_TIMER) {
951 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
952 return 0;
953 }
954
955 arch_timers_present |= ARCH_CP15_TIMER;
956 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
957 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
958
959 arch_timer_detect_rate(NULL, np);
960
961 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
962
963 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
964 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
965 if (of_property_read_bool(np, ool_workarounds[i].id)) {
966 timer_unstable_counter_workaround = &ool_workarounds[i];
967 static_branch_enable(&arch_timer_read_ool_enabled);
968 pr_info("arch_timer: Enabling workaround for %s\n",
969 timer_unstable_counter_workaround->id);
970 break;
971 }
972 }
973 #endif
974
975 /*
976 * If we cannot rely on firmware initializing the timer registers then
977 * we should use the physical timers instead.
978 */
979 if (IS_ENABLED(CONFIG_ARM) &&
980 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
981 arch_timer_uses_ppi = PHYS_SECURE_PPI;
982
983 /* On some systems, the counter stops ticking when in suspend. */
984 arch_counter_suspend_stop = of_property_read_bool(np,
985 "arm,no-tick-in-suspend");
986
987 return arch_timer_init();
988 }
989 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
990 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
991
992 static int __init arch_timer_mem_init(struct device_node *np)
993 {
994 struct device_node *frame, *best_frame = NULL;
995 void __iomem *cntctlbase, *base;
996 unsigned int irq, ret = -EINVAL;
997 u32 cnttidr;
998
999 arch_timers_present |= ARCH_MEM_TIMER;
1000 cntctlbase = of_iomap(np, 0);
1001 if (!cntctlbase) {
1002 pr_err("arch_timer: Can't find CNTCTLBase\n");
1003 return -ENXIO;
1004 }
1005
1006 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1007
1008 /*
1009 * Try to find a virtual capable frame. Otherwise fall back to a
1010 * physical capable frame.
1011 */
1012 for_each_available_child_of_node(np, frame) {
1013 int n;
1014 u32 cntacr;
1015
1016 if (of_property_read_u32(frame, "frame-number", &n)) {
1017 pr_err("arch_timer: Missing frame-number\n");
1018 of_node_put(frame);
1019 goto out;
1020 }
1021
1022 /* Try enabling everything, and see what sticks */
1023 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1024 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1025 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
1026 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
1027
1028 if ((cnttidr & CNTTIDR_VIRT(n)) &&
1029 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1030 of_node_put(best_frame);
1031 best_frame = frame;
1032 arch_timer_mem_use_virtual = true;
1033 break;
1034 }
1035
1036 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1037 continue;
1038
1039 of_node_put(best_frame);
1040 best_frame = of_node_get(frame);
1041 }
1042
1043 ret= -ENXIO;
1044 base = arch_counter_base = of_io_request_and_map(best_frame, 0,
1045 "arch_mem_timer");
1046 if (IS_ERR(base)) {
1047 pr_err("arch_timer: Can't map frame's registers\n");
1048 goto out;
1049 }
1050
1051 if (arch_timer_mem_use_virtual)
1052 irq = irq_of_parse_and_map(best_frame, 1);
1053 else
1054 irq = irq_of_parse_and_map(best_frame, 0);
1055
1056 ret = -EINVAL;
1057 if (!irq) {
1058 pr_err("arch_timer: Frame missing %s irq",
1059 arch_timer_mem_use_virtual ? "virt" : "phys");
1060 goto out;
1061 }
1062
1063 arch_timer_detect_rate(base, np);
1064 ret = arch_timer_mem_register(base, irq);
1065 if (ret)
1066 goto out;
1067
1068 return arch_timer_common_init();
1069 out:
1070 iounmap(cntctlbase);
1071 of_node_put(best_frame);
1072 return ret;
1073 }
1074 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1075 arch_timer_mem_init);
1076
1077 #ifdef CONFIG_ACPI
1078 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1079 {
1080 int trigger, polarity;
1081
1082 if (!interrupt)
1083 return 0;
1084
1085 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1086 : ACPI_LEVEL_SENSITIVE;
1087
1088 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1089 : ACPI_ACTIVE_HIGH;
1090
1091 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1092 }
1093
1094 /* Initialize per-processor generic timer */
1095 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1096 {
1097 struct acpi_table_gtdt *gtdt;
1098
1099 if (arch_timers_present & ARCH_CP15_TIMER) {
1100 pr_warn("arch_timer: already initialized, skipping\n");
1101 return -EINVAL;
1102 }
1103
1104 gtdt = container_of(table, struct acpi_table_gtdt, header);
1105
1106 arch_timers_present |= ARCH_CP15_TIMER;
1107
1108 arch_timer_ppi[PHYS_SECURE_PPI] =
1109 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1110 gtdt->secure_el1_flags);
1111
1112 arch_timer_ppi[PHYS_NONSECURE_PPI] =
1113 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1114 gtdt->non_secure_el1_flags);
1115
1116 arch_timer_ppi[VIRT_PPI] =
1117 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1118 gtdt->virtual_timer_flags);
1119
1120 arch_timer_ppi[HYP_PPI] =
1121 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1122 gtdt->non_secure_el2_flags);
1123
1124 /* Get the frequency from CNTFRQ */
1125 arch_timer_detect_rate(NULL, NULL);
1126
1127 /* Always-on capability */
1128 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1129
1130 arch_timer_init();
1131 return 0;
1132 }
1133 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1134 #endif