]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/clocksource/arm_arch_timer.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38
39 #define CNTTIDR 0x08
40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42 #define CNTACR(n) (0x40 + ((n) * 4))
43 #define CNTACR_RPCT BIT(0)
44 #define CNTACR_RVCT BIT(1)
45 #define CNTACR_RFRQ BIT(2)
46 #define CNTACR_RVOFF BIT(3)
47 #define CNTACR_RWVT BIT(4)
48 #define CNTACR_RWPT BIT(5)
49
50 #define CNTVCT_LO 0x08
51 #define CNTVCT_HI 0x0c
52 #define CNTFRQ 0x10
53 #define CNTP_TVAL 0x28
54 #define CNTP_CTL 0x2c
55 #define CNTV_TVAL 0x38
56 #define CNTV_CTL 0x3c
57
58 static unsigned arch_timers_present __initdata;
59
60 static void __iomem *arch_counter_base;
61
62 struct arch_timer {
63 void __iomem *base;
64 struct clock_event_device evt;
65 };
66
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72 static struct clock_event_device __percpu *arch_timer_evt;
73
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79
80 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
81
82 static int __init early_evtstrm_cfg(char *buf)
83 {
84 return strtobool(buf, &evtstrm_enable);
85 }
86 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
87
88 /*
89 * Architected system timer support.
90 */
91
92 static __always_inline
93 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
94 struct clock_event_device *clk)
95 {
96 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
97 struct arch_timer *timer = to_arch_timer(clk);
98 switch (reg) {
99 case ARCH_TIMER_REG_CTRL:
100 writel_relaxed(val, timer->base + CNTP_CTL);
101 break;
102 case ARCH_TIMER_REG_TVAL:
103 writel_relaxed(val, timer->base + CNTP_TVAL);
104 break;
105 }
106 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
107 struct arch_timer *timer = to_arch_timer(clk);
108 switch (reg) {
109 case ARCH_TIMER_REG_CTRL:
110 writel_relaxed(val, timer->base + CNTV_CTL);
111 break;
112 case ARCH_TIMER_REG_TVAL:
113 writel_relaxed(val, timer->base + CNTV_TVAL);
114 break;
115 }
116 } else {
117 arch_timer_reg_write_cp15(access, reg, val);
118 }
119 }
120
121 static __always_inline
122 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
123 struct clock_event_device *clk)
124 {
125 u32 val;
126
127 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
128 struct arch_timer *timer = to_arch_timer(clk);
129 switch (reg) {
130 case ARCH_TIMER_REG_CTRL:
131 val = readl_relaxed(timer->base + CNTP_CTL);
132 break;
133 case ARCH_TIMER_REG_TVAL:
134 val = readl_relaxed(timer->base + CNTP_TVAL);
135 break;
136 }
137 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
138 struct arch_timer *timer = to_arch_timer(clk);
139 switch (reg) {
140 case ARCH_TIMER_REG_CTRL:
141 val = readl_relaxed(timer->base + CNTV_CTL);
142 break;
143 case ARCH_TIMER_REG_TVAL:
144 val = readl_relaxed(timer->base + CNTV_TVAL);
145 break;
146 }
147 } else {
148 val = arch_timer_reg_read_cp15(access, reg);
149 }
150
151 return val;
152 }
153
154 /*
155 * Default to cp15 based access because arm64 uses this function for
156 * sched_clock() before DT is probed and the cp15 method is guaranteed
157 * to exist on arm64. arm doesn't use this before DT is probed so even
158 * if we don't have the cp15 accessors we won't have a problem.
159 */
160 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
161
162 static u64 arch_counter_read(struct clocksource *cs)
163 {
164 return arch_timer_read_counter();
165 }
166
167 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
168 {
169 return arch_timer_read_counter();
170 }
171
172 static struct clocksource clocksource_counter = {
173 .name = "arch_sys_counter",
174 .rating = 400,
175 .read = arch_counter_read,
176 .mask = CLOCKSOURCE_MASK(56),
177 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
178 };
179
180 static struct cyclecounter cyclecounter __ro_after_init = {
181 .read = arch_counter_read_cc,
182 .mask = CLOCKSOURCE_MASK(56),
183 };
184
185 struct ate_acpi_oem_info {
186 char oem_id[ACPI_OEM_ID_SIZE + 1];
187 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
188 u32 oem_revision;
189 };
190
191 #ifdef CONFIG_FSL_ERRATUM_A008585
192 /*
193 * The number of retries is an arbitrary value well beyond the highest number
194 * of iterations the loop has been observed to take.
195 */
196 #define __fsl_a008585_read_reg(reg) ({ \
197 u64 _old, _new; \
198 int _retries = 200; \
199 \
200 do { \
201 _old = read_sysreg(reg); \
202 _new = read_sysreg(reg); \
203 _retries--; \
204 } while (unlikely(_old != _new) && _retries); \
205 \
206 WARN_ON_ONCE(!_retries); \
207 _new; \
208 })
209
210 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
211 {
212 return __fsl_a008585_read_reg(cntp_tval_el0);
213 }
214
215 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
216 {
217 return __fsl_a008585_read_reg(cntv_tval_el0);
218 }
219
220 static u64 notrace fsl_a008585_read_cntvct_el0(void)
221 {
222 return __fsl_a008585_read_reg(cntvct_el0);
223 }
224 #endif
225
226 #ifdef CONFIG_HISILICON_ERRATUM_161010101
227 /*
228 * Verify whether the value of the second read is larger than the first by
229 * less than 32 is the only way to confirm the value is correct, so clear the
230 * lower 5 bits to check whether the difference is greater than 32 or not.
231 * Theoretically the erratum should not occur more than twice in succession
232 * when reading the system counter, but it is possible that some interrupts
233 * may lead to more than twice read errors, triggering the warning, so setting
234 * the number of retries far beyond the number of iterations the loop has been
235 * observed to take.
236 */
237 #define __hisi_161010101_read_reg(reg) ({ \
238 u64 _old, _new; \
239 int _retries = 50; \
240 \
241 do { \
242 _old = read_sysreg(reg); \
243 _new = read_sysreg(reg); \
244 _retries--; \
245 } while (unlikely((_new - _old) >> 5) && _retries); \
246 \
247 WARN_ON_ONCE(!_retries); \
248 _new; \
249 })
250
251 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
252 {
253 return __hisi_161010101_read_reg(cntp_tval_el0);
254 }
255
256 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
257 {
258 return __hisi_161010101_read_reg(cntv_tval_el0);
259 }
260
261 static u64 notrace hisi_161010101_read_cntvct_el0(void)
262 {
263 return __hisi_161010101_read_reg(cntvct_el0);
264 }
265
266 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
267 /*
268 * Note that trailing spaces are required to properly match
269 * the OEM table information.
270 */
271 {
272 .oem_id = "HISI ",
273 .oem_table_id = "HIP05 ",
274 .oem_revision = 0,
275 },
276 {
277 .oem_id = "HISI ",
278 .oem_table_id = "HIP06 ",
279 .oem_revision = 0,
280 },
281 {
282 .oem_id = "HISI ",
283 .oem_table_id = "HIP07 ",
284 .oem_revision = 0,
285 },
286 { /* Sentinel indicating the end of the OEM array */ },
287 };
288 #endif
289
290 #ifdef CONFIG_ARM64_ERRATUM_858921
291 static u64 notrace arm64_858921_read_cntvct_el0(void)
292 {
293 u64 old, new;
294
295 old = read_sysreg(cntvct_el0);
296 new = read_sysreg(cntvct_el0);
297 return (((old ^ new) >> 32) & 1) ? old : new;
298 }
299 #endif
300
301 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
302 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *,
303 timer_unstable_counter_workaround);
304 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
305
306 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
307 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
308
309 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
310 struct clock_event_device *clk)
311 {
312 unsigned long ctrl;
313 u64 cval = evt + arch_counter_get_cntvct();
314
315 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
316 ctrl |= ARCH_TIMER_CTRL_ENABLE;
317 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
318
319 if (access == ARCH_TIMER_PHYS_ACCESS)
320 write_sysreg(cval, cntp_cval_el0);
321 else
322 write_sysreg(cval, cntv_cval_el0);
323
324 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
325 }
326
327 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
328 struct clock_event_device *clk)
329 {
330 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
331 return 0;
332 }
333
334 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
335 struct clock_event_device *clk)
336 {
337 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
338 return 0;
339 }
340
341 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
342 #ifdef CONFIG_FSL_ERRATUM_A008585
343 {
344 .match_type = ate_match_dt,
345 .id = "fsl,erratum-a008585",
346 .desc = "Freescale erratum a005858",
347 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
348 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
349 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
350 .set_next_event_phys = erratum_set_next_event_tval_phys,
351 .set_next_event_virt = erratum_set_next_event_tval_virt,
352 },
353 #endif
354 #ifdef CONFIG_HISILICON_ERRATUM_161010101
355 {
356 .match_type = ate_match_dt,
357 .id = "hisilicon,erratum-161010101",
358 .desc = "HiSilicon erratum 161010101",
359 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
360 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
361 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
362 .set_next_event_phys = erratum_set_next_event_tval_phys,
363 .set_next_event_virt = erratum_set_next_event_tval_virt,
364 },
365 {
366 .match_type = ate_match_acpi_oem_info,
367 .id = hisi_161010101_oem_info,
368 .desc = "HiSilicon erratum 161010101",
369 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
370 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
371 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
372 .set_next_event_phys = erratum_set_next_event_tval_phys,
373 .set_next_event_virt = erratum_set_next_event_tval_virt,
374 },
375 #endif
376 #ifdef CONFIG_ARM64_ERRATUM_858921
377 {
378 .match_type = ate_match_local_cap_id,
379 .id = (void *)ARM64_WORKAROUND_858921,
380 .desc = "ARM erratum 858921",
381 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
382 },
383 #endif
384 };
385
386 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
387 const void *);
388
389 static
390 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
391 const void *arg)
392 {
393 const struct device_node *np = arg;
394
395 return of_property_read_bool(np, wa->id);
396 }
397
398 static
399 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
400 const void *arg)
401 {
402 return this_cpu_has_cap((uintptr_t)wa->id);
403 }
404
405
406 static
407 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
408 const void *arg)
409 {
410 static const struct ate_acpi_oem_info empty_oem_info = {};
411 const struct ate_acpi_oem_info *info = wa->id;
412 const struct acpi_table_header *table = arg;
413
414 /* Iterate over the ACPI OEM info array, looking for a match */
415 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
416 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
417 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
418 info->oem_revision == table->oem_revision)
419 return true;
420
421 info++;
422 }
423
424 return false;
425 }
426
427 static const struct arch_timer_erratum_workaround *
428 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
429 ate_match_fn_t match_fn,
430 void *arg)
431 {
432 int i;
433
434 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
435 if (ool_workarounds[i].match_type != type)
436 continue;
437
438 if (match_fn(&ool_workarounds[i], arg))
439 return &ool_workarounds[i];
440 }
441
442 return NULL;
443 }
444
445 static
446 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
447 bool local)
448 {
449 int i;
450
451 if (local) {
452 __this_cpu_write(timer_unstable_counter_workaround, wa);
453 } else {
454 for_each_possible_cpu(i)
455 per_cpu(timer_unstable_counter_workaround, i) = wa;
456 }
457
458 static_branch_enable(&arch_timer_read_ool_enabled);
459
460 /*
461 * Don't use the vdso fastpath if errata require using the
462 * out-of-line counter accessor. We may change our mind pretty
463 * late in the game (with a per-CPU erratum, for example), so
464 * change both the default value and the vdso itself.
465 */
466 if (wa->read_cntvct_el0) {
467 clocksource_counter.archdata.vdso_direct = false;
468 vdso_default = false;
469 }
470 }
471
472 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
473 void *arg)
474 {
475 const struct arch_timer_erratum_workaround *wa;
476 ate_match_fn_t match_fn = NULL;
477 bool local = false;
478
479 switch (type) {
480 case ate_match_dt:
481 match_fn = arch_timer_check_dt_erratum;
482 break;
483 case ate_match_local_cap_id:
484 match_fn = arch_timer_check_local_cap_erratum;
485 local = true;
486 break;
487 case ate_match_acpi_oem_info:
488 match_fn = arch_timer_check_acpi_oem_erratum;
489 break;
490 default:
491 WARN_ON(1);
492 return;
493 }
494
495 wa = arch_timer_iterate_errata(type, match_fn, arg);
496 if (!wa)
497 return;
498
499 if (needs_unstable_timer_counter_workaround()) {
500 const struct arch_timer_erratum_workaround *__wa;
501 __wa = __this_cpu_read(timer_unstable_counter_workaround);
502 if (__wa && wa != __wa)
503 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
504 wa->desc, __wa->desc);
505
506 if (__wa)
507 return;
508 }
509
510 arch_timer_enable_workaround(wa, local);
511 pr_info("Enabling %s workaround for %s\n",
512 local ? "local" : "global", wa->desc);
513 }
514
515 #define erratum_handler(fn, r, ...) \
516 ({ \
517 bool __val; \
518 if (needs_unstable_timer_counter_workaround()) { \
519 const struct arch_timer_erratum_workaround *__wa; \
520 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
521 if (__wa && __wa->fn) { \
522 r = __wa->fn(__VA_ARGS__); \
523 __val = true; \
524 } else { \
525 __val = false; \
526 } \
527 } else { \
528 __val = false; \
529 } \
530 __val; \
531 })
532
533 static bool arch_timer_this_cpu_has_cntvct_wa(void)
534 {
535 const struct arch_timer_erratum_workaround *wa;
536
537 wa = __this_cpu_read(timer_unstable_counter_workaround);
538 return wa && wa->read_cntvct_el0;
539 }
540 #else
541 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
542 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
543 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
544 #define erratum_handler(fn, r, ...) ({false;})
545 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
546 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
547
548 static __always_inline irqreturn_t timer_handler(const int access,
549 struct clock_event_device *evt)
550 {
551 unsigned long ctrl;
552
553 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
554 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
555 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
556 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
557 evt->event_handler(evt);
558 return IRQ_HANDLED;
559 }
560
561 return IRQ_NONE;
562 }
563
564 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
565 {
566 struct clock_event_device *evt = dev_id;
567
568 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
569 }
570
571 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
572 {
573 struct clock_event_device *evt = dev_id;
574
575 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
576 }
577
578 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
579 {
580 struct clock_event_device *evt = dev_id;
581
582 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
583 }
584
585 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
586 {
587 struct clock_event_device *evt = dev_id;
588
589 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
590 }
591
592 static __always_inline int timer_shutdown(const int access,
593 struct clock_event_device *clk)
594 {
595 unsigned long ctrl;
596
597 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
598 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
599 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
600
601 return 0;
602 }
603
604 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
605 {
606 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
607 }
608
609 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
610 {
611 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
612 }
613
614 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
615 {
616 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
617 }
618
619 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
620 {
621 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
622 }
623
624 static __always_inline void set_next_event(const int access, unsigned long evt,
625 struct clock_event_device *clk)
626 {
627 unsigned long ctrl;
628 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
629 ctrl |= ARCH_TIMER_CTRL_ENABLE;
630 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
631 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
632 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
633 }
634
635 static int arch_timer_set_next_event_virt(unsigned long evt,
636 struct clock_event_device *clk)
637 {
638 int ret;
639
640 if (erratum_handler(set_next_event_virt, ret, evt, clk))
641 return ret;
642
643 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
644 return 0;
645 }
646
647 static int arch_timer_set_next_event_phys(unsigned long evt,
648 struct clock_event_device *clk)
649 {
650 int ret;
651
652 if (erratum_handler(set_next_event_phys, ret, evt, clk))
653 return ret;
654
655 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
656 return 0;
657 }
658
659 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
660 struct clock_event_device *clk)
661 {
662 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
663 return 0;
664 }
665
666 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
667 struct clock_event_device *clk)
668 {
669 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
670 return 0;
671 }
672
673 static void __arch_timer_setup(unsigned type,
674 struct clock_event_device *clk)
675 {
676 clk->features = CLOCK_EVT_FEAT_ONESHOT;
677
678 if (type == ARCH_TIMER_TYPE_CP15) {
679 if (arch_timer_c3stop)
680 clk->features |= CLOCK_EVT_FEAT_C3STOP;
681 clk->name = "arch_sys_timer";
682 clk->rating = 450;
683 clk->cpumask = cpumask_of(smp_processor_id());
684 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
685 switch (arch_timer_uses_ppi) {
686 case ARCH_TIMER_VIRT_PPI:
687 clk->set_state_shutdown = arch_timer_shutdown_virt;
688 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
689 clk->set_next_event = arch_timer_set_next_event_virt;
690 break;
691 case ARCH_TIMER_PHYS_SECURE_PPI:
692 case ARCH_TIMER_PHYS_NONSECURE_PPI:
693 case ARCH_TIMER_HYP_PPI:
694 clk->set_state_shutdown = arch_timer_shutdown_phys;
695 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
696 clk->set_next_event = arch_timer_set_next_event_phys;
697 break;
698 default:
699 BUG();
700 }
701
702 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
703 } else {
704 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
705 clk->name = "arch_mem_timer";
706 clk->rating = 400;
707 clk->cpumask = cpu_all_mask;
708 if (arch_timer_mem_use_virtual) {
709 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
710 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
711 clk->set_next_event =
712 arch_timer_set_next_event_virt_mem;
713 } else {
714 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
715 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
716 clk->set_next_event =
717 arch_timer_set_next_event_phys_mem;
718 }
719 }
720
721 clk->set_state_shutdown(clk);
722
723 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
724 }
725
726 static void arch_timer_evtstrm_enable(int divider)
727 {
728 u32 cntkctl = arch_timer_get_cntkctl();
729
730 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
731 /* Set the divider and enable virtual event stream */
732 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
733 | ARCH_TIMER_VIRT_EVT_EN;
734 arch_timer_set_cntkctl(cntkctl);
735 elf_hwcap |= HWCAP_EVTSTRM;
736 #ifdef CONFIG_COMPAT
737 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
738 #endif
739 }
740
741 static void arch_timer_configure_evtstream(void)
742 {
743 int evt_stream_div, pos;
744
745 /* Find the closest power of two to the divisor */
746 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
747 pos = fls(evt_stream_div);
748 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
749 pos--;
750 /* enable event stream */
751 arch_timer_evtstrm_enable(min(pos, 15));
752 }
753
754 static void arch_counter_set_user_access(void)
755 {
756 u32 cntkctl = arch_timer_get_cntkctl();
757
758 /* Disable user access to the timers and both counters */
759 /* Also disable virtual event stream */
760 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
761 | ARCH_TIMER_USR_VT_ACCESS_EN
762 | ARCH_TIMER_USR_VCT_ACCESS_EN
763 | ARCH_TIMER_VIRT_EVT_EN
764 | ARCH_TIMER_USR_PCT_ACCESS_EN);
765
766 /*
767 * Enable user access to the virtual counter if it doesn't
768 * need to be workaround. The vdso may have been already
769 * disabled though.
770 */
771 if (arch_timer_this_cpu_has_cntvct_wa())
772 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
773 else
774 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
775
776 arch_timer_set_cntkctl(cntkctl);
777 }
778
779 static bool arch_timer_has_nonsecure_ppi(void)
780 {
781 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
782 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
783 }
784
785 static u32 check_ppi_trigger(int irq)
786 {
787 u32 flags = irq_get_trigger_type(irq);
788
789 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
790 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
791 pr_warn("WARNING: Please fix your firmware\n");
792 flags = IRQF_TRIGGER_LOW;
793 }
794
795 return flags;
796 }
797
798 static int arch_timer_starting_cpu(unsigned int cpu)
799 {
800 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
801 u32 flags;
802
803 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
804
805 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
806 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
807
808 if (arch_timer_has_nonsecure_ppi()) {
809 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
810 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
811 flags);
812 }
813
814 arch_counter_set_user_access();
815 if (evtstrm_enable)
816 arch_timer_configure_evtstream();
817
818 return 0;
819 }
820
821 /*
822 * For historical reasons, when probing with DT we use whichever (non-zero)
823 * rate was probed first, and don't verify that others match. If the first node
824 * probed has a clock-frequency property, this overrides the HW register.
825 */
826 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
827 {
828 /* Who has more than one independent system counter? */
829 if (arch_timer_rate)
830 return;
831
832 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
833 arch_timer_rate = rate;
834
835 /* Check the timer frequency. */
836 if (arch_timer_rate == 0)
837 pr_warn("frequency not available\n");
838 }
839
840 static void arch_timer_banner(unsigned type)
841 {
842 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
843 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
844 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
845 " and " : "",
846 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
847 (unsigned long)arch_timer_rate / 1000000,
848 (unsigned long)(arch_timer_rate / 10000) % 100,
849 type & ARCH_TIMER_TYPE_CP15 ?
850 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
851 "",
852 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
853 type & ARCH_TIMER_TYPE_MEM ?
854 arch_timer_mem_use_virtual ? "virt" : "phys" :
855 "");
856 }
857
858 u32 arch_timer_get_rate(void)
859 {
860 return arch_timer_rate;
861 }
862
863 static u64 arch_counter_get_cntvct_mem(void)
864 {
865 u32 vct_lo, vct_hi, tmp_hi;
866
867 do {
868 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
869 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
870 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
871 } while (vct_hi != tmp_hi);
872
873 return ((u64) vct_hi << 32) | vct_lo;
874 }
875
876 static struct arch_timer_kvm_info arch_timer_kvm_info;
877
878 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
879 {
880 return &arch_timer_kvm_info;
881 }
882
883 static void __init arch_counter_register(unsigned type)
884 {
885 u64 start_count;
886
887 /* Register the CP15 based counter if we have one */
888 if (type & ARCH_TIMER_TYPE_CP15) {
889 if (IS_ENABLED(CONFIG_ARM64) ||
890 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
891 arch_timer_read_counter = arch_counter_get_cntvct;
892 else
893 arch_timer_read_counter = arch_counter_get_cntpct;
894
895 clocksource_counter.archdata.vdso_direct = vdso_default;
896 } else {
897 arch_timer_read_counter = arch_counter_get_cntvct_mem;
898 }
899
900 if (!arch_counter_suspend_stop)
901 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
902 start_count = arch_timer_read_counter();
903 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
904 cyclecounter.mult = clocksource_counter.mult;
905 cyclecounter.shift = clocksource_counter.shift;
906 timecounter_init(&arch_timer_kvm_info.timecounter,
907 &cyclecounter, start_count);
908
909 /* 56 bits minimum, so we assume worst case rollover */
910 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
911 }
912
913 static void arch_timer_stop(struct clock_event_device *clk)
914 {
915 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
916
917 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
918 if (arch_timer_has_nonsecure_ppi())
919 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
920
921 clk->set_state_shutdown(clk);
922 }
923
924 static int arch_timer_dying_cpu(unsigned int cpu)
925 {
926 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
927
928 arch_timer_stop(clk);
929 return 0;
930 }
931
932 #ifdef CONFIG_CPU_PM
933 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
934 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
935 unsigned long action, void *hcpu)
936 {
937 if (action == CPU_PM_ENTER)
938 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
939 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
940 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
941 return NOTIFY_OK;
942 }
943
944 static struct notifier_block arch_timer_cpu_pm_notifier = {
945 .notifier_call = arch_timer_cpu_pm_notify,
946 };
947
948 static int __init arch_timer_cpu_pm_init(void)
949 {
950 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
951 }
952
953 static void __init arch_timer_cpu_pm_deinit(void)
954 {
955 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
956 }
957
958 #else
959 static int __init arch_timer_cpu_pm_init(void)
960 {
961 return 0;
962 }
963
964 static void __init arch_timer_cpu_pm_deinit(void)
965 {
966 }
967 #endif
968
969 static int __init arch_timer_register(void)
970 {
971 int err;
972 int ppi;
973
974 arch_timer_evt = alloc_percpu(struct clock_event_device);
975 if (!arch_timer_evt) {
976 err = -ENOMEM;
977 goto out;
978 }
979
980 ppi = arch_timer_ppi[arch_timer_uses_ppi];
981 switch (arch_timer_uses_ppi) {
982 case ARCH_TIMER_VIRT_PPI:
983 err = request_percpu_irq(ppi, arch_timer_handler_virt,
984 "arch_timer", arch_timer_evt);
985 break;
986 case ARCH_TIMER_PHYS_SECURE_PPI:
987 case ARCH_TIMER_PHYS_NONSECURE_PPI:
988 err = request_percpu_irq(ppi, arch_timer_handler_phys,
989 "arch_timer", arch_timer_evt);
990 if (!err && arch_timer_has_nonsecure_ppi()) {
991 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
992 err = request_percpu_irq(ppi, arch_timer_handler_phys,
993 "arch_timer", arch_timer_evt);
994 if (err)
995 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
996 arch_timer_evt);
997 }
998 break;
999 case ARCH_TIMER_HYP_PPI:
1000 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1001 "arch_timer", arch_timer_evt);
1002 break;
1003 default:
1004 BUG();
1005 }
1006
1007 if (err) {
1008 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1009 goto out_free;
1010 }
1011
1012 err = arch_timer_cpu_pm_init();
1013 if (err)
1014 goto out_unreg_notify;
1015
1016
1017 /* Register and immediately configure the timer on the boot CPU */
1018 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1019 "clockevents/arm/arch_timer:starting",
1020 arch_timer_starting_cpu, arch_timer_dying_cpu);
1021 if (err)
1022 goto out_unreg_cpupm;
1023 return 0;
1024
1025 out_unreg_cpupm:
1026 arch_timer_cpu_pm_deinit();
1027
1028 out_unreg_notify:
1029 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1030 if (arch_timer_has_nonsecure_ppi())
1031 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1032 arch_timer_evt);
1033
1034 out_free:
1035 free_percpu(arch_timer_evt);
1036 out:
1037 return err;
1038 }
1039
1040 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1041 {
1042 int ret;
1043 irq_handler_t func;
1044 struct arch_timer *t;
1045
1046 t = kzalloc(sizeof(*t), GFP_KERNEL);
1047 if (!t)
1048 return -ENOMEM;
1049
1050 t->base = base;
1051 t->evt.irq = irq;
1052 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1053
1054 if (arch_timer_mem_use_virtual)
1055 func = arch_timer_handler_virt_mem;
1056 else
1057 func = arch_timer_handler_phys_mem;
1058
1059 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1060 if (ret) {
1061 pr_err("Failed to request mem timer irq\n");
1062 kfree(t);
1063 }
1064
1065 return ret;
1066 }
1067
1068 static const struct of_device_id arch_timer_of_match[] __initconst = {
1069 { .compatible = "arm,armv7-timer", },
1070 { .compatible = "arm,armv8-timer", },
1071 {},
1072 };
1073
1074 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1075 { .compatible = "arm,armv7-timer-mem", },
1076 {},
1077 };
1078
1079 static bool __init arch_timer_needs_of_probing(void)
1080 {
1081 struct device_node *dn;
1082 bool needs_probing = false;
1083 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1084
1085 /* We have two timers, and both device-tree nodes are probed. */
1086 if ((arch_timers_present & mask) == mask)
1087 return false;
1088
1089 /*
1090 * Only one type of timer is probed,
1091 * check if we have another type of timer node in device-tree.
1092 */
1093 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1094 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1095 else
1096 dn = of_find_matching_node(NULL, arch_timer_of_match);
1097
1098 if (dn && of_device_is_available(dn))
1099 needs_probing = true;
1100
1101 of_node_put(dn);
1102
1103 return needs_probing;
1104 }
1105
1106 static int __init arch_timer_common_init(void)
1107 {
1108 arch_timer_banner(arch_timers_present);
1109 arch_counter_register(arch_timers_present);
1110 return arch_timer_arch_init();
1111 }
1112
1113 /**
1114 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1115 *
1116 * If HYP mode is available, we know that the physical timer
1117 * has been configured to be accessible from PL1. Use it, so
1118 * that a guest can use the virtual timer instead.
1119 *
1120 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1121 * accesses to CNTP_*_EL1 registers are silently redirected to
1122 * their CNTHP_*_EL2 counterparts, and use a different PPI
1123 * number.
1124 *
1125 * If no interrupt provided for virtual timer, we'll have to
1126 * stick to the physical timer. It'd better be accessible...
1127 * For arm64 we never use the secure interrupt.
1128 *
1129 * Return: a suitable PPI type for the current system.
1130 */
1131 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1132 {
1133 if (is_kernel_in_hyp_mode())
1134 return ARCH_TIMER_HYP_PPI;
1135
1136 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1137 return ARCH_TIMER_VIRT_PPI;
1138
1139 if (IS_ENABLED(CONFIG_ARM64))
1140 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1141
1142 return ARCH_TIMER_PHYS_SECURE_PPI;
1143 }
1144
1145 static int __init arch_timer_of_init(struct device_node *np)
1146 {
1147 int i, ret;
1148 u32 rate;
1149
1150 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1151 pr_warn("multiple nodes in dt, skipping\n");
1152 return 0;
1153 }
1154
1155 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1156 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1157 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1158
1159 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1160
1161 rate = arch_timer_get_cntfrq();
1162 arch_timer_of_configure_rate(rate, np);
1163
1164 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1165
1166 /* Check for globally applicable workarounds */
1167 arch_timer_check_ool_workaround(ate_match_dt, np);
1168
1169 /*
1170 * If we cannot rely on firmware initializing the timer registers then
1171 * we should use the physical timers instead.
1172 */
1173 if (IS_ENABLED(CONFIG_ARM) &&
1174 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1175 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1176 else
1177 arch_timer_uses_ppi = arch_timer_select_ppi();
1178
1179 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1180 pr_err("No interrupt available, giving up\n");
1181 return -EINVAL;
1182 }
1183
1184 /* On some systems, the counter stops ticking when in suspend. */
1185 arch_counter_suspend_stop = of_property_read_bool(np,
1186 "arm,no-tick-in-suspend");
1187
1188 ret = arch_timer_register();
1189 if (ret)
1190 return ret;
1191
1192 if (arch_timer_needs_of_probing())
1193 return 0;
1194
1195 return arch_timer_common_init();
1196 }
1197 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1198 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1199
1200 static u32 __init
1201 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1202 {
1203 void __iomem *base;
1204 u32 rate;
1205
1206 base = ioremap(frame->cntbase, frame->size);
1207 if (!base) {
1208 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1209 return 0;
1210 }
1211
1212 rate = readl_relaxed(base + CNTFRQ);
1213
1214 iounmap(base);
1215
1216 return rate;
1217 }
1218
1219 static struct arch_timer_mem_frame * __init
1220 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1221 {
1222 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1223 void __iomem *cntctlbase;
1224 u32 cnttidr;
1225 int i;
1226
1227 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1228 if (!cntctlbase) {
1229 pr_err("Can't map CNTCTLBase @ %pa\n",
1230 &timer_mem->cntctlbase);
1231 return NULL;
1232 }
1233
1234 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1235
1236 /*
1237 * Try to find a virtual capable frame. Otherwise fall back to a
1238 * physical capable frame.
1239 */
1240 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1241 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1242 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1243
1244 frame = &timer_mem->frame[i];
1245 if (!frame->valid)
1246 continue;
1247
1248 /* Try enabling everything, and see what sticks */
1249 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1250 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1251
1252 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1253 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1254 best_frame = frame;
1255 arch_timer_mem_use_virtual = true;
1256 break;
1257 }
1258
1259 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1260 continue;
1261
1262 best_frame = frame;
1263 }
1264
1265 iounmap(cntctlbase);
1266
1267 if (!best_frame)
1268 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1269 &timer_mem->cntctlbase);
1270
1271 return best_frame;
1272 }
1273
1274 static int __init
1275 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1276 {
1277 void __iomem *base;
1278 int ret, irq = 0;
1279
1280 if (arch_timer_mem_use_virtual)
1281 irq = frame->virt_irq;
1282 else
1283 irq = frame->phys_irq;
1284
1285 if (!irq) {
1286 pr_err("Frame missing %s irq.\n",
1287 arch_timer_mem_use_virtual ? "virt" : "phys");
1288 return -EINVAL;
1289 }
1290
1291 if (!request_mem_region(frame->cntbase, frame->size,
1292 "arch_mem_timer"))
1293 return -EBUSY;
1294
1295 base = ioremap(frame->cntbase, frame->size);
1296 if (!base) {
1297 pr_err("Can't map frame's registers\n");
1298 return -ENXIO;
1299 }
1300
1301 ret = arch_timer_mem_register(base, irq);
1302 if (ret) {
1303 iounmap(base);
1304 return ret;
1305 }
1306
1307 arch_counter_base = base;
1308 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1309
1310 return 0;
1311 }
1312
1313 static int __init arch_timer_mem_of_init(struct device_node *np)
1314 {
1315 struct arch_timer_mem *timer_mem;
1316 struct arch_timer_mem_frame *frame;
1317 struct device_node *frame_node;
1318 struct resource res;
1319 int ret = -EINVAL;
1320 u32 rate;
1321
1322 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1323 if (!timer_mem)
1324 return -ENOMEM;
1325
1326 if (of_address_to_resource(np, 0, &res))
1327 goto out;
1328 timer_mem->cntctlbase = res.start;
1329 timer_mem->size = resource_size(&res);
1330
1331 for_each_available_child_of_node(np, frame_node) {
1332 u32 n;
1333 struct arch_timer_mem_frame *frame;
1334
1335 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1336 pr_err(FW_BUG "Missing frame-number.\n");
1337 of_node_put(frame_node);
1338 goto out;
1339 }
1340 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1341 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1342 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1343 of_node_put(frame_node);
1344 goto out;
1345 }
1346 frame = &timer_mem->frame[n];
1347
1348 if (frame->valid) {
1349 pr_err(FW_BUG "Duplicated frame-number.\n");
1350 of_node_put(frame_node);
1351 goto out;
1352 }
1353
1354 if (of_address_to_resource(frame_node, 0, &res)) {
1355 of_node_put(frame_node);
1356 goto out;
1357 }
1358 frame->cntbase = res.start;
1359 frame->size = resource_size(&res);
1360
1361 frame->virt_irq = irq_of_parse_and_map(frame_node,
1362 ARCH_TIMER_VIRT_SPI);
1363 frame->phys_irq = irq_of_parse_and_map(frame_node,
1364 ARCH_TIMER_PHYS_SPI);
1365
1366 frame->valid = true;
1367 }
1368
1369 frame = arch_timer_mem_find_best_frame(timer_mem);
1370 if (!frame) {
1371 ret = -EINVAL;
1372 goto out;
1373 }
1374
1375 rate = arch_timer_mem_frame_get_cntfrq(frame);
1376 arch_timer_of_configure_rate(rate, np);
1377
1378 ret = arch_timer_mem_frame_register(frame);
1379 if (!ret && !arch_timer_needs_of_probing())
1380 ret = arch_timer_common_init();
1381 out:
1382 kfree(timer_mem);
1383 return ret;
1384 }
1385 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1386 arch_timer_mem_of_init);
1387
1388 #ifdef CONFIG_ACPI_GTDT
1389 static int __init
1390 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1391 {
1392 struct arch_timer_mem_frame *frame;
1393 u32 rate;
1394 int i;
1395
1396 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1397 frame = &timer_mem->frame[i];
1398
1399 if (!frame->valid)
1400 continue;
1401
1402 rate = arch_timer_mem_frame_get_cntfrq(frame);
1403 if (rate == arch_timer_rate)
1404 continue;
1405
1406 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1407 &frame->cntbase,
1408 (unsigned long)rate, (unsigned long)arch_timer_rate);
1409
1410 return -EINVAL;
1411 }
1412
1413 return 0;
1414 }
1415
1416 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1417 {
1418 struct arch_timer_mem *timers, *timer;
1419 struct arch_timer_mem_frame *frame;
1420 int timer_count, i, ret = 0;
1421
1422 timers = kcalloc(platform_timer_count, sizeof(*timers),
1423 GFP_KERNEL);
1424 if (!timers)
1425 return -ENOMEM;
1426
1427 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1428 if (ret || !timer_count)
1429 goto out;
1430
1431 for (i = 0; i < timer_count; i++) {
1432 ret = arch_timer_mem_verify_cntfrq(&timers[i]);
1433 if (ret) {
1434 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1435 goto out;
1436 }
1437 }
1438
1439 /*
1440 * While unlikely, it's theoretically possible that none of the frames
1441 * in a timer expose the combination of feature we want.
1442 */
1443 for (i = i; i < timer_count; i++) {
1444 timer = &timers[i];
1445
1446 frame = arch_timer_mem_find_best_frame(timer);
1447 if (frame)
1448 break;
1449 }
1450
1451 if (frame)
1452 ret = arch_timer_mem_frame_register(frame);
1453 out:
1454 kfree(timers);
1455 return ret;
1456 }
1457
1458 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1459 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1460 {
1461 int ret, platform_timer_count;
1462
1463 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1464 pr_warn("already initialized, skipping\n");
1465 return -EINVAL;
1466 }
1467
1468 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1469
1470 ret = acpi_gtdt_init(table, &platform_timer_count);
1471 if (ret) {
1472 pr_err("Failed to init GTDT table.\n");
1473 return ret;
1474 }
1475
1476 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1477 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1478
1479 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1480 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1481
1482 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1483 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1484
1485 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1486
1487 /*
1488 * When probing via ACPI, we have no mechanism to override the sysreg
1489 * CNTFRQ value. This *must* be correct.
1490 */
1491 arch_timer_rate = arch_timer_get_cntfrq();
1492 if (!arch_timer_rate) {
1493 pr_err(FW_BUG "frequency not available.\n");
1494 return -EINVAL;
1495 }
1496
1497 arch_timer_uses_ppi = arch_timer_select_ppi();
1498 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1499 pr_err("No interrupt available, giving up\n");
1500 return -EINVAL;
1501 }
1502
1503 /* Always-on capability */
1504 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1505
1506 /* Check for globally applicable workarounds */
1507 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1508
1509 ret = arch_timer_register();
1510 if (ret)
1511 return ret;
1512
1513 if (platform_timer_count &&
1514 arch_timer_mem_acpi_init(platform_timer_count))
1515 pr_err("Failed to initialize memory-mapped timer.\n");
1516
1517 return arch_timer_common_init();
1518 }
1519 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1520 #endif