]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/clocksource/arm_arch_timer.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38
39 #define CNTTIDR 0x08
40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42 #define CNTACR(n) (0x40 + ((n) * 4))
43 #define CNTACR_RPCT BIT(0)
44 #define CNTACR_RVCT BIT(1)
45 #define CNTACR_RFRQ BIT(2)
46 #define CNTACR_RVOFF BIT(3)
47 #define CNTACR_RWVT BIT(4)
48 #define CNTACR_RWPT BIT(5)
49
50 #define CNTVCT_LO 0x08
51 #define CNTVCT_HI 0x0c
52 #define CNTFRQ 0x10
53 #define CNTP_TVAL 0x28
54 #define CNTP_CTL 0x2c
55 #define CNTV_TVAL 0x38
56 #define CNTV_CTL 0x3c
57
58 static unsigned arch_timers_present __initdata;
59
60 static void __iomem *arch_counter_base;
61
62 struct arch_timer {
63 void __iomem *base;
64 struct clock_event_device evt;
65 };
66
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72 static struct clock_event_device __percpu *arch_timer_evt;
73
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79
80 static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82
83 static int __init early_evtstrm_cfg(char *buf)
84 {
85 return strtobool(buf, &evtstrm_enable);
86 }
87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88
89 /*
90 * Architected system timer support.
91 */
92
93 static __always_inline
94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 struct clock_event_device *clk)
96 {
97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 struct arch_timer *timer = to_arch_timer(clk);
99 switch (reg) {
100 case ARCH_TIMER_REG_CTRL:
101 writel_relaxed(val, timer->base + CNTP_CTL);
102 break;
103 case ARCH_TIMER_REG_TVAL:
104 writel_relaxed(val, timer->base + CNTP_TVAL);
105 break;
106 }
107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 struct arch_timer *timer = to_arch_timer(clk);
109 switch (reg) {
110 case ARCH_TIMER_REG_CTRL:
111 writel_relaxed(val, timer->base + CNTV_CTL);
112 break;
113 case ARCH_TIMER_REG_TVAL:
114 writel_relaxed(val, timer->base + CNTV_TVAL);
115 break;
116 }
117 } else {
118 arch_timer_reg_write_cp15(access, reg, val);
119 }
120 }
121
122 static __always_inline
123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 struct clock_event_device *clk)
125 {
126 u32 val;
127
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
130 switch (reg) {
131 case ARCH_TIMER_REG_CTRL:
132 val = readl_relaxed(timer->base + CNTP_CTL);
133 break;
134 case ARCH_TIMER_REG_TVAL:
135 val = readl_relaxed(timer->base + CNTP_TVAL);
136 break;
137 }
138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 struct arch_timer *timer = to_arch_timer(clk);
140 switch (reg) {
141 case ARCH_TIMER_REG_CTRL:
142 val = readl_relaxed(timer->base + CNTV_CTL);
143 break;
144 case ARCH_TIMER_REG_TVAL:
145 val = readl_relaxed(timer->base + CNTV_TVAL);
146 break;
147 }
148 } else {
149 val = arch_timer_reg_read_cp15(access, reg);
150 }
151
152 return val;
153 }
154
155 /*
156 * Default to cp15 based access because arm64 uses this function for
157 * sched_clock() before DT is probed and the cp15 method is guaranteed
158 * to exist on arm64. arm doesn't use this before DT is probed so even
159 * if we don't have the cp15 accessors we won't have a problem.
160 */
161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163
164 static u64 arch_counter_read(struct clocksource *cs)
165 {
166 return arch_timer_read_counter();
167 }
168
169 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170 {
171 return arch_timer_read_counter();
172 }
173
174 static struct clocksource clocksource_counter = {
175 .name = "arch_sys_counter",
176 .rating = 400,
177 .read = arch_counter_read,
178 .mask = CLOCKSOURCE_MASK(56),
179 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
180 };
181
182 static struct cyclecounter cyclecounter __ro_after_init = {
183 .read = arch_counter_read_cc,
184 .mask = CLOCKSOURCE_MASK(56),
185 };
186
187 struct ate_acpi_oem_info {
188 char oem_id[ACPI_OEM_ID_SIZE + 1];
189 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190 u32 oem_revision;
191 };
192
193 #ifdef CONFIG_FSL_ERRATUM_A008585
194 /*
195 * The number of retries is an arbitrary value well beyond the highest number
196 * of iterations the loop has been observed to take.
197 */
198 #define __fsl_a008585_read_reg(reg) ({ \
199 u64 _old, _new; \
200 int _retries = 200; \
201 \
202 do { \
203 _old = read_sysreg(reg); \
204 _new = read_sysreg(reg); \
205 _retries--; \
206 } while (unlikely(_old != _new) && _retries); \
207 \
208 WARN_ON_ONCE(!_retries); \
209 _new; \
210 })
211
212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 {
214 return __fsl_a008585_read_reg(cntp_tval_el0);
215 }
216
217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 {
219 return __fsl_a008585_read_reg(cntv_tval_el0);
220 }
221
222 static u64 notrace fsl_a008585_read_cntpct_el0(void)
223 {
224 return __fsl_a008585_read_reg(cntpct_el0);
225 }
226
227 static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 {
229 return __fsl_a008585_read_reg(cntvct_el0);
230 }
231 #endif
232
233 #ifdef CONFIG_HISILICON_ERRATUM_161010101
234 /*
235 * Verify whether the value of the second read is larger than the first by
236 * less than 32 is the only way to confirm the value is correct, so clear the
237 * lower 5 bits to check whether the difference is greater than 32 or not.
238 * Theoretically the erratum should not occur more than twice in succession
239 * when reading the system counter, but it is possible that some interrupts
240 * may lead to more than twice read errors, triggering the warning, so setting
241 * the number of retries far beyond the number of iterations the loop has been
242 * observed to take.
243 */
244 #define __hisi_161010101_read_reg(reg) ({ \
245 u64 _old, _new; \
246 int _retries = 50; \
247 \
248 do { \
249 _old = read_sysreg(reg); \
250 _new = read_sysreg(reg); \
251 _retries--; \
252 } while (unlikely((_new - _old) >> 5) && _retries); \
253 \
254 WARN_ON_ONCE(!_retries); \
255 _new; \
256 })
257
258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259 {
260 return __hisi_161010101_read_reg(cntp_tval_el0);
261 }
262
263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264 {
265 return __hisi_161010101_read_reg(cntv_tval_el0);
266 }
267
268 static u64 notrace hisi_161010101_read_cntpct_el0(void)
269 {
270 return __hisi_161010101_read_reg(cntpct_el0);
271 }
272
273 static u64 notrace hisi_161010101_read_cntvct_el0(void)
274 {
275 return __hisi_161010101_read_reg(cntvct_el0);
276 }
277
278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279 /*
280 * Note that trailing spaces are required to properly match
281 * the OEM table information.
282 */
283 {
284 .oem_id = "HISI ",
285 .oem_table_id = "HIP05 ",
286 .oem_revision = 0,
287 },
288 {
289 .oem_id = "HISI ",
290 .oem_table_id = "HIP06 ",
291 .oem_revision = 0,
292 },
293 {
294 .oem_id = "HISI ",
295 .oem_table_id = "HIP07 ",
296 .oem_revision = 0,
297 },
298 { /* Sentinel indicating the end of the OEM array */ },
299 };
300 #endif
301
302 #ifdef CONFIG_ARM64_ERRATUM_858921
303 static u64 notrace arm64_858921_read_cntpct_el0(void)
304 {
305 u64 old, new;
306
307 old = read_sysreg(cntpct_el0);
308 new = read_sysreg(cntpct_el0);
309 return (((old ^ new) >> 32) & 1) ? old : new;
310 }
311
312 static u64 notrace arm64_858921_read_cntvct_el0(void)
313 {
314 u64 old, new;
315
316 old = read_sysreg(cntvct_el0);
317 new = read_sysreg(cntvct_el0);
318 return (((old ^ new) >> 32) & 1) ? old : new;
319 }
320 #endif
321
322 #ifdef CONFIG_ARM64_ERRATUM_1188873
323 static u64 notrace arm64_1188873_read_cntvct_el0(void)
324 {
325 return read_sysreg(cntvct_el0);
326 }
327 #endif
328
329 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
330 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
331 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
332
333 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
334 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
335
336 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
337 struct clock_event_device *clk)
338 {
339 unsigned long ctrl;
340 u64 cval;
341
342 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
343 ctrl |= ARCH_TIMER_CTRL_ENABLE;
344 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
345
346 if (access == ARCH_TIMER_PHYS_ACCESS) {
347 cval = evt + arch_counter_get_cntpct();
348 write_sysreg(cval, cntp_cval_el0);
349 } else {
350 cval = evt + arch_counter_get_cntvct();
351 write_sysreg(cval, cntv_cval_el0);
352 }
353
354 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
355 }
356
357 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
358 struct clock_event_device *clk)
359 {
360 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
361 return 0;
362 }
363
364 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
365 struct clock_event_device *clk)
366 {
367 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
368 return 0;
369 }
370
371 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
372 #ifdef CONFIG_FSL_ERRATUM_A008585
373 {
374 .match_type = ate_match_dt,
375 .id = "fsl,erratum-a008585",
376 .desc = "Freescale erratum a005858",
377 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
378 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
379 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
380 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
381 .set_next_event_phys = erratum_set_next_event_tval_phys,
382 .set_next_event_virt = erratum_set_next_event_tval_virt,
383 },
384 #endif
385 #ifdef CONFIG_HISILICON_ERRATUM_161010101
386 {
387 .match_type = ate_match_dt,
388 .id = "hisilicon,erratum-161010101",
389 .desc = "HiSilicon erratum 161010101",
390 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
391 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
392 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
393 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
394 .set_next_event_phys = erratum_set_next_event_tval_phys,
395 .set_next_event_virt = erratum_set_next_event_tval_virt,
396 },
397 {
398 .match_type = ate_match_acpi_oem_info,
399 .id = hisi_161010101_oem_info,
400 .desc = "HiSilicon erratum 161010101",
401 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
402 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
403 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
404 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
405 .set_next_event_phys = erratum_set_next_event_tval_phys,
406 .set_next_event_virt = erratum_set_next_event_tval_virt,
407 },
408 #endif
409 #ifdef CONFIG_ARM64_ERRATUM_858921
410 {
411 .match_type = ate_match_local_cap_id,
412 .id = (void *)ARM64_WORKAROUND_858921,
413 .desc = "ARM erratum 858921",
414 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
415 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
416 },
417 #endif
418 #ifdef CONFIG_ARM64_ERRATUM_1188873
419 {
420 .match_type = ate_match_local_cap_id,
421 .id = (void *)ARM64_WORKAROUND_1188873,
422 .desc = "ARM erratum 1188873",
423 .read_cntvct_el0 = arm64_1188873_read_cntvct_el0,
424 },
425 #endif
426 };
427
428 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
429 const void *);
430
431 static
432 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
433 const void *arg)
434 {
435 const struct device_node *np = arg;
436
437 return of_property_read_bool(np, wa->id);
438 }
439
440 static
441 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
442 const void *arg)
443 {
444 return this_cpu_has_cap((uintptr_t)wa->id);
445 }
446
447
448 static
449 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
450 const void *arg)
451 {
452 static const struct ate_acpi_oem_info empty_oem_info = {};
453 const struct ate_acpi_oem_info *info = wa->id;
454 const struct acpi_table_header *table = arg;
455
456 /* Iterate over the ACPI OEM info array, looking for a match */
457 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
458 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
459 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
460 info->oem_revision == table->oem_revision)
461 return true;
462
463 info++;
464 }
465
466 return false;
467 }
468
469 static const struct arch_timer_erratum_workaround *
470 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
471 ate_match_fn_t match_fn,
472 void *arg)
473 {
474 int i;
475
476 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
477 if (ool_workarounds[i].match_type != type)
478 continue;
479
480 if (match_fn(&ool_workarounds[i], arg))
481 return &ool_workarounds[i];
482 }
483
484 return NULL;
485 }
486
487 static
488 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
489 bool local)
490 {
491 int i;
492
493 if (local) {
494 __this_cpu_write(timer_unstable_counter_workaround, wa);
495 } else {
496 for_each_possible_cpu(i)
497 per_cpu(timer_unstable_counter_workaround, i) = wa;
498 }
499
500 /*
501 * Use the locked version, as we're called from the CPU
502 * hotplug framework. Otherwise, we end-up in deadlock-land.
503 */
504 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
505
506 /*
507 * Don't use the vdso fastpath if errata require using the
508 * out-of-line counter accessor. We may change our mind pretty
509 * late in the game (with a per-CPU erratum, for example), so
510 * change both the default value and the vdso itself.
511 */
512 if (wa->read_cntvct_el0) {
513 clocksource_counter.archdata.vdso_direct = false;
514 vdso_default = false;
515 }
516 }
517
518 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
519 void *arg)
520 {
521 const struct arch_timer_erratum_workaround *wa;
522 ate_match_fn_t match_fn = NULL;
523 bool local = false;
524
525 switch (type) {
526 case ate_match_dt:
527 match_fn = arch_timer_check_dt_erratum;
528 break;
529 case ate_match_local_cap_id:
530 match_fn = arch_timer_check_local_cap_erratum;
531 local = true;
532 break;
533 case ate_match_acpi_oem_info:
534 match_fn = arch_timer_check_acpi_oem_erratum;
535 break;
536 default:
537 WARN_ON(1);
538 return;
539 }
540
541 wa = arch_timer_iterate_errata(type, match_fn, arg);
542 if (!wa)
543 return;
544
545 if (needs_unstable_timer_counter_workaround()) {
546 const struct arch_timer_erratum_workaround *__wa;
547 __wa = __this_cpu_read(timer_unstable_counter_workaround);
548 if (__wa && wa != __wa)
549 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
550 wa->desc, __wa->desc);
551
552 if (__wa)
553 return;
554 }
555
556 arch_timer_enable_workaround(wa, local);
557 pr_info("Enabling %s workaround for %s\n",
558 local ? "local" : "global", wa->desc);
559 }
560
561 #define erratum_handler(fn, r, ...) \
562 ({ \
563 bool __val; \
564 if (needs_unstable_timer_counter_workaround()) { \
565 const struct arch_timer_erratum_workaround *__wa; \
566 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
567 if (__wa && __wa->fn) { \
568 r = __wa->fn(__VA_ARGS__); \
569 __val = true; \
570 } else { \
571 __val = false; \
572 } \
573 } else { \
574 __val = false; \
575 } \
576 __val; \
577 })
578
579 static bool arch_timer_this_cpu_has_cntvct_wa(void)
580 {
581 const struct arch_timer_erratum_workaround *wa;
582
583 wa = __this_cpu_read(timer_unstable_counter_workaround);
584 return wa && wa->read_cntvct_el0;
585 }
586 #else
587 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
588 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
589 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
590 #define erratum_handler(fn, r, ...) ({false;})
591 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
592 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
593
594 static __always_inline irqreturn_t timer_handler(const int access,
595 struct clock_event_device *evt)
596 {
597 unsigned long ctrl;
598
599 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
600 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
601 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
602 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
603 evt->event_handler(evt);
604 return IRQ_HANDLED;
605 }
606
607 return IRQ_NONE;
608 }
609
610 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
611 {
612 struct clock_event_device *evt = dev_id;
613
614 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
615 }
616
617 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
618 {
619 struct clock_event_device *evt = dev_id;
620
621 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
622 }
623
624 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
625 {
626 struct clock_event_device *evt = dev_id;
627
628 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
629 }
630
631 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
632 {
633 struct clock_event_device *evt = dev_id;
634
635 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
636 }
637
638 static __always_inline int timer_shutdown(const int access,
639 struct clock_event_device *clk)
640 {
641 unsigned long ctrl;
642
643 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
644 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
645 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
646
647 return 0;
648 }
649
650 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
651 {
652 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
653 }
654
655 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
656 {
657 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
658 }
659
660 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
661 {
662 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
663 }
664
665 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
666 {
667 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
668 }
669
670 static __always_inline void set_next_event(const int access, unsigned long evt,
671 struct clock_event_device *clk)
672 {
673 unsigned long ctrl;
674 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
675 ctrl |= ARCH_TIMER_CTRL_ENABLE;
676 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
677 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
678 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
679 }
680
681 static int arch_timer_set_next_event_virt(unsigned long evt,
682 struct clock_event_device *clk)
683 {
684 int ret;
685
686 if (erratum_handler(set_next_event_virt, ret, evt, clk))
687 return ret;
688
689 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
690 return 0;
691 }
692
693 static int arch_timer_set_next_event_phys(unsigned long evt,
694 struct clock_event_device *clk)
695 {
696 int ret;
697
698 if (erratum_handler(set_next_event_phys, ret, evt, clk))
699 return ret;
700
701 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
702 return 0;
703 }
704
705 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
706 struct clock_event_device *clk)
707 {
708 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
709 return 0;
710 }
711
712 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
713 struct clock_event_device *clk)
714 {
715 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
716 return 0;
717 }
718
719 static void __arch_timer_setup(unsigned type,
720 struct clock_event_device *clk)
721 {
722 clk->features = CLOCK_EVT_FEAT_ONESHOT;
723
724 if (type == ARCH_TIMER_TYPE_CP15) {
725 if (arch_timer_c3stop)
726 clk->features |= CLOCK_EVT_FEAT_C3STOP;
727 clk->name = "arch_sys_timer";
728 clk->rating = 450;
729 clk->cpumask = cpumask_of(smp_processor_id());
730 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
731 switch (arch_timer_uses_ppi) {
732 case ARCH_TIMER_VIRT_PPI:
733 clk->set_state_shutdown = arch_timer_shutdown_virt;
734 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
735 clk->set_next_event = arch_timer_set_next_event_virt;
736 break;
737 case ARCH_TIMER_PHYS_SECURE_PPI:
738 case ARCH_TIMER_PHYS_NONSECURE_PPI:
739 case ARCH_TIMER_HYP_PPI:
740 clk->set_state_shutdown = arch_timer_shutdown_phys;
741 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
742 clk->set_next_event = arch_timer_set_next_event_phys;
743 break;
744 default:
745 BUG();
746 }
747
748 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
749 } else {
750 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
751 clk->name = "arch_mem_timer";
752 clk->rating = 400;
753 clk->cpumask = cpu_possible_mask;
754 if (arch_timer_mem_use_virtual) {
755 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
756 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
757 clk->set_next_event =
758 arch_timer_set_next_event_virt_mem;
759 } else {
760 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
761 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
762 clk->set_next_event =
763 arch_timer_set_next_event_phys_mem;
764 }
765 }
766
767 clk->set_state_shutdown(clk);
768
769 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
770 }
771
772 static void arch_timer_evtstrm_enable(int divider)
773 {
774 u32 cntkctl = arch_timer_get_cntkctl();
775
776 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
777 /* Set the divider and enable virtual event stream */
778 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
779 | ARCH_TIMER_VIRT_EVT_EN;
780 arch_timer_set_cntkctl(cntkctl);
781 elf_hwcap |= HWCAP_EVTSTRM;
782 #ifdef CONFIG_COMPAT
783 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
784 #endif
785 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
786 }
787
788 static void arch_timer_configure_evtstream(void)
789 {
790 int evt_stream_div, pos;
791
792 /* Find the closest power of two to the divisor */
793 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
794 pos = fls(evt_stream_div);
795 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
796 pos--;
797 /* enable event stream */
798 arch_timer_evtstrm_enable(min(pos, 15));
799 }
800
801 static void arch_counter_set_user_access(void)
802 {
803 u32 cntkctl = arch_timer_get_cntkctl();
804
805 /* Disable user access to the timers and both counters */
806 /* Also disable virtual event stream */
807 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
808 | ARCH_TIMER_USR_VT_ACCESS_EN
809 | ARCH_TIMER_USR_VCT_ACCESS_EN
810 | ARCH_TIMER_VIRT_EVT_EN
811 | ARCH_TIMER_USR_PCT_ACCESS_EN);
812
813 /*
814 * Enable user access to the virtual counter if it doesn't
815 * need to be workaround. The vdso may have been already
816 * disabled though.
817 */
818 if (arch_timer_this_cpu_has_cntvct_wa())
819 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
820 else
821 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
822
823 arch_timer_set_cntkctl(cntkctl);
824 }
825
826 static bool arch_timer_has_nonsecure_ppi(void)
827 {
828 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
829 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
830 }
831
832 static u32 check_ppi_trigger(int irq)
833 {
834 u32 flags = irq_get_trigger_type(irq);
835
836 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
837 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
838 pr_warn("WARNING: Please fix your firmware\n");
839 flags = IRQF_TRIGGER_LOW;
840 }
841
842 return flags;
843 }
844
845 static int arch_timer_starting_cpu(unsigned int cpu)
846 {
847 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
848 u32 flags;
849
850 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
851
852 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
853 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
854
855 if (arch_timer_has_nonsecure_ppi()) {
856 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
857 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
858 flags);
859 }
860
861 arch_counter_set_user_access();
862 if (evtstrm_enable)
863 arch_timer_configure_evtstream();
864
865 return 0;
866 }
867
868 /*
869 * For historical reasons, when probing with DT we use whichever (non-zero)
870 * rate was probed first, and don't verify that others match. If the first node
871 * probed has a clock-frequency property, this overrides the HW register.
872 */
873 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
874 {
875 /* Who has more than one independent system counter? */
876 if (arch_timer_rate)
877 return;
878
879 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
880 arch_timer_rate = rate;
881
882 /* Check the timer frequency. */
883 if (arch_timer_rate == 0)
884 pr_warn("frequency not available\n");
885 }
886
887 static void arch_timer_banner(unsigned type)
888 {
889 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
890 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
891 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
892 " and " : "",
893 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
894 (unsigned long)arch_timer_rate / 1000000,
895 (unsigned long)(arch_timer_rate / 10000) % 100,
896 type & ARCH_TIMER_TYPE_CP15 ?
897 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
898 "",
899 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
900 type & ARCH_TIMER_TYPE_MEM ?
901 arch_timer_mem_use_virtual ? "virt" : "phys" :
902 "");
903 }
904
905 u32 arch_timer_get_rate(void)
906 {
907 return arch_timer_rate;
908 }
909
910 bool arch_timer_evtstrm_available(void)
911 {
912 /*
913 * We might get called from a preemptible context. This is fine
914 * because availability of the event stream should be always the same
915 * for a preemptible context and context where we might resume a task.
916 */
917 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
918 }
919
920 static u64 arch_counter_get_cntvct_mem(void)
921 {
922 u32 vct_lo, vct_hi, tmp_hi;
923
924 do {
925 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
926 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
927 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
928 } while (vct_hi != tmp_hi);
929
930 return ((u64) vct_hi << 32) | vct_lo;
931 }
932
933 static struct arch_timer_kvm_info arch_timer_kvm_info;
934
935 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
936 {
937 return &arch_timer_kvm_info;
938 }
939
940 static void __init arch_counter_register(unsigned type)
941 {
942 u64 start_count;
943
944 /* Register the CP15 based counter if we have one */
945 if (type & ARCH_TIMER_TYPE_CP15) {
946 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
947 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
948 arch_timer_read_counter = arch_counter_get_cntvct;
949 else
950 arch_timer_read_counter = arch_counter_get_cntpct;
951
952 clocksource_counter.archdata.vdso_direct = vdso_default;
953 } else {
954 arch_timer_read_counter = arch_counter_get_cntvct_mem;
955 }
956
957 if (!arch_counter_suspend_stop)
958 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
959 start_count = arch_timer_read_counter();
960 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
961 cyclecounter.mult = clocksource_counter.mult;
962 cyclecounter.shift = clocksource_counter.shift;
963 timecounter_init(&arch_timer_kvm_info.timecounter,
964 &cyclecounter, start_count);
965
966 /* 56 bits minimum, so we assume worst case rollover */
967 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
968 }
969
970 static void arch_timer_stop(struct clock_event_device *clk)
971 {
972 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
973
974 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
975 if (arch_timer_has_nonsecure_ppi())
976 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
977
978 clk->set_state_shutdown(clk);
979 }
980
981 static int arch_timer_dying_cpu(unsigned int cpu)
982 {
983 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
984
985 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
986
987 arch_timer_stop(clk);
988 return 0;
989 }
990
991 #ifdef CONFIG_CPU_PM
992 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
993 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
994 unsigned long action, void *hcpu)
995 {
996 if (action == CPU_PM_ENTER) {
997 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
998
999 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1000 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1001 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1002
1003 if (elf_hwcap & HWCAP_EVTSTRM)
1004 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1005 }
1006 return NOTIFY_OK;
1007 }
1008
1009 static struct notifier_block arch_timer_cpu_pm_notifier = {
1010 .notifier_call = arch_timer_cpu_pm_notify,
1011 };
1012
1013 static int __init arch_timer_cpu_pm_init(void)
1014 {
1015 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1016 }
1017
1018 static void __init arch_timer_cpu_pm_deinit(void)
1019 {
1020 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1021 }
1022
1023 #else
1024 static int __init arch_timer_cpu_pm_init(void)
1025 {
1026 return 0;
1027 }
1028
1029 static void __init arch_timer_cpu_pm_deinit(void)
1030 {
1031 }
1032 #endif
1033
1034 static int __init arch_timer_register(void)
1035 {
1036 int err;
1037 int ppi;
1038
1039 arch_timer_evt = alloc_percpu(struct clock_event_device);
1040 if (!arch_timer_evt) {
1041 err = -ENOMEM;
1042 goto out;
1043 }
1044
1045 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1046 switch (arch_timer_uses_ppi) {
1047 case ARCH_TIMER_VIRT_PPI:
1048 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1049 "arch_timer", arch_timer_evt);
1050 break;
1051 case ARCH_TIMER_PHYS_SECURE_PPI:
1052 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1053 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1054 "arch_timer", arch_timer_evt);
1055 if (!err && arch_timer_has_nonsecure_ppi()) {
1056 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1057 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1058 "arch_timer", arch_timer_evt);
1059 if (err)
1060 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1061 arch_timer_evt);
1062 }
1063 break;
1064 case ARCH_TIMER_HYP_PPI:
1065 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1066 "arch_timer", arch_timer_evt);
1067 break;
1068 default:
1069 BUG();
1070 }
1071
1072 if (err) {
1073 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1074 goto out_free;
1075 }
1076
1077 err = arch_timer_cpu_pm_init();
1078 if (err)
1079 goto out_unreg_notify;
1080
1081 /* Register and immediately configure the timer on the boot CPU */
1082 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1083 "clockevents/arm/arch_timer:starting",
1084 arch_timer_starting_cpu, arch_timer_dying_cpu);
1085 if (err)
1086 goto out_unreg_cpupm;
1087 return 0;
1088
1089 out_unreg_cpupm:
1090 arch_timer_cpu_pm_deinit();
1091
1092 out_unreg_notify:
1093 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1094 if (arch_timer_has_nonsecure_ppi())
1095 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1096 arch_timer_evt);
1097
1098 out_free:
1099 free_percpu(arch_timer_evt);
1100 out:
1101 return err;
1102 }
1103
1104 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1105 {
1106 int ret;
1107 irq_handler_t func;
1108 struct arch_timer *t;
1109
1110 t = kzalloc(sizeof(*t), GFP_KERNEL);
1111 if (!t)
1112 return -ENOMEM;
1113
1114 t->base = base;
1115 t->evt.irq = irq;
1116 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1117
1118 if (arch_timer_mem_use_virtual)
1119 func = arch_timer_handler_virt_mem;
1120 else
1121 func = arch_timer_handler_phys_mem;
1122
1123 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1124 if (ret) {
1125 pr_err("Failed to request mem timer irq\n");
1126 kfree(t);
1127 }
1128
1129 return ret;
1130 }
1131
1132 static const struct of_device_id arch_timer_of_match[] __initconst = {
1133 { .compatible = "arm,armv7-timer", },
1134 { .compatible = "arm,armv8-timer", },
1135 {},
1136 };
1137
1138 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1139 { .compatible = "arm,armv7-timer-mem", },
1140 {},
1141 };
1142
1143 static bool __init arch_timer_needs_of_probing(void)
1144 {
1145 struct device_node *dn;
1146 bool needs_probing = false;
1147 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1148
1149 /* We have two timers, and both device-tree nodes are probed. */
1150 if ((arch_timers_present & mask) == mask)
1151 return false;
1152
1153 /*
1154 * Only one type of timer is probed,
1155 * check if we have another type of timer node in device-tree.
1156 */
1157 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1158 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1159 else
1160 dn = of_find_matching_node(NULL, arch_timer_of_match);
1161
1162 if (dn && of_device_is_available(dn))
1163 needs_probing = true;
1164
1165 of_node_put(dn);
1166
1167 return needs_probing;
1168 }
1169
1170 static int __init arch_timer_common_init(void)
1171 {
1172 arch_timer_banner(arch_timers_present);
1173 arch_counter_register(arch_timers_present);
1174 return arch_timer_arch_init();
1175 }
1176
1177 /**
1178 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1179 *
1180 * If HYP mode is available, we know that the physical timer
1181 * has been configured to be accessible from PL1. Use it, so
1182 * that a guest can use the virtual timer instead.
1183 *
1184 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1185 * accesses to CNTP_*_EL1 registers are silently redirected to
1186 * their CNTHP_*_EL2 counterparts, and use a different PPI
1187 * number.
1188 *
1189 * If no interrupt provided for virtual timer, we'll have to
1190 * stick to the physical timer. It'd better be accessible...
1191 * For arm64 we never use the secure interrupt.
1192 *
1193 * Return: a suitable PPI type for the current system.
1194 */
1195 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1196 {
1197 if (is_kernel_in_hyp_mode())
1198 return ARCH_TIMER_HYP_PPI;
1199
1200 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1201 return ARCH_TIMER_VIRT_PPI;
1202
1203 if (IS_ENABLED(CONFIG_ARM64))
1204 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1205
1206 return ARCH_TIMER_PHYS_SECURE_PPI;
1207 }
1208
1209 static int __init arch_timer_of_init(struct device_node *np)
1210 {
1211 int i, ret;
1212 u32 rate;
1213
1214 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1215 pr_warn("multiple nodes in dt, skipping\n");
1216 return 0;
1217 }
1218
1219 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1220 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1221 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1222
1223 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1224
1225 rate = arch_timer_get_cntfrq();
1226 arch_timer_of_configure_rate(rate, np);
1227
1228 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1229
1230 /* Check for globally applicable workarounds */
1231 arch_timer_check_ool_workaround(ate_match_dt, np);
1232
1233 /*
1234 * If we cannot rely on firmware initializing the timer registers then
1235 * we should use the physical timers instead.
1236 */
1237 if (IS_ENABLED(CONFIG_ARM) &&
1238 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1239 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1240 else
1241 arch_timer_uses_ppi = arch_timer_select_ppi();
1242
1243 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1244 pr_err("No interrupt available, giving up\n");
1245 return -EINVAL;
1246 }
1247
1248 /* On some systems, the counter stops ticking when in suspend. */
1249 arch_counter_suspend_stop = of_property_read_bool(np,
1250 "arm,no-tick-in-suspend");
1251
1252 ret = arch_timer_register();
1253 if (ret)
1254 return ret;
1255
1256 if (arch_timer_needs_of_probing())
1257 return 0;
1258
1259 return arch_timer_common_init();
1260 }
1261 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1262 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1263
1264 static u32 __init
1265 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1266 {
1267 void __iomem *base;
1268 u32 rate;
1269
1270 base = ioremap(frame->cntbase, frame->size);
1271 if (!base) {
1272 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1273 return 0;
1274 }
1275
1276 rate = readl_relaxed(base + CNTFRQ);
1277
1278 iounmap(base);
1279
1280 return rate;
1281 }
1282
1283 static struct arch_timer_mem_frame * __init
1284 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1285 {
1286 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1287 void __iomem *cntctlbase;
1288 u32 cnttidr;
1289 int i;
1290
1291 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1292 if (!cntctlbase) {
1293 pr_err("Can't map CNTCTLBase @ %pa\n",
1294 &timer_mem->cntctlbase);
1295 return NULL;
1296 }
1297
1298 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1299
1300 /*
1301 * Try to find a virtual capable frame. Otherwise fall back to a
1302 * physical capable frame.
1303 */
1304 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1305 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1306 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1307
1308 frame = &timer_mem->frame[i];
1309 if (!frame->valid)
1310 continue;
1311
1312 /* Try enabling everything, and see what sticks */
1313 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1314 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1315
1316 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1317 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1318 best_frame = frame;
1319 arch_timer_mem_use_virtual = true;
1320 break;
1321 }
1322
1323 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1324 continue;
1325
1326 best_frame = frame;
1327 }
1328
1329 iounmap(cntctlbase);
1330
1331 return best_frame;
1332 }
1333
1334 static int __init
1335 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1336 {
1337 void __iomem *base;
1338 int ret, irq = 0;
1339
1340 if (arch_timer_mem_use_virtual)
1341 irq = frame->virt_irq;
1342 else
1343 irq = frame->phys_irq;
1344
1345 if (!irq) {
1346 pr_err("Frame missing %s irq.\n",
1347 arch_timer_mem_use_virtual ? "virt" : "phys");
1348 return -EINVAL;
1349 }
1350
1351 if (!request_mem_region(frame->cntbase, frame->size,
1352 "arch_mem_timer"))
1353 return -EBUSY;
1354
1355 base = ioremap(frame->cntbase, frame->size);
1356 if (!base) {
1357 pr_err("Can't map frame's registers\n");
1358 return -ENXIO;
1359 }
1360
1361 ret = arch_timer_mem_register(base, irq);
1362 if (ret) {
1363 iounmap(base);
1364 return ret;
1365 }
1366
1367 arch_counter_base = base;
1368 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1369
1370 return 0;
1371 }
1372
1373 static int __init arch_timer_mem_of_init(struct device_node *np)
1374 {
1375 struct arch_timer_mem *timer_mem;
1376 struct arch_timer_mem_frame *frame;
1377 struct device_node *frame_node;
1378 struct resource res;
1379 int ret = -EINVAL;
1380 u32 rate;
1381
1382 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1383 if (!timer_mem)
1384 return -ENOMEM;
1385
1386 if (of_address_to_resource(np, 0, &res))
1387 goto out;
1388 timer_mem->cntctlbase = res.start;
1389 timer_mem->size = resource_size(&res);
1390
1391 for_each_available_child_of_node(np, frame_node) {
1392 u32 n;
1393 struct arch_timer_mem_frame *frame;
1394
1395 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1396 pr_err(FW_BUG "Missing frame-number.\n");
1397 of_node_put(frame_node);
1398 goto out;
1399 }
1400 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1401 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1402 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1403 of_node_put(frame_node);
1404 goto out;
1405 }
1406 frame = &timer_mem->frame[n];
1407
1408 if (frame->valid) {
1409 pr_err(FW_BUG "Duplicated frame-number.\n");
1410 of_node_put(frame_node);
1411 goto out;
1412 }
1413
1414 if (of_address_to_resource(frame_node, 0, &res)) {
1415 of_node_put(frame_node);
1416 goto out;
1417 }
1418 frame->cntbase = res.start;
1419 frame->size = resource_size(&res);
1420
1421 frame->virt_irq = irq_of_parse_and_map(frame_node,
1422 ARCH_TIMER_VIRT_SPI);
1423 frame->phys_irq = irq_of_parse_and_map(frame_node,
1424 ARCH_TIMER_PHYS_SPI);
1425
1426 frame->valid = true;
1427 }
1428
1429 frame = arch_timer_mem_find_best_frame(timer_mem);
1430 if (!frame) {
1431 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1432 &timer_mem->cntctlbase);
1433 ret = -EINVAL;
1434 goto out;
1435 }
1436
1437 rate = arch_timer_mem_frame_get_cntfrq(frame);
1438 arch_timer_of_configure_rate(rate, np);
1439
1440 ret = arch_timer_mem_frame_register(frame);
1441 if (!ret && !arch_timer_needs_of_probing())
1442 ret = arch_timer_common_init();
1443 out:
1444 kfree(timer_mem);
1445 return ret;
1446 }
1447 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1448 arch_timer_mem_of_init);
1449
1450 #ifdef CONFIG_ACPI_GTDT
1451 static int __init
1452 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1453 {
1454 struct arch_timer_mem_frame *frame;
1455 u32 rate;
1456 int i;
1457
1458 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1459 frame = &timer_mem->frame[i];
1460
1461 if (!frame->valid)
1462 continue;
1463
1464 rate = arch_timer_mem_frame_get_cntfrq(frame);
1465 if (rate == arch_timer_rate)
1466 continue;
1467
1468 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1469 &frame->cntbase,
1470 (unsigned long)rate, (unsigned long)arch_timer_rate);
1471
1472 return -EINVAL;
1473 }
1474
1475 return 0;
1476 }
1477
1478 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1479 {
1480 struct arch_timer_mem *timers, *timer;
1481 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1482 int timer_count, i, ret = 0;
1483
1484 timers = kcalloc(platform_timer_count, sizeof(*timers),
1485 GFP_KERNEL);
1486 if (!timers)
1487 return -ENOMEM;
1488
1489 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1490 if (ret || !timer_count)
1491 goto out;
1492
1493 /*
1494 * While unlikely, it's theoretically possible that none of the frames
1495 * in a timer expose the combination of feature we want.
1496 */
1497 for (i = 0; i < timer_count; i++) {
1498 timer = &timers[i];
1499
1500 frame = arch_timer_mem_find_best_frame(timer);
1501 if (!best_frame)
1502 best_frame = frame;
1503
1504 ret = arch_timer_mem_verify_cntfrq(timer);
1505 if (ret) {
1506 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1507 goto out;
1508 }
1509
1510 if (!best_frame) /* implies !frame */
1511 /*
1512 * Only complain about missing suitable frames if we
1513 * haven't already found one in a previous iteration.
1514 */
1515 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1516 &timer->cntctlbase);
1517 }
1518
1519 if (best_frame)
1520 ret = arch_timer_mem_frame_register(best_frame);
1521 out:
1522 kfree(timers);
1523 return ret;
1524 }
1525
1526 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1527 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1528 {
1529 int ret, platform_timer_count;
1530
1531 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1532 pr_warn("already initialized, skipping\n");
1533 return -EINVAL;
1534 }
1535
1536 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1537
1538 ret = acpi_gtdt_init(table, &platform_timer_count);
1539 if (ret) {
1540 pr_err("Failed to init GTDT table.\n");
1541 return ret;
1542 }
1543
1544 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1545 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1546
1547 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1548 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1549
1550 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1551 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1552
1553 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1554
1555 /*
1556 * When probing via ACPI, we have no mechanism to override the sysreg
1557 * CNTFRQ value. This *must* be correct.
1558 */
1559 arch_timer_rate = arch_timer_get_cntfrq();
1560 if (!arch_timer_rate) {
1561 pr_err(FW_BUG "frequency not available.\n");
1562 return -EINVAL;
1563 }
1564
1565 arch_timer_uses_ppi = arch_timer_select_ppi();
1566 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1567 pr_err("No interrupt available, giving up\n");
1568 return -EINVAL;
1569 }
1570
1571 /* Always-on capability */
1572 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1573
1574 /* Check for globally applicable workarounds */
1575 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1576
1577 ret = arch_timer_register();
1578 if (ret)
1579 return ret;
1580
1581 if (platform_timer_count &&
1582 arch_timer_mem_acpi_init(platform_timer_count))
1583 pr_err("Failed to initialize memory-mapped timer.\n");
1584
1585 return arch_timer_common_init();
1586 }
1587 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1588 #endif