]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clocksource/exynos_mct.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2 *
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * EXYNOS4 MCT(Multi-Core Timer) support
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27
28 #include <asm/mach/time.h>
29
30 #define EXYNOS4_MCTREG(x) (x)
31 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
32 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
33 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
34 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
35 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
36 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
37 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
38 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
39 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
40 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
41 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
42 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
43 #define EXYNOS4_MCT_L_MASK (0xffffff00)
44
45 #define MCT_L_TCNTB_OFFSET (0x00)
46 #define MCT_L_ICNTB_OFFSET (0x08)
47 #define MCT_L_TCON_OFFSET (0x20)
48 #define MCT_L_INT_CSTAT_OFFSET (0x30)
49 #define MCT_L_INT_ENB_OFFSET (0x34)
50 #define MCT_L_WSTAT_OFFSET (0x40)
51 #define MCT_G_TCON_START (1 << 8)
52 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
53 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
54 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
55 #define MCT_L_TCON_INT_START (1 << 1)
56 #define MCT_L_TCON_TIMER_START (1 << 0)
57
58 #define TICK_BASE_CNT 1
59
60 enum {
61 MCT_INT_SPI,
62 MCT_INT_PPI
63 };
64
65 enum {
66 MCT_G0_IRQ,
67 MCT_G1_IRQ,
68 MCT_G2_IRQ,
69 MCT_G3_IRQ,
70 MCT_L0_IRQ,
71 MCT_L1_IRQ,
72 MCT_L2_IRQ,
73 MCT_L3_IRQ,
74 MCT_L4_IRQ,
75 MCT_L5_IRQ,
76 MCT_L6_IRQ,
77 MCT_L7_IRQ,
78 MCT_NR_IRQS,
79 };
80
81 static void __iomem *reg_base;
82 static unsigned long clk_rate;
83 static unsigned int mct_int_type;
84 static int mct_irqs[MCT_NR_IRQS];
85
86 struct mct_clock_event_device {
87 struct clock_event_device evt;
88 unsigned long base;
89 char name[10];
90 };
91
92 static void exynos4_mct_write(unsigned int value, unsigned long offset)
93 {
94 unsigned long stat_addr;
95 u32 mask;
96 u32 i;
97
98 __raw_writel(value, reg_base + offset);
99
100 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
101 stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
102 switch (offset & EXYNOS4_MCT_L_MASK) {
103 case MCT_L_TCON_OFFSET:
104 mask = 1 << 3; /* L_TCON write status */
105 break;
106 case MCT_L_ICNTB_OFFSET:
107 mask = 1 << 1; /* L_ICNTB write status */
108 break;
109 case MCT_L_TCNTB_OFFSET:
110 mask = 1 << 0; /* L_TCNTB write status */
111 break;
112 default:
113 return;
114 }
115 } else {
116 switch (offset) {
117 case EXYNOS4_MCT_G_TCON:
118 stat_addr = EXYNOS4_MCT_G_WSTAT;
119 mask = 1 << 16; /* G_TCON write status */
120 break;
121 case EXYNOS4_MCT_G_COMP0_L:
122 stat_addr = EXYNOS4_MCT_G_WSTAT;
123 mask = 1 << 0; /* G_COMP0_L write status */
124 break;
125 case EXYNOS4_MCT_G_COMP0_U:
126 stat_addr = EXYNOS4_MCT_G_WSTAT;
127 mask = 1 << 1; /* G_COMP0_U write status */
128 break;
129 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
130 stat_addr = EXYNOS4_MCT_G_WSTAT;
131 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
132 break;
133 case EXYNOS4_MCT_G_CNT_L:
134 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
135 mask = 1 << 0; /* G_CNT_L write status */
136 break;
137 case EXYNOS4_MCT_G_CNT_U:
138 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
139 mask = 1 << 1; /* G_CNT_U write status */
140 break;
141 default:
142 return;
143 }
144 }
145
146 /* Wait maximum 1 ms until written values are applied */
147 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
148 if (__raw_readl(reg_base + stat_addr) & mask) {
149 __raw_writel(mask, reg_base + stat_addr);
150 return;
151 }
152
153 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
154 }
155
156 /* Clocksource handling */
157 static void exynos4_mct_frc_start(u32 hi, u32 lo)
158 {
159 u32 reg;
160
161 exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
162 exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
163
164 reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
165 reg |= MCT_G_TCON_START;
166 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
167 }
168
169 static cycle_t exynos4_frc_read(struct clocksource *cs)
170 {
171 unsigned int lo, hi;
172 u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
173
174 do {
175 hi = hi2;
176 lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
177 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
178 } while (hi != hi2);
179
180 return ((cycle_t)hi << 32) | lo;
181 }
182
183 static void exynos4_frc_resume(struct clocksource *cs)
184 {
185 exynos4_mct_frc_start(0, 0);
186 }
187
188 struct clocksource mct_frc = {
189 .name = "mct-frc",
190 .rating = 400,
191 .read = exynos4_frc_read,
192 .mask = CLOCKSOURCE_MASK(64),
193 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
194 .resume = exynos4_frc_resume,
195 };
196
197 static void __init exynos4_clocksource_init(void)
198 {
199 exynos4_mct_frc_start(0, 0);
200
201 if (clocksource_register_hz(&mct_frc, clk_rate))
202 panic("%s: can't register clocksource\n", mct_frc.name);
203 }
204
205 static void exynos4_mct_comp0_stop(void)
206 {
207 unsigned int tcon;
208
209 tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
210 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
211
212 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
213 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
214 }
215
216 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
217 unsigned long cycles)
218 {
219 unsigned int tcon;
220 cycle_t comp_cycle;
221
222 tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
223
224 if (mode == CLOCK_EVT_MODE_PERIODIC) {
225 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
226 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
227 }
228
229 comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
230 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
231 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
232
233 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
234
235 tcon |= MCT_G_TCON_COMP0_ENABLE;
236 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
237 }
238
239 static int exynos4_comp_set_next_event(unsigned long cycles,
240 struct clock_event_device *evt)
241 {
242 exynos4_mct_comp0_start(evt->mode, cycles);
243
244 return 0;
245 }
246
247 static void exynos4_comp_set_mode(enum clock_event_mode mode,
248 struct clock_event_device *evt)
249 {
250 unsigned long cycles_per_jiffy;
251 exynos4_mct_comp0_stop();
252
253 switch (mode) {
254 case CLOCK_EVT_MODE_PERIODIC:
255 cycles_per_jiffy =
256 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
257 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
258 break;
259
260 case CLOCK_EVT_MODE_ONESHOT:
261 case CLOCK_EVT_MODE_UNUSED:
262 case CLOCK_EVT_MODE_SHUTDOWN:
263 case CLOCK_EVT_MODE_RESUME:
264 break;
265 }
266 }
267
268 static struct clock_event_device mct_comp_device = {
269 .name = "mct-comp",
270 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
271 .rating = 250,
272 .set_next_event = exynos4_comp_set_next_event,
273 .set_mode = exynos4_comp_set_mode,
274 };
275
276 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
277 {
278 struct clock_event_device *evt = dev_id;
279
280 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
281
282 evt->event_handler(evt);
283
284 return IRQ_HANDLED;
285 }
286
287 static struct irqaction mct_comp_event_irq = {
288 .name = "mct_comp_irq",
289 .flags = IRQF_TIMER | IRQF_IRQPOLL,
290 .handler = exynos4_mct_comp_isr,
291 .dev_id = &mct_comp_device,
292 };
293
294 static void exynos4_clockevent_init(void)
295 {
296 mct_comp_device.cpumask = cpumask_of(0);
297 clockevents_config_and_register(&mct_comp_device, clk_rate,
298 0xf, 0xffffffff);
299 setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
300 }
301
302 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
303
304 /* Clock event handling */
305 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
306 {
307 unsigned long tmp;
308 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
309 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
310
311 tmp = __raw_readl(reg_base + offset);
312 if (tmp & mask) {
313 tmp &= ~mask;
314 exynos4_mct_write(tmp, offset);
315 }
316 }
317
318 static void exynos4_mct_tick_start(unsigned long cycles,
319 struct mct_clock_event_device *mevt)
320 {
321 unsigned long tmp;
322
323 exynos4_mct_tick_stop(mevt);
324
325 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
326
327 /* update interrupt count buffer */
328 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
329
330 /* enable MCT tick interrupt */
331 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
332
333 tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
334 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
335 MCT_L_TCON_INTERVAL_MODE;
336 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
337 }
338
339 static int exynos4_tick_set_next_event(unsigned long cycles,
340 struct clock_event_device *evt)
341 {
342 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
343
344 exynos4_mct_tick_start(cycles, mevt);
345
346 return 0;
347 }
348
349 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
350 struct clock_event_device *evt)
351 {
352 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
353 unsigned long cycles_per_jiffy;
354
355 exynos4_mct_tick_stop(mevt);
356
357 switch (mode) {
358 case CLOCK_EVT_MODE_PERIODIC:
359 cycles_per_jiffy =
360 (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
361 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
362 break;
363
364 case CLOCK_EVT_MODE_ONESHOT:
365 case CLOCK_EVT_MODE_UNUSED:
366 case CLOCK_EVT_MODE_SHUTDOWN:
367 case CLOCK_EVT_MODE_RESUME:
368 break;
369 }
370 }
371
372 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
373 {
374 struct clock_event_device *evt = &mevt->evt;
375
376 /*
377 * This is for supporting oneshot mode.
378 * Mct would generate interrupt periodically
379 * without explicit stopping.
380 */
381 if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
382 exynos4_mct_tick_stop(mevt);
383
384 /* Clear the MCT tick interrupt */
385 if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
386 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
387 return 1;
388 } else {
389 return 0;
390 }
391 }
392
393 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
394 {
395 struct mct_clock_event_device *mevt = dev_id;
396 struct clock_event_device *evt = &mevt->evt;
397
398 exynos4_mct_tick_clear(mevt);
399
400 evt->event_handler(evt);
401
402 return IRQ_HANDLED;
403 }
404
405 static int exynos4_local_timer_setup(struct clock_event_device *evt)
406 {
407 struct mct_clock_event_device *mevt;
408 unsigned int cpu = smp_processor_id();
409
410 mevt = container_of(evt, struct mct_clock_event_device, evt);
411
412 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
413 sprintf(mevt->name, "mct_tick%d", cpu);
414
415 evt->name = mevt->name;
416 evt->cpumask = cpumask_of(cpu);
417 evt->set_next_event = exynos4_tick_set_next_event;
418 evt->set_mode = exynos4_tick_set_mode;
419 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
420 evt->rating = 450;
421 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
422 0xf, 0x7fffffff);
423
424 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
425
426 if (mct_int_type == MCT_INT_SPI) {
427 evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
428 if (request_irq(evt->irq, exynos4_mct_tick_isr,
429 IRQF_TIMER | IRQF_NOBALANCING,
430 evt->name, mevt)) {
431 pr_err("exynos-mct: cannot register IRQ %d\n",
432 evt->irq);
433 return -EIO;
434 }
435 } else {
436 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
437 }
438
439 return 0;
440 }
441
442 static void exynos4_local_timer_stop(struct clock_event_device *evt)
443 {
444 evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
445 if (mct_int_type == MCT_INT_SPI)
446 free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
447 else
448 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
449 }
450
451 static int exynos4_mct_cpu_notify(struct notifier_block *self,
452 unsigned long action, void *hcpu)
453 {
454 struct mct_clock_event_device *mevt;
455 unsigned int cpu;
456
457 /*
458 * Grab cpu pointer in each case to avoid spurious
459 * preemptible warnings
460 */
461 switch (action & ~CPU_TASKS_FROZEN) {
462 case CPU_STARTING:
463 mevt = this_cpu_ptr(&percpu_mct_tick);
464 exynos4_local_timer_setup(&mevt->evt);
465 break;
466 case CPU_ONLINE:
467 cpu = (unsigned long)hcpu;
468 if (mct_int_type == MCT_INT_SPI)
469 irq_set_affinity(mct_irqs[MCT_L0_IRQ + cpu],
470 cpumask_of(cpu));
471 break;
472 case CPU_DYING:
473 mevt = this_cpu_ptr(&percpu_mct_tick);
474 exynos4_local_timer_stop(&mevt->evt);
475 break;
476 }
477
478 return NOTIFY_OK;
479 }
480
481 static struct notifier_block exynos4_mct_cpu_nb = {
482 .notifier_call = exynos4_mct_cpu_notify,
483 };
484
485 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
486 {
487 int err;
488 struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
489 struct clk *mct_clk, *tick_clk;
490
491 tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
492 clk_get(NULL, "fin_pll");
493 if (IS_ERR(tick_clk))
494 panic("%s: unable to determine tick clock rate\n", __func__);
495 clk_rate = clk_get_rate(tick_clk);
496
497 mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
498 if (IS_ERR(mct_clk))
499 panic("%s: unable to retrieve mct clock instance\n", __func__);
500 clk_prepare_enable(mct_clk);
501
502 reg_base = base;
503 if (!reg_base)
504 panic("%s: unable to ioremap mct address space\n", __func__);
505
506 if (mct_int_type == MCT_INT_PPI) {
507
508 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
509 exynos4_mct_tick_isr, "MCT",
510 &percpu_mct_tick);
511 WARN(err, "MCT: can't request IRQ %d (%d)\n",
512 mct_irqs[MCT_L0_IRQ], err);
513 } else {
514 irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
515 }
516
517 err = register_cpu_notifier(&exynos4_mct_cpu_nb);
518 if (err)
519 goto out_irq;
520
521 /* Immediately configure the timer on the boot CPU */
522 exynos4_local_timer_setup(&mevt->evt);
523 return;
524
525 out_irq:
526 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
527 }
528
529 void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
530 {
531 mct_irqs[MCT_G0_IRQ] = irq_g0;
532 mct_irqs[MCT_L0_IRQ] = irq_l0;
533 mct_irqs[MCT_L1_IRQ] = irq_l1;
534 mct_int_type = MCT_INT_SPI;
535
536 exynos4_timer_resources(NULL, base);
537 exynos4_clocksource_init();
538 exynos4_clockevent_init();
539 }
540
541 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
542 {
543 u32 nr_irqs, i;
544
545 mct_int_type = int_type;
546
547 /* This driver uses only one global timer interrupt */
548 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
549
550 /*
551 * Find out the number of local irqs specified. The local
552 * timer irqs are specified after the four global timer
553 * irqs are specified.
554 */
555 #ifdef CONFIG_OF
556 nr_irqs = of_irq_count(np);
557 #else
558 nr_irqs = 0;
559 #endif
560 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
561 mct_irqs[i] = irq_of_parse_and_map(np, i);
562
563 exynos4_timer_resources(np, of_iomap(np, 0));
564 exynos4_clocksource_init();
565 exynos4_clockevent_init();
566 }
567
568
569 static void __init mct_init_spi(struct device_node *np)
570 {
571 return mct_init_dt(np, MCT_INT_SPI);
572 }
573
574 static void __init mct_init_ppi(struct device_node *np)
575 {
576 return mct_init_dt(np, MCT_INT_PPI);
577 }
578 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
579 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);