]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/clocksource/exynos_mct.c
Merge tag 'staging-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-jammy-kernel.git] / drivers / clocksource / exynos_mct.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* linux/arch/arm/mach-exynos4/mct.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * Exynos4 MCT(Multi-Core Timer) support
8 */
9
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/err.h>
13 #include <linux/clk.h>
14 #include <linux/clockchips.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/clocksource.h>
22 #include <linux/sched_clock.h>
23
24 #define EXYNOS4_MCTREG(x) (x)
25 #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
26 #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
27 #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
28 #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
29 #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
31 #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
32 #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
33 #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
34 #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
35 #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
36 #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
37 #define EXYNOS4_MCT_L_MASK (0xffffff00)
38
39 #define MCT_L_TCNTB_OFFSET (0x00)
40 #define MCT_L_ICNTB_OFFSET (0x08)
41 #define MCT_L_TCON_OFFSET (0x20)
42 #define MCT_L_INT_CSTAT_OFFSET (0x30)
43 #define MCT_L_INT_ENB_OFFSET (0x34)
44 #define MCT_L_WSTAT_OFFSET (0x40)
45 #define MCT_G_TCON_START (1 << 8)
46 #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
47 #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
48 #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
49 #define MCT_L_TCON_INT_START (1 << 1)
50 #define MCT_L_TCON_TIMER_START (1 << 0)
51
52 #define TICK_BASE_CNT 1
53
54 #ifdef CONFIG_ARM
55 /* Use values higher than ARM arch timer. See 6282edb72bed. */
56 #define MCT_CLKSOURCE_RATING 450
57 #define MCT_CLKEVENTS_RATING 500
58 #else
59 #define MCT_CLKSOURCE_RATING 350
60 #define MCT_CLKEVENTS_RATING 350
61 #endif
62
63 enum {
64 MCT_INT_SPI,
65 MCT_INT_PPI
66 };
67
68 enum {
69 MCT_G0_IRQ,
70 MCT_G1_IRQ,
71 MCT_G2_IRQ,
72 MCT_G3_IRQ,
73 MCT_L0_IRQ,
74 MCT_L1_IRQ,
75 MCT_L2_IRQ,
76 MCT_L3_IRQ,
77 MCT_L4_IRQ,
78 MCT_L5_IRQ,
79 MCT_L6_IRQ,
80 MCT_L7_IRQ,
81 MCT_NR_IRQS,
82 };
83
84 static void __iomem *reg_base;
85 static unsigned long clk_rate;
86 static unsigned int mct_int_type;
87 static int mct_irqs[MCT_NR_IRQS];
88
89 struct mct_clock_event_device {
90 struct clock_event_device evt;
91 unsigned long base;
92 char name[10];
93 };
94
95 static void exynos4_mct_write(unsigned int value, unsigned long offset)
96 {
97 unsigned long stat_addr;
98 u32 mask;
99 u32 i;
100
101 writel_relaxed(value, reg_base + offset);
102
103 if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
104 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
105 switch (offset & ~EXYNOS4_MCT_L_MASK) {
106 case MCT_L_TCON_OFFSET:
107 mask = 1 << 3; /* L_TCON write status */
108 break;
109 case MCT_L_ICNTB_OFFSET:
110 mask = 1 << 1; /* L_ICNTB write status */
111 break;
112 case MCT_L_TCNTB_OFFSET:
113 mask = 1 << 0; /* L_TCNTB write status */
114 break;
115 default:
116 return;
117 }
118 } else {
119 switch (offset) {
120 case EXYNOS4_MCT_G_TCON:
121 stat_addr = EXYNOS4_MCT_G_WSTAT;
122 mask = 1 << 16; /* G_TCON write status */
123 break;
124 case EXYNOS4_MCT_G_COMP0_L:
125 stat_addr = EXYNOS4_MCT_G_WSTAT;
126 mask = 1 << 0; /* G_COMP0_L write status */
127 break;
128 case EXYNOS4_MCT_G_COMP0_U:
129 stat_addr = EXYNOS4_MCT_G_WSTAT;
130 mask = 1 << 1; /* G_COMP0_U write status */
131 break;
132 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
133 stat_addr = EXYNOS4_MCT_G_WSTAT;
134 mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
135 break;
136 case EXYNOS4_MCT_G_CNT_L:
137 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138 mask = 1 << 0; /* G_CNT_L write status */
139 break;
140 case EXYNOS4_MCT_G_CNT_U:
141 stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
142 mask = 1 << 1; /* G_CNT_U write status */
143 break;
144 default:
145 return;
146 }
147 }
148
149 /* Wait maximum 1 ms until written values are applied */
150 for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
151 if (readl_relaxed(reg_base + stat_addr) & mask) {
152 writel_relaxed(mask, reg_base + stat_addr);
153 return;
154 }
155
156 panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
157 }
158
159 /* Clocksource handling */
160 static void exynos4_mct_frc_start(void)
161 {
162 u32 reg;
163
164 reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
165 reg |= MCT_G_TCON_START;
166 exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
167 }
168
169 /**
170 * exynos4_read_count_64 - Read all 64-bits of the global counter
171 *
172 * This will read all 64-bits of the global counter taking care to make sure
173 * that the upper and lower half match. Note that reading the MCT can be quite
174 * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
175 * only) version when possible.
176 *
177 * Returns the number of cycles in the global counter.
178 */
179 static u64 exynos4_read_count_64(void)
180 {
181 unsigned int lo, hi;
182 u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
183
184 do {
185 hi = hi2;
186 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
187 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
188 } while (hi != hi2);
189
190 return ((u64)hi << 32) | lo;
191 }
192
193 /**
194 * exynos4_read_count_32 - Read the lower 32-bits of the global counter
195 *
196 * This will read just the lower 32-bits of the global counter. This is marked
197 * as notrace so it can be used by the scheduler clock.
198 *
199 * Returns the number of cycles in the global counter (lower 32 bits).
200 */
201 static u32 notrace exynos4_read_count_32(void)
202 {
203 return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
204 }
205
206 static u64 exynos4_frc_read(struct clocksource *cs)
207 {
208 return exynos4_read_count_32();
209 }
210
211 static void exynos4_frc_resume(struct clocksource *cs)
212 {
213 exynos4_mct_frc_start();
214 }
215
216 static struct clocksource mct_frc = {
217 .name = "mct-frc",
218 .rating = MCT_CLKSOURCE_RATING,
219 .read = exynos4_frc_read,
220 .mask = CLOCKSOURCE_MASK(32),
221 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
222 .resume = exynos4_frc_resume,
223 };
224
225 static u64 notrace exynos4_read_sched_clock(void)
226 {
227 return exynos4_read_count_32();
228 }
229
230 #if defined(CONFIG_ARM)
231 static struct delay_timer exynos4_delay_timer;
232
233 static cycles_t exynos4_read_current_timer(void)
234 {
235 BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
236 "cycles_t needs to move to 32-bit for ARM64 usage");
237 return exynos4_read_count_32();
238 }
239 #endif
240
241 static int __init exynos4_clocksource_init(void)
242 {
243 exynos4_mct_frc_start();
244
245 #if defined(CONFIG_ARM)
246 exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
247 exynos4_delay_timer.freq = clk_rate;
248 register_current_timer_delay(&exynos4_delay_timer);
249 #endif
250
251 if (clocksource_register_hz(&mct_frc, clk_rate))
252 panic("%s: can't register clocksource\n", mct_frc.name);
253
254 sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
255
256 return 0;
257 }
258
259 static void exynos4_mct_comp0_stop(void)
260 {
261 unsigned int tcon;
262
263 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
264 tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
265
266 exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
267 exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
268 }
269
270 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
271 {
272 unsigned int tcon;
273 u64 comp_cycle;
274
275 tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
276
277 if (periodic) {
278 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
279 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
280 }
281
282 comp_cycle = exynos4_read_count_64() + cycles;
283 exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
284 exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
285
286 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
287
288 tcon |= MCT_G_TCON_COMP0_ENABLE;
289 exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
290 }
291
292 static int exynos4_comp_set_next_event(unsigned long cycles,
293 struct clock_event_device *evt)
294 {
295 exynos4_mct_comp0_start(false, cycles);
296
297 return 0;
298 }
299
300 static int mct_set_state_shutdown(struct clock_event_device *evt)
301 {
302 exynos4_mct_comp0_stop();
303 return 0;
304 }
305
306 static int mct_set_state_periodic(struct clock_event_device *evt)
307 {
308 unsigned long cycles_per_jiffy;
309
310 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
311 >> evt->shift);
312 exynos4_mct_comp0_stop();
313 exynos4_mct_comp0_start(true, cycles_per_jiffy);
314 return 0;
315 }
316
317 static struct clock_event_device mct_comp_device = {
318 .name = "mct-comp",
319 .features = CLOCK_EVT_FEAT_PERIODIC |
320 CLOCK_EVT_FEAT_ONESHOT,
321 .rating = 250,
322 .set_next_event = exynos4_comp_set_next_event,
323 .set_state_periodic = mct_set_state_periodic,
324 .set_state_shutdown = mct_set_state_shutdown,
325 .set_state_oneshot = mct_set_state_shutdown,
326 .set_state_oneshot_stopped = mct_set_state_shutdown,
327 .tick_resume = mct_set_state_shutdown,
328 };
329
330 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
331 {
332 struct clock_event_device *evt = dev_id;
333
334 exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
335
336 evt->event_handler(evt);
337
338 return IRQ_HANDLED;
339 }
340
341 static int exynos4_clockevent_init(void)
342 {
343 mct_comp_device.cpumask = cpumask_of(0);
344 clockevents_config_and_register(&mct_comp_device, clk_rate,
345 0xf, 0xffffffff);
346 if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
347 IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
348 &mct_comp_device))
349 pr_err("%s: request_irq() failed\n", "mct_comp_irq");
350
351 return 0;
352 }
353
354 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
355
356 /* Clock event handling */
357 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
358 {
359 unsigned long tmp;
360 unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
361 unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
362
363 tmp = readl_relaxed(reg_base + offset);
364 if (tmp & mask) {
365 tmp &= ~mask;
366 exynos4_mct_write(tmp, offset);
367 }
368 }
369
370 static void exynos4_mct_tick_start(unsigned long cycles,
371 struct mct_clock_event_device *mevt)
372 {
373 unsigned long tmp;
374
375 exynos4_mct_tick_stop(mevt);
376
377 tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
378
379 /* update interrupt count buffer */
380 exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
381
382 /* enable MCT tick interrupt */
383 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
384
385 tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
386 tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
387 MCT_L_TCON_INTERVAL_MODE;
388 exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
389 }
390
391 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
392 {
393 /* Clear the MCT tick interrupt */
394 if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
395 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
396 }
397
398 static int exynos4_tick_set_next_event(unsigned long cycles,
399 struct clock_event_device *evt)
400 {
401 struct mct_clock_event_device *mevt;
402
403 mevt = container_of(evt, struct mct_clock_event_device, evt);
404 exynos4_mct_tick_start(cycles, mevt);
405 return 0;
406 }
407
408 static int set_state_shutdown(struct clock_event_device *evt)
409 {
410 struct mct_clock_event_device *mevt;
411
412 mevt = container_of(evt, struct mct_clock_event_device, evt);
413 exynos4_mct_tick_stop(mevt);
414 exynos4_mct_tick_clear(mevt);
415 return 0;
416 }
417
418 static int set_state_periodic(struct clock_event_device *evt)
419 {
420 struct mct_clock_event_device *mevt;
421 unsigned long cycles_per_jiffy;
422
423 mevt = container_of(evt, struct mct_clock_event_device, evt);
424 cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
425 >> evt->shift);
426 exynos4_mct_tick_stop(mevt);
427 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
428 return 0;
429 }
430
431 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
432 {
433 struct mct_clock_event_device *mevt = dev_id;
434 struct clock_event_device *evt = &mevt->evt;
435
436 /*
437 * This is for supporting oneshot mode.
438 * Mct would generate interrupt periodically
439 * without explicit stopping.
440 */
441 if (!clockevent_state_periodic(&mevt->evt))
442 exynos4_mct_tick_stop(mevt);
443
444 exynos4_mct_tick_clear(mevt);
445
446 evt->event_handler(evt);
447
448 return IRQ_HANDLED;
449 }
450
451 static int exynos4_mct_starting_cpu(unsigned int cpu)
452 {
453 struct mct_clock_event_device *mevt =
454 per_cpu_ptr(&percpu_mct_tick, cpu);
455 struct clock_event_device *evt = &mevt->evt;
456
457 mevt->base = EXYNOS4_MCT_L_BASE(cpu);
458 snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
459
460 evt->name = mevt->name;
461 evt->cpumask = cpumask_of(cpu);
462 evt->set_next_event = exynos4_tick_set_next_event;
463 evt->set_state_periodic = set_state_periodic;
464 evt->set_state_shutdown = set_state_shutdown;
465 evt->set_state_oneshot = set_state_shutdown;
466 evt->set_state_oneshot_stopped = set_state_shutdown;
467 evt->tick_resume = set_state_shutdown;
468 evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
469 CLOCK_EVT_FEAT_PERCPU;
470 evt->rating = MCT_CLKEVENTS_RATING,
471
472 exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
473
474 if (mct_int_type == MCT_INT_SPI) {
475
476 if (evt->irq == -1)
477 return -EIO;
478
479 irq_force_affinity(evt->irq, cpumask_of(cpu));
480 enable_irq(evt->irq);
481 } else {
482 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
483 }
484 clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
485 0xf, 0x7fffffff);
486
487 return 0;
488 }
489
490 static int exynos4_mct_dying_cpu(unsigned int cpu)
491 {
492 struct mct_clock_event_device *mevt =
493 per_cpu_ptr(&percpu_mct_tick, cpu);
494 struct clock_event_device *evt = &mevt->evt;
495
496 evt->set_state_shutdown(evt);
497 if (mct_int_type == MCT_INT_SPI) {
498 if (evt->irq != -1)
499 disable_irq_nosync(evt->irq);
500 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
501 } else {
502 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
503 }
504 return 0;
505 }
506
507 static int __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
508 {
509 int err, cpu;
510 struct clk *mct_clk, *tick_clk;
511
512 tick_clk = of_clk_get_by_name(np, "fin_pll");
513 if (IS_ERR(tick_clk))
514 panic("%s: unable to determine tick clock rate\n", __func__);
515 clk_rate = clk_get_rate(tick_clk);
516
517 mct_clk = of_clk_get_by_name(np, "mct");
518 if (IS_ERR(mct_clk))
519 panic("%s: unable to retrieve mct clock instance\n", __func__);
520 clk_prepare_enable(mct_clk);
521
522 reg_base = base;
523 if (!reg_base)
524 panic("%s: unable to ioremap mct address space\n", __func__);
525
526 if (mct_int_type == MCT_INT_PPI) {
527
528 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
529 exynos4_mct_tick_isr, "MCT",
530 &percpu_mct_tick);
531 WARN(err, "MCT: can't request IRQ %d (%d)\n",
532 mct_irqs[MCT_L0_IRQ], err);
533 } else {
534 for_each_possible_cpu(cpu) {
535 int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
536 struct mct_clock_event_device *pcpu_mevt =
537 per_cpu_ptr(&percpu_mct_tick, cpu);
538
539 pcpu_mevt->evt.irq = -1;
540
541 irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
542 if (request_irq(mct_irq,
543 exynos4_mct_tick_isr,
544 IRQF_TIMER | IRQF_NOBALANCING,
545 pcpu_mevt->name, pcpu_mevt)) {
546 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
547 cpu);
548
549 continue;
550 }
551 pcpu_mevt->evt.irq = mct_irq;
552 }
553 }
554
555 /* Install hotplug callbacks which configure the timer on this CPU */
556 err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
557 "clockevents/exynos4/mct_timer:starting",
558 exynos4_mct_starting_cpu,
559 exynos4_mct_dying_cpu);
560 if (err)
561 goto out_irq;
562
563 return 0;
564
565 out_irq:
566 if (mct_int_type == MCT_INT_PPI) {
567 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
568 } else {
569 for_each_possible_cpu(cpu) {
570 struct mct_clock_event_device *pcpu_mevt =
571 per_cpu_ptr(&percpu_mct_tick, cpu);
572
573 if (pcpu_mevt->evt.irq != -1) {
574 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
575 pcpu_mevt->evt.irq = -1;
576 }
577 }
578 }
579 return err;
580 }
581
582 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
583 {
584 u32 nr_irqs, i;
585 int ret;
586
587 mct_int_type = int_type;
588
589 /* This driver uses only one global timer interrupt */
590 mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
591
592 /*
593 * Find out the number of local irqs specified. The local
594 * timer irqs are specified after the four global timer
595 * irqs are specified.
596 */
597 nr_irqs = of_irq_count(np);
598 for (i = MCT_L0_IRQ; i < nr_irqs; i++)
599 mct_irqs[i] = irq_of_parse_and_map(np, i);
600
601 ret = exynos4_timer_resources(np, of_iomap(np, 0));
602 if (ret)
603 return ret;
604
605 ret = exynos4_clocksource_init();
606 if (ret)
607 return ret;
608
609 return exynos4_clockevent_init();
610 }
611
612
613 static int __init mct_init_spi(struct device_node *np)
614 {
615 return mct_init_dt(np, MCT_INT_SPI);
616 }
617
618 static int __init mct_init_ppi(struct device_node *np)
619 {
620 return mct_init_dt(np, MCT_INT_PPI);
621 }
622 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
623 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);