]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/clocksource/fsl_ftm_timer.c
clocksource: arm_arch_timer: split MMIO timer probing.
[mirror_ubuntu-zesty-kernel.git] / drivers / clocksource / fsl_ftm_timer.c
1 /*
2 * Freescale FlexTimer Module (FTM) timer driver.
3 *
4 * Copyright 2014 Freescale Semiconductor, Inc.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 */
11
12 #include <linux/clk.h>
13 #include <linux/clockchips.h>
14 #include <linux/clocksource.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/sched_clock.h>
21 #include <linux/slab.h>
22
23 #define FTM_SC 0x00
24 #define FTM_SC_CLK_SHIFT 3
25 #define FTM_SC_CLK_MASK (0x3 << FTM_SC_CLK_SHIFT)
26 #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_SHIFT)
27 #define FTM_SC_PS_MASK 0x7
28 #define FTM_SC_TOIE BIT(6)
29 #define FTM_SC_TOF BIT(7)
30
31 #define FTM_CNT 0x04
32 #define FTM_MOD 0x08
33 #define FTM_CNTIN 0x4C
34
35 #define FTM_PS_MAX 7
36
37 struct ftm_clock_device {
38 void __iomem *clksrc_base;
39 void __iomem *clkevt_base;
40 unsigned long periodic_cyc;
41 unsigned long ps;
42 bool big_endian;
43 };
44
45 static struct ftm_clock_device *priv;
46
47 static inline u32 ftm_readl(void __iomem *addr)
48 {
49 if (priv->big_endian)
50 return ioread32be(addr);
51 else
52 return ioread32(addr);
53 }
54
55 static inline void ftm_writel(u32 val, void __iomem *addr)
56 {
57 if (priv->big_endian)
58 iowrite32be(val, addr);
59 else
60 iowrite32(val, addr);
61 }
62
63 static inline void ftm_counter_enable(void __iomem *base)
64 {
65 u32 val;
66
67 /* select and enable counter clock source */
68 val = ftm_readl(base + FTM_SC);
69 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
70 val |= priv->ps | FTM_SC_CLK(1);
71 ftm_writel(val, base + FTM_SC);
72 }
73
74 static inline void ftm_counter_disable(void __iomem *base)
75 {
76 u32 val;
77
78 /* disable counter clock source */
79 val = ftm_readl(base + FTM_SC);
80 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
81 ftm_writel(val, base + FTM_SC);
82 }
83
84 static inline void ftm_irq_acknowledge(void __iomem *base)
85 {
86 u32 val;
87
88 val = ftm_readl(base + FTM_SC);
89 val &= ~FTM_SC_TOF;
90 ftm_writel(val, base + FTM_SC);
91 }
92
93 static inline void ftm_irq_enable(void __iomem *base)
94 {
95 u32 val;
96
97 val = ftm_readl(base + FTM_SC);
98 val |= FTM_SC_TOIE;
99 ftm_writel(val, base + FTM_SC);
100 }
101
102 static inline void ftm_irq_disable(void __iomem *base)
103 {
104 u32 val;
105
106 val = ftm_readl(base + FTM_SC);
107 val &= ~FTM_SC_TOIE;
108 ftm_writel(val, base + FTM_SC);
109 }
110
111 static inline void ftm_reset_counter(void __iomem *base)
112 {
113 /*
114 * The CNT register contains the FTM counter value.
115 * Reset clears the CNT register. Writing any value to COUNT
116 * updates the counter with its initial value, CNTIN.
117 */
118 ftm_writel(0x00, base + FTM_CNT);
119 }
120
121 static u64 notrace ftm_read_sched_clock(void)
122 {
123 return ftm_readl(priv->clksrc_base + FTM_CNT);
124 }
125
126 static int ftm_set_next_event(unsigned long delta,
127 struct clock_event_device *unused)
128 {
129 /*
130 * The CNNIN and MOD are all double buffer registers, writing
131 * to the MOD register latches the value into a buffer. The MOD
132 * register is updated with the value of its write buffer with
133 * the following scenario:
134 * a, the counter source clock is diabled.
135 */
136 ftm_counter_disable(priv->clkevt_base);
137
138 /* Force the value of CNTIN to be loaded into the FTM counter */
139 ftm_reset_counter(priv->clkevt_base);
140
141 /*
142 * The counter increments until the value of MOD is reached,
143 * at which point the counter is reloaded with the value of CNTIN.
144 * The TOF (the overflow flag) bit is set when the FTM counter
145 * changes from MOD to CNTIN. So we should using the delta - 1.
146 */
147 ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD);
148
149 ftm_counter_enable(priv->clkevt_base);
150
151 ftm_irq_enable(priv->clkevt_base);
152
153 return 0;
154 }
155
156 static int ftm_set_oneshot(struct clock_event_device *evt)
157 {
158 ftm_counter_disable(priv->clkevt_base);
159 return 0;
160 }
161
162 static int ftm_set_periodic(struct clock_event_device *evt)
163 {
164 ftm_set_next_event(priv->periodic_cyc, evt);
165 return 0;
166 }
167
168 static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
169 {
170 struct clock_event_device *evt = dev_id;
171
172 ftm_irq_acknowledge(priv->clkevt_base);
173
174 if (likely(clockevent_state_oneshot(evt))) {
175 ftm_irq_disable(priv->clkevt_base);
176 ftm_counter_disable(priv->clkevt_base);
177 }
178
179 evt->event_handler(evt);
180
181 return IRQ_HANDLED;
182 }
183
184 static struct clock_event_device ftm_clockevent = {
185 .name = "Freescale ftm timer",
186 .features = CLOCK_EVT_FEAT_PERIODIC |
187 CLOCK_EVT_FEAT_ONESHOT,
188 .set_state_periodic = ftm_set_periodic,
189 .set_state_oneshot = ftm_set_oneshot,
190 .set_next_event = ftm_set_next_event,
191 .rating = 300,
192 };
193
194 static struct irqaction ftm_timer_irq = {
195 .name = "Freescale ftm timer",
196 .flags = IRQF_TIMER | IRQF_IRQPOLL,
197 .handler = ftm_evt_interrupt,
198 .dev_id = &ftm_clockevent,
199 };
200
201 static int __init ftm_clockevent_init(unsigned long freq, int irq)
202 {
203 int err;
204
205 ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN);
206 ftm_writel(~0u, priv->clkevt_base + FTM_MOD);
207
208 ftm_reset_counter(priv->clkevt_base);
209
210 err = setup_irq(irq, &ftm_timer_irq);
211 if (err) {
212 pr_err("ftm: setup irq failed: %d\n", err);
213 return err;
214 }
215
216 ftm_clockevent.cpumask = cpumask_of(0);
217 ftm_clockevent.irq = irq;
218
219 clockevents_config_and_register(&ftm_clockevent,
220 freq / (1 << priv->ps),
221 1, 0xffff);
222
223 ftm_counter_enable(priv->clkevt_base);
224
225 return 0;
226 }
227
228 static int __init ftm_clocksource_init(unsigned long freq)
229 {
230 int err;
231
232 ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN);
233 ftm_writel(~0u, priv->clksrc_base + FTM_MOD);
234
235 ftm_reset_counter(priv->clksrc_base);
236
237 sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps));
238 err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
239 freq / (1 << priv->ps), 300, 16,
240 clocksource_mmio_readl_up);
241 if (err) {
242 pr_err("ftm: init clock source mmio failed: %d\n", err);
243 return err;
244 }
245
246 ftm_counter_enable(priv->clksrc_base);
247
248 return 0;
249 }
250
251 static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
252 char *ftm_name)
253 {
254 struct clk *clk;
255 int err;
256
257 clk = of_clk_get_by_name(np, cnt_name);
258 if (IS_ERR(clk)) {
259 pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
260 return PTR_ERR(clk);
261 }
262 err = clk_prepare_enable(clk);
263 if (err) {
264 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
265 cnt_name, err);
266 return err;
267 }
268
269 clk = of_clk_get_by_name(np, ftm_name);
270 if (IS_ERR(clk)) {
271 pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
272 return PTR_ERR(clk);
273 }
274 err = clk_prepare_enable(clk);
275 if (err)
276 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
277 ftm_name, err);
278
279 return clk_get_rate(clk);
280 }
281
282 static unsigned long __init ftm_clk_init(struct device_node *np)
283 {
284 unsigned long freq;
285
286 freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt");
287 if (freq <= 0)
288 return 0;
289
290 freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src");
291 if (freq <= 0)
292 return 0;
293
294 return freq;
295 }
296
297 static int __init ftm_calc_closest_round_cyc(unsigned long freq)
298 {
299 priv->ps = 0;
300
301 /* The counter register is only using the lower 16 bits, and
302 * if the 'freq' value is to big here, then the periodic_cyc
303 * may exceed 0xFFFF.
304 */
305 do {
306 priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
307 HZ * (1 << priv->ps++));
308 } while (priv->periodic_cyc > 0xFFFF);
309
310 if (priv->ps > FTM_PS_MAX) {
311 pr_err("ftm: the prescaler is %lu > %d\n",
312 priv->ps, FTM_PS_MAX);
313 return -EINVAL;
314 }
315
316 return 0;
317 }
318
319 static int __init ftm_timer_init(struct device_node *np)
320 {
321 unsigned long freq;
322 int ret, irq;
323
324 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
325 if (!priv)
326 return -ENOMEM;
327
328 ret = -ENXIO;
329 priv->clkevt_base = of_iomap(np, 0);
330 if (!priv->clkevt_base) {
331 pr_err("ftm: unable to map event timer registers\n");
332 goto err;
333 }
334
335 priv->clksrc_base = of_iomap(np, 1);
336 if (!priv->clksrc_base) {
337 pr_err("ftm: unable to map source timer registers\n");
338 goto err;
339 }
340
341 ret = -EINVAL;
342 irq = irq_of_parse_and_map(np, 0);
343 if (irq <= 0) {
344 pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
345 goto err;
346 }
347
348 priv->big_endian = of_property_read_bool(np, "big-endian");
349
350 freq = ftm_clk_init(np);
351 if (!freq)
352 goto err;
353
354 ret = ftm_calc_closest_round_cyc(freq);
355 if (ret)
356 goto err;
357
358 ret = ftm_clocksource_init(freq);
359 if (ret)
360 goto err;
361
362 ret = ftm_clockevent_init(freq, irq);
363 if (ret)
364 goto err;
365
366 return 0;
367
368 err:
369 kfree(priv);
370 return ret;
371 }
372 CLOCKSOURCE_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);