]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clocksource/sh_cmt.c
Merge tag 'stable/for-linus-3.14-rc0-late-tag' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-bionic-kernel.git] / drivers / clocksource / sh_cmt.c
1 /*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/io.h>
26 #include <linux/clk.h>
27 #include <linux/irq.h>
28 #include <linux/err.h>
29 #include <linux/delay.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36 #include <linux/pm_runtime.h>
37
38 struct sh_cmt_priv {
39 void __iomem *mapbase;
40 void __iomem *mapbase_str;
41 struct clk *clk;
42 unsigned long width; /* 16 or 32 bit version of hardware block */
43 unsigned long overflow_bit;
44 unsigned long clear_bits;
45 struct irqaction irqaction;
46 struct platform_device *pdev;
47
48 unsigned long flags;
49 unsigned long match_value;
50 unsigned long next_match_value;
51 unsigned long max_match_value;
52 unsigned long rate;
53 raw_spinlock_t lock;
54 struct clock_event_device ced;
55 struct clocksource cs;
56 unsigned long total_cycles;
57 bool cs_enabled;
58
59 /* callbacks for CMSTR and CMCSR access */
60 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
61 void (*write_control)(void __iomem *base, unsigned long offs,
62 unsigned long value);
63
64 /* callbacks for CMCNT and CMCOR access */
65 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
66 void (*write_count)(void __iomem *base, unsigned long offs,
67 unsigned long value);
68 };
69
70 /* Examples of supported CMT timer register layouts and I/O access widths:
71 *
72 * "16-bit counter and 16-bit control" as found on sh7263:
73 * CMSTR 0xfffec000 16-bit
74 * CMCSR 0xfffec002 16-bit
75 * CMCNT 0xfffec004 16-bit
76 * CMCOR 0xfffec006 16-bit
77 *
78 * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
79 * CMSTR 0xffca0000 16-bit
80 * CMCSR 0xffca0060 16-bit
81 * CMCNT 0xffca0064 32-bit
82 * CMCOR 0xffca0068 32-bit
83 *
84 * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
85 * CMSTR 0xffca0500 32-bit
86 * CMCSR 0xffca0510 32-bit
87 * CMCNT 0xffca0514 32-bit
88 * CMCOR 0xffca0518 32-bit
89 */
90
91 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
92 {
93 return ioread16(base + (offs << 1));
94 }
95
96 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
97 {
98 return ioread32(base + (offs << 2));
99 }
100
101 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
102 unsigned long value)
103 {
104 iowrite16(value, base + (offs << 1));
105 }
106
107 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
108 unsigned long value)
109 {
110 iowrite32(value, base + (offs << 2));
111 }
112
113 #define CMCSR 0 /* channel register */
114 #define CMCNT 1 /* channel register */
115 #define CMCOR 2 /* channel register */
116
117 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
118 {
119 return p->read_control(p->mapbase_str, 0);
120 }
121
122 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
123 {
124 return p->read_control(p->mapbase, CMCSR);
125 }
126
127 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
128 {
129 return p->read_count(p->mapbase, CMCNT);
130 }
131
132 static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
133 unsigned long value)
134 {
135 p->write_control(p->mapbase_str, 0, value);
136 }
137
138 static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
139 unsigned long value)
140 {
141 p->write_control(p->mapbase, CMCSR, value);
142 }
143
144 static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
145 unsigned long value)
146 {
147 p->write_count(p->mapbase, CMCNT, value);
148 }
149
150 static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
151 unsigned long value)
152 {
153 p->write_count(p->mapbase, CMCOR, value);
154 }
155
156 static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
157 int *has_wrapped)
158 {
159 unsigned long v1, v2, v3;
160 int o1, o2;
161
162 o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
163
164 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
165 do {
166 o2 = o1;
167 v1 = sh_cmt_read_cmcnt(p);
168 v2 = sh_cmt_read_cmcnt(p);
169 v3 = sh_cmt_read_cmcnt(p);
170 o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
171 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
172 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
173
174 *has_wrapped = o1;
175 return v2;
176 }
177
178 static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
179
180 static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
181 {
182 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
183 unsigned long flags, value;
184
185 /* start stop register shared by multiple timer channels */
186 raw_spin_lock_irqsave(&sh_cmt_lock, flags);
187 value = sh_cmt_read_cmstr(p);
188
189 if (start)
190 value |= 1 << cfg->timer_bit;
191 else
192 value &= ~(1 << cfg->timer_bit);
193
194 sh_cmt_write_cmstr(p, value);
195 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
196 }
197
198 static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
199 {
200 int k, ret;
201
202 pm_runtime_get_sync(&p->pdev->dev);
203 dev_pm_syscore_device(&p->pdev->dev, true);
204
205 /* enable clock */
206 ret = clk_enable(p->clk);
207 if (ret) {
208 dev_err(&p->pdev->dev, "cannot enable clock\n");
209 goto err0;
210 }
211
212 /* make sure channel is disabled */
213 sh_cmt_start_stop_ch(p, 0);
214
215 /* configure channel, periodic mode and maximum timeout */
216 if (p->width == 16) {
217 *rate = clk_get_rate(p->clk) / 512;
218 sh_cmt_write_cmcsr(p, 0x43);
219 } else {
220 *rate = clk_get_rate(p->clk) / 8;
221 sh_cmt_write_cmcsr(p, 0x01a4);
222 }
223
224 sh_cmt_write_cmcor(p, 0xffffffff);
225 sh_cmt_write_cmcnt(p, 0);
226
227 /*
228 * According to the sh73a0 user's manual, as CMCNT can be operated
229 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
230 * modifying CMCNT register; two RCLK cycles are necessary before
231 * this register is either read or any modification of the value
232 * it holds is reflected in the LSI's actual operation.
233 *
234 * While at it, we're supposed to clear out the CMCNT as of this
235 * moment, so make sure it's processed properly here. This will
236 * take RCLKx2 at maximum.
237 */
238 for (k = 0; k < 100; k++) {
239 if (!sh_cmt_read_cmcnt(p))
240 break;
241 udelay(1);
242 }
243
244 if (sh_cmt_read_cmcnt(p)) {
245 dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
246 ret = -ETIMEDOUT;
247 goto err1;
248 }
249
250 /* enable channel */
251 sh_cmt_start_stop_ch(p, 1);
252 return 0;
253 err1:
254 /* stop clock */
255 clk_disable(p->clk);
256
257 err0:
258 return ret;
259 }
260
261 static void sh_cmt_disable(struct sh_cmt_priv *p)
262 {
263 /* disable channel */
264 sh_cmt_start_stop_ch(p, 0);
265
266 /* disable interrupts in CMT block */
267 sh_cmt_write_cmcsr(p, 0);
268
269 /* stop clock */
270 clk_disable(p->clk);
271
272 dev_pm_syscore_device(&p->pdev->dev, false);
273 pm_runtime_put(&p->pdev->dev);
274 }
275
276 /* private flags */
277 #define FLAG_CLOCKEVENT (1 << 0)
278 #define FLAG_CLOCKSOURCE (1 << 1)
279 #define FLAG_REPROGRAM (1 << 2)
280 #define FLAG_SKIPEVENT (1 << 3)
281 #define FLAG_IRQCONTEXT (1 << 4)
282
283 static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
284 int absolute)
285 {
286 unsigned long new_match;
287 unsigned long value = p->next_match_value;
288 unsigned long delay = 0;
289 unsigned long now = 0;
290 int has_wrapped;
291
292 now = sh_cmt_get_counter(p, &has_wrapped);
293 p->flags |= FLAG_REPROGRAM; /* force reprogram */
294
295 if (has_wrapped) {
296 /* we're competing with the interrupt handler.
297 * -> let the interrupt handler reprogram the timer.
298 * -> interrupt number two handles the event.
299 */
300 p->flags |= FLAG_SKIPEVENT;
301 return;
302 }
303
304 if (absolute)
305 now = 0;
306
307 do {
308 /* reprogram the timer hardware,
309 * but don't save the new match value yet.
310 */
311 new_match = now + value + delay;
312 if (new_match > p->max_match_value)
313 new_match = p->max_match_value;
314
315 sh_cmt_write_cmcor(p, new_match);
316
317 now = sh_cmt_get_counter(p, &has_wrapped);
318 if (has_wrapped && (new_match > p->match_value)) {
319 /* we are changing to a greater match value,
320 * so this wrap must be caused by the counter
321 * matching the old value.
322 * -> first interrupt reprograms the timer.
323 * -> interrupt number two handles the event.
324 */
325 p->flags |= FLAG_SKIPEVENT;
326 break;
327 }
328
329 if (has_wrapped) {
330 /* we are changing to a smaller match value,
331 * so the wrap must be caused by the counter
332 * matching the new value.
333 * -> save programmed match value.
334 * -> let isr handle the event.
335 */
336 p->match_value = new_match;
337 break;
338 }
339
340 /* be safe: verify hardware settings */
341 if (now < new_match) {
342 /* timer value is below match value, all good.
343 * this makes sure we won't miss any match events.
344 * -> save programmed match value.
345 * -> let isr handle the event.
346 */
347 p->match_value = new_match;
348 break;
349 }
350
351 /* the counter has reached a value greater
352 * than our new match value. and since the
353 * has_wrapped flag isn't set we must have
354 * programmed a too close event.
355 * -> increase delay and retry.
356 */
357 if (delay)
358 delay <<= 1;
359 else
360 delay = 1;
361
362 if (!delay)
363 dev_warn(&p->pdev->dev, "too long delay\n");
364
365 } while (delay);
366 }
367
368 static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
369 {
370 if (delta > p->max_match_value)
371 dev_warn(&p->pdev->dev, "delta out of range\n");
372
373 p->next_match_value = delta;
374 sh_cmt_clock_event_program_verify(p, 0);
375 }
376
377 static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
378 {
379 unsigned long flags;
380
381 raw_spin_lock_irqsave(&p->lock, flags);
382 __sh_cmt_set_next(p, delta);
383 raw_spin_unlock_irqrestore(&p->lock, flags);
384 }
385
386 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
387 {
388 struct sh_cmt_priv *p = dev_id;
389
390 /* clear flags */
391 sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
392
393 /* update clock source counter to begin with if enabled
394 * the wrap flag should be cleared by the timer specific
395 * isr before we end up here.
396 */
397 if (p->flags & FLAG_CLOCKSOURCE)
398 p->total_cycles += p->match_value + 1;
399
400 if (!(p->flags & FLAG_REPROGRAM))
401 p->next_match_value = p->max_match_value;
402
403 p->flags |= FLAG_IRQCONTEXT;
404
405 if (p->flags & FLAG_CLOCKEVENT) {
406 if (!(p->flags & FLAG_SKIPEVENT)) {
407 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
408 p->next_match_value = p->max_match_value;
409 p->flags |= FLAG_REPROGRAM;
410 }
411
412 p->ced.event_handler(&p->ced);
413 }
414 }
415
416 p->flags &= ~FLAG_SKIPEVENT;
417
418 if (p->flags & FLAG_REPROGRAM) {
419 p->flags &= ~FLAG_REPROGRAM;
420 sh_cmt_clock_event_program_verify(p, 1);
421
422 if (p->flags & FLAG_CLOCKEVENT)
423 if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
424 || (p->match_value == p->next_match_value))
425 p->flags &= ~FLAG_REPROGRAM;
426 }
427
428 p->flags &= ~FLAG_IRQCONTEXT;
429
430 return IRQ_HANDLED;
431 }
432
433 static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
434 {
435 int ret = 0;
436 unsigned long flags;
437
438 raw_spin_lock_irqsave(&p->lock, flags);
439
440 if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
441 ret = sh_cmt_enable(p, &p->rate);
442
443 if (ret)
444 goto out;
445 p->flags |= flag;
446
447 /* setup timeout if no clockevent */
448 if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
449 __sh_cmt_set_next(p, p->max_match_value);
450 out:
451 raw_spin_unlock_irqrestore(&p->lock, flags);
452
453 return ret;
454 }
455
456 static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
457 {
458 unsigned long flags;
459 unsigned long f;
460
461 raw_spin_lock_irqsave(&p->lock, flags);
462
463 f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
464 p->flags &= ~flag;
465
466 if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
467 sh_cmt_disable(p);
468
469 /* adjust the timeout to maximum if only clocksource left */
470 if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
471 __sh_cmt_set_next(p, p->max_match_value);
472
473 raw_spin_unlock_irqrestore(&p->lock, flags);
474 }
475
476 static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
477 {
478 return container_of(cs, struct sh_cmt_priv, cs);
479 }
480
481 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
482 {
483 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
484 unsigned long flags, raw;
485 unsigned long value;
486 int has_wrapped;
487
488 raw_spin_lock_irqsave(&p->lock, flags);
489 value = p->total_cycles;
490 raw = sh_cmt_get_counter(p, &has_wrapped);
491
492 if (unlikely(has_wrapped))
493 raw += p->match_value + 1;
494 raw_spin_unlock_irqrestore(&p->lock, flags);
495
496 return value + raw;
497 }
498
499 static int sh_cmt_clocksource_enable(struct clocksource *cs)
500 {
501 int ret;
502 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
503
504 WARN_ON(p->cs_enabled);
505
506 p->total_cycles = 0;
507
508 ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
509 if (!ret) {
510 __clocksource_updatefreq_hz(cs, p->rate);
511 p->cs_enabled = true;
512 }
513 return ret;
514 }
515
516 static void sh_cmt_clocksource_disable(struct clocksource *cs)
517 {
518 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
519
520 WARN_ON(!p->cs_enabled);
521
522 sh_cmt_stop(p, FLAG_CLOCKSOURCE);
523 p->cs_enabled = false;
524 }
525
526 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
527 {
528 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
529
530 sh_cmt_stop(p, FLAG_CLOCKSOURCE);
531 pm_genpd_syscore_poweroff(&p->pdev->dev);
532 }
533
534 static void sh_cmt_clocksource_resume(struct clocksource *cs)
535 {
536 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
537
538 pm_genpd_syscore_poweron(&p->pdev->dev);
539 sh_cmt_start(p, FLAG_CLOCKSOURCE);
540 }
541
542 static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
543 char *name, unsigned long rating)
544 {
545 struct clocksource *cs = &p->cs;
546
547 cs->name = name;
548 cs->rating = rating;
549 cs->read = sh_cmt_clocksource_read;
550 cs->enable = sh_cmt_clocksource_enable;
551 cs->disable = sh_cmt_clocksource_disable;
552 cs->suspend = sh_cmt_clocksource_suspend;
553 cs->resume = sh_cmt_clocksource_resume;
554 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
555 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
556
557 dev_info(&p->pdev->dev, "used as clock source\n");
558
559 /* Register with dummy 1 Hz value, gets updated in ->enable() */
560 clocksource_register_hz(cs, 1);
561 return 0;
562 }
563
564 static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
565 {
566 return container_of(ced, struct sh_cmt_priv, ced);
567 }
568
569 static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
570 {
571 struct clock_event_device *ced = &p->ced;
572
573 sh_cmt_start(p, FLAG_CLOCKEVENT);
574
575 /* TODO: calculate good shift from rate and counter bit width */
576
577 ced->shift = 32;
578 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
579 ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
580 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
581
582 if (periodic)
583 sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
584 else
585 sh_cmt_set_next(p, p->max_match_value);
586 }
587
588 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
589 struct clock_event_device *ced)
590 {
591 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
592
593 /* deal with old setting first */
594 switch (ced->mode) {
595 case CLOCK_EVT_MODE_PERIODIC:
596 case CLOCK_EVT_MODE_ONESHOT:
597 sh_cmt_stop(p, FLAG_CLOCKEVENT);
598 break;
599 default:
600 break;
601 }
602
603 switch (mode) {
604 case CLOCK_EVT_MODE_PERIODIC:
605 dev_info(&p->pdev->dev, "used for periodic clock events\n");
606 sh_cmt_clock_event_start(p, 1);
607 break;
608 case CLOCK_EVT_MODE_ONESHOT:
609 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
610 sh_cmt_clock_event_start(p, 0);
611 break;
612 case CLOCK_EVT_MODE_SHUTDOWN:
613 case CLOCK_EVT_MODE_UNUSED:
614 sh_cmt_stop(p, FLAG_CLOCKEVENT);
615 break;
616 default:
617 break;
618 }
619 }
620
621 static int sh_cmt_clock_event_next(unsigned long delta,
622 struct clock_event_device *ced)
623 {
624 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
625
626 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
627 if (likely(p->flags & FLAG_IRQCONTEXT))
628 p->next_match_value = delta - 1;
629 else
630 sh_cmt_set_next(p, delta - 1);
631
632 return 0;
633 }
634
635 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
636 {
637 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
638
639 pm_genpd_syscore_poweroff(&p->pdev->dev);
640 clk_unprepare(p->clk);
641 }
642
643 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
644 {
645 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
646
647 clk_prepare(p->clk);
648 pm_genpd_syscore_poweron(&p->pdev->dev);
649 }
650
651 static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
652 char *name, unsigned long rating)
653 {
654 struct clock_event_device *ced = &p->ced;
655
656 memset(ced, 0, sizeof(*ced));
657
658 ced->name = name;
659 ced->features = CLOCK_EVT_FEAT_PERIODIC;
660 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
661 ced->rating = rating;
662 ced->cpumask = cpumask_of(0);
663 ced->set_next_event = sh_cmt_clock_event_next;
664 ced->set_mode = sh_cmt_clock_event_mode;
665 ced->suspend = sh_cmt_clock_event_suspend;
666 ced->resume = sh_cmt_clock_event_resume;
667
668 dev_info(&p->pdev->dev, "used for clock events\n");
669 clockevents_register_device(ced);
670 }
671
672 static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
673 unsigned long clockevent_rating,
674 unsigned long clocksource_rating)
675 {
676 if (clockevent_rating)
677 sh_cmt_register_clockevent(p, name, clockevent_rating);
678
679 if (clocksource_rating)
680 sh_cmt_register_clocksource(p, name, clocksource_rating);
681
682 return 0;
683 }
684
685 static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
686 {
687 struct sh_timer_config *cfg = pdev->dev.platform_data;
688 struct resource *res, *res2;
689 int irq, ret;
690 ret = -ENXIO;
691
692 memset(p, 0, sizeof(*p));
693 p->pdev = pdev;
694
695 if (!cfg) {
696 dev_err(&p->pdev->dev, "missing platform data\n");
697 goto err0;
698 }
699
700 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
701 if (!res) {
702 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
703 goto err0;
704 }
705
706 /* optional resource for the shared timer start/stop register */
707 res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
708
709 irq = platform_get_irq(p->pdev, 0);
710 if (irq < 0) {
711 dev_err(&p->pdev->dev, "failed to get irq\n");
712 goto err0;
713 }
714
715 /* map memory, let mapbase point to our channel */
716 p->mapbase = ioremap_nocache(res->start, resource_size(res));
717 if (p->mapbase == NULL) {
718 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
719 goto err0;
720 }
721
722 /* map second resource for CMSTR */
723 p->mapbase_str = ioremap_nocache(res2 ? res2->start :
724 res->start - cfg->channel_offset,
725 res2 ? resource_size(res2) : 2);
726 if (p->mapbase_str == NULL) {
727 dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
728 goto err1;
729 }
730
731 /* request irq using setup_irq() (too early for request_irq()) */
732 p->irqaction.name = dev_name(&p->pdev->dev);
733 p->irqaction.handler = sh_cmt_interrupt;
734 p->irqaction.dev_id = p;
735 p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
736
737 /* get hold of clock */
738 p->clk = clk_get(&p->pdev->dev, "cmt_fck");
739 if (IS_ERR(p->clk)) {
740 dev_err(&p->pdev->dev, "cannot get clock\n");
741 ret = PTR_ERR(p->clk);
742 goto err2;
743 }
744
745 ret = clk_prepare(p->clk);
746 if (ret < 0)
747 goto err3;
748
749 if (res2 && (resource_size(res2) == 4)) {
750 /* assume both CMSTR and CMCSR to be 32-bit */
751 p->read_control = sh_cmt_read32;
752 p->write_control = sh_cmt_write32;
753 } else {
754 p->read_control = sh_cmt_read16;
755 p->write_control = sh_cmt_write16;
756 }
757
758 if (resource_size(res) == 6) {
759 p->width = 16;
760 p->read_count = sh_cmt_read16;
761 p->write_count = sh_cmt_write16;
762 p->overflow_bit = 0x80;
763 p->clear_bits = ~0x80;
764 } else {
765 p->width = 32;
766 p->read_count = sh_cmt_read32;
767 p->write_count = sh_cmt_write32;
768 p->overflow_bit = 0x8000;
769 p->clear_bits = ~0xc000;
770 }
771
772 if (p->width == (sizeof(p->max_match_value) * 8))
773 p->max_match_value = ~0;
774 else
775 p->max_match_value = (1 << p->width) - 1;
776
777 p->match_value = p->max_match_value;
778 raw_spin_lock_init(&p->lock);
779
780 ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
781 cfg->clockevent_rating,
782 cfg->clocksource_rating);
783 if (ret) {
784 dev_err(&p->pdev->dev, "registration failed\n");
785 goto err4;
786 }
787 p->cs_enabled = false;
788
789 ret = setup_irq(irq, &p->irqaction);
790 if (ret) {
791 dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
792 goto err4;
793 }
794
795 platform_set_drvdata(pdev, p);
796
797 return 0;
798 err4:
799 clk_unprepare(p->clk);
800 err3:
801 clk_put(p->clk);
802 err2:
803 iounmap(p->mapbase_str);
804 err1:
805 iounmap(p->mapbase);
806 err0:
807 return ret;
808 }
809
810 static int sh_cmt_probe(struct platform_device *pdev)
811 {
812 struct sh_cmt_priv *p = platform_get_drvdata(pdev);
813 struct sh_timer_config *cfg = pdev->dev.platform_data;
814 int ret;
815
816 if (!is_early_platform_device(pdev)) {
817 pm_runtime_set_active(&pdev->dev);
818 pm_runtime_enable(&pdev->dev);
819 }
820
821 if (p) {
822 dev_info(&pdev->dev, "kept as earlytimer\n");
823 goto out;
824 }
825
826 p = kmalloc(sizeof(*p), GFP_KERNEL);
827 if (p == NULL) {
828 dev_err(&pdev->dev, "failed to allocate driver data\n");
829 return -ENOMEM;
830 }
831
832 ret = sh_cmt_setup(p, pdev);
833 if (ret) {
834 kfree(p);
835 pm_runtime_idle(&pdev->dev);
836 return ret;
837 }
838 if (is_early_platform_device(pdev))
839 return 0;
840
841 out:
842 if (cfg->clockevent_rating || cfg->clocksource_rating)
843 pm_runtime_irq_safe(&pdev->dev);
844 else
845 pm_runtime_idle(&pdev->dev);
846
847 return 0;
848 }
849
850 static int sh_cmt_remove(struct platform_device *pdev)
851 {
852 return -EBUSY; /* cannot unregister clockevent and clocksource */
853 }
854
855 static struct platform_driver sh_cmt_device_driver = {
856 .probe = sh_cmt_probe,
857 .remove = sh_cmt_remove,
858 .driver = {
859 .name = "sh_cmt",
860 }
861 };
862
863 static int __init sh_cmt_init(void)
864 {
865 return platform_driver_register(&sh_cmt_device_driver);
866 }
867
868 static void __exit sh_cmt_exit(void)
869 {
870 platform_driver_unregister(&sh_cmt_device_driver);
871 }
872
873 early_platform_init("earlytimer", &sh_cmt_device_driver);
874 subsys_initcall(sh_cmt_init);
875 module_exit(sh_cmt_exit);
876
877 MODULE_AUTHOR("Magnus Damm");
878 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
879 MODULE_LICENSE("GPL v2");