]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/clocksource/sh_cmt.c
resource/docs: Complete kernel-doc style function documentation
[mirror_ubuntu-jammy-kernel.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 struct sh_cmt_device;
29
30 /*
31 * The CMT comes in 5 different identified flavours, depending not only on the
32 * SoC but also on the particular instance. The following table lists the main
33 * characteristics of those flavours.
34 *
35 * 16B 32B 32B-F 48B R-Car Gen2
36 * -----------------------------------------------------------------------------
37 * Channels 2 1/4 1 6 2/8
38 * Control Width 16 16 16 16 32
39 * Counter Width 16 32 32 32/48 32/48
40 * Shared Start/Stop Y Y Y Y N
41 *
42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
43 * located in the channel registers block. All other versions have a shared
44 * start/stop register located in the global space.
45 *
46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
47 * infers the start/stop bit position in the control register and the channel
48 * registers block address. Some CMT instances have a subset of channels
49 * available, in which case the index in the documentation doesn't match the
50 * "real" index as implemented in hardware. This is for instance the case with
51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
52 * in the documentation but using start/stop bit 5 and having its registers
53 * block at 0x60.
54 *
55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
57 */
58
59 enum sh_cmt_model {
60 SH_CMT_16BIT,
61 SH_CMT_32BIT,
62 SH_CMT_48BIT,
63 SH_CMT0_RCAR_GEN2,
64 SH_CMT1_RCAR_GEN2,
65 };
66
67 struct sh_cmt_info {
68 enum sh_cmt_model model;
69
70 unsigned int channels_mask;
71
72 unsigned long width; /* 16 or 32 bit version of hardware block */
73 u32 overflow_bit;
74 u32 clear_bits;
75
76 /* callbacks for CMSTR and CMCSR access */
77 u32 (*read_control)(void __iomem *base, unsigned long offs);
78 void (*write_control)(void __iomem *base, unsigned long offs,
79 u32 value);
80
81 /* callbacks for CMCNT and CMCOR access */
82 u32 (*read_count)(void __iomem *base, unsigned long offs);
83 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
84 };
85
86 struct sh_cmt_channel {
87 struct sh_cmt_device *cmt;
88
89 unsigned int index; /* Index in the documentation */
90 unsigned int hwidx; /* Real hardware index */
91
92 void __iomem *iostart;
93 void __iomem *ioctrl;
94
95 unsigned int timer_bit;
96 unsigned long flags;
97 u32 match_value;
98 u32 next_match_value;
99 u32 max_match_value;
100 raw_spinlock_t lock;
101 struct clock_event_device ced;
102 struct clocksource cs;
103 u64 total_cycles;
104 bool cs_enabled;
105 };
106
107 struct sh_cmt_device {
108 struct platform_device *pdev;
109
110 const struct sh_cmt_info *info;
111
112 void __iomem *mapbase;
113 struct clk *clk;
114 unsigned long rate;
115
116 raw_spinlock_t lock; /* Protect the shared start/stop register */
117
118 struct sh_cmt_channel *channels;
119 unsigned int num_channels;
120 unsigned int hw_channels;
121
122 bool has_clockevent;
123 bool has_clocksource;
124 };
125
126 #define SH_CMT16_CMCSR_CMF (1 << 7)
127 #define SH_CMT16_CMCSR_CMIE (1 << 6)
128 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
129 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
130 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
131 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
132 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
133
134 #define SH_CMT32_CMCSR_CMF (1 << 15)
135 #define SH_CMT32_CMCSR_OVF (1 << 14)
136 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
137 #define SH_CMT32_CMCSR_STTF (1 << 12)
138 #define SH_CMT32_CMCSR_STPF (1 << 11)
139 #define SH_CMT32_CMCSR_SSIE (1 << 10)
140 #define SH_CMT32_CMCSR_CMS (1 << 9)
141 #define SH_CMT32_CMCSR_CMM (1 << 8)
142 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
143 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
144 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
145 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
146 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
147 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
148 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
149 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
150 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
151 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
152 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
153
154 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
155 {
156 return ioread16(base + (offs << 1));
157 }
158
159 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
160 {
161 return ioread32(base + (offs << 2));
162 }
163
164 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
165 {
166 iowrite16(value, base + (offs << 1));
167 }
168
169 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
170 {
171 iowrite32(value, base + (offs << 2));
172 }
173
174 static const struct sh_cmt_info sh_cmt_info[] = {
175 [SH_CMT_16BIT] = {
176 .model = SH_CMT_16BIT,
177 .width = 16,
178 .overflow_bit = SH_CMT16_CMCSR_CMF,
179 .clear_bits = ~SH_CMT16_CMCSR_CMF,
180 .read_control = sh_cmt_read16,
181 .write_control = sh_cmt_write16,
182 .read_count = sh_cmt_read16,
183 .write_count = sh_cmt_write16,
184 },
185 [SH_CMT_32BIT] = {
186 .model = SH_CMT_32BIT,
187 .width = 32,
188 .overflow_bit = SH_CMT32_CMCSR_CMF,
189 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
190 .read_control = sh_cmt_read16,
191 .write_control = sh_cmt_write16,
192 .read_count = sh_cmt_read32,
193 .write_count = sh_cmt_write32,
194 },
195 [SH_CMT_48BIT] = {
196 .model = SH_CMT_48BIT,
197 .channels_mask = 0x3f,
198 .width = 32,
199 .overflow_bit = SH_CMT32_CMCSR_CMF,
200 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
201 .read_control = sh_cmt_read32,
202 .write_control = sh_cmt_write32,
203 .read_count = sh_cmt_read32,
204 .write_count = sh_cmt_write32,
205 },
206 [SH_CMT0_RCAR_GEN2] = {
207 .model = SH_CMT0_RCAR_GEN2,
208 .channels_mask = 0x60,
209 .width = 32,
210 .overflow_bit = SH_CMT32_CMCSR_CMF,
211 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
212 .read_control = sh_cmt_read32,
213 .write_control = sh_cmt_write32,
214 .read_count = sh_cmt_read32,
215 .write_count = sh_cmt_write32,
216 },
217 [SH_CMT1_RCAR_GEN2] = {
218 .model = SH_CMT1_RCAR_GEN2,
219 .channels_mask = 0xff,
220 .width = 32,
221 .overflow_bit = SH_CMT32_CMCSR_CMF,
222 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
223 .read_control = sh_cmt_read32,
224 .write_control = sh_cmt_write32,
225 .read_count = sh_cmt_read32,
226 .write_count = sh_cmt_write32,
227 },
228 };
229
230 #define CMCSR 0 /* channel register */
231 #define CMCNT 1 /* channel register */
232 #define CMCOR 2 /* channel register */
233
234 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
235 {
236 if (ch->iostart)
237 return ch->cmt->info->read_control(ch->iostart, 0);
238 else
239 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
240 }
241
242 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
243 {
244 if (ch->iostart)
245 ch->cmt->info->write_control(ch->iostart, 0, value);
246 else
247 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
248 }
249
250 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
251 {
252 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
253 }
254
255 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
256 {
257 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
258 }
259
260 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
261 {
262 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
263 }
264
265 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
266 {
267 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
268 }
269
270 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
271 {
272 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
273 }
274
275 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
276 {
277 u32 v1, v2, v3;
278 u32 o1, o2;
279
280 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
281
282 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
283 do {
284 o2 = o1;
285 v1 = sh_cmt_read_cmcnt(ch);
286 v2 = sh_cmt_read_cmcnt(ch);
287 v3 = sh_cmt_read_cmcnt(ch);
288 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
290 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
291
292 *has_wrapped = o1;
293 return v2;
294 }
295
296 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
297 {
298 unsigned long flags;
299 u32 value;
300
301 /* start stop register shared by multiple timer channels */
302 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
303 value = sh_cmt_read_cmstr(ch);
304
305 if (start)
306 value |= 1 << ch->timer_bit;
307 else
308 value &= ~(1 << ch->timer_bit);
309
310 sh_cmt_write_cmstr(ch, value);
311 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
312 }
313
314 static int sh_cmt_enable(struct sh_cmt_channel *ch)
315 {
316 int k, ret;
317
318 pm_runtime_get_sync(&ch->cmt->pdev->dev);
319 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
320
321 /* enable clock */
322 ret = clk_enable(ch->cmt->clk);
323 if (ret) {
324 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
325 ch->index);
326 goto err0;
327 }
328
329 /* make sure channel is disabled */
330 sh_cmt_start_stop_ch(ch, 0);
331
332 /* configure channel, periodic mode and maximum timeout */
333 if (ch->cmt->info->width == 16) {
334 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
335 SH_CMT16_CMCSR_CKS512);
336 } else {
337 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
338 SH_CMT32_CMCSR_CMTOUT_IE |
339 SH_CMT32_CMCSR_CMR_IRQ |
340 SH_CMT32_CMCSR_CKS_RCLK8);
341 }
342
343 sh_cmt_write_cmcor(ch, 0xffffffff);
344 sh_cmt_write_cmcnt(ch, 0);
345
346 /*
347 * According to the sh73a0 user's manual, as CMCNT can be operated
348 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
349 * modifying CMCNT register; two RCLK cycles are necessary before
350 * this register is either read or any modification of the value
351 * it holds is reflected in the LSI's actual operation.
352 *
353 * While at it, we're supposed to clear out the CMCNT as of this
354 * moment, so make sure it's processed properly here. This will
355 * take RCLKx2 at maximum.
356 */
357 for (k = 0; k < 100; k++) {
358 if (!sh_cmt_read_cmcnt(ch))
359 break;
360 udelay(1);
361 }
362
363 if (sh_cmt_read_cmcnt(ch)) {
364 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
365 ch->index);
366 ret = -ETIMEDOUT;
367 goto err1;
368 }
369
370 /* enable channel */
371 sh_cmt_start_stop_ch(ch, 1);
372 return 0;
373 err1:
374 /* stop clock */
375 clk_disable(ch->cmt->clk);
376
377 err0:
378 return ret;
379 }
380
381 static void sh_cmt_disable(struct sh_cmt_channel *ch)
382 {
383 /* disable channel */
384 sh_cmt_start_stop_ch(ch, 0);
385
386 /* disable interrupts in CMT block */
387 sh_cmt_write_cmcsr(ch, 0);
388
389 /* stop clock */
390 clk_disable(ch->cmt->clk);
391
392 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
393 pm_runtime_put(&ch->cmt->pdev->dev);
394 }
395
396 /* private flags */
397 #define FLAG_CLOCKEVENT (1 << 0)
398 #define FLAG_CLOCKSOURCE (1 << 1)
399 #define FLAG_REPROGRAM (1 << 2)
400 #define FLAG_SKIPEVENT (1 << 3)
401 #define FLAG_IRQCONTEXT (1 << 4)
402
403 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
404 int absolute)
405 {
406 u32 value = ch->next_match_value;
407 u32 new_match;
408 u32 delay = 0;
409 u32 now = 0;
410 u32 has_wrapped;
411
412 now = sh_cmt_get_counter(ch, &has_wrapped);
413 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
414
415 if (has_wrapped) {
416 /* we're competing with the interrupt handler.
417 * -> let the interrupt handler reprogram the timer.
418 * -> interrupt number two handles the event.
419 */
420 ch->flags |= FLAG_SKIPEVENT;
421 return;
422 }
423
424 if (absolute)
425 now = 0;
426
427 do {
428 /* reprogram the timer hardware,
429 * but don't save the new match value yet.
430 */
431 new_match = now + value + delay;
432 if (new_match > ch->max_match_value)
433 new_match = ch->max_match_value;
434
435 sh_cmt_write_cmcor(ch, new_match);
436
437 now = sh_cmt_get_counter(ch, &has_wrapped);
438 if (has_wrapped && (new_match > ch->match_value)) {
439 /* we are changing to a greater match value,
440 * so this wrap must be caused by the counter
441 * matching the old value.
442 * -> first interrupt reprograms the timer.
443 * -> interrupt number two handles the event.
444 */
445 ch->flags |= FLAG_SKIPEVENT;
446 break;
447 }
448
449 if (has_wrapped) {
450 /* we are changing to a smaller match value,
451 * so the wrap must be caused by the counter
452 * matching the new value.
453 * -> save programmed match value.
454 * -> let isr handle the event.
455 */
456 ch->match_value = new_match;
457 break;
458 }
459
460 /* be safe: verify hardware settings */
461 if (now < new_match) {
462 /* timer value is below match value, all good.
463 * this makes sure we won't miss any match events.
464 * -> save programmed match value.
465 * -> let isr handle the event.
466 */
467 ch->match_value = new_match;
468 break;
469 }
470
471 /* the counter has reached a value greater
472 * than our new match value. and since the
473 * has_wrapped flag isn't set we must have
474 * programmed a too close event.
475 * -> increase delay and retry.
476 */
477 if (delay)
478 delay <<= 1;
479 else
480 delay = 1;
481
482 if (!delay)
483 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
484 ch->index);
485
486 } while (delay);
487 }
488
489 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
490 {
491 if (delta > ch->max_match_value)
492 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
493 ch->index);
494
495 ch->next_match_value = delta;
496 sh_cmt_clock_event_program_verify(ch, 0);
497 }
498
499 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
500 {
501 unsigned long flags;
502
503 raw_spin_lock_irqsave(&ch->lock, flags);
504 __sh_cmt_set_next(ch, delta);
505 raw_spin_unlock_irqrestore(&ch->lock, flags);
506 }
507
508 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
509 {
510 struct sh_cmt_channel *ch = dev_id;
511
512 /* clear flags */
513 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
514 ch->cmt->info->clear_bits);
515
516 /* update clock source counter to begin with if enabled
517 * the wrap flag should be cleared by the timer specific
518 * isr before we end up here.
519 */
520 if (ch->flags & FLAG_CLOCKSOURCE)
521 ch->total_cycles += ch->match_value + 1;
522
523 if (!(ch->flags & FLAG_REPROGRAM))
524 ch->next_match_value = ch->max_match_value;
525
526 ch->flags |= FLAG_IRQCONTEXT;
527
528 if (ch->flags & FLAG_CLOCKEVENT) {
529 if (!(ch->flags & FLAG_SKIPEVENT)) {
530 if (clockevent_state_oneshot(&ch->ced)) {
531 ch->next_match_value = ch->max_match_value;
532 ch->flags |= FLAG_REPROGRAM;
533 }
534
535 ch->ced.event_handler(&ch->ced);
536 }
537 }
538
539 ch->flags &= ~FLAG_SKIPEVENT;
540
541 if (ch->flags & FLAG_REPROGRAM) {
542 ch->flags &= ~FLAG_REPROGRAM;
543 sh_cmt_clock_event_program_verify(ch, 1);
544
545 if (ch->flags & FLAG_CLOCKEVENT)
546 if ((clockevent_state_shutdown(&ch->ced))
547 || (ch->match_value == ch->next_match_value))
548 ch->flags &= ~FLAG_REPROGRAM;
549 }
550
551 ch->flags &= ~FLAG_IRQCONTEXT;
552
553 return IRQ_HANDLED;
554 }
555
556 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
557 {
558 int ret = 0;
559 unsigned long flags;
560
561 raw_spin_lock_irqsave(&ch->lock, flags);
562
563 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
564 ret = sh_cmt_enable(ch);
565
566 if (ret)
567 goto out;
568 ch->flags |= flag;
569
570 /* setup timeout if no clockevent */
571 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
572 __sh_cmt_set_next(ch, ch->max_match_value);
573 out:
574 raw_spin_unlock_irqrestore(&ch->lock, flags);
575
576 return ret;
577 }
578
579 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
580 {
581 unsigned long flags;
582 unsigned long f;
583
584 raw_spin_lock_irqsave(&ch->lock, flags);
585
586 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
587 ch->flags &= ~flag;
588
589 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
590 sh_cmt_disable(ch);
591
592 /* adjust the timeout to maximum if only clocksource left */
593 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
594 __sh_cmt_set_next(ch, ch->max_match_value);
595
596 raw_spin_unlock_irqrestore(&ch->lock, flags);
597 }
598
599 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
600 {
601 return container_of(cs, struct sh_cmt_channel, cs);
602 }
603
604 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
605 {
606 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
607 unsigned long flags;
608 u32 has_wrapped;
609 u64 value;
610 u32 raw;
611
612 raw_spin_lock_irqsave(&ch->lock, flags);
613 value = ch->total_cycles;
614 raw = sh_cmt_get_counter(ch, &has_wrapped);
615
616 if (unlikely(has_wrapped))
617 raw += ch->match_value + 1;
618 raw_spin_unlock_irqrestore(&ch->lock, flags);
619
620 return value + raw;
621 }
622
623 static int sh_cmt_clocksource_enable(struct clocksource *cs)
624 {
625 int ret;
626 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
627
628 WARN_ON(ch->cs_enabled);
629
630 ch->total_cycles = 0;
631
632 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
633 if (!ret)
634 ch->cs_enabled = true;
635
636 return ret;
637 }
638
639 static void sh_cmt_clocksource_disable(struct clocksource *cs)
640 {
641 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
642
643 WARN_ON(!ch->cs_enabled);
644
645 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
646 ch->cs_enabled = false;
647 }
648
649 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
650 {
651 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
652
653 if (!ch->cs_enabled)
654 return;
655
656 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
658 }
659
660 static void sh_cmt_clocksource_resume(struct clocksource *cs)
661 {
662 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
663
664 if (!ch->cs_enabled)
665 return;
666
667 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
668 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
669 }
670
671 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
672 const char *name)
673 {
674 struct clocksource *cs = &ch->cs;
675
676 cs->name = name;
677 cs->rating = 125;
678 cs->read = sh_cmt_clocksource_read;
679 cs->enable = sh_cmt_clocksource_enable;
680 cs->disable = sh_cmt_clocksource_disable;
681 cs->suspend = sh_cmt_clocksource_suspend;
682 cs->resume = sh_cmt_clocksource_resume;
683 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
684 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
685
686 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
687 ch->index);
688
689 clocksource_register_hz(cs, ch->cmt->rate);
690 return 0;
691 }
692
693 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
694 {
695 return container_of(ced, struct sh_cmt_channel, ced);
696 }
697
698 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
699 {
700 sh_cmt_start(ch, FLAG_CLOCKEVENT);
701
702 if (periodic)
703 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
704 else
705 sh_cmt_set_next(ch, ch->max_match_value);
706 }
707
708 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
709 {
710 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
711
712 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
713 return 0;
714 }
715
716 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
717 int periodic)
718 {
719 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
720
721 /* deal with old setting first */
722 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
723 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
724
725 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
726 ch->index, periodic ? "periodic" : "oneshot");
727 sh_cmt_clock_event_start(ch, periodic);
728 return 0;
729 }
730
731 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
732 {
733 return sh_cmt_clock_event_set_state(ced, 0);
734 }
735
736 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
737 {
738 return sh_cmt_clock_event_set_state(ced, 1);
739 }
740
741 static int sh_cmt_clock_event_next(unsigned long delta,
742 struct clock_event_device *ced)
743 {
744 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
745
746 BUG_ON(!clockevent_state_oneshot(ced));
747 if (likely(ch->flags & FLAG_IRQCONTEXT))
748 ch->next_match_value = delta - 1;
749 else
750 sh_cmt_set_next(ch, delta - 1);
751
752 return 0;
753 }
754
755 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
756 {
757 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
758
759 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
760 clk_unprepare(ch->cmt->clk);
761 }
762
763 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
764 {
765 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766
767 clk_prepare(ch->cmt->clk);
768 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
769 }
770
771 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
772 const char *name)
773 {
774 struct clock_event_device *ced = &ch->ced;
775 int irq;
776 int ret;
777
778 irq = platform_get_irq(ch->cmt->pdev, ch->index);
779 if (irq < 0) {
780 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
781 ch->index);
782 return irq;
783 }
784
785 ret = request_irq(irq, sh_cmt_interrupt,
786 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
787 dev_name(&ch->cmt->pdev->dev), ch);
788 if (ret) {
789 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
790 ch->index, irq);
791 return ret;
792 }
793
794 ced->name = name;
795 ced->features = CLOCK_EVT_FEAT_PERIODIC;
796 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
797 ced->rating = 125;
798 ced->cpumask = cpu_possible_mask;
799 ced->set_next_event = sh_cmt_clock_event_next;
800 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
801 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
802 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
803 ced->suspend = sh_cmt_clock_event_suspend;
804 ced->resume = sh_cmt_clock_event_resume;
805
806 /* TODO: calculate good shift from rate and counter bit width */
807 ced->shift = 32;
808 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
809 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
810 ced->max_delta_ticks = ch->max_match_value;
811 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
812 ced->min_delta_ticks = 0x1f;
813
814 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
815 ch->index);
816 clockevents_register_device(ced);
817
818 return 0;
819 }
820
821 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
822 bool clockevent, bool clocksource)
823 {
824 int ret;
825
826 if (clockevent) {
827 ch->cmt->has_clockevent = true;
828 ret = sh_cmt_register_clockevent(ch, name);
829 if (ret < 0)
830 return ret;
831 }
832
833 if (clocksource) {
834 ch->cmt->has_clocksource = true;
835 sh_cmt_register_clocksource(ch, name);
836 }
837
838 return 0;
839 }
840
841 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
842 unsigned int hwidx, bool clockevent,
843 bool clocksource, struct sh_cmt_device *cmt)
844 {
845 int ret;
846
847 /* Skip unused channels. */
848 if (!clockevent && !clocksource)
849 return 0;
850
851 ch->cmt = cmt;
852 ch->index = index;
853 ch->hwidx = hwidx;
854 ch->timer_bit = hwidx;
855
856 /*
857 * Compute the address of the channel control register block. For the
858 * timers with a per-channel start/stop register, compute its address
859 * as well.
860 */
861 switch (cmt->info->model) {
862 case SH_CMT_16BIT:
863 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
864 break;
865 case SH_CMT_32BIT:
866 case SH_CMT_48BIT:
867 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
868 break;
869 case SH_CMT0_RCAR_GEN2:
870 case SH_CMT1_RCAR_GEN2:
871 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
872 ch->ioctrl = ch->iostart + 0x10;
873 ch->timer_bit = 0;
874 break;
875 }
876
877 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
878 ch->max_match_value = ~0;
879 else
880 ch->max_match_value = (1 << cmt->info->width) - 1;
881
882 ch->match_value = ch->max_match_value;
883 raw_spin_lock_init(&ch->lock);
884
885 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
886 clockevent, clocksource);
887 if (ret) {
888 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
889 ch->index);
890 return ret;
891 }
892 ch->cs_enabled = false;
893
894 return 0;
895 }
896
897 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
898 {
899 struct resource *mem;
900
901 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
902 if (!mem) {
903 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
904 return -ENXIO;
905 }
906
907 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
908 if (cmt->mapbase == NULL) {
909 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
910 return -ENXIO;
911 }
912
913 return 0;
914 }
915
916 static const struct platform_device_id sh_cmt_id_table[] = {
917 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
918 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
919 { }
920 };
921 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
922
923 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
924 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
925 {
926 /* deprecated, preserved for backward compatibility */
927 .compatible = "renesas,cmt-48-gen2",
928 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
929 },
930 {
931 .compatible = "renesas,rcar-gen2-cmt0",
932 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
933 },
934 {
935 .compatible = "renesas,rcar-gen2-cmt1",
936 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
937 },
938 {
939 .compatible = "renesas,rcar-gen3-cmt0",
940 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
941 },
942 {
943 .compatible = "renesas,rcar-gen3-cmt1",
944 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
945 },
946 { }
947 };
948 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
949
950 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
951 {
952 unsigned int mask;
953 unsigned int i;
954 int ret;
955
956 cmt->pdev = pdev;
957 raw_spin_lock_init(&cmt->lock);
958
959 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
960 cmt->info = of_device_get_match_data(&pdev->dev);
961 cmt->hw_channels = cmt->info->channels_mask;
962 } else if (pdev->dev.platform_data) {
963 struct sh_timer_config *cfg = pdev->dev.platform_data;
964 const struct platform_device_id *id = pdev->id_entry;
965
966 cmt->info = (const struct sh_cmt_info *)id->driver_data;
967 cmt->hw_channels = cfg->channels_mask;
968 } else {
969 dev_err(&cmt->pdev->dev, "missing platform data\n");
970 return -ENXIO;
971 }
972
973 /* Get hold of clock. */
974 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
975 if (IS_ERR(cmt->clk)) {
976 dev_err(&cmt->pdev->dev, "cannot get clock\n");
977 return PTR_ERR(cmt->clk);
978 }
979
980 ret = clk_prepare(cmt->clk);
981 if (ret < 0)
982 goto err_clk_put;
983
984 /* Determine clock rate. */
985 ret = clk_enable(cmt->clk);
986 if (ret < 0)
987 goto err_clk_unprepare;
988
989 if (cmt->info->width == 16)
990 cmt->rate = clk_get_rate(cmt->clk) / 512;
991 else
992 cmt->rate = clk_get_rate(cmt->clk) / 8;
993
994 clk_disable(cmt->clk);
995
996 /* Map the memory resource(s). */
997 ret = sh_cmt_map_memory(cmt);
998 if (ret < 0)
999 goto err_clk_unprepare;
1000
1001 /* Allocate and setup the channels. */
1002 cmt->num_channels = hweight8(cmt->hw_channels);
1003 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1004 GFP_KERNEL);
1005 if (cmt->channels == NULL) {
1006 ret = -ENOMEM;
1007 goto err_unmap;
1008 }
1009
1010 /*
1011 * Use the first channel as a clock event device and the second channel
1012 * as a clock source. If only one channel is available use it for both.
1013 */
1014 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1015 unsigned int hwidx = ffs(mask) - 1;
1016 bool clocksource = i == 1 || cmt->num_channels == 1;
1017 bool clockevent = i == 0;
1018
1019 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1020 clockevent, clocksource, cmt);
1021 if (ret < 0)
1022 goto err_unmap;
1023
1024 mask &= ~(1 << hwidx);
1025 }
1026
1027 platform_set_drvdata(pdev, cmt);
1028
1029 return 0;
1030
1031 err_unmap:
1032 kfree(cmt->channels);
1033 iounmap(cmt->mapbase);
1034 err_clk_unprepare:
1035 clk_unprepare(cmt->clk);
1036 err_clk_put:
1037 clk_put(cmt->clk);
1038 return ret;
1039 }
1040
1041 static int sh_cmt_probe(struct platform_device *pdev)
1042 {
1043 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1044 int ret;
1045
1046 if (!is_early_platform_device(pdev)) {
1047 pm_runtime_set_active(&pdev->dev);
1048 pm_runtime_enable(&pdev->dev);
1049 }
1050
1051 if (cmt) {
1052 dev_info(&pdev->dev, "kept as earlytimer\n");
1053 goto out;
1054 }
1055
1056 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1057 if (cmt == NULL)
1058 return -ENOMEM;
1059
1060 ret = sh_cmt_setup(cmt, pdev);
1061 if (ret) {
1062 kfree(cmt);
1063 pm_runtime_idle(&pdev->dev);
1064 return ret;
1065 }
1066 if (is_early_platform_device(pdev))
1067 return 0;
1068
1069 out:
1070 if (cmt->has_clockevent || cmt->has_clocksource)
1071 pm_runtime_irq_safe(&pdev->dev);
1072 else
1073 pm_runtime_idle(&pdev->dev);
1074
1075 return 0;
1076 }
1077
1078 static int sh_cmt_remove(struct platform_device *pdev)
1079 {
1080 return -EBUSY; /* cannot unregister clockevent and clocksource */
1081 }
1082
1083 static struct platform_driver sh_cmt_device_driver = {
1084 .probe = sh_cmt_probe,
1085 .remove = sh_cmt_remove,
1086 .driver = {
1087 .name = "sh_cmt",
1088 .of_match_table = of_match_ptr(sh_cmt_of_table),
1089 },
1090 .id_table = sh_cmt_id_table,
1091 };
1092
1093 static int __init sh_cmt_init(void)
1094 {
1095 return platform_driver_register(&sh_cmt_device_driver);
1096 }
1097
1098 static void __exit sh_cmt_exit(void)
1099 {
1100 platform_driver_unregister(&sh_cmt_device_driver);
1101 }
1102
1103 early_platform_init("earlytimer", &sh_cmt_device_driver);
1104 subsys_initcall(sh_cmt_init);
1105 module_exit(sh_cmt_exit);
1106
1107 MODULE_AUTHOR("Magnus Damm");
1108 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1109 MODULE_LICENSE("GPL v2");