]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/clocksource/sh_cmt.c
Merge branch 'drm-next-4.12' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-artful-kernel.git] / drivers / clocksource / sh_cmt.c
1 /*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_domain.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sh_timer.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34
35 struct sh_cmt_device;
36
37 /*
38 * The CMT comes in 5 different identified flavours, depending not only on the
39 * SoC but also on the particular instance. The following table lists the main
40 * characteristics of those flavours.
41 *
42 * 16B 32B 32B-F 48B 48B-2
43 * -----------------------------------------------------------------------------
44 * Channels 2 1/4 1 6 2/8
45 * Control Width 16 16 16 16 32
46 * Counter Width 16 32 32 32/48 32/48
47 * Shared Start/Stop Y Y Y Y N
48 *
49 * The 48-bit gen2 version has a per-channel start/stop register located in the
50 * channel registers block. All other versions have a shared start/stop register
51 * located in the global space.
52 *
53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
54 * infers the start/stop bit position in the control register and the channel
55 * registers block address. Some CMT instances have a subset of channels
56 * available, in which case the index in the documentation doesn't match the
57 * "real" index as implemented in hardware. This is for instance the case with
58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59 * in the documentation but using start/stop bit 5 and having its registers
60 * block at 0x60.
61 *
62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64 */
65
66 enum sh_cmt_model {
67 SH_CMT_16BIT,
68 SH_CMT_32BIT,
69 SH_CMT_32BIT_FAST,
70 SH_CMT_48BIT,
71 SH_CMT_48BIT_GEN2,
72 };
73
74 struct sh_cmt_info {
75 enum sh_cmt_model model;
76
77 unsigned long width; /* 16 or 32 bit version of hardware block */
78 unsigned long overflow_bit;
79 unsigned long clear_bits;
80
81 /* callbacks for CMSTR and CMCSR access */
82 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83 void (*write_control)(void __iomem *base, unsigned long offs,
84 unsigned long value);
85
86 /* callbacks for CMCNT and CMCOR access */
87 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88 void (*write_count)(void __iomem *base, unsigned long offs,
89 unsigned long value);
90 };
91
92 struct sh_cmt_channel {
93 struct sh_cmt_device *cmt;
94
95 unsigned int index; /* Index in the documentation */
96 unsigned int hwidx; /* Real hardware index */
97
98 void __iomem *iostart;
99 void __iomem *ioctrl;
100
101 unsigned int timer_bit;
102 unsigned long flags;
103 unsigned long match_value;
104 unsigned long next_match_value;
105 unsigned long max_match_value;
106 raw_spinlock_t lock;
107 struct clock_event_device ced;
108 struct clocksource cs;
109 unsigned long total_cycles;
110 bool cs_enabled;
111 };
112
113 struct sh_cmt_device {
114 struct platform_device *pdev;
115
116 const struct sh_cmt_info *info;
117
118 void __iomem *mapbase;
119 struct clk *clk;
120 unsigned long rate;
121
122 raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124 struct sh_cmt_channel *channels;
125 unsigned int num_channels;
126 unsigned int hw_channels;
127
128 bool has_clockevent;
129 bool has_clocksource;
130 };
131
132 #define SH_CMT16_CMCSR_CMF (1 << 7)
133 #define SH_CMT16_CMCSR_CMIE (1 << 6)
134 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
135 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
136 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
137 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
138 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139
140 #define SH_CMT32_CMCSR_CMF (1 << 15)
141 #define SH_CMT32_CMCSR_OVF (1 << 14)
142 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
143 #define SH_CMT32_CMCSR_STTF (1 << 12)
144 #define SH_CMT32_CMCSR_STPF (1 << 11)
145 #define SH_CMT32_CMCSR_SSIE (1 << 10)
146 #define SH_CMT32_CMCSR_CMS (1 << 9)
147 #define SH_CMT32_CMCSR_CMM (1 << 8)
148 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
149 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
150 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
151 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
152 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
153 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
154 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
156 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
158 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159
160 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
161 {
162 return ioread16(base + (offs << 1));
163 }
164
165 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166 {
167 return ioread32(base + (offs << 2));
168 }
169
170 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171 unsigned long value)
172 {
173 iowrite16(value, base + (offs << 1));
174 }
175
176 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177 unsigned long value)
178 {
179 iowrite32(value, base + (offs << 2));
180 }
181
182 static const struct sh_cmt_info sh_cmt_info[] = {
183 [SH_CMT_16BIT] = {
184 .model = SH_CMT_16BIT,
185 .width = 16,
186 .overflow_bit = SH_CMT16_CMCSR_CMF,
187 .clear_bits = ~SH_CMT16_CMCSR_CMF,
188 .read_control = sh_cmt_read16,
189 .write_control = sh_cmt_write16,
190 .read_count = sh_cmt_read16,
191 .write_count = sh_cmt_write16,
192 },
193 [SH_CMT_32BIT] = {
194 .model = SH_CMT_32BIT,
195 .width = 32,
196 .overflow_bit = SH_CMT32_CMCSR_CMF,
197 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198 .read_control = sh_cmt_read16,
199 .write_control = sh_cmt_write16,
200 .read_count = sh_cmt_read32,
201 .write_count = sh_cmt_write32,
202 },
203 [SH_CMT_32BIT_FAST] = {
204 .model = SH_CMT_32BIT_FAST,
205 .width = 32,
206 .overflow_bit = SH_CMT32_CMCSR_CMF,
207 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
208 .read_control = sh_cmt_read16,
209 .write_control = sh_cmt_write16,
210 .read_count = sh_cmt_read32,
211 .write_count = sh_cmt_write32,
212 },
213 [SH_CMT_48BIT] = {
214 .model = SH_CMT_48BIT,
215 .width = 32,
216 .overflow_bit = SH_CMT32_CMCSR_CMF,
217 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 .read_control = sh_cmt_read32,
219 .write_control = sh_cmt_write32,
220 .read_count = sh_cmt_read32,
221 .write_count = sh_cmt_write32,
222 },
223 [SH_CMT_48BIT_GEN2] = {
224 .model = SH_CMT_48BIT_GEN2,
225 .width = 32,
226 .overflow_bit = SH_CMT32_CMCSR_CMF,
227 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 .read_control = sh_cmt_read32,
229 .write_control = sh_cmt_write32,
230 .read_count = sh_cmt_read32,
231 .write_count = sh_cmt_write32,
232 },
233 };
234
235 #define CMCSR 0 /* channel register */
236 #define CMCNT 1 /* channel register */
237 #define CMCOR 2 /* channel register */
238
239 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
240 {
241 if (ch->iostart)
242 return ch->cmt->info->read_control(ch->iostart, 0);
243 else
244 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
245 }
246
247 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248 unsigned long value)
249 {
250 if (ch->iostart)
251 ch->cmt->info->write_control(ch->iostart, 0, value);
252 else
253 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255
256 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
262 unsigned long value)
263 {
264 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
265 }
266
267 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
268 {
269 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
270 }
271
272 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
273 unsigned long value)
274 {
275 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276 }
277
278 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
279 unsigned long value)
280 {
281 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
282 }
283
284 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
285 int *has_wrapped)
286 {
287 unsigned long v1, v2, v3;
288 int o1, o2;
289
290 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291
292 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293 do {
294 o2 = o1;
295 v1 = sh_cmt_read_cmcnt(ch);
296 v2 = sh_cmt_read_cmcnt(ch);
297 v3 = sh_cmt_read_cmcnt(ch);
298 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
299 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
301
302 *has_wrapped = o1;
303 return v2;
304 }
305
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307 {
308 unsigned long flags, value;
309
310 /* start stop register shared by multiple timer channels */
311 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
312 value = sh_cmt_read_cmstr(ch);
313
314 if (start)
315 value |= 1 << ch->timer_bit;
316 else
317 value &= ~(1 << ch->timer_bit);
318
319 sh_cmt_write_cmstr(ch, value);
320 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
321 }
322
323 static int sh_cmt_enable(struct sh_cmt_channel *ch)
324 {
325 int k, ret;
326
327 pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
329
330 /* enable clock */
331 ret = clk_enable(ch->cmt->clk);
332 if (ret) {
333 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 ch->index);
335 goto err0;
336 }
337
338 /* make sure channel is disabled */
339 sh_cmt_start_stop_ch(ch, 0);
340
341 /* configure channel, periodic mode and maximum timeout */
342 if (ch->cmt->info->width == 16) {
343 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
344 SH_CMT16_CMCSR_CKS512);
345 } else {
346 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
347 SH_CMT32_CMCSR_CMTOUT_IE |
348 SH_CMT32_CMCSR_CMR_IRQ |
349 SH_CMT32_CMCSR_CKS_RCLK8);
350 }
351
352 sh_cmt_write_cmcor(ch, 0xffffffff);
353 sh_cmt_write_cmcnt(ch, 0);
354
355 /*
356 * According to the sh73a0 user's manual, as CMCNT can be operated
357 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
358 * modifying CMCNT register; two RCLK cycles are necessary before
359 * this register is either read or any modification of the value
360 * it holds is reflected in the LSI's actual operation.
361 *
362 * While at it, we're supposed to clear out the CMCNT as of this
363 * moment, so make sure it's processed properly here. This will
364 * take RCLKx2 at maximum.
365 */
366 for (k = 0; k < 100; k++) {
367 if (!sh_cmt_read_cmcnt(ch))
368 break;
369 udelay(1);
370 }
371
372 if (sh_cmt_read_cmcnt(ch)) {
373 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
374 ch->index);
375 ret = -ETIMEDOUT;
376 goto err1;
377 }
378
379 /* enable channel */
380 sh_cmt_start_stop_ch(ch, 1);
381 return 0;
382 err1:
383 /* stop clock */
384 clk_disable(ch->cmt->clk);
385
386 err0:
387 return ret;
388 }
389
390 static void sh_cmt_disable(struct sh_cmt_channel *ch)
391 {
392 /* disable channel */
393 sh_cmt_start_stop_ch(ch, 0);
394
395 /* disable interrupts in CMT block */
396 sh_cmt_write_cmcsr(ch, 0);
397
398 /* stop clock */
399 clk_disable(ch->cmt->clk);
400
401 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
402 pm_runtime_put(&ch->cmt->pdev->dev);
403 }
404
405 /* private flags */
406 #define FLAG_CLOCKEVENT (1 << 0)
407 #define FLAG_CLOCKSOURCE (1 << 1)
408 #define FLAG_REPROGRAM (1 << 2)
409 #define FLAG_SKIPEVENT (1 << 3)
410 #define FLAG_IRQCONTEXT (1 << 4)
411
412 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
413 int absolute)
414 {
415 unsigned long new_match;
416 unsigned long value = ch->next_match_value;
417 unsigned long delay = 0;
418 unsigned long now = 0;
419 int has_wrapped;
420
421 now = sh_cmt_get_counter(ch, &has_wrapped);
422 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
423
424 if (has_wrapped) {
425 /* we're competing with the interrupt handler.
426 * -> let the interrupt handler reprogram the timer.
427 * -> interrupt number two handles the event.
428 */
429 ch->flags |= FLAG_SKIPEVENT;
430 return;
431 }
432
433 if (absolute)
434 now = 0;
435
436 do {
437 /* reprogram the timer hardware,
438 * but don't save the new match value yet.
439 */
440 new_match = now + value + delay;
441 if (new_match > ch->max_match_value)
442 new_match = ch->max_match_value;
443
444 sh_cmt_write_cmcor(ch, new_match);
445
446 now = sh_cmt_get_counter(ch, &has_wrapped);
447 if (has_wrapped && (new_match > ch->match_value)) {
448 /* we are changing to a greater match value,
449 * so this wrap must be caused by the counter
450 * matching the old value.
451 * -> first interrupt reprograms the timer.
452 * -> interrupt number two handles the event.
453 */
454 ch->flags |= FLAG_SKIPEVENT;
455 break;
456 }
457
458 if (has_wrapped) {
459 /* we are changing to a smaller match value,
460 * so the wrap must be caused by the counter
461 * matching the new value.
462 * -> save programmed match value.
463 * -> let isr handle the event.
464 */
465 ch->match_value = new_match;
466 break;
467 }
468
469 /* be safe: verify hardware settings */
470 if (now < new_match) {
471 /* timer value is below match value, all good.
472 * this makes sure we won't miss any match events.
473 * -> save programmed match value.
474 * -> let isr handle the event.
475 */
476 ch->match_value = new_match;
477 break;
478 }
479
480 /* the counter has reached a value greater
481 * than our new match value. and since the
482 * has_wrapped flag isn't set we must have
483 * programmed a too close event.
484 * -> increase delay and retry.
485 */
486 if (delay)
487 delay <<= 1;
488 else
489 delay = 1;
490
491 if (!delay)
492 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
493 ch->index);
494
495 } while (delay);
496 }
497
498 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
499 {
500 if (delta > ch->max_match_value)
501 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
502 ch->index);
503
504 ch->next_match_value = delta;
505 sh_cmt_clock_event_program_verify(ch, 0);
506 }
507
508 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
509 {
510 unsigned long flags;
511
512 raw_spin_lock_irqsave(&ch->lock, flags);
513 __sh_cmt_set_next(ch, delta);
514 raw_spin_unlock_irqrestore(&ch->lock, flags);
515 }
516
517 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
518 {
519 struct sh_cmt_channel *ch = dev_id;
520
521 /* clear flags */
522 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
523 ch->cmt->info->clear_bits);
524
525 /* update clock source counter to begin with if enabled
526 * the wrap flag should be cleared by the timer specific
527 * isr before we end up here.
528 */
529 if (ch->flags & FLAG_CLOCKSOURCE)
530 ch->total_cycles += ch->match_value + 1;
531
532 if (!(ch->flags & FLAG_REPROGRAM))
533 ch->next_match_value = ch->max_match_value;
534
535 ch->flags |= FLAG_IRQCONTEXT;
536
537 if (ch->flags & FLAG_CLOCKEVENT) {
538 if (!(ch->flags & FLAG_SKIPEVENT)) {
539 if (clockevent_state_oneshot(&ch->ced)) {
540 ch->next_match_value = ch->max_match_value;
541 ch->flags |= FLAG_REPROGRAM;
542 }
543
544 ch->ced.event_handler(&ch->ced);
545 }
546 }
547
548 ch->flags &= ~FLAG_SKIPEVENT;
549
550 if (ch->flags & FLAG_REPROGRAM) {
551 ch->flags &= ~FLAG_REPROGRAM;
552 sh_cmt_clock_event_program_verify(ch, 1);
553
554 if (ch->flags & FLAG_CLOCKEVENT)
555 if ((clockevent_state_shutdown(&ch->ced))
556 || (ch->match_value == ch->next_match_value))
557 ch->flags &= ~FLAG_REPROGRAM;
558 }
559
560 ch->flags &= ~FLAG_IRQCONTEXT;
561
562 return IRQ_HANDLED;
563 }
564
565 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
566 {
567 int ret = 0;
568 unsigned long flags;
569
570 raw_spin_lock_irqsave(&ch->lock, flags);
571
572 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
573 ret = sh_cmt_enable(ch);
574
575 if (ret)
576 goto out;
577 ch->flags |= flag;
578
579 /* setup timeout if no clockevent */
580 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
581 __sh_cmt_set_next(ch, ch->max_match_value);
582 out:
583 raw_spin_unlock_irqrestore(&ch->lock, flags);
584
585 return ret;
586 }
587
588 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
589 {
590 unsigned long flags;
591 unsigned long f;
592
593 raw_spin_lock_irqsave(&ch->lock, flags);
594
595 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
596 ch->flags &= ~flag;
597
598 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599 sh_cmt_disable(ch);
600
601 /* adjust the timeout to maximum if only clocksource left */
602 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
603 __sh_cmt_set_next(ch, ch->max_match_value);
604
605 raw_spin_unlock_irqrestore(&ch->lock, flags);
606 }
607
608 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
609 {
610 return container_of(cs, struct sh_cmt_channel, cs);
611 }
612
613 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
614 {
615 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
616 unsigned long flags, raw;
617 unsigned long value;
618 int has_wrapped;
619
620 raw_spin_lock_irqsave(&ch->lock, flags);
621 value = ch->total_cycles;
622 raw = sh_cmt_get_counter(ch, &has_wrapped);
623
624 if (unlikely(has_wrapped))
625 raw += ch->match_value + 1;
626 raw_spin_unlock_irqrestore(&ch->lock, flags);
627
628 return value + raw;
629 }
630
631 static int sh_cmt_clocksource_enable(struct clocksource *cs)
632 {
633 int ret;
634 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
635
636 WARN_ON(ch->cs_enabled);
637
638 ch->total_cycles = 0;
639
640 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
641 if (!ret)
642 ch->cs_enabled = true;
643
644 return ret;
645 }
646
647 static void sh_cmt_clocksource_disable(struct clocksource *cs)
648 {
649 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
650
651 WARN_ON(!ch->cs_enabled);
652
653 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
654 ch->cs_enabled = false;
655 }
656
657 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
658 {
659 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
660
661 if (!ch->cs_enabled)
662 return;
663
664 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666 }
667
668 static void sh_cmt_clocksource_resume(struct clocksource *cs)
669 {
670 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671
672 if (!ch->cs_enabled)
673 return;
674
675 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
676 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
677 }
678
679 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
680 const char *name)
681 {
682 struct clocksource *cs = &ch->cs;
683
684 cs->name = name;
685 cs->rating = 125;
686 cs->read = sh_cmt_clocksource_read;
687 cs->enable = sh_cmt_clocksource_enable;
688 cs->disable = sh_cmt_clocksource_disable;
689 cs->suspend = sh_cmt_clocksource_suspend;
690 cs->resume = sh_cmt_clocksource_resume;
691 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
692 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
693
694 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
695 ch->index);
696
697 clocksource_register_hz(cs, ch->cmt->rate);
698 return 0;
699 }
700
701 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
702 {
703 return container_of(ced, struct sh_cmt_channel, ced);
704 }
705
706 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
707 {
708 sh_cmt_start(ch, FLAG_CLOCKEVENT);
709
710 if (periodic)
711 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
712 else
713 sh_cmt_set_next(ch, ch->max_match_value);
714 }
715
716 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
717 {
718 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
719
720 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
721 return 0;
722 }
723
724 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
725 int periodic)
726 {
727 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728
729 /* deal with old setting first */
730 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
731 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
732
733 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
734 ch->index, periodic ? "periodic" : "oneshot");
735 sh_cmt_clock_event_start(ch, periodic);
736 return 0;
737 }
738
739 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
740 {
741 return sh_cmt_clock_event_set_state(ced, 0);
742 }
743
744 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
745 {
746 return sh_cmt_clock_event_set_state(ced, 1);
747 }
748
749 static int sh_cmt_clock_event_next(unsigned long delta,
750 struct clock_event_device *ced)
751 {
752 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
753
754 BUG_ON(!clockevent_state_oneshot(ced));
755 if (likely(ch->flags & FLAG_IRQCONTEXT))
756 ch->next_match_value = delta - 1;
757 else
758 sh_cmt_set_next(ch, delta - 1);
759
760 return 0;
761 }
762
763 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
764 {
765 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766
767 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
768 clk_unprepare(ch->cmt->clk);
769 }
770
771 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
772 {
773 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774
775 clk_prepare(ch->cmt->clk);
776 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
777 }
778
779 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
780 const char *name)
781 {
782 struct clock_event_device *ced = &ch->ced;
783 int irq;
784 int ret;
785
786 irq = platform_get_irq(ch->cmt->pdev, ch->index);
787 if (irq < 0) {
788 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
789 ch->index);
790 return irq;
791 }
792
793 ret = request_irq(irq, sh_cmt_interrupt,
794 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
795 dev_name(&ch->cmt->pdev->dev), ch);
796 if (ret) {
797 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
798 ch->index, irq);
799 return ret;
800 }
801
802 ced->name = name;
803 ced->features = CLOCK_EVT_FEAT_PERIODIC;
804 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
805 ced->rating = 125;
806 ced->cpumask = cpu_possible_mask;
807 ced->set_next_event = sh_cmt_clock_event_next;
808 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
809 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
810 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
811 ced->suspend = sh_cmt_clock_event_suspend;
812 ced->resume = sh_cmt_clock_event_resume;
813
814 /* TODO: calculate good shift from rate and counter bit width */
815 ced->shift = 32;
816 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
817 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
818 ced->max_delta_ticks = ch->max_match_value;
819 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
820 ced->min_delta_ticks = 0x1f;
821
822 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
823 ch->index);
824 clockevents_register_device(ced);
825
826 return 0;
827 }
828
829 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
830 bool clockevent, bool clocksource)
831 {
832 int ret;
833
834 if (clockevent) {
835 ch->cmt->has_clockevent = true;
836 ret = sh_cmt_register_clockevent(ch, name);
837 if (ret < 0)
838 return ret;
839 }
840
841 if (clocksource) {
842 ch->cmt->has_clocksource = true;
843 sh_cmt_register_clocksource(ch, name);
844 }
845
846 return 0;
847 }
848
849 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
850 unsigned int hwidx, bool clockevent,
851 bool clocksource, struct sh_cmt_device *cmt)
852 {
853 int ret;
854
855 /* Skip unused channels. */
856 if (!clockevent && !clocksource)
857 return 0;
858
859 ch->cmt = cmt;
860 ch->index = index;
861 ch->hwidx = hwidx;
862
863 /*
864 * Compute the address of the channel control register block. For the
865 * timers with a per-channel start/stop register, compute its address
866 * as well.
867 */
868 switch (cmt->info->model) {
869 case SH_CMT_16BIT:
870 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
871 break;
872 case SH_CMT_32BIT:
873 case SH_CMT_48BIT:
874 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
875 break;
876 case SH_CMT_32BIT_FAST:
877 /*
878 * The 32-bit "fast" timer has a single channel at hwidx 5 but
879 * is located at offset 0x40 instead of 0x60 for some reason.
880 */
881 ch->ioctrl = cmt->mapbase + 0x40;
882 break;
883 case SH_CMT_48BIT_GEN2:
884 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
885 ch->ioctrl = ch->iostart + 0x10;
886 break;
887 }
888
889 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
890 ch->max_match_value = ~0;
891 else
892 ch->max_match_value = (1 << cmt->info->width) - 1;
893
894 ch->match_value = ch->max_match_value;
895 raw_spin_lock_init(&ch->lock);
896
897 ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
898
899 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
900 clockevent, clocksource);
901 if (ret) {
902 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
903 ch->index);
904 return ret;
905 }
906 ch->cs_enabled = false;
907
908 return 0;
909 }
910
911 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
912 {
913 struct resource *mem;
914
915 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
916 if (!mem) {
917 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
918 return -ENXIO;
919 }
920
921 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
922 if (cmt->mapbase == NULL) {
923 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
924 return -ENXIO;
925 }
926
927 return 0;
928 }
929
930 static const struct platform_device_id sh_cmt_id_table[] = {
931 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
932 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
933 { }
934 };
935 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
936
937 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
938 { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
939 { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
940 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
941 { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
942 { }
943 };
944 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
945
946 static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
947 {
948 struct device_node *np = cmt->pdev->dev.of_node;
949
950 return of_property_read_u32(np, "renesas,channels-mask",
951 &cmt->hw_channels);
952 }
953
954 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
955 {
956 unsigned int mask;
957 unsigned int i;
958 int ret;
959
960 cmt->pdev = pdev;
961 raw_spin_lock_init(&cmt->lock);
962
963 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
964 const struct of_device_id *id;
965
966 id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
967 cmt->info = id->data;
968
969 ret = sh_cmt_parse_dt(cmt);
970 if (ret < 0)
971 return ret;
972 } else if (pdev->dev.platform_data) {
973 struct sh_timer_config *cfg = pdev->dev.platform_data;
974 const struct platform_device_id *id = pdev->id_entry;
975
976 cmt->info = (const struct sh_cmt_info *)id->driver_data;
977 cmt->hw_channels = cfg->channels_mask;
978 } else {
979 dev_err(&cmt->pdev->dev, "missing platform data\n");
980 return -ENXIO;
981 }
982
983 /* Get hold of clock. */
984 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
985 if (IS_ERR(cmt->clk)) {
986 dev_err(&cmt->pdev->dev, "cannot get clock\n");
987 return PTR_ERR(cmt->clk);
988 }
989
990 ret = clk_prepare(cmt->clk);
991 if (ret < 0)
992 goto err_clk_put;
993
994 /* Determine clock rate. */
995 ret = clk_enable(cmt->clk);
996 if (ret < 0)
997 goto err_clk_unprepare;
998
999 if (cmt->info->width == 16)
1000 cmt->rate = clk_get_rate(cmt->clk) / 512;
1001 else
1002 cmt->rate = clk_get_rate(cmt->clk) / 8;
1003
1004 clk_disable(cmt->clk);
1005
1006 /* Map the memory resource(s). */
1007 ret = sh_cmt_map_memory(cmt);
1008 if (ret < 0)
1009 goto err_clk_unprepare;
1010
1011 /* Allocate and setup the channels. */
1012 cmt->num_channels = hweight8(cmt->hw_channels);
1013 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1014 GFP_KERNEL);
1015 if (cmt->channels == NULL) {
1016 ret = -ENOMEM;
1017 goto err_unmap;
1018 }
1019
1020 /*
1021 * Use the first channel as a clock event device and the second channel
1022 * as a clock source. If only one channel is available use it for both.
1023 */
1024 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1025 unsigned int hwidx = ffs(mask) - 1;
1026 bool clocksource = i == 1 || cmt->num_channels == 1;
1027 bool clockevent = i == 0;
1028
1029 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1030 clockevent, clocksource, cmt);
1031 if (ret < 0)
1032 goto err_unmap;
1033
1034 mask &= ~(1 << hwidx);
1035 }
1036
1037 platform_set_drvdata(pdev, cmt);
1038
1039 return 0;
1040
1041 err_unmap:
1042 kfree(cmt->channels);
1043 iounmap(cmt->mapbase);
1044 err_clk_unprepare:
1045 clk_unprepare(cmt->clk);
1046 err_clk_put:
1047 clk_put(cmt->clk);
1048 return ret;
1049 }
1050
1051 static int sh_cmt_probe(struct platform_device *pdev)
1052 {
1053 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1054 int ret;
1055
1056 if (!is_early_platform_device(pdev)) {
1057 pm_runtime_set_active(&pdev->dev);
1058 pm_runtime_enable(&pdev->dev);
1059 }
1060
1061 if (cmt) {
1062 dev_info(&pdev->dev, "kept as earlytimer\n");
1063 goto out;
1064 }
1065
1066 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1067 if (cmt == NULL)
1068 return -ENOMEM;
1069
1070 ret = sh_cmt_setup(cmt, pdev);
1071 if (ret) {
1072 kfree(cmt);
1073 pm_runtime_idle(&pdev->dev);
1074 return ret;
1075 }
1076 if (is_early_platform_device(pdev))
1077 return 0;
1078
1079 out:
1080 if (cmt->has_clockevent || cmt->has_clocksource)
1081 pm_runtime_irq_safe(&pdev->dev);
1082 else
1083 pm_runtime_idle(&pdev->dev);
1084
1085 return 0;
1086 }
1087
1088 static int sh_cmt_remove(struct platform_device *pdev)
1089 {
1090 return -EBUSY; /* cannot unregister clockevent and clocksource */
1091 }
1092
1093 static struct platform_driver sh_cmt_device_driver = {
1094 .probe = sh_cmt_probe,
1095 .remove = sh_cmt_remove,
1096 .driver = {
1097 .name = "sh_cmt",
1098 .of_match_table = of_match_ptr(sh_cmt_of_table),
1099 },
1100 .id_table = sh_cmt_id_table,
1101 };
1102
1103 static int __init sh_cmt_init(void)
1104 {
1105 return platform_driver_register(&sh_cmt_device_driver);
1106 }
1107
1108 static void __exit sh_cmt_exit(void)
1109 {
1110 platform_driver_unregister(&sh_cmt_device_driver);
1111 }
1112
1113 early_platform_init("earlytimer", &sh_cmt_device_driver);
1114 subsys_initcall(sh_cmt_init);
1115 module_exit(sh_cmt_exit);
1116
1117 MODULE_AUTHOR("Magnus Damm");
1118 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1119 MODULE_LICENSE("GPL v2");