]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/clocksource/tcb_clksrc.c
Merge branch 'linux-next' of git://git.infradead.org/ubifs-2.6
[mirror_ubuntu-bionic-kernel.git] / drivers / clocksource / tcb_clksrc.c
1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
13
14
15 /*
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
18 *
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
22 *
23 * - The third channel may be used to provide a 16-bit clockevent
24 * source, used in either periodic or oneshot mode. This runs
25 * at 32 KiHZ, and can handle delays of up to two seconds.
26 *
27 * A boot clocksource and clockevent source are also currently needed,
28 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
29 * this code can be used when init_timers() is called, well before most
30 * devices are set up. (Some low end AT91 parts, which can run uClinux,
31 * have only the timers in one TC block... they currently don't support
32 * the tclib code, because of that initialization issue.)
33 *
34 * REVISIT behavior during system suspend states... we should disable
35 * all clocks and save the power. Easily done for clockevent devices,
36 * but clocksources won't necessarily get the needed notifications.
37 * For deeper system sleep states, this will be mandatory...
38 */
39
40 static void __iomem *tcaddr;
41
42 static cycle_t tc_get_cycles(struct clocksource *cs)
43 {
44 unsigned long flags;
45 u32 lower, upper;
46
47 raw_local_irq_save(flags);
48 do {
49 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
50 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
51 } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
52
53 raw_local_irq_restore(flags);
54 return (upper << 16) | lower;
55 }
56
57 static struct clocksource clksrc = {
58 .name = "tcb_clksrc",
59 .rating = 200,
60 .read = tc_get_cycles,
61 .mask = CLOCKSOURCE_MASK(32),
62 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
63 };
64
65 #ifdef CONFIG_GENERIC_CLOCKEVENTS
66
67 struct tc_clkevt_device {
68 struct clock_event_device clkevt;
69 struct clk *clk;
70 void __iomem *regs;
71 };
72
73 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
74 {
75 return container_of(clkevt, struct tc_clkevt_device, clkevt);
76 }
77
78 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
79 * because using one of the divided clocks would usually mean the
80 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
81 *
82 * A divided clock could be good for high resolution timers, since
83 * 30.5 usec resolution can seem "low".
84 */
85 static u32 timer_clock;
86
87 static void tc_mode(enum clock_event_mode m, struct clock_event_device *d)
88 {
89 struct tc_clkevt_device *tcd = to_tc_clkevt(d);
90 void __iomem *regs = tcd->regs;
91
92 if (tcd->clkevt.mode == CLOCK_EVT_MODE_PERIODIC
93 || tcd->clkevt.mode == CLOCK_EVT_MODE_ONESHOT) {
94 __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
95 __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
96 clk_disable(tcd->clk);
97 }
98
99 switch (m) {
100
101 /* By not making the gentime core emulate periodic mode on top
102 * of oneshot, we get lower overhead and improved accuracy.
103 */
104 case CLOCK_EVT_MODE_PERIODIC:
105 clk_enable(tcd->clk);
106
107 /* slow clock, count up to RC, then irq and restart */
108 __raw_writel(timer_clock
109 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
110 regs + ATMEL_TC_REG(2, CMR));
111 __raw_writel((32768 + HZ/2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
112
113 /* Enable clock and interrupts on RC compare */
114 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
115
116 /* go go gadget! */
117 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
118 regs + ATMEL_TC_REG(2, CCR));
119 break;
120
121 case CLOCK_EVT_MODE_ONESHOT:
122 clk_enable(tcd->clk);
123
124 /* slow clock, count up to RC, then irq and stop */
125 __raw_writel(timer_clock | ATMEL_TC_CPCSTOP
126 | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
127 regs + ATMEL_TC_REG(2, CMR));
128 __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
129
130 /* set_next_event() configures and starts the timer */
131 break;
132
133 default:
134 break;
135 }
136 }
137
138 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
139 {
140 __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
141
142 /* go go gadget! */
143 __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
144 tcaddr + ATMEL_TC_REG(2, CCR));
145 return 0;
146 }
147
148 static struct tc_clkevt_device clkevt = {
149 .clkevt = {
150 .name = "tc_clkevt",
151 .features = CLOCK_EVT_FEAT_PERIODIC
152 | CLOCK_EVT_FEAT_ONESHOT,
153 .shift = 32,
154 /* Should be lower than at91rm9200's system timer */
155 .rating = 125,
156 .set_next_event = tc_next_event,
157 .set_mode = tc_mode,
158 },
159 };
160
161 static irqreturn_t ch2_irq(int irq, void *handle)
162 {
163 struct tc_clkevt_device *dev = handle;
164 unsigned int sr;
165
166 sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
167 if (sr & ATMEL_TC_CPCS) {
168 dev->clkevt.event_handler(&dev->clkevt);
169 return IRQ_HANDLED;
170 }
171
172 return IRQ_NONE;
173 }
174
175 static struct irqaction tc_irqaction = {
176 .name = "tc_clkevt",
177 .flags = IRQF_TIMER | IRQF_DISABLED,
178 .handler = ch2_irq,
179 };
180
181 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
182 {
183 struct clk *t2_clk = tc->clk[2];
184 int irq = tc->irq[2];
185
186 clkevt.regs = tc->regs;
187 clkevt.clk = t2_clk;
188 tc_irqaction.dev_id = &clkevt;
189
190 timer_clock = clk32k_divisor_idx;
191
192 clkevt.clkevt.mult = div_sc(32768, NSEC_PER_SEC, clkevt.clkevt.shift);
193 clkevt.clkevt.max_delta_ns
194 = clockevent_delta2ns(0xffff, &clkevt.clkevt);
195 clkevt.clkevt.min_delta_ns = clockevent_delta2ns(1, &clkevt.clkevt) + 1;
196 clkevt.clkevt.cpumask = cpumask_of(0);
197
198 clockevents_register_device(&clkevt.clkevt);
199
200 setup_irq(irq, &tc_irqaction);
201 }
202
203 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
204
205 static void __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
206 {
207 /* NOTHING */
208 }
209
210 #endif
211
212 static int __init tcb_clksrc_init(void)
213 {
214 static char bootinfo[] __initdata
215 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
216
217 struct platform_device *pdev;
218 struct atmel_tc *tc;
219 struct clk *t0_clk;
220 u32 rate, divided_rate = 0;
221 int best_divisor_idx = -1;
222 int clk32k_divisor_idx = -1;
223 int i;
224
225 tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK, clksrc.name);
226 if (!tc) {
227 pr_debug("can't alloc TC for clocksource\n");
228 return -ENODEV;
229 }
230 tcaddr = tc->regs;
231 pdev = tc->pdev;
232
233 t0_clk = tc->clk[0];
234 clk_enable(t0_clk);
235
236 /* How fast will we be counting? Pick something over 5 MHz. */
237 rate = (u32) clk_get_rate(t0_clk);
238 for (i = 0; i < 5; i++) {
239 unsigned divisor = atmel_tc_divisors[i];
240 unsigned tmp;
241
242 /* remember 32 KiHz clock for later */
243 if (!divisor) {
244 clk32k_divisor_idx = i;
245 continue;
246 }
247
248 tmp = rate / divisor;
249 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
250 if (best_divisor_idx > 0) {
251 if (tmp < 5 * 1000 * 1000)
252 continue;
253 }
254 divided_rate = tmp;
255 best_divisor_idx = i;
256 }
257
258
259 printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
260 divided_rate / 1000000,
261 ((divided_rate + 500000) % 1000000) / 1000);
262
263 /* tclib will give us three clocks no matter what the
264 * underlying platform supports.
265 */
266 clk_enable(tc->clk[1]);
267
268 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
269 __raw_writel(best_divisor_idx /* likely divide-by-8 */
270 | ATMEL_TC_WAVE
271 | ATMEL_TC_WAVESEL_UP /* free-run */
272 | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
273 | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
274 tcaddr + ATMEL_TC_REG(0, CMR));
275 __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
276 __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
277 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
278 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
279
280 /* channel 1: waveform mode, input TIOA0 */
281 __raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */
282 | ATMEL_TC_WAVE
283 | ATMEL_TC_WAVESEL_UP, /* free-run */
284 tcaddr + ATMEL_TC_REG(1, CMR));
285 __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
286 __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
287
288 /* chain channel 0 to channel 1, then reset all the timers */
289 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
290 __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
291
292 /* and away we go! */
293 clocksource_register_hz(&clksrc, divided_rate);
294
295 /* channel 2: periodic and oneshot timer support */
296 setup_clkevents(tc, clk32k_divisor_idx);
297
298 return 0;
299 }
300 arch_initcall(tcb_clksrc_init);