]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/clocksource/timer-fsl-ftm.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-focal-kernel.git] / drivers / clocksource / timer-fsl-ftm.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale FlexTimer Module (FTM) timer driver.
4 *
5 * Copyright 2014 Freescale Semiconductor, Inc.
6 */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/sched_clock.h>
17 #include <linux/slab.h>
18 #include <linux/fsl/ftm.h>
19
20 #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
21
22 struct ftm_clock_device {
23 void __iomem *clksrc_base;
24 void __iomem *clkevt_base;
25 unsigned long periodic_cyc;
26 unsigned long ps;
27 bool big_endian;
28 };
29
30 static struct ftm_clock_device *priv;
31
32 static inline u32 ftm_readl(void __iomem *addr)
33 {
34 if (priv->big_endian)
35 return ioread32be(addr);
36 else
37 return ioread32(addr);
38 }
39
40 static inline void ftm_writel(u32 val, void __iomem *addr)
41 {
42 if (priv->big_endian)
43 iowrite32be(val, addr);
44 else
45 iowrite32(val, addr);
46 }
47
48 static inline void ftm_counter_enable(void __iomem *base)
49 {
50 u32 val;
51
52 /* select and enable counter clock source */
53 val = ftm_readl(base + FTM_SC);
54 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
55 val |= priv->ps | FTM_SC_CLK(1);
56 ftm_writel(val, base + FTM_SC);
57 }
58
59 static inline void ftm_counter_disable(void __iomem *base)
60 {
61 u32 val;
62
63 /* disable counter clock source */
64 val = ftm_readl(base + FTM_SC);
65 val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
66 ftm_writel(val, base + FTM_SC);
67 }
68
69 static inline void ftm_irq_acknowledge(void __iomem *base)
70 {
71 u32 val;
72
73 val = ftm_readl(base + FTM_SC);
74 val &= ~FTM_SC_TOF;
75 ftm_writel(val, base + FTM_SC);
76 }
77
78 static inline void ftm_irq_enable(void __iomem *base)
79 {
80 u32 val;
81
82 val = ftm_readl(base + FTM_SC);
83 val |= FTM_SC_TOIE;
84 ftm_writel(val, base + FTM_SC);
85 }
86
87 static inline void ftm_irq_disable(void __iomem *base)
88 {
89 u32 val;
90
91 val = ftm_readl(base + FTM_SC);
92 val &= ~FTM_SC_TOIE;
93 ftm_writel(val, base + FTM_SC);
94 }
95
96 static inline void ftm_reset_counter(void __iomem *base)
97 {
98 /*
99 * The CNT register contains the FTM counter value.
100 * Reset clears the CNT register. Writing any value to COUNT
101 * updates the counter with its initial value, CNTIN.
102 */
103 ftm_writel(0x00, base + FTM_CNT);
104 }
105
106 static u64 notrace ftm_read_sched_clock(void)
107 {
108 return ftm_readl(priv->clksrc_base + FTM_CNT);
109 }
110
111 static int ftm_set_next_event(unsigned long delta,
112 struct clock_event_device *unused)
113 {
114 /*
115 * The CNNIN and MOD are all double buffer registers, writing
116 * to the MOD register latches the value into a buffer. The MOD
117 * register is updated with the value of its write buffer with
118 * the following scenario:
119 * a, the counter source clock is diabled.
120 */
121 ftm_counter_disable(priv->clkevt_base);
122
123 /* Force the value of CNTIN to be loaded into the FTM counter */
124 ftm_reset_counter(priv->clkevt_base);
125
126 /*
127 * The counter increments until the value of MOD is reached,
128 * at which point the counter is reloaded with the value of CNTIN.
129 * The TOF (the overflow flag) bit is set when the FTM counter
130 * changes from MOD to CNTIN. So we should using the delta - 1.
131 */
132 ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD);
133
134 ftm_counter_enable(priv->clkevt_base);
135
136 ftm_irq_enable(priv->clkevt_base);
137
138 return 0;
139 }
140
141 static int ftm_set_oneshot(struct clock_event_device *evt)
142 {
143 ftm_counter_disable(priv->clkevt_base);
144 return 0;
145 }
146
147 static int ftm_set_periodic(struct clock_event_device *evt)
148 {
149 ftm_set_next_event(priv->periodic_cyc, evt);
150 return 0;
151 }
152
153 static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id)
154 {
155 struct clock_event_device *evt = dev_id;
156
157 ftm_irq_acknowledge(priv->clkevt_base);
158
159 if (likely(clockevent_state_oneshot(evt))) {
160 ftm_irq_disable(priv->clkevt_base);
161 ftm_counter_disable(priv->clkevt_base);
162 }
163
164 evt->event_handler(evt);
165
166 return IRQ_HANDLED;
167 }
168
169 static struct clock_event_device ftm_clockevent = {
170 .name = "Freescale ftm timer",
171 .features = CLOCK_EVT_FEAT_PERIODIC |
172 CLOCK_EVT_FEAT_ONESHOT,
173 .set_state_periodic = ftm_set_periodic,
174 .set_state_oneshot = ftm_set_oneshot,
175 .set_next_event = ftm_set_next_event,
176 .rating = 300,
177 };
178
179 static struct irqaction ftm_timer_irq = {
180 .name = "Freescale ftm timer",
181 .flags = IRQF_TIMER | IRQF_IRQPOLL,
182 .handler = ftm_evt_interrupt,
183 .dev_id = &ftm_clockevent,
184 };
185
186 static int __init ftm_clockevent_init(unsigned long freq, int irq)
187 {
188 int err;
189
190 ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN);
191 ftm_writel(~0u, priv->clkevt_base + FTM_MOD);
192
193 ftm_reset_counter(priv->clkevt_base);
194
195 err = setup_irq(irq, &ftm_timer_irq);
196 if (err) {
197 pr_err("ftm: setup irq failed: %d\n", err);
198 return err;
199 }
200
201 ftm_clockevent.cpumask = cpumask_of(0);
202 ftm_clockevent.irq = irq;
203
204 clockevents_config_and_register(&ftm_clockevent,
205 freq / (1 << priv->ps),
206 1, 0xffff);
207
208 ftm_counter_enable(priv->clkevt_base);
209
210 return 0;
211 }
212
213 static int __init ftm_clocksource_init(unsigned long freq)
214 {
215 int err;
216
217 ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN);
218 ftm_writel(~0u, priv->clksrc_base + FTM_MOD);
219
220 ftm_reset_counter(priv->clksrc_base);
221
222 sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps));
223 err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm",
224 freq / (1 << priv->ps), 300, 16,
225 clocksource_mmio_readl_up);
226 if (err) {
227 pr_err("ftm: init clock source mmio failed: %d\n", err);
228 return err;
229 }
230
231 ftm_counter_enable(priv->clksrc_base);
232
233 return 0;
234 }
235
236 static int __init __ftm_clk_init(struct device_node *np, char *cnt_name,
237 char *ftm_name)
238 {
239 struct clk *clk;
240 int err;
241
242 clk = of_clk_get_by_name(np, cnt_name);
243 if (IS_ERR(clk)) {
244 pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk));
245 return PTR_ERR(clk);
246 }
247 err = clk_prepare_enable(clk);
248 if (err) {
249 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
250 cnt_name, err);
251 return err;
252 }
253
254 clk = of_clk_get_by_name(np, ftm_name);
255 if (IS_ERR(clk)) {
256 pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk));
257 return PTR_ERR(clk);
258 }
259 err = clk_prepare_enable(clk);
260 if (err)
261 pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n",
262 ftm_name, err);
263
264 return clk_get_rate(clk);
265 }
266
267 static unsigned long __init ftm_clk_init(struct device_node *np)
268 {
269 long freq;
270
271 freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt");
272 if (freq <= 0)
273 return 0;
274
275 freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src");
276 if (freq <= 0)
277 return 0;
278
279 return freq;
280 }
281
282 static int __init ftm_calc_closest_round_cyc(unsigned long freq)
283 {
284 priv->ps = 0;
285
286 /* The counter register is only using the lower 16 bits, and
287 * if the 'freq' value is to big here, then the periodic_cyc
288 * may exceed 0xFFFF.
289 */
290 do {
291 priv->periodic_cyc = DIV_ROUND_CLOSEST(freq,
292 HZ * (1 << priv->ps++));
293 } while (priv->periodic_cyc > 0xFFFF);
294
295 if (priv->ps > FTM_PS_MAX) {
296 pr_err("ftm: the prescaler is %lu > %d\n",
297 priv->ps, FTM_PS_MAX);
298 return -EINVAL;
299 }
300
301 return 0;
302 }
303
304 static int __init ftm_timer_init(struct device_node *np)
305 {
306 unsigned long freq;
307 int ret, irq;
308
309 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
310 if (!priv)
311 return -ENOMEM;
312
313 ret = -ENXIO;
314 priv->clkevt_base = of_iomap(np, 0);
315 if (!priv->clkevt_base) {
316 pr_err("ftm: unable to map event timer registers\n");
317 goto err_clkevt;
318 }
319
320 priv->clksrc_base = of_iomap(np, 1);
321 if (!priv->clksrc_base) {
322 pr_err("ftm: unable to map source timer registers\n");
323 goto err_clksrc;
324 }
325
326 ret = -EINVAL;
327 irq = irq_of_parse_and_map(np, 0);
328 if (irq <= 0) {
329 pr_err("ftm: unable to get IRQ from DT, %d\n", irq);
330 goto err;
331 }
332
333 priv->big_endian = of_property_read_bool(np, "big-endian");
334
335 freq = ftm_clk_init(np);
336 if (!freq)
337 goto err;
338
339 ret = ftm_calc_closest_round_cyc(freq);
340 if (ret)
341 goto err;
342
343 ret = ftm_clocksource_init(freq);
344 if (ret)
345 goto err;
346
347 ret = ftm_clockevent_init(freq, irq);
348 if (ret)
349 goto err;
350
351 return 0;
352
353 err:
354 iounmap(priv->clksrc_base);
355 err_clksrc:
356 iounmap(priv->clkevt_base);
357 err_clkevt:
358 kfree(priv);
359 return ret;
360 }
361 TIMER_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);