]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/clocksource/timer-fttmr010.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / clocksource / timer-fttmr010.c
1 /*
2 * Faraday Technology FTTMR010 timer driver
3 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
4 *
5 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
6 * Copyright (C) 2001-2006 Storlink, Corp.
7 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
8 */
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/clockchips.h>
15 #include <linux/clocksource.h>
16 #include <linux/sched_clock.h>
17 #include <linux/clk.h>
18 #include <linux/slab.h>
19 #include <linux/bitops.h>
20 #include <linux/delay.h>
21
22 /*
23 * Register definitions for the timers
24 */
25 #define TIMER1_COUNT (0x00)
26 #define TIMER1_LOAD (0x04)
27 #define TIMER1_MATCH1 (0x08)
28 #define TIMER1_MATCH2 (0x0c)
29 #define TIMER2_COUNT (0x10)
30 #define TIMER2_LOAD (0x14)
31 #define TIMER2_MATCH1 (0x18)
32 #define TIMER2_MATCH2 (0x1c)
33 #define TIMER3_COUNT (0x20)
34 #define TIMER3_LOAD (0x24)
35 #define TIMER3_MATCH1 (0x28)
36 #define TIMER3_MATCH2 (0x2c)
37 #define TIMER_CR (0x30)
38 #define TIMER_INTR_STATE (0x34)
39 #define TIMER_INTR_MASK (0x38)
40
41 #define TIMER_1_CR_ENABLE BIT(0)
42 #define TIMER_1_CR_CLOCK BIT(1)
43 #define TIMER_1_CR_INT BIT(2)
44 #define TIMER_2_CR_ENABLE BIT(3)
45 #define TIMER_2_CR_CLOCK BIT(4)
46 #define TIMER_2_CR_INT BIT(5)
47 #define TIMER_3_CR_ENABLE BIT(6)
48 #define TIMER_3_CR_CLOCK BIT(7)
49 #define TIMER_3_CR_INT BIT(8)
50 #define TIMER_1_CR_UPDOWN BIT(9)
51 #define TIMER_2_CR_UPDOWN BIT(10)
52 #define TIMER_3_CR_UPDOWN BIT(11)
53
54 /*
55 * The Aspeed AST2400 moves bits around in the control register
56 * and lacks bits for setting the timer to count upwards.
57 */
58 #define TIMER_1_CR_ASPEED_ENABLE BIT(0)
59 #define TIMER_1_CR_ASPEED_CLOCK BIT(1)
60 #define TIMER_1_CR_ASPEED_INT BIT(2)
61 #define TIMER_2_CR_ASPEED_ENABLE BIT(4)
62 #define TIMER_2_CR_ASPEED_CLOCK BIT(5)
63 #define TIMER_2_CR_ASPEED_INT BIT(6)
64 #define TIMER_3_CR_ASPEED_ENABLE BIT(8)
65 #define TIMER_3_CR_ASPEED_CLOCK BIT(9)
66 #define TIMER_3_CR_ASPEED_INT BIT(10)
67
68 #define TIMER_1_INT_MATCH1 BIT(0)
69 #define TIMER_1_INT_MATCH2 BIT(1)
70 #define TIMER_1_INT_OVERFLOW BIT(2)
71 #define TIMER_2_INT_MATCH1 BIT(3)
72 #define TIMER_2_INT_MATCH2 BIT(4)
73 #define TIMER_2_INT_OVERFLOW BIT(5)
74 #define TIMER_3_INT_MATCH1 BIT(6)
75 #define TIMER_3_INT_MATCH2 BIT(7)
76 #define TIMER_3_INT_OVERFLOW BIT(8)
77 #define TIMER_INT_ALL_MASK 0x1ff
78
79 struct fttmr010 {
80 void __iomem *base;
81 unsigned int tick_rate;
82 bool count_down;
83 u32 t1_enable_val;
84 struct clock_event_device clkevt;
85 #ifdef CONFIG_ARM
86 struct delay_timer delay_timer;
87 #endif
88 };
89
90 /*
91 * A local singleton used by sched_clock and delay timer reads, which are
92 * fast and stateless
93 */
94 static struct fttmr010 *local_fttmr;
95
96 static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
97 {
98 return container_of(evt, struct fttmr010, clkevt);
99 }
100
101 static unsigned long fttmr010_read_current_timer_up(void)
102 {
103 return readl(local_fttmr->base + TIMER2_COUNT);
104 }
105
106 static unsigned long fttmr010_read_current_timer_down(void)
107 {
108 return ~readl(local_fttmr->base + TIMER2_COUNT);
109 }
110
111 static u64 notrace fttmr010_read_sched_clock_up(void)
112 {
113 return fttmr010_read_current_timer_up();
114 }
115
116 static u64 notrace fttmr010_read_sched_clock_down(void)
117 {
118 return fttmr010_read_current_timer_down();
119 }
120
121 static int fttmr010_timer_set_next_event(unsigned long cycles,
122 struct clock_event_device *evt)
123 {
124 struct fttmr010 *fttmr010 = to_fttmr010(evt);
125 u32 cr;
126
127 /* Stop */
128 cr = readl(fttmr010->base + TIMER_CR);
129 cr &= ~fttmr010->t1_enable_val;
130 writel(cr, fttmr010->base + TIMER_CR);
131
132 /* Setup the match register forward/backward in time */
133 cr = readl(fttmr010->base + TIMER1_COUNT);
134 if (fttmr010->count_down)
135 cr -= cycles;
136 else
137 cr += cycles;
138 writel(cr, fttmr010->base + TIMER1_MATCH1);
139
140 /* Start */
141 cr = readl(fttmr010->base + TIMER_CR);
142 cr |= fttmr010->t1_enable_val;
143 writel(cr, fttmr010->base + TIMER_CR);
144
145 return 0;
146 }
147
148 static int fttmr010_timer_shutdown(struct clock_event_device *evt)
149 {
150 struct fttmr010 *fttmr010 = to_fttmr010(evt);
151 u32 cr;
152
153 /* Stop */
154 cr = readl(fttmr010->base + TIMER_CR);
155 cr &= ~fttmr010->t1_enable_val;
156 writel(cr, fttmr010->base + TIMER_CR);
157
158 return 0;
159 }
160
161 static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
162 {
163 struct fttmr010 *fttmr010 = to_fttmr010(evt);
164 u32 cr;
165
166 /* Stop */
167 cr = readl(fttmr010->base + TIMER_CR);
168 cr &= ~fttmr010->t1_enable_val;
169 writel(cr, fttmr010->base + TIMER_CR);
170
171 /* Setup counter start from 0 or ~0 */
172 writel(0, fttmr010->base + TIMER1_COUNT);
173 if (fttmr010->count_down)
174 writel(~0, fttmr010->base + TIMER1_LOAD);
175 else
176 writel(0, fttmr010->base + TIMER1_LOAD);
177
178 /* Enable interrupt */
179 cr = readl(fttmr010->base + TIMER_INTR_MASK);
180 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
181 cr |= TIMER_1_INT_MATCH1;
182 writel(cr, fttmr010->base + TIMER_INTR_MASK);
183
184 return 0;
185 }
186
187 static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
188 {
189 struct fttmr010 *fttmr010 = to_fttmr010(evt);
190 u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
191 u32 cr;
192
193 /* Stop */
194 cr = readl(fttmr010->base + TIMER_CR);
195 cr &= ~fttmr010->t1_enable_val;
196 writel(cr, fttmr010->base + TIMER_CR);
197
198 /* Setup timer to fire at 1/HZ intervals. */
199 if (fttmr010->count_down) {
200 writel(period, fttmr010->base + TIMER1_LOAD);
201 writel(0, fttmr010->base + TIMER1_MATCH1);
202 } else {
203 cr = 0xffffffff - (period - 1);
204 writel(cr, fttmr010->base + TIMER1_COUNT);
205 writel(cr, fttmr010->base + TIMER1_LOAD);
206
207 /* Enable interrupt on overflow */
208 cr = readl(fttmr010->base + TIMER_INTR_MASK);
209 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
210 cr |= TIMER_1_INT_OVERFLOW;
211 writel(cr, fttmr010->base + TIMER_INTR_MASK);
212 }
213
214 /* Start the timer */
215 cr = readl(fttmr010->base + TIMER_CR);
216 cr |= fttmr010->t1_enable_val;
217 writel(cr, fttmr010->base + TIMER_CR);
218
219 return 0;
220 }
221
222 /*
223 * IRQ handler for the timer
224 */
225 static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
226 {
227 struct clock_event_device *evt = dev_id;
228
229 evt->event_handler(evt);
230 return IRQ_HANDLED;
231 }
232
233 static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
234 {
235 struct fttmr010 *fttmr010;
236 int irq;
237 struct clk *clk;
238 int ret;
239 u32 val;
240
241 /*
242 * These implementations require a clock reference.
243 * FIXME: we currently only support clocking using PCLK
244 * and using EXTCLK is not supported in the driver.
245 */
246 clk = of_clk_get_by_name(np, "PCLK");
247 if (IS_ERR(clk)) {
248 pr_err("could not get PCLK\n");
249 return PTR_ERR(clk);
250 }
251 ret = clk_prepare_enable(clk);
252 if (ret) {
253 pr_err("failed to enable PCLK\n");
254 return ret;
255 }
256
257 fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
258 if (!fttmr010) {
259 ret = -ENOMEM;
260 goto out_disable_clock;
261 }
262 fttmr010->tick_rate = clk_get_rate(clk);
263
264 fttmr010->base = of_iomap(np, 0);
265 if (!fttmr010->base) {
266 pr_err("Can't remap registers");
267 ret = -ENXIO;
268 goto out_free;
269 }
270 /* IRQ for timer 1 */
271 irq = irq_of_parse_and_map(np, 0);
272 if (irq <= 0) {
273 pr_err("Can't parse IRQ");
274 ret = -EINVAL;
275 goto out_unmap;
276 }
277
278 /*
279 * The Aspeed AST2400 moves bits around in the control register,
280 * otherwise it works the same.
281 */
282 if (is_aspeed) {
283 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
284 TIMER_1_CR_ASPEED_INT;
285 /* Downward not available */
286 fttmr010->count_down = true;
287 } else {
288 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
289 }
290
291 /*
292 * Reset the interrupt mask and status
293 */
294 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
295 writel(0, fttmr010->base + TIMER_INTR_STATE);
296
297 /*
298 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
299 * where everything just counts down.
300 */
301 if (is_aspeed)
302 val = TIMER_2_CR_ASPEED_ENABLE;
303 else {
304 val = TIMER_2_CR_ENABLE;
305 if (!fttmr010->count_down)
306 val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
307 }
308 writel(val, fttmr010->base + TIMER_CR);
309
310 /*
311 * Setup free-running clocksource timer (interrupts
312 * disabled.)
313 */
314 local_fttmr = fttmr010;
315 writel(0, fttmr010->base + TIMER2_COUNT);
316 writel(0, fttmr010->base + TIMER2_MATCH1);
317 writel(0, fttmr010->base + TIMER2_MATCH2);
318
319 if (fttmr010->count_down) {
320 writel(~0, fttmr010->base + TIMER2_LOAD);
321 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
322 "FTTMR010-TIMER2",
323 fttmr010->tick_rate,
324 300, 32, clocksource_mmio_readl_down);
325 sched_clock_register(fttmr010_read_sched_clock_down, 32,
326 fttmr010->tick_rate);
327 } else {
328 writel(0, fttmr010->base + TIMER2_LOAD);
329 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
330 "FTTMR010-TIMER2",
331 fttmr010->tick_rate,
332 300, 32, clocksource_mmio_readl_up);
333 sched_clock_register(fttmr010_read_sched_clock_up, 32,
334 fttmr010->tick_rate);
335 }
336
337 /*
338 * Setup clockevent timer (interrupt-driven) on timer 1.
339 */
340 writel(0, fttmr010->base + TIMER1_COUNT);
341 writel(0, fttmr010->base + TIMER1_LOAD);
342 writel(0, fttmr010->base + TIMER1_MATCH1);
343 writel(0, fttmr010->base + TIMER1_MATCH2);
344 ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
345 "FTTMR010-TIMER1", &fttmr010->clkevt);
346 if (ret) {
347 pr_err("FTTMR010-TIMER1 no IRQ\n");
348 goto out_unmap;
349 }
350
351 fttmr010->clkevt.name = "FTTMR010-TIMER1";
352 /* Reasonably fast and accurate clock event */
353 fttmr010->clkevt.rating = 300;
354 fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
355 CLOCK_EVT_FEAT_ONESHOT;
356 fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
357 fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
358 fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
359 fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
360 fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
361 fttmr010->clkevt.cpumask = cpumask_of(0);
362 fttmr010->clkevt.irq = irq;
363 clockevents_config_and_register(&fttmr010->clkevt,
364 fttmr010->tick_rate,
365 1, 0xffffffff);
366
367 #ifdef CONFIG_ARM
368 /* Also use this timer for delays */
369 if (fttmr010->count_down)
370 fttmr010->delay_timer.read_current_timer =
371 fttmr010_read_current_timer_down;
372 else
373 fttmr010->delay_timer.read_current_timer =
374 fttmr010_read_current_timer_up;
375 fttmr010->delay_timer.freq = fttmr010->tick_rate;
376 register_current_timer_delay(&fttmr010->delay_timer);
377 #endif
378
379 return 0;
380
381 out_unmap:
382 iounmap(fttmr010->base);
383 out_free:
384 kfree(fttmr010);
385 out_disable_clock:
386 clk_disable_unprepare(clk);
387
388 return ret;
389 }
390
391 static __init int aspeed_timer_init(struct device_node *np)
392 {
393 return fttmr010_common_init(np, true);
394 }
395
396 static __init int fttmr010_timer_init(struct device_node *np)
397 {
398 return fttmr010_common_init(np, false);
399 }
400
401 TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
402 TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
403 TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
404 TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
405 TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);