]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/clocksource/timer-microchip-pit64b.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / drivers / clocksource / timer-microchip-pit64b.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * 64-bit Periodic Interval Timer driver
4 *
5 * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
6 *
7 * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
8 */
9
10 #include <linux/clk.h>
11 #include <linux/clockchips.h>
12 #include <linux/interrupt.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/slab.h>
17
18 #define MCHP_PIT64B_CR 0x00 /* Control Register */
19 #define MCHP_PIT64B_CR_START BIT(0)
20 #define MCHP_PIT64B_CR_SWRST BIT(8)
21
22 #define MCHP_PIT64B_MR 0x04 /* Mode Register */
23 #define MCHP_PIT64B_MR_CONT BIT(0)
24 #define MCHP_PIT64B_MR_ONE_SHOT (0)
25 #define MCHP_PIT64B_MR_SGCLK BIT(3)
26 #define MCHP_PIT64B_MR_PRES GENMASK(11, 8)
27
28 #define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */
29
30 #define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */
31
32 #define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */
33 #define MCHP_PIT64B_IER_PERIOD BIT(0)
34
35 #define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */
36
37 #define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */
38
39 #define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */
40
41 #define MCHP_PIT64B_PRES_MAX 0x10
42 #define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0)
43 #define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8))
44 #define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8)
45 #define MCHP_PIT64B_DEF_CS_FREQ 5000000UL /* 5 MHz */
46 #define MCHP_PIT64B_DEF_CE_FREQ 32768 /* 32 KHz */
47
48 #define MCHP_PIT64B_NAME "pit64b"
49
50 /**
51 * struct mchp_pit64b_timer - PIT64B timer data structure
52 * @base: base address of PIT64B hardware block
53 * @pclk: PIT64B's peripheral clock
54 * @gclk: PIT64B's generic clock
55 * @mode: precomputed value for mode register
56 */
57 struct mchp_pit64b_timer {
58 void __iomem *base;
59 struct clk *pclk;
60 struct clk *gclk;
61 u32 mode;
62 };
63
64 /**
65 * mchp_pit64b_clkevt - PIT64B clockevent data structure
66 * @timer: PIT64B timer
67 * @clkevt: clockevent
68 */
69 struct mchp_pit64b_clkevt {
70 struct mchp_pit64b_timer timer;
71 struct clock_event_device clkevt;
72 };
73
74 #define to_mchp_pit64b_timer(x) \
75 ((struct mchp_pit64b_timer *)container_of(x,\
76 struct mchp_pit64b_clkevt, clkevt))
77
78 /* Base address for clocksource timer. */
79 static void __iomem *mchp_pit64b_cs_base;
80 /* Default cycles for clockevent timer. */
81 static u64 mchp_pit64b_ce_cycles;
82
83 static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
84 {
85 unsigned long flags;
86 u32 low, high;
87
88 raw_local_irq_save(flags);
89
90 /*
91 * When using a 64 bit period TLSB must be read first, followed by the
92 * read of TMSB. This sequence generates an atomic read of the 64 bit
93 * timer value whatever the lapse of time between the accesses.
94 */
95 low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
96 high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
97
98 raw_local_irq_restore(flags);
99
100 return (((u64)high << 32) | low);
101 }
102
103 static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
104 u64 cycles, u32 mode, u32 irqs)
105 {
106 u32 low, high;
107
108 low = cycles & MCHP_PIT64B_LSBMASK;
109 high = cycles >> 32;
110
111 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
112 writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
113 writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
114 writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
115 writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
116 writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
117 }
118
119 static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
120 {
121 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
122 }
123
124 static u64 mchp_pit64b_sched_read_clk(void)
125 {
126 return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
127 }
128
129 static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
130 {
131 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
132
133 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
134
135 return 0;
136 }
137
138 static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
139 {
140 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
141
142 mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
143 MCHP_PIT64B_IER_PERIOD);
144
145 return 0;
146 }
147
148 static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
149 struct clock_event_device *cedev)
150 {
151 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
152
153 mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
154 MCHP_PIT64B_IER_PERIOD);
155
156 return 0;
157 }
158
159 static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev)
160 {
161 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
162
163 writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
164 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
165 clk_disable_unprepare(timer->gclk);
166 clk_disable_unprepare(timer->pclk);
167 }
168
169 static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev)
170 {
171 struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
172
173 clk_prepare_enable(timer->pclk);
174 if (timer->mode & MCHP_PIT64B_MR_SGCLK)
175 clk_prepare_enable(timer->gclk);
176 }
177
178 static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
179 {
180 struct mchp_pit64b_clkevt *irq_data = dev_id;
181
182 /* Need to clear the interrupt. */
183 readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
184
185 irq_data->clkevt.event_handler(&irq_data->clkevt);
186
187 return IRQ_HANDLED;
188 }
189
190 static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
191 u32 max_rate)
192 {
193 u32 tmp;
194
195 for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
196 tmp = clk_rate / (*pres + 1);
197 if (tmp <= max_rate)
198 break;
199 }
200
201 /* Use the bigest prescaler if we didn't match one. */
202 if (*pres == MCHP_PIT64B_PRES_MAX)
203 *pres = MCHP_PIT64B_PRES_MAX - 1;
204 }
205
206 /**
207 * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at
208 * runtime; this includes prescaler and SGCLK bit
209 *
210 * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
211 * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
212 * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
213 * divided by the internal PIT64B's divider.
214 *
215 * This function, first tries to use GCLK by requesting the desired rate from
216 * PMC and then using the internal PIT64B prescaler, if any, to reach the
217 * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
218 * then the function falls back on using PCLK as clock source for PIT64B timer
219 * choosing the highest prescaler in case it doesn't locate one to match the
220 * requested frequency.
221 *
222 * Below is presented the PIT64B block in relation with PMC:
223 *
224 * PIT64B
225 * PMC +------------------------------------+
226 * +----+ | +-----+ |
227 * | |-->gclk -->|-->| | +---------+ +-----+ |
228 * | | | | MUX |--->| Divider |->|timer| |
229 * | |-->pclk -->|-->| | +---------+ +-----+ |
230 * +----+ | +-----+ |
231 * | ^ |
232 * | sel |
233 * +------------------------------------+
234 *
235 * Where:
236 * - gclk rate <= pclk rate/3
237 * - gclk rate could be requested from PMC
238 * - pclk rate is fixed (cannot be requested from PMC)
239 */
240 static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
241 unsigned long max_rate)
242 {
243 unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
244 long gclk_round = 0;
245 u32 pres, best_pres = 0;
246
247 pclk_rate = clk_get_rate(timer->pclk);
248 if (!pclk_rate)
249 return -EINVAL;
250
251 timer->mode = 0;
252
253 /* Try using GCLK. */
254 gclk_round = clk_round_rate(timer->gclk, max_rate);
255 if (gclk_round < 0)
256 goto pclk;
257
258 if (pclk_rate / gclk_round < 3)
259 goto pclk;
260
261 mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
262 best_diff = abs(gclk_round / (pres + 1) - max_rate);
263 best_pres = pres;
264
265 if (!best_diff) {
266 timer->mode |= MCHP_PIT64B_MR_SGCLK;
267 clk_set_rate(timer->gclk, gclk_round);
268 goto done;
269 }
270
271 pclk:
272 /* Check if requested rate could be obtained using PCLK. */
273 mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
274 diff = abs(pclk_rate / (pres + 1) - max_rate);
275
276 if (best_diff > diff) {
277 /* Use PCLK. */
278 best_pres = pres;
279 } else {
280 /* Use GCLK. */
281 timer->mode |= MCHP_PIT64B_MR_SGCLK;
282 clk_set_rate(timer->gclk, gclk_round);
283 }
284
285 done:
286 timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
287
288 pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
289 timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
290 timer->mode & MCHP_PIT64B_MR_SGCLK ?
291 gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
292
293 return 0;
294 }
295
296 static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
297 u32 clk_rate)
298 {
299 int ret;
300
301 mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
302
303 mchp_pit64b_cs_base = timer->base;
304
305 ret = clocksource_mmio_init(timer->base, MCHP_PIT64B_NAME, clk_rate,
306 210, 64, mchp_pit64b_clksrc_read);
307 if (ret) {
308 pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
309
310 /* Stop timer. */
311 writel_relaxed(MCHP_PIT64B_CR_SWRST,
312 timer->base + MCHP_PIT64B_CR);
313
314 return ret;
315 }
316
317 sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
318
319 return 0;
320 }
321
322 static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
323 u32 clk_rate, u32 irq)
324 {
325 struct mchp_pit64b_clkevt *ce;
326 int ret;
327
328 ce = kzalloc(sizeof(*ce), GFP_KERNEL);
329 if (!ce)
330 return -ENOMEM;
331
332 mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
333
334 ce->timer.base = timer->base;
335 ce->timer.pclk = timer->pclk;
336 ce->timer.gclk = timer->gclk;
337 ce->timer.mode = timer->mode;
338 ce->clkevt.name = MCHP_PIT64B_NAME;
339 ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
340 ce->clkevt.rating = 150;
341 ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
342 ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
343 ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
344 ce->clkevt.suspend = mchp_pit64b_clkevt_suspend;
345 ce->clkevt.resume = mchp_pit64b_clkevt_resume;
346 ce->clkevt.cpumask = cpumask_of(0);
347 ce->clkevt.irq = irq;
348
349 ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
350 "pit64b_tick", ce);
351 if (ret) {
352 pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
353 kfree(ce);
354 return ret;
355 }
356
357 clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
358
359 return 0;
360 }
361
362 static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
363 bool clkevt)
364 {
365 u32 freq = clkevt ? MCHP_PIT64B_DEF_CE_FREQ : MCHP_PIT64B_DEF_CS_FREQ;
366 struct mchp_pit64b_timer timer;
367 unsigned long clk_rate;
368 u32 irq = 0;
369 int ret;
370
371 /* Parse DT node. */
372 timer.pclk = of_clk_get_by_name(node, "pclk");
373 if (IS_ERR(timer.pclk))
374 return PTR_ERR(timer.pclk);
375
376 timer.gclk = of_clk_get_by_name(node, "gclk");
377 if (IS_ERR(timer.gclk))
378 return PTR_ERR(timer.gclk);
379
380 timer.base = of_iomap(node, 0);
381 if (!timer.base)
382 return -ENXIO;
383
384 if (clkevt) {
385 irq = irq_of_parse_and_map(node, 0);
386 if (!irq) {
387 ret = -ENODEV;
388 goto io_unmap;
389 }
390 }
391
392 /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
393 ret = mchp_pit64b_init_mode(&timer, freq);
394 if (ret)
395 goto irq_unmap;
396
397 ret = clk_prepare_enable(timer.pclk);
398 if (ret)
399 goto irq_unmap;
400
401 if (timer.mode & MCHP_PIT64B_MR_SGCLK) {
402 ret = clk_prepare_enable(timer.gclk);
403 if (ret)
404 goto pclk_unprepare;
405
406 clk_rate = clk_get_rate(timer.gclk);
407 } else {
408 clk_rate = clk_get_rate(timer.pclk);
409 }
410 clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
411
412 if (clkevt)
413 ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
414 else
415 ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
416
417 if (ret)
418 goto gclk_unprepare;
419
420 return 0;
421
422 gclk_unprepare:
423 if (timer.mode & MCHP_PIT64B_MR_SGCLK)
424 clk_disable_unprepare(timer.gclk);
425 pclk_unprepare:
426 clk_disable_unprepare(timer.pclk);
427 irq_unmap:
428 irq_dispose_mapping(irq);
429 io_unmap:
430 iounmap(timer.base);
431
432 return ret;
433 }
434
435 static int __init mchp_pit64b_dt_init(struct device_node *node)
436 {
437 static int inits;
438
439 switch (inits++) {
440 case 0:
441 /* 1st request, register clockevent. */
442 return mchp_pit64b_dt_init_timer(node, true);
443 case 1:
444 /* 2nd request, register clocksource. */
445 return mchp_pit64b_dt_init_timer(node, false);
446 }
447
448 /* The rest, don't care. */
449 return -EINVAL;
450 }
451
452 TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);