]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/acpi-cpufreq.c
Merge remote-tracking branch 'spi/topic/bcm2835' into spi-next
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
8 *
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or (at
14 * your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24 *
25 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 */
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42
43 #include <acpi/processor.h>
44
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53
54 #define PFX "acpi-cpufreq: "
55
56 enum {
57 UNDEFINED_CAPABLE = 0,
58 SYSTEM_INTEL_MSR_CAPABLE,
59 SYSTEM_AMD_MSR_CAPABLE,
60 SYSTEM_IO_CAPABLE,
61 };
62
63 #define INTEL_MSR_RANGE (0xffff)
64 #define AMD_MSR_RANGE (0x7)
65
66 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
67
68 struct acpi_cpufreq_data {
69 struct acpi_processor_performance *acpi_data;
70 struct cpufreq_frequency_table *freq_table;
71 unsigned int resume;
72 unsigned int cpu_feature;
73 cpumask_var_t freqdomain_cpus;
74 };
75
76 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
77
78 /* acpi_perf_data is a pointer to percpu data. */
79 static struct acpi_processor_performance __percpu *acpi_perf_data;
80
81 static struct cpufreq_driver acpi_cpufreq_driver;
82
83 static unsigned int acpi_pstate_strict;
84 static bool boost_enabled, boost_supported;
85 static struct msr __percpu *msrs;
86
87 static bool boost_state(unsigned int cpu)
88 {
89 u32 lo, hi;
90 u64 msr;
91
92 switch (boot_cpu_data.x86_vendor) {
93 case X86_VENDOR_INTEL:
94 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
95 msr = lo | ((u64)hi << 32);
96 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
97 case X86_VENDOR_AMD:
98 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
99 msr = lo | ((u64)hi << 32);
100 return !(msr & MSR_K7_HWCR_CPB_DIS);
101 }
102 return false;
103 }
104
105 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
106 {
107 u32 cpu;
108 u32 msr_addr;
109 u64 msr_mask;
110
111 switch (boot_cpu_data.x86_vendor) {
112 case X86_VENDOR_INTEL:
113 msr_addr = MSR_IA32_MISC_ENABLE;
114 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
115 break;
116 case X86_VENDOR_AMD:
117 msr_addr = MSR_K7_HWCR;
118 msr_mask = MSR_K7_HWCR_CPB_DIS;
119 break;
120 default:
121 return;
122 }
123
124 rdmsr_on_cpus(cpumask, msr_addr, msrs);
125
126 for_each_cpu(cpu, cpumask) {
127 struct msr *reg = per_cpu_ptr(msrs, cpu);
128 if (enable)
129 reg->q &= ~msr_mask;
130 else
131 reg->q |= msr_mask;
132 }
133
134 wrmsr_on_cpus(cpumask, msr_addr, msrs);
135 }
136
137 static ssize_t _store_boost(const char *buf, size_t count)
138 {
139 int ret;
140 unsigned long val = 0;
141
142 if (!boost_supported)
143 return -EINVAL;
144
145 ret = kstrtoul(buf, 10, &val);
146 if (ret || (val > 1))
147 return -EINVAL;
148
149 if ((val && boost_enabled) || (!val && !boost_enabled))
150 return count;
151
152 get_online_cpus();
153
154 boost_set_msrs(val, cpu_online_mask);
155
156 put_online_cpus();
157
158 boost_enabled = val;
159 pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
160
161 return count;
162 }
163
164 static ssize_t store_global_boost(struct kobject *kobj, struct attribute *attr,
165 const char *buf, size_t count)
166 {
167 return _store_boost(buf, count);
168 }
169
170 static ssize_t show_global_boost(struct kobject *kobj,
171 struct attribute *attr, char *buf)
172 {
173 return sprintf(buf, "%u\n", boost_enabled);
174 }
175
176 static struct global_attr global_boost = __ATTR(boost, 0644,
177 show_global_boost,
178 store_global_boost);
179
180 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
181 {
182 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
183
184 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
185 }
186
187 cpufreq_freq_attr_ro(freqdomain_cpus);
188
189 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
190 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
191 size_t count)
192 {
193 return _store_boost(buf, count);
194 }
195
196 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
197 {
198 return sprintf(buf, "%u\n", boost_enabled);
199 }
200
201 static struct freq_attr cpb = __ATTR(cpb, 0644, show_cpb, store_cpb);
202 #endif
203
204 static int check_est_cpu(unsigned int cpuid)
205 {
206 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
207
208 return cpu_has(cpu, X86_FEATURE_EST);
209 }
210
211 static int check_amd_hwpstate_cpu(unsigned int cpuid)
212 {
213 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
214
215 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
216 }
217
218 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
219 {
220 struct acpi_processor_performance *perf;
221 int i;
222
223 perf = data->acpi_data;
224
225 for (i = 0; i < perf->state_count; i++) {
226 if (value == perf->states[i].status)
227 return data->freq_table[i].frequency;
228 }
229 return 0;
230 }
231
232 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
233 {
234 int i;
235 struct acpi_processor_performance *perf;
236
237 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
238 msr &= AMD_MSR_RANGE;
239 else
240 msr &= INTEL_MSR_RANGE;
241
242 perf = data->acpi_data;
243
244 for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
245 if (msr == perf->states[data->freq_table[i].driver_data].status)
246 return data->freq_table[i].frequency;
247 }
248 return data->freq_table[0].frequency;
249 }
250
251 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
252 {
253 switch (data->cpu_feature) {
254 case SYSTEM_INTEL_MSR_CAPABLE:
255 case SYSTEM_AMD_MSR_CAPABLE:
256 return extract_msr(val, data);
257 case SYSTEM_IO_CAPABLE:
258 return extract_io(val, data);
259 default:
260 return 0;
261 }
262 }
263
264 struct msr_addr {
265 u32 reg;
266 };
267
268 struct io_addr {
269 u16 port;
270 u8 bit_width;
271 };
272
273 struct drv_cmd {
274 unsigned int type;
275 const struct cpumask *mask;
276 union {
277 struct msr_addr msr;
278 struct io_addr io;
279 } addr;
280 u32 val;
281 };
282
283 /* Called via smp_call_function_single(), on the target CPU */
284 static void do_drv_read(void *_cmd)
285 {
286 struct drv_cmd *cmd = _cmd;
287 u32 h;
288
289 switch (cmd->type) {
290 case SYSTEM_INTEL_MSR_CAPABLE:
291 case SYSTEM_AMD_MSR_CAPABLE:
292 rdmsr(cmd->addr.msr.reg, cmd->val, h);
293 break;
294 case SYSTEM_IO_CAPABLE:
295 acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
296 &cmd->val,
297 (u32)cmd->addr.io.bit_width);
298 break;
299 default:
300 break;
301 }
302 }
303
304 /* Called via smp_call_function_many(), on the target CPUs */
305 static void do_drv_write(void *_cmd)
306 {
307 struct drv_cmd *cmd = _cmd;
308 u32 lo, hi;
309
310 switch (cmd->type) {
311 case SYSTEM_INTEL_MSR_CAPABLE:
312 rdmsr(cmd->addr.msr.reg, lo, hi);
313 lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
314 wrmsr(cmd->addr.msr.reg, lo, hi);
315 break;
316 case SYSTEM_AMD_MSR_CAPABLE:
317 wrmsr(cmd->addr.msr.reg, cmd->val, 0);
318 break;
319 case SYSTEM_IO_CAPABLE:
320 acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
321 cmd->val,
322 (u32)cmd->addr.io.bit_width);
323 break;
324 default:
325 break;
326 }
327 }
328
329 static void drv_read(struct drv_cmd *cmd)
330 {
331 int err;
332 cmd->val = 0;
333
334 err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
335 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
336 }
337
338 static void drv_write(struct drv_cmd *cmd)
339 {
340 int this_cpu;
341
342 this_cpu = get_cpu();
343 if (cpumask_test_cpu(this_cpu, cmd->mask))
344 do_drv_write(cmd);
345 smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
346 put_cpu();
347 }
348
349 static u32 get_cur_val(const struct cpumask *mask)
350 {
351 struct acpi_processor_performance *perf;
352 struct drv_cmd cmd;
353
354 if (unlikely(cpumask_empty(mask)))
355 return 0;
356
357 switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
358 case SYSTEM_INTEL_MSR_CAPABLE:
359 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
360 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
361 break;
362 case SYSTEM_AMD_MSR_CAPABLE:
363 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
364 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
365 break;
366 case SYSTEM_IO_CAPABLE:
367 cmd.type = SYSTEM_IO_CAPABLE;
368 perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
369 cmd.addr.io.port = perf->control_register.address;
370 cmd.addr.io.bit_width = perf->control_register.bit_width;
371 break;
372 default:
373 return 0;
374 }
375
376 cmd.mask = mask;
377 drv_read(&cmd);
378
379 pr_debug("get_cur_val = %u\n", cmd.val);
380
381 return cmd.val;
382 }
383
384 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
385 {
386 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
387 unsigned int freq;
388 unsigned int cached_freq;
389
390 pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
391
392 if (unlikely(data == NULL ||
393 data->acpi_data == NULL || data->freq_table == NULL)) {
394 return 0;
395 }
396
397 cached_freq = data->freq_table[data->acpi_data->state].frequency;
398 freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
399 if (freq != cached_freq) {
400 /*
401 * The dreaded BIOS frequency change behind our back.
402 * Force set the frequency on next target call.
403 */
404 data->resume = 1;
405 }
406
407 pr_debug("cur freq = %u\n", freq);
408
409 return freq;
410 }
411
412 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
413 struct acpi_cpufreq_data *data)
414 {
415 unsigned int cur_freq;
416 unsigned int i;
417
418 for (i = 0; i < 100; i++) {
419 cur_freq = extract_freq(get_cur_val(mask), data);
420 if (cur_freq == freq)
421 return 1;
422 udelay(10);
423 }
424 return 0;
425 }
426
427 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
428 unsigned int target_freq, unsigned int relation)
429 {
430 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
431 struct acpi_processor_performance *perf;
432 struct cpufreq_freqs freqs;
433 struct drv_cmd cmd;
434 unsigned int next_state = 0; /* Index into freq_table */
435 unsigned int next_perf_state = 0; /* Index into perf table */
436 int result = 0;
437
438 pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
439
440 if (unlikely(data == NULL ||
441 data->acpi_data == NULL || data->freq_table == NULL)) {
442 return -ENODEV;
443 }
444
445 perf = data->acpi_data;
446 result = cpufreq_frequency_table_target(policy,
447 data->freq_table,
448 target_freq,
449 relation, &next_state);
450 if (unlikely(result)) {
451 result = -ENODEV;
452 goto out;
453 }
454
455 next_perf_state = data->freq_table[next_state].driver_data;
456 if (perf->state == next_perf_state) {
457 if (unlikely(data->resume)) {
458 pr_debug("Called after resume, resetting to P%d\n",
459 next_perf_state);
460 data->resume = 0;
461 } else {
462 pr_debug("Already at target state (P%d)\n",
463 next_perf_state);
464 goto out;
465 }
466 }
467
468 switch (data->cpu_feature) {
469 case SYSTEM_INTEL_MSR_CAPABLE:
470 cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
471 cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
472 cmd.val = (u32) perf->states[next_perf_state].control;
473 break;
474 case SYSTEM_AMD_MSR_CAPABLE:
475 cmd.type = SYSTEM_AMD_MSR_CAPABLE;
476 cmd.addr.msr.reg = MSR_AMD_PERF_CTL;
477 cmd.val = (u32) perf->states[next_perf_state].control;
478 break;
479 case SYSTEM_IO_CAPABLE:
480 cmd.type = SYSTEM_IO_CAPABLE;
481 cmd.addr.io.port = perf->control_register.address;
482 cmd.addr.io.bit_width = perf->control_register.bit_width;
483 cmd.val = (u32) perf->states[next_perf_state].control;
484 break;
485 default:
486 result = -ENODEV;
487 goto out;
488 }
489
490 /* cpufreq holds the hotplug lock, so we are safe from here on */
491 if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
492 cmd.mask = policy->cpus;
493 else
494 cmd.mask = cpumask_of(policy->cpu);
495
496 freqs.old = perf->states[perf->state].core_frequency * 1000;
497 freqs.new = data->freq_table[next_state].frequency;
498 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
499
500 drv_write(&cmd);
501
502 if (acpi_pstate_strict) {
503 if (!check_freqs(cmd.mask, freqs.new, data)) {
504 pr_debug("acpi_cpufreq_target failed (%d)\n",
505 policy->cpu);
506 result = -EAGAIN;
507 freqs.new = freqs.old;
508 }
509 }
510
511 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
512
513 if (!result)
514 perf->state = next_perf_state;
515
516 out:
517 return result;
518 }
519
520 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
521 {
522 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
523
524 pr_debug("acpi_cpufreq_verify\n");
525
526 return cpufreq_frequency_table_verify(policy, data->freq_table);
527 }
528
529 static unsigned long
530 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
531 {
532 struct acpi_processor_performance *perf = data->acpi_data;
533
534 if (cpu_khz) {
535 /* search the closest match to cpu_khz */
536 unsigned int i;
537 unsigned long freq;
538 unsigned long freqn = perf->states[0].core_frequency * 1000;
539
540 for (i = 0; i < (perf->state_count-1); i++) {
541 freq = freqn;
542 freqn = perf->states[i+1].core_frequency * 1000;
543 if ((2 * cpu_khz) > (freqn + freq)) {
544 perf->state = i;
545 return freq;
546 }
547 }
548 perf->state = perf->state_count-1;
549 return freqn;
550 } else {
551 /* assume CPU is at P0... */
552 perf->state = 0;
553 return perf->states[0].core_frequency * 1000;
554 }
555 }
556
557 static void free_acpi_perf_data(void)
558 {
559 unsigned int i;
560
561 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
562 for_each_possible_cpu(i)
563 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
564 ->shared_cpu_map);
565 free_percpu(acpi_perf_data);
566 }
567
568 static int boost_notify(struct notifier_block *nb, unsigned long action,
569 void *hcpu)
570 {
571 unsigned cpu = (long)hcpu;
572 const struct cpumask *cpumask;
573
574 cpumask = get_cpu_mask(cpu);
575
576 /*
577 * Clear the boost-disable bit on the CPU_DOWN path so that
578 * this cpu cannot block the remaining ones from boosting. On
579 * the CPU_UP path we simply keep the boost-disable flag in
580 * sync with the current global state.
581 */
582
583 switch (action) {
584 case CPU_UP_PREPARE:
585 case CPU_UP_PREPARE_FROZEN:
586 boost_set_msrs(boost_enabled, cpumask);
587 break;
588
589 case CPU_DOWN_PREPARE:
590 case CPU_DOWN_PREPARE_FROZEN:
591 boost_set_msrs(1, cpumask);
592 break;
593
594 default:
595 break;
596 }
597
598 return NOTIFY_OK;
599 }
600
601
602 static struct notifier_block boost_nb = {
603 .notifier_call = boost_notify,
604 };
605
606 /*
607 * acpi_cpufreq_early_init - initialize ACPI P-States library
608 *
609 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
610 * in order to determine correct frequency and voltage pairings. We can
611 * do _PDC and _PSD and find out the processor dependency for the
612 * actual init that will happen later...
613 */
614 static int __init acpi_cpufreq_early_init(void)
615 {
616 unsigned int i;
617 pr_debug("acpi_cpufreq_early_init\n");
618
619 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
620 if (!acpi_perf_data) {
621 pr_debug("Memory allocation error for acpi_perf_data.\n");
622 return -ENOMEM;
623 }
624 for_each_possible_cpu(i) {
625 if (!zalloc_cpumask_var_node(
626 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
627 GFP_KERNEL, cpu_to_node(i))) {
628
629 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
630 free_acpi_perf_data();
631 return -ENOMEM;
632 }
633 }
634
635 /* Do initialization in ACPI core */
636 acpi_processor_preregister_performance(acpi_perf_data);
637 return 0;
638 }
639
640 #ifdef CONFIG_SMP
641 /*
642 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
643 * or do it in BIOS firmware and won't inform about it to OS. If not
644 * detected, this has a side effect of making CPU run at a different speed
645 * than OS intended it to run at. Detect it and handle it cleanly.
646 */
647 static int bios_with_sw_any_bug;
648
649 static int sw_any_bug_found(const struct dmi_system_id *d)
650 {
651 bios_with_sw_any_bug = 1;
652 return 0;
653 }
654
655 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
656 {
657 .callback = sw_any_bug_found,
658 .ident = "Supermicro Server X6DLP",
659 .matches = {
660 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
661 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
662 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
663 },
664 },
665 { }
666 };
667
668 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
669 {
670 /* Intel Xeon Processor 7100 Series Specification Update
671 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
672 * AL30: A Machine Check Exception (MCE) Occurring during an
673 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
674 * Both Processor Cores to Lock Up. */
675 if (c->x86_vendor == X86_VENDOR_INTEL) {
676 if ((c->x86 == 15) &&
677 (c->x86_model == 6) &&
678 (c->x86_mask == 8)) {
679 printk(KERN_INFO "acpi-cpufreq: Intel(R) "
680 "Xeon(R) 7100 Errata AL30, processors may "
681 "lock up on frequency changes: disabling "
682 "acpi-cpufreq.\n");
683 return -ENODEV;
684 }
685 }
686 return 0;
687 }
688 #endif
689
690 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
691 {
692 unsigned int i;
693 unsigned int valid_states = 0;
694 unsigned int cpu = policy->cpu;
695 struct acpi_cpufreq_data *data;
696 unsigned int result = 0;
697 struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
698 struct acpi_processor_performance *perf;
699 #ifdef CONFIG_SMP
700 static int blacklisted;
701 #endif
702
703 pr_debug("acpi_cpufreq_cpu_init\n");
704
705 #ifdef CONFIG_SMP
706 if (blacklisted)
707 return blacklisted;
708 blacklisted = acpi_cpufreq_blacklist(c);
709 if (blacklisted)
710 return blacklisted;
711 #endif
712
713 data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
714 if (!data)
715 return -ENOMEM;
716
717 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
718 result = -ENOMEM;
719 goto err_free;
720 }
721
722 data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
723 per_cpu(acfreq_data, cpu) = data;
724
725 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
726 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
727
728 result = acpi_processor_register_performance(data->acpi_data, cpu);
729 if (result)
730 goto err_free_mask;
731
732 perf = data->acpi_data;
733 policy->shared_type = perf->shared_type;
734
735 /*
736 * Will let policy->cpus know about dependency only when software
737 * coordination is required.
738 */
739 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
740 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
741 cpumask_copy(policy->cpus, perf->shared_cpu_map);
742 }
743 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
744
745 #ifdef CONFIG_SMP
746 dmi_check_system(sw_any_bug_dmi_table);
747 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
748 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
749 cpumask_copy(policy->cpus, cpu_core_mask(cpu));
750 }
751
752 if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
753 cpumask_clear(policy->cpus);
754 cpumask_set_cpu(cpu, policy->cpus);
755 cpumask_copy(data->freqdomain_cpus, cpu_sibling_mask(cpu));
756 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
757 pr_info_once(PFX "overriding BIOS provided _PSD data\n");
758 }
759 #endif
760
761 /* capability check */
762 if (perf->state_count <= 1) {
763 pr_debug("No P-States\n");
764 result = -ENODEV;
765 goto err_unreg;
766 }
767
768 if (perf->control_register.space_id != perf->status_register.space_id) {
769 result = -ENODEV;
770 goto err_unreg;
771 }
772
773 switch (perf->control_register.space_id) {
774 case ACPI_ADR_SPACE_SYSTEM_IO:
775 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
776 boot_cpu_data.x86 == 0xf) {
777 pr_debug("AMD K8 systems must use native drivers.\n");
778 result = -ENODEV;
779 goto err_unreg;
780 }
781 pr_debug("SYSTEM IO addr space\n");
782 data->cpu_feature = SYSTEM_IO_CAPABLE;
783 break;
784 case ACPI_ADR_SPACE_FIXED_HARDWARE:
785 pr_debug("HARDWARE addr space\n");
786 if (check_est_cpu(cpu)) {
787 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
788 break;
789 }
790 if (check_amd_hwpstate_cpu(cpu)) {
791 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
792 break;
793 }
794 result = -ENODEV;
795 goto err_unreg;
796 default:
797 pr_debug("Unknown addr space %d\n",
798 (u32) (perf->control_register.space_id));
799 result = -ENODEV;
800 goto err_unreg;
801 }
802
803 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
804 (perf->state_count+1), GFP_KERNEL);
805 if (!data->freq_table) {
806 result = -ENOMEM;
807 goto err_unreg;
808 }
809
810 /* detect transition latency */
811 policy->cpuinfo.transition_latency = 0;
812 for (i = 0; i < perf->state_count; i++) {
813 if ((perf->states[i].transition_latency * 1000) >
814 policy->cpuinfo.transition_latency)
815 policy->cpuinfo.transition_latency =
816 perf->states[i].transition_latency * 1000;
817 }
818
819 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
820 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
821 policy->cpuinfo.transition_latency > 20 * 1000) {
822 policy->cpuinfo.transition_latency = 20 * 1000;
823 printk_once(KERN_INFO
824 "P-state transition latency capped at 20 uS\n");
825 }
826
827 /* table init */
828 for (i = 0; i < perf->state_count; i++) {
829 if (i > 0 && perf->states[i].core_frequency >=
830 data->freq_table[valid_states-1].frequency / 1000)
831 continue;
832
833 data->freq_table[valid_states].driver_data = i;
834 data->freq_table[valid_states].frequency =
835 perf->states[i].core_frequency * 1000;
836 valid_states++;
837 }
838 data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
839 perf->state = 0;
840
841 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
842 if (result)
843 goto err_freqfree;
844
845 if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
846 printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
847
848 switch (perf->control_register.space_id) {
849 case ACPI_ADR_SPACE_SYSTEM_IO:
850 /* Current speed is unknown and not detectable by IO port */
851 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
852 break;
853 case ACPI_ADR_SPACE_FIXED_HARDWARE:
854 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
855 policy->cur = get_cur_freq_on_cpu(cpu);
856 break;
857 default:
858 break;
859 }
860
861 /* notify BIOS that we exist */
862 acpi_processor_notify_smm(THIS_MODULE);
863
864 /* Check for APERF/MPERF support in hardware */
865 if (boot_cpu_has(X86_FEATURE_APERFMPERF))
866 acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
867
868 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
869 for (i = 0; i < perf->state_count; i++)
870 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
871 (i == perf->state ? '*' : ' '), i,
872 (u32) perf->states[i].core_frequency,
873 (u32) perf->states[i].power,
874 (u32) perf->states[i].transition_latency);
875
876 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
877
878 /*
879 * the first call to ->target() should result in us actually
880 * writing something to the appropriate registers.
881 */
882 data->resume = 1;
883
884 return result;
885
886 err_freqfree:
887 kfree(data->freq_table);
888 err_unreg:
889 acpi_processor_unregister_performance(perf, cpu);
890 err_free_mask:
891 free_cpumask_var(data->freqdomain_cpus);
892 err_free:
893 kfree(data);
894 per_cpu(acfreq_data, cpu) = NULL;
895
896 return result;
897 }
898
899 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
900 {
901 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
902
903 pr_debug("acpi_cpufreq_cpu_exit\n");
904
905 if (data) {
906 cpufreq_frequency_table_put_attr(policy->cpu);
907 per_cpu(acfreq_data, policy->cpu) = NULL;
908 acpi_processor_unregister_performance(data->acpi_data,
909 policy->cpu);
910 free_cpumask_var(data->freqdomain_cpus);
911 kfree(data->freq_table);
912 kfree(data);
913 }
914
915 return 0;
916 }
917
918 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
919 {
920 struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
921
922 pr_debug("acpi_cpufreq_resume\n");
923
924 data->resume = 1;
925
926 return 0;
927 }
928
929 static struct freq_attr *acpi_cpufreq_attr[] = {
930 &cpufreq_freq_attr_scaling_available_freqs,
931 &freqdomain_cpus,
932 NULL, /* this is a placeholder for cpb, do not remove */
933 NULL,
934 };
935
936 static struct cpufreq_driver acpi_cpufreq_driver = {
937 .verify = acpi_cpufreq_verify,
938 .target = acpi_cpufreq_target,
939 .bios_limit = acpi_processor_get_bios_limit,
940 .init = acpi_cpufreq_cpu_init,
941 .exit = acpi_cpufreq_cpu_exit,
942 .resume = acpi_cpufreq_resume,
943 .name = "acpi-cpufreq",
944 .owner = THIS_MODULE,
945 .attr = acpi_cpufreq_attr,
946 };
947
948 static void __init acpi_cpufreq_boost_init(void)
949 {
950 if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
951 msrs = msrs_alloc();
952
953 if (!msrs)
954 return;
955
956 boost_supported = true;
957 boost_enabled = boost_state(0);
958
959 get_online_cpus();
960
961 /* Force all MSRs to the same value */
962 boost_set_msrs(boost_enabled, cpu_online_mask);
963
964 register_cpu_notifier(&boost_nb);
965
966 put_online_cpus();
967 } else
968 global_boost.attr.mode = 0444;
969
970 /* We create the boost file in any case, though for systems without
971 * hardware support it will be read-only and hardwired to return 0.
972 */
973 if (cpufreq_sysfs_create_file(&(global_boost.attr)))
974 pr_warn(PFX "could not register global boost sysfs file\n");
975 else
976 pr_debug("registered global boost sysfs file\n");
977 }
978
979 static void __exit acpi_cpufreq_boost_exit(void)
980 {
981 cpufreq_sysfs_remove_file(&(global_boost.attr));
982
983 if (msrs) {
984 unregister_cpu_notifier(&boost_nb);
985
986 msrs_free(msrs);
987 msrs = NULL;
988 }
989 }
990
991 static int __init acpi_cpufreq_init(void)
992 {
993 int ret;
994
995 if (acpi_disabled)
996 return 0;
997
998 pr_debug("acpi_cpufreq_init\n");
999
1000 ret = acpi_cpufreq_early_init();
1001 if (ret)
1002 return ret;
1003
1004 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1005 /* this is a sysfs file with a strange name and an even stranger
1006 * semantic - per CPU instantiation, but system global effect.
1007 * Lets enable it only on AMD CPUs for compatibility reasons and
1008 * only if configured. This is considered legacy code, which
1009 * will probably be removed at some point in the future.
1010 */
1011 if (check_amd_hwpstate_cpu(0)) {
1012 struct freq_attr **iter;
1013
1014 pr_debug("adding sysfs entry for cpb\n");
1015
1016 for (iter = acpi_cpufreq_attr; *iter != NULL; iter++)
1017 ;
1018
1019 /* make sure there is a terminator behind it */
1020 if (iter[1] == NULL)
1021 *iter = &cpb;
1022 }
1023 #endif
1024
1025 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1026 if (ret)
1027 free_acpi_perf_data();
1028 else
1029 acpi_cpufreq_boost_init();
1030
1031 return ret;
1032 }
1033
1034 static void __exit acpi_cpufreq_exit(void)
1035 {
1036 pr_debug("acpi_cpufreq_exit\n");
1037
1038 acpi_cpufreq_boost_exit();
1039
1040 cpufreq_unregister_driver(&acpi_cpufreq_driver);
1041
1042 free_acpi_perf_data();
1043 }
1044
1045 module_param(acpi_pstate_strict, uint, 0644);
1046 MODULE_PARM_DESC(acpi_pstate_strict,
1047 "value 0 or non-zero. non-zero -> strict ACPI checks are "
1048 "performed during frequency changes.");
1049
1050 late_initcall(acpi_cpufreq_init);
1051 module_exit(acpi_cpufreq_exit);
1052
1053 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1054 X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1055 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1056 {}
1057 };
1058 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1059
1060 static const struct acpi_device_id processor_device_ids[] = {
1061 {ACPI_PROCESSOR_OBJECT_HID, },
1062 {ACPI_PROCESSOR_DEVICE_HID, },
1063 {},
1064 };
1065 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1066
1067 MODULE_ALIAS("acpi");