]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/cpufreq/brcmstb-avs-cpufreq.c
Merge tag 'mediatek-drm-next-5.7' of https://github.com/ckhu-mediatek/linux.git-tags...
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / brcmstb-avs-cpufreq.c
1 /*
2 * CPU frequency scaling for Broadcom SoCs with AVS firmware that
3 * supports DVS or DVFS
4 *
5 * Copyright (c) 2016 Broadcom
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation version 2.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 /*
18 * "AVS" is the name of a firmware developed at Broadcom. It derives
19 * its name from the technique called "Adaptive Voltage Scaling".
20 * Adaptive voltage scaling was the original purpose of this firmware.
21 * The AVS firmware still supports "AVS mode", where all it does is
22 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
23 * AVS Firmware, despite its unchanged name, also supports DFS mode and
24 * DVFS mode.
25 *
26 * In the context of this document and the related driver, "AVS" by
27 * itself always means the Broadcom firmware and never refers to the
28 * technique called "Adaptive Voltage Scaling".
29 *
30 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
31 * scaling on Broadcom SoCs using AVS firmware with support for DFS and
32 * DVFS. The AVS firmware is running on its own co-processor. The
33 * driver supports both uniprocessor (UP) and symmetric multiprocessor
34 * (SMP) systems which share clock and voltage across all CPUs.
35 *
36 * Actual voltage and frequency scaling is done solely by the AVS
37 * firmware. This driver does not change frequency or voltage itself.
38 * It provides a standard CPUfreq interface to the rest of the kernel
39 * and to userland. It interfaces with the AVS firmware to effect the
40 * requested changes and to report back the current system status in a
41 * way that is expected by existing tools.
42 */
43
44 #include <linux/cpufreq.h>
45 #include <linux/interrupt.h>
46 #include <linux/io.h>
47 #include <linux/module.h>
48 #include <linux/of_address.h>
49 #include <linux/platform_device.h>
50 #include <linux/semaphore.h>
51
52 /* Max number of arguments AVS calls take */
53 #define AVS_MAX_CMD_ARGS 4
54 /*
55 * This macro is used to generate AVS parameter register offsets. For
56 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
57 * access outside of the parameter range. (Offset 0 is the first parameter.)
58 */
59 #define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
60
61 /* AVS Mailbox Register offsets */
62 #define AVS_MBOX_COMMAND 0x00
63 #define AVS_MBOX_STATUS 0x04
64 #define AVS_MBOX_VOLTAGE0 0x08
65 #define AVS_MBOX_TEMP0 0x0c
66 #define AVS_MBOX_PV0 0x10
67 #define AVS_MBOX_MV0 0x14
68 #define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
69 #define AVS_MBOX_REVISION 0x28
70 #define AVS_MBOX_PSTATE 0x2c
71 #define AVS_MBOX_HEARTBEAT 0x30
72 #define AVS_MBOX_MAGIC 0x34
73 #define AVS_MBOX_SIGMA_HVT 0x38
74 #define AVS_MBOX_SIGMA_SVT 0x3c
75 #define AVS_MBOX_VOLTAGE1 0x40
76 #define AVS_MBOX_TEMP1 0x44
77 #define AVS_MBOX_PV1 0x48
78 #define AVS_MBOX_MV1 0x4c
79 #define AVS_MBOX_FREQUENCY 0x50
80
81 /* AVS Commands */
82 #define AVS_CMD_AVAILABLE 0x00
83 #define AVS_CMD_DISABLE 0x10
84 #define AVS_CMD_ENABLE 0x11
85 #define AVS_CMD_S2_ENTER 0x12
86 #define AVS_CMD_S2_EXIT 0x13
87 #define AVS_CMD_BBM_ENTER 0x14
88 #define AVS_CMD_BBM_EXIT 0x15
89 #define AVS_CMD_S3_ENTER 0x16
90 #define AVS_CMD_S3_EXIT 0x17
91 #define AVS_CMD_BALANCE 0x18
92 /* PMAP and P-STATE commands */
93 #define AVS_CMD_GET_PMAP 0x30
94 #define AVS_CMD_SET_PMAP 0x31
95 #define AVS_CMD_GET_PSTATE 0x40
96 #define AVS_CMD_SET_PSTATE 0x41
97
98 /* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
99 #define AVS_MODE_AVS 0x0
100 #define AVS_MODE_DFS 0x1
101 #define AVS_MODE_DVS 0x2
102 #define AVS_MODE_DVFS 0x3
103
104 /*
105 * PMAP parameter p1
106 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
107 */
108 #define NDIV_INT_SHIFT 0
109 #define NDIV_INT_MASK 0x3ff
110 #define PDIV_SHIFT 10
111 #define PDIV_MASK 0xf
112 #define MDIV_P0_SHIFT 16
113 #define MDIV_P0_MASK 0xff
114 /*
115 * PMAP parameter p2
116 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
117 */
118 #define MDIV_P1_SHIFT 0
119 #define MDIV_P1_MASK 0xff
120 #define MDIV_P2_SHIFT 8
121 #define MDIV_P2_MASK 0xff
122 #define MDIV_P3_SHIFT 16
123 #define MDIV_P3_MASK 0xff
124 #define MDIV_P4_SHIFT 24
125 #define MDIV_P4_MASK 0xff
126
127 /* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
128 #define AVS_PSTATE_P0 0x0
129 #define AVS_PSTATE_P1 0x1
130 #define AVS_PSTATE_P2 0x2
131 #define AVS_PSTATE_P3 0x3
132 #define AVS_PSTATE_P4 0x4
133 #define AVS_PSTATE_MAX AVS_PSTATE_P4
134
135 /* CPU L2 Interrupt Controller Registers */
136 #define AVS_CPU_L2_SET0 0x04
137 #define AVS_CPU_L2_INT_MASK BIT(31)
138
139 /* AVS Command Status Values */
140 #define AVS_STATUS_CLEAR 0x00
141 /* Command/notification accepted */
142 #define AVS_STATUS_SUCCESS 0xf0
143 /* Command/notification rejected */
144 #define AVS_STATUS_FAILURE 0xff
145 /* Invalid command/notification (unknown) */
146 #define AVS_STATUS_INVALID 0xf1
147 /* Non-AVS modes are not supported */
148 #define AVS_STATUS_NO_SUPP 0xf2
149 /* Cannot set P-State until P-Map supplied */
150 #define AVS_STATUS_NO_MAP 0xf3
151 /* Cannot change P-Map after initial P-Map set */
152 #define AVS_STATUS_MAP_SET 0xf4
153 /* Max AVS status; higher numbers are used for debugging */
154 #define AVS_STATUS_MAX 0xff
155
156 /* Other AVS related constants */
157 #define AVS_LOOP_LIMIT 10000
158 #define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */
159 #define AVS_FIRMWARE_MAGIC 0xa11600d1
160
161 #define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs"
162 #define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
163 #define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem"
164 #define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr"
165 #define BRCM_AVS_HOST_INTR "sw_intr"
166
167 struct pmap {
168 unsigned int mode;
169 unsigned int p1;
170 unsigned int p2;
171 unsigned int state;
172 };
173
174 struct private_data {
175 void __iomem *base;
176 void __iomem *avs_intr_base;
177 struct device *dev;
178 struct completion done;
179 struct semaphore sem;
180 struct pmap pmap;
181 };
182
183 static void __iomem *__map_region(const char *name)
184 {
185 struct device_node *np;
186 void __iomem *ptr;
187
188 np = of_find_compatible_node(NULL, NULL, name);
189 if (!np)
190 return NULL;
191
192 ptr = of_iomap(np, 0);
193 of_node_put(np);
194
195 return ptr;
196 }
197
198 static int __issue_avs_command(struct private_data *priv, int cmd, bool is_send,
199 u32 args[])
200 {
201 unsigned long time_left = msecs_to_jiffies(AVS_TIMEOUT);
202 void __iomem *base = priv->base;
203 unsigned int i;
204 int ret;
205 u32 val;
206
207 ret = down_interruptible(&priv->sem);
208 if (ret)
209 return ret;
210
211 /*
212 * Make sure no other command is currently running: cmd is 0 if AVS
213 * co-processor is idle. Due to the guard above, we should almost never
214 * have to wait here.
215 */
216 for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
217 val = readl(base + AVS_MBOX_COMMAND);
218
219 /* Give the caller a chance to retry if AVS is busy. */
220 if (i == AVS_LOOP_LIMIT) {
221 ret = -EAGAIN;
222 goto out;
223 }
224
225 /* Clear status before we begin. */
226 writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
227
228 /* We need to send arguments for this command. */
229 if (args && is_send) {
230 for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
231 writel(args[i], base + AVS_MBOX_PARAM(i));
232 }
233
234 /* Protect from spurious interrupts. */
235 reinit_completion(&priv->done);
236
237 /* Now issue the command & tell firmware to wake up to process it. */
238 writel(cmd, base + AVS_MBOX_COMMAND);
239 writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
240
241 /* Wait for AVS co-processor to finish processing the command. */
242 time_left = wait_for_completion_timeout(&priv->done, time_left);
243
244 /*
245 * If the AVS status is not in the expected range, it means AVS didn't
246 * complete our command in time, and we return an error. Also, if there
247 * is no "time left", we timed out waiting for the interrupt.
248 */
249 val = readl(base + AVS_MBOX_STATUS);
250 if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
251 dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
252 cmd);
253 dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n",
254 jiffies_to_msecs(time_left), val);
255 ret = -ETIMEDOUT;
256 goto out;
257 }
258
259 /* This command returned arguments, so we read them back. */
260 if (args && !is_send) {
261 for (i = 0; i < AVS_MAX_CMD_ARGS; i++)
262 args[i] = readl(base + AVS_MBOX_PARAM(i));
263 }
264
265 /* Clear status to tell AVS co-processor we are done. */
266 writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
267
268 /* Convert firmware errors to errno's as much as possible. */
269 switch (val) {
270 case AVS_STATUS_INVALID:
271 ret = -EINVAL;
272 break;
273 case AVS_STATUS_NO_SUPP:
274 ret = -ENOTSUPP;
275 break;
276 case AVS_STATUS_NO_MAP:
277 ret = -ENOENT;
278 break;
279 case AVS_STATUS_MAP_SET:
280 ret = -EEXIST;
281 break;
282 case AVS_STATUS_FAILURE:
283 ret = -EIO;
284 break;
285 }
286
287 out:
288 up(&priv->sem);
289
290 return ret;
291 }
292
293 static irqreturn_t irq_handler(int irq, void *data)
294 {
295 struct private_data *priv = data;
296
297 /* AVS command completed execution. Wake up __issue_avs_command(). */
298 complete(&priv->done);
299
300 return IRQ_HANDLED;
301 }
302
303 static char *brcm_avs_mode_to_string(unsigned int mode)
304 {
305 switch (mode) {
306 case AVS_MODE_AVS:
307 return "AVS";
308 case AVS_MODE_DFS:
309 return "DFS";
310 case AVS_MODE_DVS:
311 return "DVS";
312 case AVS_MODE_DVFS:
313 return "DVFS";
314 }
315 return NULL;
316 }
317
318 static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
319 unsigned int *ndiv)
320 {
321 *mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
322 *pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
323 *ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
324 }
325
326 static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
327 unsigned int *mdiv_p2, unsigned int *mdiv_p3,
328 unsigned int *mdiv_p4)
329 {
330 *mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
331 *mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
332 *mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
333 *mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
334 }
335
336 static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
337 {
338 u32 args[AVS_MAX_CMD_ARGS];
339 int ret;
340
341 ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, false, args);
342 if (ret || !pmap)
343 return ret;
344
345 pmap->mode = args[0];
346 pmap->p1 = args[1];
347 pmap->p2 = args[2];
348 pmap->state = args[3];
349
350 return 0;
351 }
352
353 static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
354 {
355 u32 args[AVS_MAX_CMD_ARGS];
356
357 args[0] = pmap->mode;
358 args[1] = pmap->p1;
359 args[2] = pmap->p2;
360 args[3] = pmap->state;
361
362 return __issue_avs_command(priv, AVS_CMD_SET_PMAP, true, args);
363 }
364
365 static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
366 {
367 u32 args[AVS_MAX_CMD_ARGS];
368 int ret;
369
370 ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, false, args);
371 if (ret)
372 return ret;
373 *pstate = args[0];
374
375 return 0;
376 }
377
378 static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
379 {
380 u32 args[AVS_MAX_CMD_ARGS];
381
382 args[0] = pstate;
383
384 return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, true, args);
385 }
386
387 static u32 brcm_avs_get_voltage(void __iomem *base)
388 {
389 return readl(base + AVS_MBOX_VOLTAGE1);
390 }
391
392 static u32 brcm_avs_get_frequency(void __iomem *base)
393 {
394 return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */
395 }
396
397 /*
398 * We determine which frequencies are supported by cycling through all P-states
399 * and reading back what frequency we are running at for each P-state.
400 */
401 static struct cpufreq_frequency_table *
402 brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
403 {
404 struct cpufreq_frequency_table *table;
405 unsigned int pstate;
406 int i, ret;
407
408 /* Remember P-state for later */
409 ret = brcm_avs_get_pstate(priv, &pstate);
410 if (ret)
411 return ERR_PTR(ret);
412
413 table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1, sizeof(*table),
414 GFP_KERNEL);
415 if (!table)
416 return ERR_PTR(-ENOMEM);
417
418 for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
419 ret = brcm_avs_set_pstate(priv, i);
420 if (ret)
421 return ERR_PTR(ret);
422 table[i].frequency = brcm_avs_get_frequency(priv->base);
423 table[i].driver_data = i;
424 }
425 table[i].frequency = CPUFREQ_TABLE_END;
426
427 /* Restore P-state */
428 ret = brcm_avs_set_pstate(priv, pstate);
429 if (ret)
430 return ERR_PTR(ret);
431
432 return table;
433 }
434
435 /*
436 * To ensure the right firmware is running we need to
437 * - check the MAGIC matches what we expect
438 * - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
439 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
440 */
441 static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
442 {
443 u32 magic;
444 int rc;
445
446 rc = brcm_avs_get_pmap(priv, NULL);
447 magic = readl(priv->base + AVS_MBOX_MAGIC);
448
449 return (magic == AVS_FIRMWARE_MAGIC) && ((rc != -ENOTSUPP) ||
450 (rc != -EINVAL));
451 }
452
453 static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
454 {
455 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
456 struct private_data *priv = policy->driver_data;
457
458 cpufreq_cpu_put(policy);
459
460 return brcm_avs_get_frequency(priv->base);
461 }
462
463 static int brcm_avs_target_index(struct cpufreq_policy *policy,
464 unsigned int index)
465 {
466 return brcm_avs_set_pstate(policy->driver_data,
467 policy->freq_table[index].driver_data);
468 }
469
470 static int brcm_avs_suspend(struct cpufreq_policy *policy)
471 {
472 struct private_data *priv = policy->driver_data;
473 int ret;
474
475 ret = brcm_avs_get_pmap(priv, &priv->pmap);
476 if (ret)
477 return ret;
478
479 /*
480 * We can't use the P-state returned by brcm_avs_get_pmap(), since
481 * that's the initial P-state from when the P-map was downloaded to the
482 * AVS co-processor, not necessarily the P-state we are running at now.
483 * So, we get the current P-state explicitly.
484 */
485 return brcm_avs_get_pstate(priv, &priv->pmap.state);
486 }
487
488 static int brcm_avs_resume(struct cpufreq_policy *policy)
489 {
490 struct private_data *priv = policy->driver_data;
491 int ret;
492
493 ret = brcm_avs_set_pmap(priv, &priv->pmap);
494 if (ret == -EEXIST) {
495 struct platform_device *pdev = cpufreq_get_driver_data();
496 struct device *dev = &pdev->dev;
497
498 dev_warn(dev, "PMAP was already set\n");
499 ret = 0;
500 }
501
502 return ret;
503 }
504
505 /*
506 * All initialization code that we only want to execute once goes here. Setup
507 * code that can be re-tried on every core (if it failed before) can go into
508 * brcm_avs_cpufreq_init().
509 */
510 static int brcm_avs_prepare_init(struct platform_device *pdev)
511 {
512 struct private_data *priv;
513 struct device *dev;
514 int host_irq, ret;
515
516 dev = &pdev->dev;
517 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
518 if (!priv)
519 return -ENOMEM;
520
521 priv->dev = dev;
522 sema_init(&priv->sem, 1);
523 init_completion(&priv->done);
524 platform_set_drvdata(pdev, priv);
525
526 priv->base = __map_region(BRCM_AVS_CPU_DATA);
527 if (!priv->base) {
528 dev_err(dev, "Couldn't find property %s in device tree.\n",
529 BRCM_AVS_CPU_DATA);
530 return -ENOENT;
531 }
532
533 priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
534 if (!priv->avs_intr_base) {
535 dev_err(dev, "Couldn't find property %s in device tree.\n",
536 BRCM_AVS_CPU_INTR);
537 ret = -ENOENT;
538 goto unmap_base;
539 }
540
541 host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
542 if (host_irq < 0) {
543 dev_err(dev, "Couldn't find interrupt %s -- %d\n",
544 BRCM_AVS_HOST_INTR, host_irq);
545 ret = host_irq;
546 goto unmap_intr_base;
547 }
548
549 ret = devm_request_irq(dev, host_irq, irq_handler, IRQF_TRIGGER_RISING,
550 BRCM_AVS_HOST_INTR, priv);
551 if (ret) {
552 dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
553 BRCM_AVS_HOST_INTR, host_irq, ret);
554 goto unmap_intr_base;
555 }
556
557 if (brcm_avs_is_firmware_loaded(priv))
558 return 0;
559
560 dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
561 ret = -ENODEV;
562
563 unmap_intr_base:
564 iounmap(priv->avs_intr_base);
565 unmap_base:
566 iounmap(priv->base);
567
568 return ret;
569 }
570
571 static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
572 {
573 struct cpufreq_frequency_table *freq_table;
574 struct platform_device *pdev;
575 struct private_data *priv;
576 struct device *dev;
577 int ret;
578
579 pdev = cpufreq_get_driver_data();
580 priv = platform_get_drvdata(pdev);
581 policy->driver_data = priv;
582 dev = &pdev->dev;
583
584 freq_table = brcm_avs_get_freq_table(dev, priv);
585 if (IS_ERR(freq_table)) {
586 ret = PTR_ERR(freq_table);
587 dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
588 return ret;
589 }
590
591 policy->freq_table = freq_table;
592
593 /* All cores share the same clock and thus the same policy. */
594 cpumask_setall(policy->cpus);
595
596 ret = __issue_avs_command(priv, AVS_CMD_ENABLE, false, NULL);
597 if (!ret) {
598 unsigned int pstate;
599
600 ret = brcm_avs_get_pstate(priv, &pstate);
601 if (!ret) {
602 policy->cur = freq_table[pstate].frequency;
603 dev_info(dev, "registered\n");
604 return 0;
605 }
606 }
607
608 dev_err(dev, "couldn't initialize driver (%d)\n", ret);
609
610 return ret;
611 }
612
613 static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
614 {
615 struct private_data *priv = policy->driver_data;
616 unsigned int pstate;
617
618 if (brcm_avs_get_pstate(priv, &pstate))
619 return sprintf(buf, "<unknown>\n");
620
621 return sprintf(buf, "%u\n", pstate);
622 }
623
624 static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
625 {
626 struct private_data *priv = policy->driver_data;
627 struct pmap pmap;
628
629 if (brcm_avs_get_pmap(priv, &pmap))
630 return sprintf(buf, "<unknown>\n");
631
632 return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
633 pmap.mode);
634 }
635
636 static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
637 {
638 unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
639 struct private_data *priv = policy->driver_data;
640 unsigned int ndiv, pdiv;
641 struct pmap pmap;
642
643 if (brcm_avs_get_pmap(priv, &pmap))
644 return sprintf(buf, "<unknown>\n");
645
646 brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
647 brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
648
649 return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
650 pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
651 mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
652 }
653
654 static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
655 {
656 struct private_data *priv = policy->driver_data;
657
658 return sprintf(buf, "0x%08x\n", brcm_avs_get_voltage(priv->base));
659 }
660
661 static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
662 {
663 struct private_data *priv = policy->driver_data;
664
665 return sprintf(buf, "0x%08x\n", brcm_avs_get_frequency(priv->base));
666 }
667
668 cpufreq_freq_attr_ro(brcm_avs_pstate);
669 cpufreq_freq_attr_ro(brcm_avs_mode);
670 cpufreq_freq_attr_ro(brcm_avs_pmap);
671 cpufreq_freq_attr_ro(brcm_avs_voltage);
672 cpufreq_freq_attr_ro(brcm_avs_frequency);
673
674 static struct freq_attr *brcm_avs_cpufreq_attr[] = {
675 &cpufreq_freq_attr_scaling_available_freqs,
676 &brcm_avs_pstate,
677 &brcm_avs_mode,
678 &brcm_avs_pmap,
679 &brcm_avs_voltage,
680 &brcm_avs_frequency,
681 NULL
682 };
683
684 static struct cpufreq_driver brcm_avs_driver = {
685 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
686 .verify = cpufreq_generic_frequency_table_verify,
687 .target_index = brcm_avs_target_index,
688 .get = brcm_avs_cpufreq_get,
689 .suspend = brcm_avs_suspend,
690 .resume = brcm_avs_resume,
691 .init = brcm_avs_cpufreq_init,
692 .attr = brcm_avs_cpufreq_attr,
693 .name = BRCM_AVS_CPUFREQ_PREFIX,
694 };
695
696 static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
697 {
698 int ret;
699
700 ret = brcm_avs_prepare_init(pdev);
701 if (ret)
702 return ret;
703
704 brcm_avs_driver.driver_data = pdev;
705
706 return cpufreq_register_driver(&brcm_avs_driver);
707 }
708
709 static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
710 {
711 struct private_data *priv;
712 int ret;
713
714 ret = cpufreq_unregister_driver(&brcm_avs_driver);
715 if (ret)
716 return ret;
717
718 priv = platform_get_drvdata(pdev);
719 iounmap(priv->base);
720 iounmap(priv->avs_intr_base);
721
722 return 0;
723 }
724
725 static const struct of_device_id brcm_avs_cpufreq_match[] = {
726 { .compatible = BRCM_AVS_CPU_DATA },
727 { }
728 };
729 MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
730
731 static struct platform_driver brcm_avs_cpufreq_platdrv = {
732 .driver = {
733 .name = BRCM_AVS_CPUFREQ_NAME,
734 .of_match_table = brcm_avs_cpufreq_match,
735 },
736 .probe = brcm_avs_cpufreq_probe,
737 .remove = brcm_avs_cpufreq_remove,
738 };
739 module_platform_driver(brcm_avs_cpufreq_platdrv);
740
741 MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
742 MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
743 MODULE_LICENSE("GPL");