]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/cpufreq.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 init_cpufreq_transition_notifier_list_called = true;
99 return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 return off;
107 }
108 void disable_cpufreq(void)
109 {
110 off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113
114 bool have_governor_per_policy(void)
115 {
116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 u64 idle_time;
132 u64 cur_wall_time;
133 u64 busy_time;
134
135 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
136
137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143
144 idle_time = cur_wall_time - busy_time;
145 if (wall)
146 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
147
148 return div_u64(idle_time, NSEC_PER_USEC);
149 }
150
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155 if (idle_time == -1ULL)
156 return get_cpu_idle_time_jiffy(cpu, wall);
157 else if (!io_busy)
158 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160 return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165 * This is a generic cpufreq init() routine which can be used by cpufreq
166 * drivers of SMP systems. It will do following:
167 * - validate & show freq table passed
168 * - set policies transition latency
169 * - policy->cpus with all possible CPUs
170 */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172 struct cpufreq_frequency_table *table,
173 unsigned int transition_latency)
174 {
175 int ret;
176
177 ret = cpufreq_table_validate_and_show(policy, table);
178 if (ret) {
179 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180 return ret;
181 }
182
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198
199 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206
207 if (!policy || IS_ERR(policy->clk)) {
208 pr_err("%s: No %s associated to cpu: %d\n",
209 __func__, policy ? "clk" : "policy", cpu);
210 return 0;
211 }
212
213 return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216
217 /**
218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219 *
220 * @cpu: cpu to find policy for.
221 *
222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
223 * It also increments the kobject reference count to mark it busy and so would
224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226 * freed as that depends on the kobj count.
227 *
228 * Return: A valid policy on success, otherwise NULL on failure.
229 */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232 struct cpufreq_policy *policy = NULL;
233 unsigned long flags;
234
235 if (WARN_ON(cpu >= nr_cpu_ids))
236 return NULL;
237
238 /* get the cpufreq driver */
239 read_lock_irqsave(&cpufreq_driver_lock, flags);
240
241 if (cpufreq_driver) {
242 /* get the CPU */
243 policy = cpufreq_cpu_get_raw(cpu);
244 if (policy)
245 kobject_get(&policy->kobj);
246 }
247
248 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249
250 return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253
254 /**
255 * cpufreq_cpu_put: Decrements the usage count of a policy
256 *
257 * @policy: policy earlier returned by cpufreq_cpu_get().
258 *
259 * This decrements the kobject reference count incremented earlier by calling
260 * cpufreq_cpu_get().
261 */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264 kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267
268 /*********************************************************************
269 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
270 *********************************************************************/
271
272 /**
273 * adjust_jiffies - adjust the system "loops_per_jiffy"
274 *
275 * This function alters the system "loops_per_jiffy" for the clock
276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
277 * systems as each CPU might be scaled differently. So, use the arch
278 * per-CPU loops_per_jiffy value wherever possible.
279 */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283 static unsigned long l_p_j_ref;
284 static unsigned int l_p_j_ref_freq;
285
286 if (ci->flags & CPUFREQ_CONST_LOOPS)
287 return;
288
289 if (!l_p_j_ref_freq) {
290 l_p_j_ref = loops_per_jiffy;
291 l_p_j_ref_freq = ci->old;
292 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293 l_p_j_ref, l_p_j_ref_freq);
294 }
295 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299 loops_per_jiffy, ci->new);
300 }
301 #endif
302 }
303
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305 struct cpufreq_freqs *freqs, unsigned int state)
306 {
307 BUG_ON(irqs_disabled());
308
309 if (cpufreq_disabled())
310 return;
311
312 freqs->flags = cpufreq_driver->flags;
313 pr_debug("notification %u of frequency transition to %u kHz\n",
314 state, freqs->new);
315
316 switch (state) {
317
318 case CPUFREQ_PRECHANGE:
319 /* detect if the driver reported a value as "old frequency"
320 * which is not equal to what the cpufreq core thinks is
321 * "old frequency".
322 */
323 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324 if ((policy) && (policy->cpu == freqs->cpu) &&
325 (policy->cur) && (policy->cur != freqs->old)) {
326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 freqs->old, policy->cur);
328 freqs->old = policy->cur;
329 }
330 }
331 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332 CPUFREQ_PRECHANGE, freqs);
333 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334 break;
335
336 case CPUFREQ_POSTCHANGE:
337 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338 pr_debug("FREQ: %lu - CPU: %lu\n",
339 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340 trace_cpu_frequency(freqs->new, freqs->cpu);
341 cpufreq_stats_record_transition(policy, freqs->new);
342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 CPUFREQ_POSTCHANGE, freqs);
344 if (likely(policy) && likely(policy->cpu == freqs->cpu))
345 policy->cur = freqs->new;
346 break;
347 }
348 }
349
350 /**
351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352 * on frequency transition.
353 *
354 * This function calls the transition notifiers and the "adjust_jiffies"
355 * function. It is called twice on all CPU frequency changes that have
356 * external effects.
357 */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359 struct cpufreq_freqs *freqs, unsigned int state)
360 {
361 for_each_cpu(freqs->cpu, policy->cpus)
362 __cpufreq_notify_transition(policy, freqs, state);
363 }
364
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367 struct cpufreq_freqs *freqs, int transition_failed)
368 {
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 if (!transition_failed)
371 return;
372
373 swap(freqs->old, freqs->new);
374 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379 struct cpufreq_freqs *freqs)
380 {
381
382 /*
383 * Catch double invocations of _begin() which lead to self-deadlock.
384 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385 * doesn't invoke _begin() on their behalf, and hence the chances of
386 * double invocations are very low. Moreover, there are scenarios
387 * where these checks can emit false-positive warnings in these
388 * drivers; so we avoid that by skipping them altogether.
389 */
390 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391 && current == policy->transition_task);
392
393 wait:
394 wait_event(policy->transition_wait, !policy->transition_ongoing);
395
396 spin_lock(&policy->transition_lock);
397
398 if (unlikely(policy->transition_ongoing)) {
399 spin_unlock(&policy->transition_lock);
400 goto wait;
401 }
402
403 policy->transition_ongoing = true;
404 policy->transition_task = current;
405
406 spin_unlock(&policy->transition_lock);
407
408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413 struct cpufreq_freqs *freqs, int transition_failed)
414 {
415 if (unlikely(WARN_ON(!policy->transition_ongoing)))
416 return;
417
418 cpufreq_notify_post_transition(policy, freqs, transition_failed);
419
420 policy->transition_ongoing = false;
421 policy->transition_task = NULL;
422
423 wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pF\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495 /**
496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497 * one.
498 * @target_freq: target frequency to resolve.
499 *
500 * The target to driver frequency mapping is cached in the policy.
501 *
502 * Return: Lowest driver-supported frequency greater than or equal to the
503 * given target_freq, subject to policy (min/max) and driver limitations.
504 */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506 unsigned int target_freq)
507 {
508 target_freq = clamp_val(target_freq, policy->min, policy->max);
509 policy->cached_target_freq = target_freq;
510
511 if (cpufreq_driver->target_index) {
512 int idx;
513
514 idx = cpufreq_frequency_table_target(policy, target_freq,
515 CPUFREQ_RELATION_L);
516 policy->cached_resolved_idx = idx;
517 return policy->freq_table[idx].frequency;
518 }
519
520 if (cpufreq_driver->resolve_freq)
521 return cpufreq_driver->resolve_freq(policy, target_freq);
522
523 return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526
527 /*********************************************************************
528 * SYSFS INTERFACE *
529 *********************************************************************/
530 static ssize_t show_boost(struct kobject *kobj,
531 struct attribute *attr, char *buf)
532 {
533 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
534 }
535
536 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
537 const char *buf, size_t count)
538 {
539 int ret, enable;
540
541 ret = sscanf(buf, "%d", &enable);
542 if (ret != 1 || enable < 0 || enable > 1)
543 return -EINVAL;
544
545 if (cpufreq_boost_trigger_state(enable)) {
546 pr_err("%s: Cannot %s BOOST!\n",
547 __func__, enable ? "enable" : "disable");
548 return -EINVAL;
549 }
550
551 pr_debug("%s: cpufreq BOOST %s\n",
552 __func__, enable ? "enabled" : "disabled");
553
554 return count;
555 }
556 define_one_global_rw(boost);
557
558 static struct cpufreq_governor *find_governor(const char *str_governor)
559 {
560 struct cpufreq_governor *t;
561
562 for_each_governor(t)
563 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
564 return t;
565
566 return NULL;
567 }
568
569 /**
570 * cpufreq_parse_governor - parse a governor string
571 */
572 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
573 struct cpufreq_governor **governor)
574 {
575 int err = -EINVAL;
576
577 if (cpufreq_driver->setpolicy) {
578 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
579 *policy = CPUFREQ_POLICY_PERFORMANCE;
580 err = 0;
581 } else if (!strncasecmp(str_governor, "powersave",
582 CPUFREQ_NAME_LEN)) {
583 *policy = CPUFREQ_POLICY_POWERSAVE;
584 err = 0;
585 }
586 } else {
587 struct cpufreq_governor *t;
588
589 mutex_lock(&cpufreq_governor_mutex);
590
591 t = find_governor(str_governor);
592
593 if (t == NULL) {
594 int ret;
595
596 mutex_unlock(&cpufreq_governor_mutex);
597 ret = request_module("cpufreq_%s", str_governor);
598 mutex_lock(&cpufreq_governor_mutex);
599
600 if (ret == 0)
601 t = find_governor(str_governor);
602 }
603
604 if (t != NULL) {
605 *governor = t;
606 err = 0;
607 }
608
609 mutex_unlock(&cpufreq_governor_mutex);
610 }
611 return err;
612 }
613
614 /**
615 * cpufreq_per_cpu_attr_read() / show_##file_name() -
616 * print out cpufreq information
617 *
618 * Write out information from cpufreq_driver->policy[cpu]; object must be
619 * "unsigned int".
620 */
621
622 #define show_one(file_name, object) \
623 static ssize_t show_##file_name \
624 (struct cpufreq_policy *policy, char *buf) \
625 { \
626 return sprintf(buf, "%u\n", policy->object); \
627 }
628
629 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
630 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
631 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
632 show_one(scaling_min_freq, min);
633 show_one(scaling_max_freq, max);
634
635 __weak unsigned int arch_freq_get_on_cpu(int cpu)
636 {
637 return 0;
638 }
639
640 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
641 {
642 ssize_t ret;
643 unsigned int freq;
644
645 freq = arch_freq_get_on_cpu(policy->cpu);
646 if (freq)
647 ret = sprintf(buf, "%u\n", freq);
648 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
649 cpufreq_driver->get)
650 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
651 else
652 ret = sprintf(buf, "%u\n", policy->cur);
653 return ret;
654 }
655
656 static int cpufreq_set_policy(struct cpufreq_policy *policy,
657 struct cpufreq_policy *new_policy);
658
659 /**
660 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
661 */
662 #define store_one(file_name, object) \
663 static ssize_t store_##file_name \
664 (struct cpufreq_policy *policy, const char *buf, size_t count) \
665 { \
666 int ret, temp; \
667 struct cpufreq_policy new_policy; \
668 \
669 memcpy(&new_policy, policy, sizeof(*policy)); \
670 \
671 ret = sscanf(buf, "%u", &new_policy.object); \
672 if (ret != 1) \
673 return -EINVAL; \
674 \
675 temp = new_policy.object; \
676 ret = cpufreq_set_policy(policy, &new_policy); \
677 if (!ret) \
678 policy->user_policy.object = temp; \
679 \
680 return ret ? ret : count; \
681 }
682
683 store_one(scaling_min_freq, min);
684 store_one(scaling_max_freq, max);
685
686 /**
687 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
688 */
689 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
690 char *buf)
691 {
692 unsigned int cur_freq = __cpufreq_get(policy);
693
694 if (cur_freq)
695 return sprintf(buf, "%u\n", cur_freq);
696
697 return sprintf(buf, "<unknown>\n");
698 }
699
700 /**
701 * show_scaling_governor - show the current policy for the specified CPU
702 */
703 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
704 {
705 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
706 return sprintf(buf, "powersave\n");
707 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
708 return sprintf(buf, "performance\n");
709 else if (policy->governor)
710 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
711 policy->governor->name);
712 return -EINVAL;
713 }
714
715 /**
716 * store_scaling_governor - store policy for the specified CPU
717 */
718 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
719 const char *buf, size_t count)
720 {
721 int ret;
722 char str_governor[16];
723 struct cpufreq_policy new_policy;
724
725 memcpy(&new_policy, policy, sizeof(*policy));
726
727 ret = sscanf(buf, "%15s", str_governor);
728 if (ret != 1)
729 return -EINVAL;
730
731 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
732 &new_policy.governor))
733 return -EINVAL;
734
735 ret = cpufreq_set_policy(policy, &new_policy);
736 return ret ? ret : count;
737 }
738
739 /**
740 * show_scaling_driver - show the cpufreq driver currently loaded
741 */
742 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
743 {
744 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
745 }
746
747 /**
748 * show_scaling_available_governors - show the available CPUfreq governors
749 */
750 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
751 char *buf)
752 {
753 ssize_t i = 0;
754 struct cpufreq_governor *t;
755
756 if (!has_target()) {
757 i += sprintf(buf, "performance powersave");
758 goto out;
759 }
760
761 for_each_governor(t) {
762 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
763 - (CPUFREQ_NAME_LEN + 2)))
764 goto out;
765 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
766 }
767 out:
768 i += sprintf(&buf[i], "\n");
769 return i;
770 }
771
772 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
773 {
774 ssize_t i = 0;
775 unsigned int cpu;
776
777 for_each_cpu(cpu, mask) {
778 if (i)
779 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
780 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
781 if (i >= (PAGE_SIZE - 5))
782 break;
783 }
784 i += sprintf(&buf[i], "\n");
785 return i;
786 }
787 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
788
789 /**
790 * show_related_cpus - show the CPUs affected by each transition even if
791 * hw coordination is in use
792 */
793 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
794 {
795 return cpufreq_show_cpus(policy->related_cpus, buf);
796 }
797
798 /**
799 * show_affected_cpus - show the CPUs affected by each transition
800 */
801 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
802 {
803 return cpufreq_show_cpus(policy->cpus, buf);
804 }
805
806 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
807 const char *buf, size_t count)
808 {
809 unsigned int freq = 0;
810 unsigned int ret;
811
812 if (!policy->governor || !policy->governor->store_setspeed)
813 return -EINVAL;
814
815 ret = sscanf(buf, "%u", &freq);
816 if (ret != 1)
817 return -EINVAL;
818
819 policy->governor->store_setspeed(policy, freq);
820
821 return count;
822 }
823
824 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
825 {
826 if (!policy->governor || !policy->governor->show_setspeed)
827 return sprintf(buf, "<unsupported>\n");
828
829 return policy->governor->show_setspeed(policy, buf);
830 }
831
832 /**
833 * show_bios_limit - show the current cpufreq HW/BIOS limitation
834 */
835 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
836 {
837 unsigned int limit;
838 int ret;
839 if (cpufreq_driver->bios_limit) {
840 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
841 if (!ret)
842 return sprintf(buf, "%u\n", limit);
843 }
844 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
845 }
846
847 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
848 cpufreq_freq_attr_ro(cpuinfo_min_freq);
849 cpufreq_freq_attr_ro(cpuinfo_max_freq);
850 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
851 cpufreq_freq_attr_ro(scaling_available_governors);
852 cpufreq_freq_attr_ro(scaling_driver);
853 cpufreq_freq_attr_ro(scaling_cur_freq);
854 cpufreq_freq_attr_ro(bios_limit);
855 cpufreq_freq_attr_ro(related_cpus);
856 cpufreq_freq_attr_ro(affected_cpus);
857 cpufreq_freq_attr_rw(scaling_min_freq);
858 cpufreq_freq_attr_rw(scaling_max_freq);
859 cpufreq_freq_attr_rw(scaling_governor);
860 cpufreq_freq_attr_rw(scaling_setspeed);
861
862 static struct attribute *default_attrs[] = {
863 &cpuinfo_min_freq.attr,
864 &cpuinfo_max_freq.attr,
865 &cpuinfo_transition_latency.attr,
866 &scaling_min_freq.attr,
867 &scaling_max_freq.attr,
868 &affected_cpus.attr,
869 &related_cpus.attr,
870 &scaling_governor.attr,
871 &scaling_driver.attr,
872 &scaling_available_governors.attr,
873 &scaling_setspeed.attr,
874 NULL
875 };
876
877 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
878 #define to_attr(a) container_of(a, struct freq_attr, attr)
879
880 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
881 {
882 struct cpufreq_policy *policy = to_policy(kobj);
883 struct freq_attr *fattr = to_attr(attr);
884 ssize_t ret;
885
886 down_read(&policy->rwsem);
887 ret = fattr->show(policy, buf);
888 up_read(&policy->rwsem);
889
890 return ret;
891 }
892
893 static ssize_t store(struct kobject *kobj, struct attribute *attr,
894 const char *buf, size_t count)
895 {
896 struct cpufreq_policy *policy = to_policy(kobj);
897 struct freq_attr *fattr = to_attr(attr);
898 ssize_t ret = -EINVAL;
899
900 cpus_read_lock();
901
902 if (cpu_online(policy->cpu)) {
903 down_write(&policy->rwsem);
904 ret = fattr->store(policy, buf, count);
905 up_write(&policy->rwsem);
906 }
907
908 cpus_read_unlock();
909
910 return ret;
911 }
912
913 static void cpufreq_sysfs_release(struct kobject *kobj)
914 {
915 struct cpufreq_policy *policy = to_policy(kobj);
916 pr_debug("last reference is dropped\n");
917 complete(&policy->kobj_unregister);
918 }
919
920 static const struct sysfs_ops sysfs_ops = {
921 .show = show,
922 .store = store,
923 };
924
925 static struct kobj_type ktype_cpufreq = {
926 .sysfs_ops = &sysfs_ops,
927 .default_attrs = default_attrs,
928 .release = cpufreq_sysfs_release,
929 };
930
931 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
932 {
933 struct device *dev = get_cpu_device(cpu);
934
935 if (!dev)
936 return;
937
938 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
939 return;
940
941 dev_dbg(dev, "%s: Adding symlink\n", __func__);
942 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
943 dev_err(dev, "cpufreq symlink creation failed\n");
944 }
945
946 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
947 struct device *dev)
948 {
949 dev_dbg(dev, "%s: Removing symlink\n", __func__);
950 sysfs_remove_link(&dev->kobj, "cpufreq");
951 }
952
953 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
954 {
955 struct freq_attr **drv_attr;
956 int ret = 0;
957
958 /* set up files for this cpu device */
959 drv_attr = cpufreq_driver->attr;
960 while (drv_attr && *drv_attr) {
961 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
962 if (ret)
963 return ret;
964 drv_attr++;
965 }
966 if (cpufreq_driver->get) {
967 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
968 if (ret)
969 return ret;
970 }
971
972 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
973 if (ret)
974 return ret;
975
976 if (cpufreq_driver->bios_limit) {
977 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
978 if (ret)
979 return ret;
980 }
981
982 return 0;
983 }
984
985 __weak struct cpufreq_governor *cpufreq_default_governor(void)
986 {
987 return NULL;
988 }
989
990 static int cpufreq_init_policy(struct cpufreq_policy *policy)
991 {
992 struct cpufreq_governor *gov = NULL;
993 struct cpufreq_policy new_policy;
994
995 memcpy(&new_policy, policy, sizeof(*policy));
996
997 /* Update governor of new_policy to the governor used before hotplug */
998 gov = find_governor(policy->last_governor);
999 if (gov) {
1000 pr_debug("Restoring governor %s for cpu %d\n",
1001 policy->governor->name, policy->cpu);
1002 } else {
1003 gov = cpufreq_default_governor();
1004 if (!gov)
1005 return -ENODATA;
1006 }
1007
1008 new_policy.governor = gov;
1009
1010 /* Use the default policy if there is no last_policy. */
1011 if (cpufreq_driver->setpolicy) {
1012 if (policy->last_policy)
1013 new_policy.policy = policy->last_policy;
1014 else
1015 cpufreq_parse_governor(gov->name, &new_policy.policy,
1016 NULL);
1017 }
1018 /* set default policy */
1019 return cpufreq_set_policy(policy, &new_policy);
1020 }
1021
1022 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1023 {
1024 int ret = 0;
1025
1026 /* Has this CPU been taken care of already? */
1027 if (cpumask_test_cpu(cpu, policy->cpus))
1028 return 0;
1029
1030 down_write(&policy->rwsem);
1031 if (has_target())
1032 cpufreq_stop_governor(policy);
1033
1034 cpumask_set_cpu(cpu, policy->cpus);
1035
1036 if (has_target()) {
1037 ret = cpufreq_start_governor(policy);
1038 if (ret)
1039 pr_err("%s: Failed to start governor\n", __func__);
1040 }
1041 up_write(&policy->rwsem);
1042 return ret;
1043 }
1044
1045 static void handle_update(struct work_struct *work)
1046 {
1047 struct cpufreq_policy *policy =
1048 container_of(work, struct cpufreq_policy, update);
1049 unsigned int cpu = policy->cpu;
1050 pr_debug("handle_update for cpu %u called\n", cpu);
1051 cpufreq_update_policy(cpu);
1052 }
1053
1054 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1055 {
1056 struct cpufreq_policy *policy;
1057 int ret;
1058
1059 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1060 if (!policy)
1061 return NULL;
1062
1063 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1064 goto err_free_policy;
1065
1066 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1067 goto err_free_cpumask;
1068
1069 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1070 goto err_free_rcpumask;
1071
1072 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1073 cpufreq_global_kobject, "policy%u", cpu);
1074 if (ret) {
1075 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1076 goto err_free_real_cpus;
1077 }
1078
1079 INIT_LIST_HEAD(&policy->policy_list);
1080 init_rwsem(&policy->rwsem);
1081 spin_lock_init(&policy->transition_lock);
1082 init_waitqueue_head(&policy->transition_wait);
1083 init_completion(&policy->kobj_unregister);
1084 INIT_WORK(&policy->update, handle_update);
1085
1086 policy->cpu = cpu;
1087 return policy;
1088
1089 err_free_real_cpus:
1090 free_cpumask_var(policy->real_cpus);
1091 err_free_rcpumask:
1092 free_cpumask_var(policy->related_cpus);
1093 err_free_cpumask:
1094 free_cpumask_var(policy->cpus);
1095 err_free_policy:
1096 kfree(policy);
1097
1098 return NULL;
1099 }
1100
1101 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1102 {
1103 struct kobject *kobj;
1104 struct completion *cmp;
1105
1106 down_write(&policy->rwsem);
1107 cpufreq_stats_free_table(policy);
1108 kobj = &policy->kobj;
1109 cmp = &policy->kobj_unregister;
1110 up_write(&policy->rwsem);
1111 kobject_put(kobj);
1112
1113 /*
1114 * We need to make sure that the underlying kobj is
1115 * actually not referenced anymore by anybody before we
1116 * proceed with unloading.
1117 */
1118 pr_debug("waiting for dropping of refcount\n");
1119 wait_for_completion(cmp);
1120 pr_debug("wait complete\n");
1121 }
1122
1123 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1124 {
1125 unsigned long flags;
1126 int cpu;
1127
1128 /* Remove policy from list */
1129 write_lock_irqsave(&cpufreq_driver_lock, flags);
1130 list_del(&policy->policy_list);
1131
1132 for_each_cpu(cpu, policy->related_cpus)
1133 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1134 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1135
1136 cpufreq_policy_put_kobj(policy);
1137 free_cpumask_var(policy->real_cpus);
1138 free_cpumask_var(policy->related_cpus);
1139 free_cpumask_var(policy->cpus);
1140 kfree(policy);
1141 }
1142
1143 static int cpufreq_online(unsigned int cpu)
1144 {
1145 struct cpufreq_policy *policy;
1146 bool new_policy;
1147 unsigned long flags;
1148 unsigned int j;
1149 int ret;
1150
1151 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1152
1153 /* Check if this CPU already has a policy to manage it */
1154 policy = per_cpu(cpufreq_cpu_data, cpu);
1155 if (policy) {
1156 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1157 if (!policy_is_inactive(policy))
1158 return cpufreq_add_policy_cpu(policy, cpu);
1159
1160 /* This is the only online CPU for the policy. Start over. */
1161 new_policy = false;
1162 down_write(&policy->rwsem);
1163 policy->cpu = cpu;
1164 policy->governor = NULL;
1165 up_write(&policy->rwsem);
1166 } else {
1167 new_policy = true;
1168 policy = cpufreq_policy_alloc(cpu);
1169 if (!policy)
1170 return -ENOMEM;
1171 }
1172
1173 cpumask_copy(policy->cpus, cpumask_of(cpu));
1174
1175 /* call driver. From then on the cpufreq must be able
1176 * to accept all calls to ->verify and ->setpolicy for this CPU
1177 */
1178 ret = cpufreq_driver->init(policy);
1179 if (ret) {
1180 pr_debug("initialization failed\n");
1181 goto out_free_policy;
1182 }
1183
1184 down_write(&policy->rwsem);
1185
1186 if (new_policy) {
1187 /* related_cpus should at least include policy->cpus. */
1188 cpumask_copy(policy->related_cpus, policy->cpus);
1189 }
1190
1191 /*
1192 * affected cpus must always be the one, which are online. We aren't
1193 * managing offline cpus here.
1194 */
1195 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1196
1197 if (new_policy) {
1198 policy->user_policy.min = policy->min;
1199 policy->user_policy.max = policy->max;
1200
1201 for_each_cpu(j, policy->related_cpus) {
1202 per_cpu(cpufreq_cpu_data, j) = policy;
1203 add_cpu_dev_symlink(policy, j);
1204 }
1205 } else {
1206 policy->min = policy->user_policy.min;
1207 policy->max = policy->user_policy.max;
1208 }
1209
1210 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1211 policy->cur = cpufreq_driver->get(policy->cpu);
1212 if (!policy->cur) {
1213 pr_err("%s: ->get() failed\n", __func__);
1214 goto out_exit_policy;
1215 }
1216 }
1217
1218 /*
1219 * Sometimes boot loaders set CPU frequency to a value outside of
1220 * frequency table present with cpufreq core. In such cases CPU might be
1221 * unstable if it has to run on that frequency for long duration of time
1222 * and so its better to set it to a frequency which is specified in
1223 * freq-table. This also makes cpufreq stats inconsistent as
1224 * cpufreq-stats would fail to register because current frequency of CPU
1225 * isn't found in freq-table.
1226 *
1227 * Because we don't want this change to effect boot process badly, we go
1228 * for the next freq which is >= policy->cur ('cur' must be set by now,
1229 * otherwise we will end up setting freq to lowest of the table as 'cur'
1230 * is initialized to zero).
1231 *
1232 * We are passing target-freq as "policy->cur - 1" otherwise
1233 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1234 * equal to target-freq.
1235 */
1236 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1237 && has_target()) {
1238 /* Are we running at unknown frequency ? */
1239 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1240 if (ret == -EINVAL) {
1241 /* Warn user and fix it */
1242 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1243 __func__, policy->cpu, policy->cur);
1244 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1245 CPUFREQ_RELATION_L);
1246
1247 /*
1248 * Reaching here after boot in a few seconds may not
1249 * mean that system will remain stable at "unknown"
1250 * frequency for longer duration. Hence, a BUG_ON().
1251 */
1252 BUG_ON(ret);
1253 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1254 __func__, policy->cpu, policy->cur);
1255 }
1256 }
1257
1258 if (new_policy) {
1259 ret = cpufreq_add_dev_interface(policy);
1260 if (ret)
1261 goto out_exit_policy;
1262
1263 cpufreq_stats_create_table(policy);
1264
1265 write_lock_irqsave(&cpufreq_driver_lock, flags);
1266 list_add(&policy->policy_list, &cpufreq_policy_list);
1267 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1268 }
1269
1270 ret = cpufreq_init_policy(policy);
1271 if (ret) {
1272 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1273 __func__, cpu, ret);
1274 /* cpufreq_policy_free() will notify based on this */
1275 new_policy = false;
1276 goto out_exit_policy;
1277 }
1278
1279 up_write(&policy->rwsem);
1280
1281 kobject_uevent(&policy->kobj, KOBJ_ADD);
1282
1283 /* Callback for handling stuff after policy is ready */
1284 if (cpufreq_driver->ready)
1285 cpufreq_driver->ready(policy);
1286
1287 pr_debug("initialization complete\n");
1288
1289 return 0;
1290
1291 out_exit_policy:
1292 up_write(&policy->rwsem);
1293
1294 if (cpufreq_driver->exit)
1295 cpufreq_driver->exit(policy);
1296
1297 for_each_cpu(j, policy->real_cpus)
1298 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1299
1300 out_free_policy:
1301 cpufreq_policy_free(policy);
1302 return ret;
1303 }
1304
1305 /**
1306 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1307 * @dev: CPU device.
1308 * @sif: Subsystem interface structure pointer (not used)
1309 */
1310 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1311 {
1312 struct cpufreq_policy *policy;
1313 unsigned cpu = dev->id;
1314 int ret;
1315
1316 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1317
1318 if (cpu_online(cpu)) {
1319 ret = cpufreq_online(cpu);
1320 if (ret)
1321 return ret;
1322 }
1323
1324 /* Create sysfs link on CPU registration */
1325 policy = per_cpu(cpufreq_cpu_data, cpu);
1326 if (policy)
1327 add_cpu_dev_symlink(policy, cpu);
1328
1329 return 0;
1330 }
1331
1332 static int cpufreq_offline(unsigned int cpu)
1333 {
1334 struct cpufreq_policy *policy;
1335 int ret;
1336
1337 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1338
1339 policy = cpufreq_cpu_get_raw(cpu);
1340 if (!policy) {
1341 pr_debug("%s: No cpu_data found\n", __func__);
1342 return 0;
1343 }
1344
1345 down_write(&policy->rwsem);
1346 if (has_target())
1347 cpufreq_stop_governor(policy);
1348
1349 cpumask_clear_cpu(cpu, policy->cpus);
1350
1351 if (policy_is_inactive(policy)) {
1352 if (has_target())
1353 strncpy(policy->last_governor, policy->governor->name,
1354 CPUFREQ_NAME_LEN);
1355 else
1356 policy->last_policy = policy->policy;
1357 } else if (cpu == policy->cpu) {
1358 /* Nominate new CPU */
1359 policy->cpu = cpumask_any(policy->cpus);
1360 }
1361
1362 /* Start governor again for active policy */
1363 if (!policy_is_inactive(policy)) {
1364 if (has_target()) {
1365 ret = cpufreq_start_governor(policy);
1366 if (ret)
1367 pr_err("%s: Failed to start governor\n", __func__);
1368 }
1369
1370 goto unlock;
1371 }
1372
1373 if (cpufreq_driver->stop_cpu)
1374 cpufreq_driver->stop_cpu(policy);
1375
1376 if (has_target())
1377 cpufreq_exit_governor(policy);
1378
1379 /*
1380 * Perform the ->exit() even during light-weight tear-down,
1381 * since this is a core component, and is essential for the
1382 * subsequent light-weight ->init() to succeed.
1383 */
1384 if (cpufreq_driver->exit) {
1385 cpufreq_driver->exit(policy);
1386 policy->freq_table = NULL;
1387 }
1388
1389 unlock:
1390 up_write(&policy->rwsem);
1391 return 0;
1392 }
1393
1394 /**
1395 * cpufreq_remove_dev - remove a CPU device
1396 *
1397 * Removes the cpufreq interface for a CPU device.
1398 */
1399 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1400 {
1401 unsigned int cpu = dev->id;
1402 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1403
1404 if (!policy)
1405 return;
1406
1407 if (cpu_online(cpu))
1408 cpufreq_offline(cpu);
1409
1410 cpumask_clear_cpu(cpu, policy->real_cpus);
1411 remove_cpu_dev_symlink(policy, dev);
1412
1413 if (cpumask_empty(policy->real_cpus))
1414 cpufreq_policy_free(policy);
1415 }
1416
1417 /**
1418 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1419 * in deep trouble.
1420 * @policy: policy managing CPUs
1421 * @new_freq: CPU frequency the CPU actually runs at
1422 *
1423 * We adjust to current frequency first, and need to clean up later.
1424 * So either call to cpufreq_update_policy() or schedule handle_update()).
1425 */
1426 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1427 unsigned int new_freq)
1428 {
1429 struct cpufreq_freqs freqs;
1430
1431 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1432 policy->cur, new_freq);
1433
1434 freqs.old = policy->cur;
1435 freqs.new = new_freq;
1436
1437 cpufreq_freq_transition_begin(policy, &freqs);
1438 cpufreq_freq_transition_end(policy, &freqs, 0);
1439 }
1440
1441 /**
1442 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1443 * @cpu: CPU number
1444 *
1445 * This is the last known freq, without actually getting it from the driver.
1446 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1447 */
1448 unsigned int cpufreq_quick_get(unsigned int cpu)
1449 {
1450 struct cpufreq_policy *policy;
1451 unsigned int ret_freq = 0;
1452 unsigned long flags;
1453
1454 read_lock_irqsave(&cpufreq_driver_lock, flags);
1455
1456 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1457 ret_freq = cpufreq_driver->get(cpu);
1458 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1459 return ret_freq;
1460 }
1461
1462 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1463
1464 policy = cpufreq_cpu_get(cpu);
1465 if (policy) {
1466 ret_freq = policy->cur;
1467 cpufreq_cpu_put(policy);
1468 }
1469
1470 return ret_freq;
1471 }
1472 EXPORT_SYMBOL(cpufreq_quick_get);
1473
1474 /**
1475 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1476 * @cpu: CPU number
1477 *
1478 * Just return the max possible frequency for a given CPU.
1479 */
1480 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1481 {
1482 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1483 unsigned int ret_freq = 0;
1484
1485 if (policy) {
1486 ret_freq = policy->max;
1487 cpufreq_cpu_put(policy);
1488 }
1489
1490 return ret_freq;
1491 }
1492 EXPORT_SYMBOL(cpufreq_quick_get_max);
1493
1494 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1495 {
1496 unsigned int ret_freq = 0;
1497
1498 if (!cpufreq_driver->get)
1499 return ret_freq;
1500
1501 ret_freq = cpufreq_driver->get(policy->cpu);
1502
1503 /*
1504 * Updating inactive policies is invalid, so avoid doing that. Also
1505 * if fast frequency switching is used with the given policy, the check
1506 * against policy->cur is pointless, so skip it in that case too.
1507 */
1508 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1509 return ret_freq;
1510
1511 if (ret_freq && policy->cur &&
1512 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1513 /* verify no discrepancy between actual and
1514 saved value exists */
1515 if (unlikely(ret_freq != policy->cur)) {
1516 cpufreq_out_of_sync(policy, ret_freq);
1517 schedule_work(&policy->update);
1518 }
1519 }
1520
1521 return ret_freq;
1522 }
1523
1524 /**
1525 * cpufreq_get - get the current CPU frequency (in kHz)
1526 * @cpu: CPU number
1527 *
1528 * Get the CPU current (static) CPU frequency
1529 */
1530 unsigned int cpufreq_get(unsigned int cpu)
1531 {
1532 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1533 unsigned int ret_freq = 0;
1534
1535 if (policy) {
1536 down_read(&policy->rwsem);
1537
1538 if (!policy_is_inactive(policy))
1539 ret_freq = __cpufreq_get(policy);
1540
1541 up_read(&policy->rwsem);
1542
1543 cpufreq_cpu_put(policy);
1544 }
1545
1546 return ret_freq;
1547 }
1548 EXPORT_SYMBOL(cpufreq_get);
1549
1550 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1551 {
1552 unsigned int new_freq;
1553
1554 new_freq = cpufreq_driver->get(policy->cpu);
1555 if (!new_freq)
1556 return 0;
1557
1558 if (!policy->cur) {
1559 pr_debug("cpufreq: Driver did not initialize current freq\n");
1560 policy->cur = new_freq;
1561 } else if (policy->cur != new_freq && has_target()) {
1562 cpufreq_out_of_sync(policy, new_freq);
1563 }
1564
1565 return new_freq;
1566 }
1567
1568 static struct subsys_interface cpufreq_interface = {
1569 .name = "cpufreq",
1570 .subsys = &cpu_subsys,
1571 .add_dev = cpufreq_add_dev,
1572 .remove_dev = cpufreq_remove_dev,
1573 };
1574
1575 /*
1576 * In case platform wants some specific frequency to be configured
1577 * during suspend..
1578 */
1579 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1580 {
1581 int ret;
1582
1583 if (!policy->suspend_freq) {
1584 pr_debug("%s: suspend_freq not defined\n", __func__);
1585 return 0;
1586 }
1587
1588 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1589 policy->suspend_freq);
1590
1591 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1592 CPUFREQ_RELATION_H);
1593 if (ret)
1594 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1595 __func__, policy->suspend_freq, ret);
1596
1597 return ret;
1598 }
1599 EXPORT_SYMBOL(cpufreq_generic_suspend);
1600
1601 /**
1602 * cpufreq_suspend() - Suspend CPUFreq governors
1603 *
1604 * Called during system wide Suspend/Hibernate cycles for suspending governors
1605 * as some platforms can't change frequency after this point in suspend cycle.
1606 * Because some of the devices (like: i2c, regulators, etc) they use for
1607 * changing frequency are suspended quickly after this point.
1608 */
1609 void cpufreq_suspend(void)
1610 {
1611 struct cpufreq_policy *policy;
1612
1613 if (!cpufreq_driver)
1614 return;
1615
1616 if (!has_target() && !cpufreq_driver->suspend)
1617 goto suspend;
1618
1619 pr_debug("%s: Suspending Governors\n", __func__);
1620
1621 for_each_active_policy(policy) {
1622 if (has_target()) {
1623 down_write(&policy->rwsem);
1624 cpufreq_stop_governor(policy);
1625 up_write(&policy->rwsem);
1626 }
1627
1628 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1629 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1630 policy);
1631 }
1632
1633 suspend:
1634 cpufreq_suspended = true;
1635 }
1636
1637 /**
1638 * cpufreq_resume() - Resume CPUFreq governors
1639 *
1640 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1641 * are suspended with cpufreq_suspend().
1642 */
1643 void cpufreq_resume(void)
1644 {
1645 struct cpufreq_policy *policy;
1646 int ret;
1647
1648 if (!cpufreq_driver)
1649 return;
1650
1651 cpufreq_suspended = false;
1652
1653 if (!has_target() && !cpufreq_driver->resume)
1654 return;
1655
1656 pr_debug("%s: Resuming Governors\n", __func__);
1657
1658 for_each_active_policy(policy) {
1659 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1660 pr_err("%s: Failed to resume driver: %p\n", __func__,
1661 policy);
1662 } else if (has_target()) {
1663 down_write(&policy->rwsem);
1664 ret = cpufreq_start_governor(policy);
1665 up_write(&policy->rwsem);
1666
1667 if (ret)
1668 pr_err("%s: Failed to start governor for policy: %p\n",
1669 __func__, policy);
1670 }
1671 }
1672 }
1673
1674 /**
1675 * cpufreq_get_current_driver - return current driver's name
1676 *
1677 * Return the name string of the currently loaded cpufreq driver
1678 * or NULL, if none.
1679 */
1680 const char *cpufreq_get_current_driver(void)
1681 {
1682 if (cpufreq_driver)
1683 return cpufreq_driver->name;
1684
1685 return NULL;
1686 }
1687 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1688
1689 /**
1690 * cpufreq_get_driver_data - return current driver data
1691 *
1692 * Return the private data of the currently loaded cpufreq
1693 * driver, or NULL if no cpufreq driver is loaded.
1694 */
1695 void *cpufreq_get_driver_data(void)
1696 {
1697 if (cpufreq_driver)
1698 return cpufreq_driver->driver_data;
1699
1700 return NULL;
1701 }
1702 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1703
1704 /*********************************************************************
1705 * NOTIFIER LISTS INTERFACE *
1706 *********************************************************************/
1707
1708 /**
1709 * cpufreq_register_notifier - register a driver with cpufreq
1710 * @nb: notifier function to register
1711 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1712 *
1713 * Add a driver to one of two lists: either a list of drivers that
1714 * are notified about clock rate changes (once before and once after
1715 * the transition), or a list of drivers that are notified about
1716 * changes in cpufreq policy.
1717 *
1718 * This function may sleep, and has the same return conditions as
1719 * blocking_notifier_chain_register.
1720 */
1721 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1722 {
1723 int ret;
1724
1725 if (cpufreq_disabled())
1726 return -EINVAL;
1727
1728 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1729
1730 switch (list) {
1731 case CPUFREQ_TRANSITION_NOTIFIER:
1732 mutex_lock(&cpufreq_fast_switch_lock);
1733
1734 if (cpufreq_fast_switch_count > 0) {
1735 mutex_unlock(&cpufreq_fast_switch_lock);
1736 return -EBUSY;
1737 }
1738 ret = srcu_notifier_chain_register(
1739 &cpufreq_transition_notifier_list, nb);
1740 if (!ret)
1741 cpufreq_fast_switch_count--;
1742
1743 mutex_unlock(&cpufreq_fast_switch_lock);
1744 break;
1745 case CPUFREQ_POLICY_NOTIFIER:
1746 ret = blocking_notifier_chain_register(
1747 &cpufreq_policy_notifier_list, nb);
1748 break;
1749 default:
1750 ret = -EINVAL;
1751 }
1752
1753 return ret;
1754 }
1755 EXPORT_SYMBOL(cpufreq_register_notifier);
1756
1757 /**
1758 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1759 * @nb: notifier block to be unregistered
1760 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1761 *
1762 * Remove a driver from the CPU frequency notifier list.
1763 *
1764 * This function may sleep, and has the same return conditions as
1765 * blocking_notifier_chain_unregister.
1766 */
1767 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1768 {
1769 int ret;
1770
1771 if (cpufreq_disabled())
1772 return -EINVAL;
1773
1774 switch (list) {
1775 case CPUFREQ_TRANSITION_NOTIFIER:
1776 mutex_lock(&cpufreq_fast_switch_lock);
1777
1778 ret = srcu_notifier_chain_unregister(
1779 &cpufreq_transition_notifier_list, nb);
1780 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1781 cpufreq_fast_switch_count++;
1782
1783 mutex_unlock(&cpufreq_fast_switch_lock);
1784 break;
1785 case CPUFREQ_POLICY_NOTIFIER:
1786 ret = blocking_notifier_chain_unregister(
1787 &cpufreq_policy_notifier_list, nb);
1788 break;
1789 default:
1790 ret = -EINVAL;
1791 }
1792
1793 return ret;
1794 }
1795 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1796
1797
1798 /*********************************************************************
1799 * GOVERNORS *
1800 *********************************************************************/
1801
1802 /**
1803 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1804 * @policy: cpufreq policy to switch the frequency for.
1805 * @target_freq: New frequency to set (may be approximate).
1806 *
1807 * Carry out a fast frequency switch without sleeping.
1808 *
1809 * The driver's ->fast_switch() callback invoked by this function must be
1810 * suitable for being called from within RCU-sched read-side critical sections
1811 * and it is expected to select the minimum available frequency greater than or
1812 * equal to @target_freq (CPUFREQ_RELATION_L).
1813 *
1814 * This function must not be called if policy->fast_switch_enabled is unset.
1815 *
1816 * Governors calling this function must guarantee that it will never be invoked
1817 * twice in parallel for the same policy and that it will never be called in
1818 * parallel with either ->target() or ->target_index() for the same policy.
1819 *
1820 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1821 * callback to indicate an error condition, the hardware configuration must be
1822 * preserved.
1823 */
1824 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1825 unsigned int target_freq)
1826 {
1827 target_freq = clamp_val(target_freq, policy->min, policy->max);
1828
1829 return cpufreq_driver->fast_switch(policy, target_freq);
1830 }
1831 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1832
1833 /* Must set freqs->new to intermediate frequency */
1834 static int __target_intermediate(struct cpufreq_policy *policy,
1835 struct cpufreq_freqs *freqs, int index)
1836 {
1837 int ret;
1838
1839 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1840
1841 /* We don't need to switch to intermediate freq */
1842 if (!freqs->new)
1843 return 0;
1844
1845 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1846 __func__, policy->cpu, freqs->old, freqs->new);
1847
1848 cpufreq_freq_transition_begin(policy, freqs);
1849 ret = cpufreq_driver->target_intermediate(policy, index);
1850 cpufreq_freq_transition_end(policy, freqs, ret);
1851
1852 if (ret)
1853 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1854 __func__, ret);
1855
1856 return ret;
1857 }
1858
1859 static int __target_index(struct cpufreq_policy *policy, int index)
1860 {
1861 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1862 unsigned int intermediate_freq = 0;
1863 unsigned int newfreq = policy->freq_table[index].frequency;
1864 int retval = -EINVAL;
1865 bool notify;
1866
1867 if (newfreq == policy->cur)
1868 return 0;
1869
1870 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1871 if (notify) {
1872 /* Handle switching to intermediate frequency */
1873 if (cpufreq_driver->get_intermediate) {
1874 retval = __target_intermediate(policy, &freqs, index);
1875 if (retval)
1876 return retval;
1877
1878 intermediate_freq = freqs.new;
1879 /* Set old freq to intermediate */
1880 if (intermediate_freq)
1881 freqs.old = freqs.new;
1882 }
1883
1884 freqs.new = newfreq;
1885 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1886 __func__, policy->cpu, freqs.old, freqs.new);
1887
1888 cpufreq_freq_transition_begin(policy, &freqs);
1889 }
1890
1891 retval = cpufreq_driver->target_index(policy, index);
1892 if (retval)
1893 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1894 retval);
1895
1896 if (notify) {
1897 cpufreq_freq_transition_end(policy, &freqs, retval);
1898
1899 /*
1900 * Failed after setting to intermediate freq? Driver should have
1901 * reverted back to initial frequency and so should we. Check
1902 * here for intermediate_freq instead of get_intermediate, in
1903 * case we haven't switched to intermediate freq at all.
1904 */
1905 if (unlikely(retval && intermediate_freq)) {
1906 freqs.old = intermediate_freq;
1907 freqs.new = policy->restore_freq;
1908 cpufreq_freq_transition_begin(policy, &freqs);
1909 cpufreq_freq_transition_end(policy, &freqs, 0);
1910 }
1911 }
1912
1913 return retval;
1914 }
1915
1916 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1917 unsigned int target_freq,
1918 unsigned int relation)
1919 {
1920 unsigned int old_target_freq = target_freq;
1921 int index;
1922
1923 if (cpufreq_disabled())
1924 return -ENODEV;
1925
1926 /* Make sure that target_freq is within supported range */
1927 target_freq = clamp_val(target_freq, policy->min, policy->max);
1928
1929 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1930 policy->cpu, target_freq, relation, old_target_freq);
1931
1932 /*
1933 * This might look like a redundant call as we are checking it again
1934 * after finding index. But it is left intentionally for cases where
1935 * exactly same freq is called again and so we can save on few function
1936 * calls.
1937 */
1938 if (target_freq == policy->cur)
1939 return 0;
1940
1941 /* Save last value to restore later on errors */
1942 policy->restore_freq = policy->cur;
1943
1944 if (cpufreq_driver->target)
1945 return cpufreq_driver->target(policy, target_freq, relation);
1946
1947 if (!cpufreq_driver->target_index)
1948 return -EINVAL;
1949
1950 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1951
1952 return __target_index(policy, index);
1953 }
1954 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1955
1956 int cpufreq_driver_target(struct cpufreq_policy *policy,
1957 unsigned int target_freq,
1958 unsigned int relation)
1959 {
1960 int ret = -EINVAL;
1961
1962 down_write(&policy->rwsem);
1963
1964 ret = __cpufreq_driver_target(policy, target_freq, relation);
1965
1966 up_write(&policy->rwsem);
1967
1968 return ret;
1969 }
1970 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1971
1972 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1973 {
1974 return NULL;
1975 }
1976
1977 static int cpufreq_init_governor(struct cpufreq_policy *policy)
1978 {
1979 int ret;
1980
1981 /* Don't start any governor operations if we are entering suspend */
1982 if (cpufreq_suspended)
1983 return 0;
1984 /*
1985 * Governor might not be initiated here if ACPI _PPC changed
1986 * notification happened, so check it.
1987 */
1988 if (!policy->governor)
1989 return -EINVAL;
1990
1991 if (policy->governor->max_transition_latency &&
1992 policy->cpuinfo.transition_latency >
1993 policy->governor->max_transition_latency) {
1994 struct cpufreq_governor *gov = cpufreq_fallback_governor();
1995
1996 if (gov) {
1997 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1998 policy->governor->name, gov->name);
1999 policy->governor = gov;
2000 } else {
2001 return -EINVAL;
2002 }
2003 }
2004
2005 if (!try_module_get(policy->governor->owner))
2006 return -EINVAL;
2007
2008 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2009
2010 if (policy->governor->init) {
2011 ret = policy->governor->init(policy);
2012 if (ret) {
2013 module_put(policy->governor->owner);
2014 return ret;
2015 }
2016 }
2017
2018 return 0;
2019 }
2020
2021 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2022 {
2023 if (cpufreq_suspended || !policy->governor)
2024 return;
2025
2026 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2027
2028 if (policy->governor->exit)
2029 policy->governor->exit(policy);
2030
2031 module_put(policy->governor->owner);
2032 }
2033
2034 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2035 {
2036 int ret;
2037
2038 if (cpufreq_suspended)
2039 return 0;
2040
2041 if (!policy->governor)
2042 return -EINVAL;
2043
2044 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2045
2046 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2047 cpufreq_update_current_freq(policy);
2048
2049 if (policy->governor->start) {
2050 ret = policy->governor->start(policy);
2051 if (ret)
2052 return ret;
2053 }
2054
2055 if (policy->governor->limits)
2056 policy->governor->limits(policy);
2057
2058 return 0;
2059 }
2060
2061 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2062 {
2063 if (cpufreq_suspended || !policy->governor)
2064 return;
2065
2066 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2067
2068 if (policy->governor->stop)
2069 policy->governor->stop(policy);
2070 }
2071
2072 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2073 {
2074 if (cpufreq_suspended || !policy->governor)
2075 return;
2076
2077 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2078
2079 if (policy->governor->limits)
2080 policy->governor->limits(policy);
2081 }
2082
2083 int cpufreq_register_governor(struct cpufreq_governor *governor)
2084 {
2085 int err;
2086
2087 if (!governor)
2088 return -EINVAL;
2089
2090 if (cpufreq_disabled())
2091 return -ENODEV;
2092
2093 mutex_lock(&cpufreq_governor_mutex);
2094
2095 err = -EBUSY;
2096 if (!find_governor(governor->name)) {
2097 err = 0;
2098 list_add(&governor->governor_list, &cpufreq_governor_list);
2099 }
2100
2101 mutex_unlock(&cpufreq_governor_mutex);
2102 return err;
2103 }
2104 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2105
2106 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2107 {
2108 struct cpufreq_policy *policy;
2109 unsigned long flags;
2110
2111 if (!governor)
2112 return;
2113
2114 if (cpufreq_disabled())
2115 return;
2116
2117 /* clear last_governor for all inactive policies */
2118 read_lock_irqsave(&cpufreq_driver_lock, flags);
2119 for_each_inactive_policy(policy) {
2120 if (!strcmp(policy->last_governor, governor->name)) {
2121 policy->governor = NULL;
2122 strcpy(policy->last_governor, "\0");
2123 }
2124 }
2125 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2126
2127 mutex_lock(&cpufreq_governor_mutex);
2128 list_del(&governor->governor_list);
2129 mutex_unlock(&cpufreq_governor_mutex);
2130 return;
2131 }
2132 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2133
2134
2135 /*********************************************************************
2136 * POLICY INTERFACE *
2137 *********************************************************************/
2138
2139 /**
2140 * cpufreq_get_policy - get the current cpufreq_policy
2141 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2142 * is written
2143 *
2144 * Reads the current cpufreq policy.
2145 */
2146 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2147 {
2148 struct cpufreq_policy *cpu_policy;
2149 if (!policy)
2150 return -EINVAL;
2151
2152 cpu_policy = cpufreq_cpu_get(cpu);
2153 if (!cpu_policy)
2154 return -EINVAL;
2155
2156 memcpy(policy, cpu_policy, sizeof(*policy));
2157
2158 cpufreq_cpu_put(cpu_policy);
2159 return 0;
2160 }
2161 EXPORT_SYMBOL(cpufreq_get_policy);
2162
2163 /*
2164 * policy : current policy.
2165 * new_policy: policy to be set.
2166 */
2167 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2168 struct cpufreq_policy *new_policy)
2169 {
2170 struct cpufreq_governor *old_gov;
2171 int ret;
2172
2173 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2174 new_policy->cpu, new_policy->min, new_policy->max);
2175
2176 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2177
2178 /*
2179 * This check works well when we store new min/max freq attributes,
2180 * because new_policy is a copy of policy with one field updated.
2181 */
2182 if (new_policy->min > new_policy->max)
2183 return -EINVAL;
2184
2185 /* verify the cpu speed can be set within this limit */
2186 ret = cpufreq_driver->verify(new_policy);
2187 if (ret)
2188 return ret;
2189
2190 /* adjust if necessary - all reasons */
2191 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2192 CPUFREQ_ADJUST, new_policy);
2193
2194 /*
2195 * verify the cpu speed can be set within this limit, which might be
2196 * different to the first one
2197 */
2198 ret = cpufreq_driver->verify(new_policy);
2199 if (ret)
2200 return ret;
2201
2202 /* notification of the new policy */
2203 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2204 CPUFREQ_NOTIFY, new_policy);
2205
2206 policy->min = new_policy->min;
2207 policy->max = new_policy->max;
2208
2209 policy->cached_target_freq = UINT_MAX;
2210
2211 pr_debug("new min and max freqs are %u - %u kHz\n",
2212 policy->min, policy->max);
2213
2214 if (cpufreq_driver->setpolicy) {
2215 policy->policy = new_policy->policy;
2216 pr_debug("setting range\n");
2217 return cpufreq_driver->setpolicy(new_policy);
2218 }
2219
2220 if (new_policy->governor == policy->governor) {
2221 pr_debug("cpufreq: governor limits update\n");
2222 cpufreq_governor_limits(policy);
2223 return 0;
2224 }
2225
2226 pr_debug("governor switch\n");
2227
2228 /* save old, working values */
2229 old_gov = policy->governor;
2230 /* end old governor */
2231 if (old_gov) {
2232 cpufreq_stop_governor(policy);
2233 cpufreq_exit_governor(policy);
2234 }
2235
2236 /* start new governor */
2237 policy->governor = new_policy->governor;
2238 ret = cpufreq_init_governor(policy);
2239 if (!ret) {
2240 ret = cpufreq_start_governor(policy);
2241 if (!ret) {
2242 pr_debug("cpufreq: governor change\n");
2243 return 0;
2244 }
2245 cpufreq_exit_governor(policy);
2246 }
2247
2248 /* new governor failed, so re-start old one */
2249 pr_debug("starting governor %s failed\n", policy->governor->name);
2250 if (old_gov) {
2251 policy->governor = old_gov;
2252 if (cpufreq_init_governor(policy))
2253 policy->governor = NULL;
2254 else
2255 cpufreq_start_governor(policy);
2256 }
2257
2258 return ret;
2259 }
2260
2261 /**
2262 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2263 * @cpu: CPU which shall be re-evaluated
2264 *
2265 * Useful for policy notifiers which have different necessities
2266 * at different times.
2267 */
2268 void cpufreq_update_policy(unsigned int cpu)
2269 {
2270 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2271 struct cpufreq_policy new_policy;
2272
2273 if (!policy)
2274 return;
2275
2276 down_write(&policy->rwsem);
2277
2278 if (policy_is_inactive(policy))
2279 goto unlock;
2280
2281 pr_debug("updating policy for CPU %u\n", cpu);
2282 memcpy(&new_policy, policy, sizeof(*policy));
2283 new_policy.min = policy->user_policy.min;
2284 new_policy.max = policy->user_policy.max;
2285
2286 /*
2287 * BIOS might change freq behind our back
2288 * -> ask driver for current freq and notify governors about a change
2289 */
2290 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2291 if (cpufreq_suspended)
2292 goto unlock;
2293
2294 new_policy.cur = cpufreq_update_current_freq(policy);
2295 if (WARN_ON(!new_policy.cur))
2296 goto unlock;
2297 }
2298
2299 cpufreq_set_policy(policy, &new_policy);
2300
2301 unlock:
2302 up_write(&policy->rwsem);
2303
2304 cpufreq_cpu_put(policy);
2305 }
2306 EXPORT_SYMBOL(cpufreq_update_policy);
2307
2308 /*********************************************************************
2309 * BOOST *
2310 *********************************************************************/
2311 static int cpufreq_boost_set_sw(int state)
2312 {
2313 struct cpufreq_policy *policy;
2314 int ret = -EINVAL;
2315
2316 for_each_active_policy(policy) {
2317 if (!policy->freq_table)
2318 continue;
2319
2320 ret = cpufreq_frequency_table_cpuinfo(policy,
2321 policy->freq_table);
2322 if (ret) {
2323 pr_err("%s: Policy frequency update failed\n",
2324 __func__);
2325 break;
2326 }
2327
2328 down_write(&policy->rwsem);
2329 policy->user_policy.max = policy->max;
2330 cpufreq_governor_limits(policy);
2331 up_write(&policy->rwsem);
2332 }
2333
2334 return ret;
2335 }
2336
2337 int cpufreq_boost_trigger_state(int state)
2338 {
2339 unsigned long flags;
2340 int ret = 0;
2341
2342 if (cpufreq_driver->boost_enabled == state)
2343 return 0;
2344
2345 write_lock_irqsave(&cpufreq_driver_lock, flags);
2346 cpufreq_driver->boost_enabled = state;
2347 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2348
2349 ret = cpufreq_driver->set_boost(state);
2350 if (ret) {
2351 write_lock_irqsave(&cpufreq_driver_lock, flags);
2352 cpufreq_driver->boost_enabled = !state;
2353 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2354
2355 pr_err("%s: Cannot %s BOOST\n",
2356 __func__, state ? "enable" : "disable");
2357 }
2358
2359 return ret;
2360 }
2361
2362 static bool cpufreq_boost_supported(void)
2363 {
2364 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2365 }
2366
2367 static int create_boost_sysfs_file(void)
2368 {
2369 int ret;
2370
2371 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2372 if (ret)
2373 pr_err("%s: cannot register global BOOST sysfs file\n",
2374 __func__);
2375
2376 return ret;
2377 }
2378
2379 static void remove_boost_sysfs_file(void)
2380 {
2381 if (cpufreq_boost_supported())
2382 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2383 }
2384
2385 int cpufreq_enable_boost_support(void)
2386 {
2387 if (!cpufreq_driver)
2388 return -EINVAL;
2389
2390 if (cpufreq_boost_supported())
2391 return 0;
2392
2393 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2394
2395 /* This will get removed on driver unregister */
2396 return create_boost_sysfs_file();
2397 }
2398 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2399
2400 int cpufreq_boost_enabled(void)
2401 {
2402 return cpufreq_driver->boost_enabled;
2403 }
2404 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2405
2406 /*********************************************************************
2407 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2408 *********************************************************************/
2409 static enum cpuhp_state hp_online;
2410
2411 static int cpuhp_cpufreq_online(unsigned int cpu)
2412 {
2413 cpufreq_online(cpu);
2414
2415 return 0;
2416 }
2417
2418 static int cpuhp_cpufreq_offline(unsigned int cpu)
2419 {
2420 cpufreq_offline(cpu);
2421
2422 return 0;
2423 }
2424
2425 static char cpufreq_driver_name[CPUFREQ_NAME_LEN];
2426
2427 static int __init cpufreq_driver_setup(char *str)
2428 {
2429 strlcpy(cpufreq_driver_name, str, CPUFREQ_NAME_LEN);
2430 return 1;
2431 }
2432
2433 /*
2434 * Set this name to only allow one specific cpu freq driver, e.g.,
2435 * cpufreq_driver=powernow-k8
2436 */
2437 __setup("cpufreq_driver=", cpufreq_driver_setup);
2438
2439 /**
2440 * cpufreq_register_driver - register a CPU Frequency driver
2441 * @driver_data: A struct cpufreq_driver containing the values#
2442 * submitted by the CPU Frequency driver.
2443 *
2444 * Registers a CPU Frequency driver to this core code. This code
2445 * returns zero on success, -EEXIST when another driver got here first
2446 * (and isn't unregistered in the meantime).
2447 *
2448 */
2449 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2450 {
2451 unsigned long flags;
2452 int ret;
2453
2454 if (cpufreq_disabled())
2455 return -ENODEV;
2456
2457 if (!driver_data || !driver_data->verify || !driver_data->init ||
2458 !(driver_data->setpolicy || driver_data->target_index ||
2459 driver_data->target) ||
2460 (driver_data->setpolicy && (driver_data->target_index ||
2461 driver_data->target)) ||
2462 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2463 return -EINVAL;
2464
2465 pr_debug("trying to register driver %s, cpufreq_driver=%s\n",
2466 driver_data->name, cpufreq_driver_name);
2467
2468 if (cpufreq_driver_name[0])
2469 if (!driver_data->name ||
2470 strcmp(cpufreq_driver_name, driver_data->name))
2471 return -EINVAL;
2472
2473 /* Protect against concurrent CPU online/offline. */
2474 cpus_read_lock();
2475
2476 write_lock_irqsave(&cpufreq_driver_lock, flags);
2477 if (cpufreq_driver) {
2478 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2479 ret = -EEXIST;
2480 goto out;
2481 }
2482 cpufreq_driver = driver_data;
2483 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2484
2485 if (driver_data->setpolicy)
2486 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2487
2488 if (cpufreq_boost_supported()) {
2489 ret = create_boost_sysfs_file();
2490 if (ret)
2491 goto err_null_driver;
2492 }
2493
2494 ret = subsys_interface_register(&cpufreq_interface);
2495 if (ret)
2496 goto err_boost_unreg;
2497
2498 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2499 list_empty(&cpufreq_policy_list)) {
2500 /* if all ->init() calls failed, unregister */
2501 ret = -ENODEV;
2502 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2503 driver_data->name);
2504 goto err_if_unreg;
2505 }
2506
2507 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2508 "cpufreq:online",
2509 cpuhp_cpufreq_online,
2510 cpuhp_cpufreq_offline);
2511 if (ret < 0)
2512 goto err_if_unreg;
2513 hp_online = ret;
2514 ret = 0;
2515
2516 pr_debug("driver %s up and running\n", driver_data->name);
2517 goto out;
2518
2519 err_if_unreg:
2520 subsys_interface_unregister(&cpufreq_interface);
2521 err_boost_unreg:
2522 remove_boost_sysfs_file();
2523 err_null_driver:
2524 write_lock_irqsave(&cpufreq_driver_lock, flags);
2525 cpufreq_driver = NULL;
2526 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2527 out:
2528 cpus_read_unlock();
2529 return ret;
2530 }
2531 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2532
2533 /**
2534 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2535 *
2536 * Unregister the current CPUFreq driver. Only call this if you have
2537 * the right to do so, i.e. if you have succeeded in initialising before!
2538 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2539 * currently not initialised.
2540 */
2541 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2542 {
2543 unsigned long flags;
2544
2545 if (!cpufreq_driver || (driver != cpufreq_driver))
2546 return -EINVAL;
2547
2548 pr_debug("unregistering driver %s\n", driver->name);
2549
2550 /* Protect against concurrent cpu hotplug */
2551 cpus_read_lock();
2552 subsys_interface_unregister(&cpufreq_interface);
2553 remove_boost_sysfs_file();
2554 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2555
2556 write_lock_irqsave(&cpufreq_driver_lock, flags);
2557
2558 cpufreq_driver = NULL;
2559
2560 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2561 cpus_read_unlock();
2562
2563 return 0;
2564 }
2565 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2566
2567 /*
2568 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2569 * or mutexes when secondary CPUs are halted.
2570 */
2571 static struct syscore_ops cpufreq_syscore_ops = {
2572 .shutdown = cpufreq_suspend,
2573 };
2574
2575 struct kobject *cpufreq_global_kobject;
2576 EXPORT_SYMBOL(cpufreq_global_kobject);
2577
2578 static int __init cpufreq_core_init(void)
2579 {
2580 if (cpufreq_disabled())
2581 return -ENODEV;
2582
2583 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2584 BUG_ON(!cpufreq_global_kobject);
2585
2586 register_syscore_ops(&cpufreq_syscore_ops);
2587
2588 return 0;
2589 }
2590 module_param(off, int, 0444);
2591 core_initcall(cpufreq_core_init);