]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge remote-tracking branch 'asoc/for-5.15' into asoc-linus
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45 /* Iterate over governors */
46 static LIST_HEAD(cpufreq_governor_list);
47 #define for_each_governor(__governor) \
48 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
49
50 static char default_governor[CPUFREQ_NAME_LEN];
51
52 /*
53 * The "cpufreq driver" - the arch- or hardware-dependent low
54 * level driver of CPUFreq support, and its spinlock. This lock
55 * also protects the cpufreq_cpu_data array.
56 */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60
61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
62 bool cpufreq_supports_freq_invariance(void)
63 {
64 return static_branch_likely(&cpufreq_freq_invariance);
65 }
66
67 /* Flag to suspend/resume CPUFreq governors */
68 static bool cpufreq_suspended;
69
70 static inline bool has_target(void)
71 {
72 return cpufreq_driver->target_index || cpufreq_driver->target;
73 }
74
75 /* internal prototypes */
76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
77 static int cpufreq_init_governor(struct cpufreq_policy *policy);
78 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80 static int cpufreq_set_policy(struct cpufreq_policy *policy,
81 struct cpufreq_governor *new_gov,
82 unsigned int new_pol);
83
84 /*
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97 return off;
98 }
99 void disable_cpufreq(void)
100 {
101 off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104
105 bool have_governor_per_policy(void)
106 {
107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110
111 static struct kobject *cpufreq_global_kobject;
112
113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
114 {
115 if (have_governor_per_policy())
116 return &policy->kobj;
117 else
118 return cpufreq_global_kobject;
119 }
120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
121
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124 struct kernel_cpustat kcpustat;
125 u64 cur_wall_time;
126 u64 idle_time;
127 u64 busy_time;
128
129 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
130
131 kcpustat_cpu_fetch(&kcpustat, cpu);
132
133 busy_time = kcpustat.cpustat[CPUTIME_USER];
134 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
135 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
136 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
137 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
138 busy_time += kcpustat.cpustat[CPUTIME_NICE];
139
140 idle_time = cur_wall_time - busy_time;
141 if (wall)
142 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
143
144 return div_u64(idle_time, NSEC_PER_USEC);
145 }
146
147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
148 {
149 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
150
151 if (idle_time == -1ULL)
152 return get_cpu_idle_time_jiffy(cpu, wall);
153 else if (!io_busy)
154 idle_time += get_cpu_iowait_time_us(cpu, wall);
155
156 return idle_time;
157 }
158 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
159
160 /*
161 * This is a generic cpufreq init() routine which can be used by cpufreq
162 * drivers of SMP systems. It will do following:
163 * - validate & show freq table passed
164 * - set policies transition latency
165 * - policy->cpus with all possible CPUs
166 */
167 void cpufreq_generic_init(struct cpufreq_policy *policy,
168 struct cpufreq_frequency_table *table,
169 unsigned int transition_latency)
170 {
171 policy->freq_table = table;
172 policy->cpuinfo.transition_latency = transition_latency;
173
174 /*
175 * The driver only supports the SMP configuration where all processors
176 * share the clock and voltage and clock.
177 */
178 cpumask_setall(policy->cpus);
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181
182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185
186 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189
190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193
194 if (!policy || IS_ERR(policy->clk)) {
195 pr_err("%s: No %s associated to cpu: %d\n",
196 __func__, policy ? "clk" : "policy", cpu);
197 return 0;
198 }
199
200 return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203
204 /**
205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206 * @cpu: CPU to find the policy for.
207 *
208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209 * the kobject reference counter of that policy. Return a valid policy on
210 * success or NULL on failure.
211 *
212 * The policy returned by this function has to be released with the help of
213 * cpufreq_cpu_put() to balance its kobject reference counter properly.
214 */
215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217 struct cpufreq_policy *policy = NULL;
218 unsigned long flags;
219
220 if (WARN_ON(cpu >= nr_cpu_ids))
221 return NULL;
222
223 /* get the cpufreq driver */
224 read_lock_irqsave(&cpufreq_driver_lock, flags);
225
226 if (cpufreq_driver) {
227 /* get the CPU */
228 policy = cpufreq_cpu_get_raw(cpu);
229 if (policy)
230 kobject_get(&policy->kobj);
231 }
232
233 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234
235 return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238
239 /**
240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241 * @policy: cpufreq policy returned by cpufreq_cpu_get().
242 */
243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245 kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248
249 /**
250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252 */
253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255 if (WARN_ON(!policy))
256 return;
257
258 lockdep_assert_held(&policy->rwsem);
259
260 up_write(&policy->rwsem);
261
262 cpufreq_cpu_put(policy);
263 }
264
265 /**
266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267 * @cpu: CPU to find the policy for.
268 *
269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270 * if the policy returned by it is not NULL, acquire its rwsem for writing.
271 * Return the policy if it is active or release it and return NULL otherwise.
272 *
273 * The policy returned by this function has to be released with the help of
274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275 * counter properly.
276 */
277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280
281 if (!policy)
282 return NULL;
283
284 down_write(&policy->rwsem);
285
286 if (policy_is_inactive(policy)) {
287 cpufreq_cpu_release(policy);
288 return NULL;
289 }
290
291 return policy;
292 }
293
294 /*********************************************************************
295 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
296 *********************************************************************/
297
298 /**
299 * adjust_jiffies - Adjust the system "loops_per_jiffy".
300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
301 * @ci: Frequency change information.
302 *
303 * This function alters the system "loops_per_jiffy" for the clock
304 * speed change. Note that loops_per_jiffy cannot be updated on SMP
305 * systems as each CPU might be scaled differently. So, use the arch
306 * per-CPU loops_per_jiffy value wherever possible.
307 */
308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311 static unsigned long l_p_j_ref;
312 static unsigned int l_p_j_ref_freq;
313
314 if (ci->flags & CPUFREQ_CONST_LOOPS)
315 return;
316
317 if (!l_p_j_ref_freq) {
318 l_p_j_ref = loops_per_jiffy;
319 l_p_j_ref_freq = ci->old;
320 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321 l_p_j_ref, l_p_j_ref_freq);
322 }
323 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325 ci->new);
326 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327 loops_per_jiffy, ci->new);
328 }
329 #endif
330 }
331
332 /**
333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
334 * @policy: cpufreq policy to enable fast frequency switching for.
335 * @freqs: contain details of the frequency update.
336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337 *
338 * This function calls the transition notifiers and adjust_jiffies().
339 *
340 * It is called twice on all CPU frequency changes that have external effects.
341 */
342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs,
344 unsigned int state)
345 {
346 int cpu;
347
348 BUG_ON(irqs_disabled());
349
350 if (cpufreq_disabled())
351 return;
352
353 freqs->policy = policy;
354 freqs->flags = cpufreq_driver->flags;
355 pr_debug("notification %u of frequency transition to %u kHz\n",
356 state, freqs->new);
357
358 switch (state) {
359 case CPUFREQ_PRECHANGE:
360 /*
361 * Detect if the driver reported a value as "old frequency"
362 * which is not equal to what the cpufreq core thinks is
363 * "old frequency".
364 */
365 if (policy->cur && policy->cur != freqs->old) {
366 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367 freqs->old, policy->cur);
368 freqs->old = policy->cur;
369 }
370
371 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372 CPUFREQ_PRECHANGE, freqs);
373
374 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375 break;
376
377 case CPUFREQ_POSTCHANGE:
378 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380 cpumask_pr_args(policy->cpus));
381
382 for_each_cpu(cpu, policy->cpus)
383 trace_cpu_frequency(freqs->new, cpu);
384
385 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386 CPUFREQ_POSTCHANGE, freqs);
387
388 cpufreq_stats_record_transition(policy, freqs->new);
389 policy->cur = freqs->new;
390 }
391 }
392
393 /* Do post notifications when there are chances that transition has failed */
394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
395 struct cpufreq_freqs *freqs, int transition_failed)
396 {
397 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
398 if (!transition_failed)
399 return;
400
401 swap(freqs->old, freqs->new);
402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 }
405
406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
407 struct cpufreq_freqs *freqs)
408 {
409
410 /*
411 * Catch double invocations of _begin() which lead to self-deadlock.
412 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
413 * doesn't invoke _begin() on their behalf, and hence the chances of
414 * double invocations are very low. Moreover, there are scenarios
415 * where these checks can emit false-positive warnings in these
416 * drivers; so we avoid that by skipping them altogether.
417 */
418 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
419 && current == policy->transition_task);
420
421 wait:
422 wait_event(policy->transition_wait, !policy->transition_ongoing);
423
424 spin_lock(&policy->transition_lock);
425
426 if (unlikely(policy->transition_ongoing)) {
427 spin_unlock(&policy->transition_lock);
428 goto wait;
429 }
430
431 policy->transition_ongoing = true;
432 policy->transition_task = current;
433
434 spin_unlock(&policy->transition_lock);
435
436 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
437 }
438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
439
440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
441 struct cpufreq_freqs *freqs, int transition_failed)
442 {
443 if (WARN_ON(!policy->transition_ongoing))
444 return;
445
446 cpufreq_notify_post_transition(policy, freqs, transition_failed);
447
448 arch_set_freq_scale(policy->related_cpus,
449 policy->cur,
450 policy->cpuinfo.max_freq);
451
452 policy->transition_ongoing = false;
453 policy->transition_task = NULL;
454
455 wake_up(&policy->transition_wait);
456 }
457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
458
459 /*
460 * Fast frequency switching status count. Positive means "enabled", negative
461 * means "disabled" and 0 means "not decided yet".
462 */
463 static int cpufreq_fast_switch_count;
464 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
465
466 static void cpufreq_list_transition_notifiers(void)
467 {
468 struct notifier_block *nb;
469
470 pr_info("Registered transition notifiers:\n");
471
472 mutex_lock(&cpufreq_transition_notifier_list.mutex);
473
474 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
475 pr_info("%pS\n", nb->notifier_call);
476
477 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
478 }
479
480 /**
481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
482 * @policy: cpufreq policy to enable fast frequency switching for.
483 *
484 * Try to enable fast frequency switching for @policy.
485 *
486 * The attempt will fail if there is at least one transition notifier registered
487 * at this point, as fast frequency switching is quite fundamentally at odds
488 * with transition notifiers. Thus if successful, it will make registration of
489 * transition notifiers fail going forward.
490 */
491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
492 {
493 lockdep_assert_held(&policy->rwsem);
494
495 if (!policy->fast_switch_possible)
496 return;
497
498 mutex_lock(&cpufreq_fast_switch_lock);
499 if (cpufreq_fast_switch_count >= 0) {
500 cpufreq_fast_switch_count++;
501 policy->fast_switch_enabled = true;
502 } else {
503 pr_warn("CPU%u: Fast frequency switching not enabled\n",
504 policy->cpu);
505 cpufreq_list_transition_notifiers();
506 }
507 mutex_unlock(&cpufreq_fast_switch_lock);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
510
511 /**
512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
513 * @policy: cpufreq policy to disable fast frequency switching for.
514 */
515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
516 {
517 mutex_lock(&cpufreq_fast_switch_lock);
518 if (policy->fast_switch_enabled) {
519 policy->fast_switch_enabled = false;
520 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
521 cpufreq_fast_switch_count--;
522 }
523 mutex_unlock(&cpufreq_fast_switch_lock);
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
526
527 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
528 unsigned int target_freq, unsigned int relation)
529 {
530 unsigned int idx;
531
532 target_freq = clamp_val(target_freq, policy->min, policy->max);
533
534 if (!cpufreq_driver->target_index)
535 return target_freq;
536
537 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
538 policy->cached_resolved_idx = idx;
539 policy->cached_target_freq = target_freq;
540 return policy->freq_table[idx].frequency;
541 }
542
543 /**
544 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
545 * one.
546 * @policy: associated policy to interrogate
547 * @target_freq: target frequency to resolve.
548 *
549 * The target to driver frequency mapping is cached in the policy.
550 *
551 * Return: Lowest driver-supported frequency greater than or equal to the
552 * given target_freq, subject to policy (min/max) and driver limitations.
553 */
554 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
555 unsigned int target_freq)
556 {
557 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_L);
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560
561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563 unsigned int latency;
564
565 if (policy->transition_delay_us)
566 return policy->transition_delay_us;
567
568 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569 if (latency) {
570 /*
571 * For platforms that can change the frequency very fast (< 10
572 * us), the above formula gives a decent transition delay. But
573 * for platforms where transition_latency is in milliseconds, it
574 * ends up giving unrealistic values.
575 *
576 * Cap the default transition delay to 10 ms, which seems to be
577 * a reasonable amount of time after which we should reevaluate
578 * the frequency.
579 */
580 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581 }
582
583 return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586
587 /*********************************************************************
588 * SYSFS INTERFACE *
589 *********************************************************************/
590 static ssize_t show_boost(struct kobject *kobj,
591 struct kobj_attribute *attr, char *buf)
592 {
593 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595
596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597 const char *buf, size_t count)
598 {
599 int ret, enable;
600
601 ret = sscanf(buf, "%d", &enable);
602 if (ret != 1 || enable < 0 || enable > 1)
603 return -EINVAL;
604
605 if (cpufreq_boost_trigger_state(enable)) {
606 pr_err("%s: Cannot %s BOOST!\n",
607 __func__, enable ? "enable" : "disable");
608 return -EINVAL;
609 }
610
611 pr_debug("%s: cpufreq BOOST %s\n",
612 __func__, enable ? "enabled" : "disabled");
613
614 return count;
615 }
616 define_one_global_rw(boost);
617
618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620 struct cpufreq_governor *t;
621
622 for_each_governor(t)
623 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624 return t;
625
626 return NULL;
627 }
628
629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631 struct cpufreq_governor *t;
632
633 mutex_lock(&cpufreq_governor_mutex);
634 t = find_governor(str_governor);
635 if (!t)
636 goto unlock;
637
638 if (!try_module_get(t->owner))
639 t = NULL;
640
641 unlock:
642 mutex_unlock(&cpufreq_governor_mutex);
643
644 return t;
645 }
646
647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650 return CPUFREQ_POLICY_PERFORMANCE;
651
652 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653 return CPUFREQ_POLICY_POWERSAVE;
654
655 return CPUFREQ_POLICY_UNKNOWN;
656 }
657
658 /**
659 * cpufreq_parse_governor - parse a governor string only for has_target()
660 * @str_governor: Governor name.
661 */
662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664 struct cpufreq_governor *t;
665
666 t = get_governor(str_governor);
667 if (t)
668 return t;
669
670 if (request_module("cpufreq_%s", str_governor))
671 return NULL;
672
673 return get_governor(str_governor);
674 }
675
676 /*
677 * cpufreq_per_cpu_attr_read() / show_##file_name() -
678 * print out cpufreq information
679 *
680 * Write out information from cpufreq_driver->policy[cpu]; object must be
681 * "unsigned int".
682 */
683
684 #define show_one(file_name, object) \
685 static ssize_t show_##file_name \
686 (struct cpufreq_policy *policy, char *buf) \
687 { \
688 return sprintf(buf, "%u\n", policy->object); \
689 }
690
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696
697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699 return 0;
700 }
701
702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704 ssize_t ret;
705 unsigned int freq;
706
707 freq = arch_freq_get_on_cpu(policy->cpu);
708 if (freq)
709 ret = sprintf(buf, "%u\n", freq);
710 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712 else
713 ret = sprintf(buf, "%u\n", policy->cur);
714 return ret;
715 }
716
717 /*
718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719 */
720 #define store_one(file_name, object) \
721 static ssize_t store_##file_name \
722 (struct cpufreq_policy *policy, const char *buf, size_t count) \
723 { \
724 unsigned long val; \
725 int ret; \
726 \
727 ret = sscanf(buf, "%lu", &val); \
728 if (ret != 1) \
729 return -EINVAL; \
730 \
731 ret = freq_qos_update_request(policy->object##_freq_req, val);\
732 return ret >= 0 ? count : ret; \
733 }
734
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737
738 /*
739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740 */
741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742 char *buf)
743 {
744 unsigned int cur_freq = __cpufreq_get(policy);
745
746 if (cur_freq)
747 return sprintf(buf, "%u\n", cur_freq);
748
749 return sprintf(buf, "<unknown>\n");
750 }
751
752 /*
753 * show_scaling_governor - show the current policy for the specified CPU
754 */
755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758 return sprintf(buf, "powersave\n");
759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760 return sprintf(buf, "performance\n");
761 else if (policy->governor)
762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763 policy->governor->name);
764 return -EINVAL;
765 }
766
767 /*
768 * store_scaling_governor - store policy for the specified CPU
769 */
770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771 const char *buf, size_t count)
772 {
773 char str_governor[16];
774 int ret;
775
776 ret = sscanf(buf, "%15s", str_governor);
777 if (ret != 1)
778 return -EINVAL;
779
780 if (cpufreq_driver->setpolicy) {
781 unsigned int new_pol;
782
783 new_pol = cpufreq_parse_policy(str_governor);
784 if (!new_pol)
785 return -EINVAL;
786
787 ret = cpufreq_set_policy(policy, NULL, new_pol);
788 } else {
789 struct cpufreq_governor *new_gov;
790
791 new_gov = cpufreq_parse_governor(str_governor);
792 if (!new_gov)
793 return -EINVAL;
794
795 ret = cpufreq_set_policy(policy, new_gov,
796 CPUFREQ_POLICY_UNKNOWN);
797
798 module_put(new_gov->owner);
799 }
800
801 return ret ? ret : count;
802 }
803
804 /*
805 * show_scaling_driver - show the cpufreq driver currently loaded
806 */
807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811
812 /*
813 * show_scaling_available_governors - show the available CPUfreq governors
814 */
815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816 char *buf)
817 {
818 ssize_t i = 0;
819 struct cpufreq_governor *t;
820
821 if (!has_target()) {
822 i += sprintf(buf, "performance powersave");
823 goto out;
824 }
825
826 mutex_lock(&cpufreq_governor_mutex);
827 for_each_governor(t) {
828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 - (CPUFREQ_NAME_LEN + 2)))
830 break;
831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 }
833 mutex_unlock(&cpufreq_governor_mutex);
834 out:
835 i += sprintf(&buf[i], "\n");
836 return i;
837 }
838
839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841 ssize_t i = 0;
842 unsigned int cpu;
843
844 for_each_cpu(cpu, mask) {
845 if (i)
846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848 if (i >= (PAGE_SIZE - 5))
849 break;
850 }
851 i += sprintf(&buf[i], "\n");
852 return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855
856 /*
857 * show_related_cpus - show the CPUs affected by each transition even if
858 * hw coordination is in use
859 */
860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862 return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864
865 /*
866 * show_affected_cpus - show the CPUs affected by each transition
867 */
868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870 return cpufreq_show_cpus(policy->cpus, buf);
871 }
872
873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874 const char *buf, size_t count)
875 {
876 unsigned int freq = 0;
877 unsigned int ret;
878
879 if (!policy->governor || !policy->governor->store_setspeed)
880 return -EINVAL;
881
882 ret = sscanf(buf, "%u", &freq);
883 if (ret != 1)
884 return -EINVAL;
885
886 policy->governor->store_setspeed(policy, freq);
887
888 return count;
889 }
890
891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893 if (!policy->governor || !policy->governor->show_setspeed)
894 return sprintf(buf, "<unsupported>\n");
895
896 return policy->governor->show_setspeed(policy, buf);
897 }
898
899 /*
900 * show_bios_limit - show the current cpufreq HW/BIOS limitation
901 */
902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904 unsigned int limit;
905 int ret;
906 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907 if (!ret)
908 return sprintf(buf, "%u\n", limit);
909 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926
927 static struct attribute *default_attrs[] = {
928 &cpuinfo_min_freq.attr,
929 &cpuinfo_max_freq.attr,
930 &cpuinfo_transition_latency.attr,
931 &scaling_min_freq.attr,
932 &scaling_max_freq.attr,
933 &affected_cpus.attr,
934 &related_cpus.attr,
935 &scaling_governor.attr,
936 &scaling_driver.attr,
937 &scaling_available_governors.attr,
938 &scaling_setspeed.attr,
939 NULL
940 };
941
942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
943 #define to_attr(a) container_of(a, struct freq_attr, attr)
944
945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
946 {
947 struct cpufreq_policy *policy = to_policy(kobj);
948 struct freq_attr *fattr = to_attr(attr);
949 ssize_t ret;
950
951 if (!fattr->show)
952 return -EIO;
953
954 down_read(&policy->rwsem);
955 ret = fattr->show(policy, buf);
956 up_read(&policy->rwsem);
957
958 return ret;
959 }
960
961 static ssize_t store(struct kobject *kobj, struct attribute *attr,
962 const char *buf, size_t count)
963 {
964 struct cpufreq_policy *policy = to_policy(kobj);
965 struct freq_attr *fattr = to_attr(attr);
966 ssize_t ret = -EINVAL;
967
968 if (!fattr->store)
969 return -EIO;
970
971 /*
972 * cpus_read_trylock() is used here to work around a circular lock
973 * dependency problem with respect to the cpufreq_register_driver().
974 */
975 if (!cpus_read_trylock())
976 return -EBUSY;
977
978 if (cpu_online(policy->cpu)) {
979 down_write(&policy->rwsem);
980 ret = fattr->store(policy, buf, count);
981 up_write(&policy->rwsem);
982 }
983
984 cpus_read_unlock();
985
986 return ret;
987 }
988
989 static void cpufreq_sysfs_release(struct kobject *kobj)
990 {
991 struct cpufreq_policy *policy = to_policy(kobj);
992 pr_debug("last reference is dropped\n");
993 complete(&policy->kobj_unregister);
994 }
995
996 static const struct sysfs_ops sysfs_ops = {
997 .show = show,
998 .store = store,
999 };
1000
1001 static struct kobj_type ktype_cpufreq = {
1002 .sysfs_ops = &sysfs_ops,
1003 .default_attrs = default_attrs,
1004 .release = cpufreq_sysfs_release,
1005 };
1006
1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1008 {
1009 struct device *dev = get_cpu_device(cpu);
1010
1011 if (unlikely(!dev))
1012 return;
1013
1014 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1015 return;
1016
1017 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1018 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1019 dev_err(dev, "cpufreq symlink creation failed\n");
1020 }
1021
1022 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1023 struct device *dev)
1024 {
1025 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1026 sysfs_remove_link(&dev->kobj, "cpufreq");
1027 }
1028
1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1030 {
1031 struct freq_attr **drv_attr;
1032 int ret = 0;
1033
1034 /* set up files for this cpu device */
1035 drv_attr = cpufreq_driver->attr;
1036 while (drv_attr && *drv_attr) {
1037 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1038 if (ret)
1039 return ret;
1040 drv_attr++;
1041 }
1042 if (cpufreq_driver->get) {
1043 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1044 if (ret)
1045 return ret;
1046 }
1047
1048 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1049 if (ret)
1050 return ret;
1051
1052 if (cpufreq_driver->bios_limit) {
1053 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1054 if (ret)
1055 return ret;
1056 }
1057
1058 return 0;
1059 }
1060
1061 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1062 {
1063 struct cpufreq_governor *gov = NULL;
1064 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1065 int ret;
1066
1067 if (has_target()) {
1068 /* Update policy governor to the one used before hotplug. */
1069 gov = get_governor(policy->last_governor);
1070 if (gov) {
1071 pr_debug("Restoring governor %s for cpu %d\n",
1072 gov->name, policy->cpu);
1073 } else {
1074 gov = get_governor(default_governor);
1075 }
1076
1077 if (!gov) {
1078 gov = cpufreq_default_governor();
1079 __module_get(gov->owner);
1080 }
1081
1082 } else {
1083
1084 /* Use the default policy if there is no last_policy. */
1085 if (policy->last_policy) {
1086 pol = policy->last_policy;
1087 } else {
1088 pol = cpufreq_parse_policy(default_governor);
1089 /*
1090 * In case the default governor is neither "performance"
1091 * nor "powersave", fall back to the initial policy
1092 * value set by the driver.
1093 */
1094 if (pol == CPUFREQ_POLICY_UNKNOWN)
1095 pol = policy->policy;
1096 }
1097 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1098 pol != CPUFREQ_POLICY_POWERSAVE)
1099 return -ENODATA;
1100 }
1101
1102 ret = cpufreq_set_policy(policy, gov, pol);
1103 if (gov)
1104 module_put(gov->owner);
1105
1106 return ret;
1107 }
1108
1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1110 {
1111 int ret = 0;
1112
1113 /* Has this CPU been taken care of already? */
1114 if (cpumask_test_cpu(cpu, policy->cpus))
1115 return 0;
1116
1117 down_write(&policy->rwsem);
1118 if (has_target())
1119 cpufreq_stop_governor(policy);
1120
1121 cpumask_set_cpu(cpu, policy->cpus);
1122
1123 if (has_target()) {
1124 ret = cpufreq_start_governor(policy);
1125 if (ret)
1126 pr_err("%s: Failed to start governor\n", __func__);
1127 }
1128 up_write(&policy->rwsem);
1129 return ret;
1130 }
1131
1132 void refresh_frequency_limits(struct cpufreq_policy *policy)
1133 {
1134 if (!policy_is_inactive(policy)) {
1135 pr_debug("updating policy for CPU %u\n", policy->cpu);
1136
1137 cpufreq_set_policy(policy, policy->governor, policy->policy);
1138 }
1139 }
1140 EXPORT_SYMBOL(refresh_frequency_limits);
1141
1142 static void handle_update(struct work_struct *work)
1143 {
1144 struct cpufreq_policy *policy =
1145 container_of(work, struct cpufreq_policy, update);
1146
1147 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1148 down_write(&policy->rwsem);
1149 refresh_frequency_limits(policy);
1150 up_write(&policy->rwsem);
1151 }
1152
1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1154 void *data)
1155 {
1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1157
1158 schedule_work(&policy->update);
1159 return 0;
1160 }
1161
1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1163 void *data)
1164 {
1165 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1166
1167 schedule_work(&policy->update);
1168 return 0;
1169 }
1170
1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1172 {
1173 struct kobject *kobj;
1174 struct completion *cmp;
1175
1176 down_write(&policy->rwsem);
1177 cpufreq_stats_free_table(policy);
1178 kobj = &policy->kobj;
1179 cmp = &policy->kobj_unregister;
1180 up_write(&policy->rwsem);
1181 kobject_put(kobj);
1182
1183 /*
1184 * We need to make sure that the underlying kobj is
1185 * actually not referenced anymore by anybody before we
1186 * proceed with unloading.
1187 */
1188 pr_debug("waiting for dropping of refcount\n");
1189 wait_for_completion(cmp);
1190 pr_debug("wait complete\n");
1191 }
1192
1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1194 {
1195 struct cpufreq_policy *policy;
1196 struct device *dev = get_cpu_device(cpu);
1197 int ret;
1198
1199 if (!dev)
1200 return NULL;
1201
1202 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1203 if (!policy)
1204 return NULL;
1205
1206 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1207 goto err_free_policy;
1208
1209 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1210 goto err_free_cpumask;
1211
1212 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1213 goto err_free_rcpumask;
1214
1215 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1216 cpufreq_global_kobject, "policy%u", cpu);
1217 if (ret) {
1218 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1219 /*
1220 * The entire policy object will be freed below, but the extra
1221 * memory allocated for the kobject name needs to be freed by
1222 * releasing the kobject.
1223 */
1224 kobject_put(&policy->kobj);
1225 goto err_free_real_cpus;
1226 }
1227
1228 freq_constraints_init(&policy->constraints);
1229
1230 policy->nb_min.notifier_call = cpufreq_notifier_min;
1231 policy->nb_max.notifier_call = cpufreq_notifier_max;
1232
1233 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1234 &policy->nb_min);
1235 if (ret) {
1236 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1237 ret, cpumask_pr_args(policy->cpus));
1238 goto err_kobj_remove;
1239 }
1240
1241 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1242 &policy->nb_max);
1243 if (ret) {
1244 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1245 ret, cpumask_pr_args(policy->cpus));
1246 goto err_min_qos_notifier;
1247 }
1248
1249 INIT_LIST_HEAD(&policy->policy_list);
1250 init_rwsem(&policy->rwsem);
1251 spin_lock_init(&policy->transition_lock);
1252 init_waitqueue_head(&policy->transition_wait);
1253 init_completion(&policy->kobj_unregister);
1254 INIT_WORK(&policy->update, handle_update);
1255
1256 policy->cpu = cpu;
1257 return policy;
1258
1259 err_min_qos_notifier:
1260 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1261 &policy->nb_min);
1262 err_kobj_remove:
1263 cpufreq_policy_put_kobj(policy);
1264 err_free_real_cpus:
1265 free_cpumask_var(policy->real_cpus);
1266 err_free_rcpumask:
1267 free_cpumask_var(policy->related_cpus);
1268 err_free_cpumask:
1269 free_cpumask_var(policy->cpus);
1270 err_free_policy:
1271 kfree(policy);
1272
1273 return NULL;
1274 }
1275
1276 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1277 {
1278 unsigned long flags;
1279 int cpu;
1280
1281 /* Remove policy from list */
1282 write_lock_irqsave(&cpufreq_driver_lock, flags);
1283 list_del(&policy->policy_list);
1284
1285 for_each_cpu(cpu, policy->related_cpus)
1286 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1287 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1288
1289 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1290 &policy->nb_max);
1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1292 &policy->nb_min);
1293
1294 /* Cancel any pending policy->update work before freeing the policy. */
1295 cancel_work_sync(&policy->update);
1296
1297 if (policy->max_freq_req) {
1298 /*
1299 * CPUFREQ_CREATE_POLICY notification is sent only after
1300 * successfully adding max_freq_req request.
1301 */
1302 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1303 CPUFREQ_REMOVE_POLICY, policy);
1304 freq_qos_remove_request(policy->max_freq_req);
1305 }
1306
1307 freq_qos_remove_request(policy->min_freq_req);
1308 kfree(policy->min_freq_req);
1309
1310 cpufreq_policy_put_kobj(policy);
1311 free_cpumask_var(policy->real_cpus);
1312 free_cpumask_var(policy->related_cpus);
1313 free_cpumask_var(policy->cpus);
1314 kfree(policy);
1315 }
1316
1317 static int cpufreq_online(unsigned int cpu)
1318 {
1319 struct cpufreq_policy *policy;
1320 bool new_policy;
1321 unsigned long flags;
1322 unsigned int j;
1323 int ret;
1324
1325 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1326
1327 /* Check if this CPU already has a policy to manage it */
1328 policy = per_cpu(cpufreq_cpu_data, cpu);
1329 if (policy) {
1330 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1331 if (!policy_is_inactive(policy))
1332 return cpufreq_add_policy_cpu(policy, cpu);
1333
1334 /* This is the only online CPU for the policy. Start over. */
1335 new_policy = false;
1336 down_write(&policy->rwsem);
1337 policy->cpu = cpu;
1338 policy->governor = NULL;
1339 up_write(&policy->rwsem);
1340 } else {
1341 new_policy = true;
1342 policy = cpufreq_policy_alloc(cpu);
1343 if (!policy)
1344 return -ENOMEM;
1345 }
1346
1347 if (!new_policy && cpufreq_driver->online) {
1348 ret = cpufreq_driver->online(policy);
1349 if (ret) {
1350 pr_debug("%s: %d: initialization failed\n", __func__,
1351 __LINE__);
1352 goto out_exit_policy;
1353 }
1354
1355 /* Recover policy->cpus using related_cpus */
1356 cpumask_copy(policy->cpus, policy->related_cpus);
1357 } else {
1358 cpumask_copy(policy->cpus, cpumask_of(cpu));
1359
1360 /*
1361 * Call driver. From then on the cpufreq must be able
1362 * to accept all calls to ->verify and ->setpolicy for this CPU.
1363 */
1364 ret = cpufreq_driver->init(policy);
1365 if (ret) {
1366 pr_debug("%s: %d: initialization failed\n", __func__,
1367 __LINE__);
1368 goto out_free_policy;
1369 }
1370
1371 /*
1372 * The initialization has succeeded and the policy is online.
1373 * If there is a problem with its frequency table, take it
1374 * offline and drop it.
1375 */
1376 ret = cpufreq_table_validate_and_sort(policy);
1377 if (ret)
1378 goto out_offline_policy;
1379
1380 /* related_cpus should at least include policy->cpus. */
1381 cpumask_copy(policy->related_cpus, policy->cpus);
1382 }
1383
1384 down_write(&policy->rwsem);
1385 /*
1386 * affected cpus must always be the one, which are online. We aren't
1387 * managing offline cpus here.
1388 */
1389 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1390
1391 if (new_policy) {
1392 for_each_cpu(j, policy->related_cpus) {
1393 per_cpu(cpufreq_cpu_data, j) = policy;
1394 add_cpu_dev_symlink(policy, j);
1395 }
1396
1397 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1398 GFP_KERNEL);
1399 if (!policy->min_freq_req) {
1400 ret = -ENOMEM;
1401 goto out_destroy_policy;
1402 }
1403
1404 ret = freq_qos_add_request(&policy->constraints,
1405 policy->min_freq_req, FREQ_QOS_MIN,
1406 policy->min);
1407 if (ret < 0) {
1408 /*
1409 * So we don't call freq_qos_remove_request() for an
1410 * uninitialized request.
1411 */
1412 kfree(policy->min_freq_req);
1413 policy->min_freq_req = NULL;
1414 goto out_destroy_policy;
1415 }
1416
1417 /*
1418 * This must be initialized right here to avoid calling
1419 * freq_qos_remove_request() on uninitialized request in case
1420 * of errors.
1421 */
1422 policy->max_freq_req = policy->min_freq_req + 1;
1423
1424 ret = freq_qos_add_request(&policy->constraints,
1425 policy->max_freq_req, FREQ_QOS_MAX,
1426 policy->max);
1427 if (ret < 0) {
1428 policy->max_freq_req = NULL;
1429 goto out_destroy_policy;
1430 }
1431
1432 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1433 CPUFREQ_CREATE_POLICY, policy);
1434 }
1435
1436 if (cpufreq_driver->get && has_target()) {
1437 policy->cur = cpufreq_driver->get(policy->cpu);
1438 if (!policy->cur) {
1439 ret = -EIO;
1440 pr_err("%s: ->get() failed\n", __func__);
1441 goto out_destroy_policy;
1442 }
1443 }
1444
1445 /*
1446 * Sometimes boot loaders set CPU frequency to a value outside of
1447 * frequency table present with cpufreq core. In such cases CPU might be
1448 * unstable if it has to run on that frequency for long duration of time
1449 * and so its better to set it to a frequency which is specified in
1450 * freq-table. This also makes cpufreq stats inconsistent as
1451 * cpufreq-stats would fail to register because current frequency of CPU
1452 * isn't found in freq-table.
1453 *
1454 * Because we don't want this change to effect boot process badly, we go
1455 * for the next freq which is >= policy->cur ('cur' must be set by now,
1456 * otherwise we will end up setting freq to lowest of the table as 'cur'
1457 * is initialized to zero).
1458 *
1459 * We are passing target-freq as "policy->cur - 1" otherwise
1460 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1461 * equal to target-freq.
1462 */
1463 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1464 && has_target()) {
1465 unsigned int old_freq = policy->cur;
1466
1467 /* Are we running at unknown frequency ? */
1468 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1469 if (ret == -EINVAL) {
1470 ret = __cpufreq_driver_target(policy, old_freq - 1,
1471 CPUFREQ_RELATION_L);
1472
1473 /*
1474 * Reaching here after boot in a few seconds may not
1475 * mean that system will remain stable at "unknown"
1476 * frequency for longer duration. Hence, a BUG_ON().
1477 */
1478 BUG_ON(ret);
1479 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1480 __func__, policy->cpu, old_freq, policy->cur);
1481 }
1482 }
1483
1484 if (new_policy) {
1485 ret = cpufreq_add_dev_interface(policy);
1486 if (ret)
1487 goto out_destroy_policy;
1488
1489 cpufreq_stats_create_table(policy);
1490
1491 write_lock_irqsave(&cpufreq_driver_lock, flags);
1492 list_add(&policy->policy_list, &cpufreq_policy_list);
1493 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1494 }
1495
1496 ret = cpufreq_init_policy(policy);
1497 if (ret) {
1498 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1499 __func__, cpu, ret);
1500 goto out_destroy_policy;
1501 }
1502
1503 up_write(&policy->rwsem);
1504
1505 kobject_uevent(&policy->kobj, KOBJ_ADD);
1506
1507 /* Callback for handling stuff after policy is ready */
1508 if (cpufreq_driver->ready)
1509 cpufreq_driver->ready(policy);
1510
1511 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1512 policy->cdev = of_cpufreq_cooling_register(policy);
1513
1514 pr_debug("initialization complete\n");
1515
1516 return 0;
1517
1518 out_destroy_policy:
1519 for_each_cpu(j, policy->real_cpus)
1520 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1521
1522 up_write(&policy->rwsem);
1523
1524 out_offline_policy:
1525 if (cpufreq_driver->offline)
1526 cpufreq_driver->offline(policy);
1527
1528 out_exit_policy:
1529 if (cpufreq_driver->exit)
1530 cpufreq_driver->exit(policy);
1531
1532 out_free_policy:
1533 cpufreq_policy_free(policy);
1534 return ret;
1535 }
1536
1537 /**
1538 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1539 * @dev: CPU device.
1540 * @sif: Subsystem interface structure pointer (not used)
1541 */
1542 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1543 {
1544 struct cpufreq_policy *policy;
1545 unsigned cpu = dev->id;
1546 int ret;
1547
1548 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1549
1550 if (cpu_online(cpu)) {
1551 ret = cpufreq_online(cpu);
1552 if (ret)
1553 return ret;
1554 }
1555
1556 /* Create sysfs link on CPU registration */
1557 policy = per_cpu(cpufreq_cpu_data, cpu);
1558 if (policy)
1559 add_cpu_dev_symlink(policy, cpu);
1560
1561 return 0;
1562 }
1563
1564 static int cpufreq_offline(unsigned int cpu)
1565 {
1566 struct cpufreq_policy *policy;
1567 int ret;
1568
1569 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1570
1571 policy = cpufreq_cpu_get_raw(cpu);
1572 if (!policy) {
1573 pr_debug("%s: No cpu_data found\n", __func__);
1574 return 0;
1575 }
1576
1577 down_write(&policy->rwsem);
1578 if (has_target())
1579 cpufreq_stop_governor(policy);
1580
1581 cpumask_clear_cpu(cpu, policy->cpus);
1582
1583 if (policy_is_inactive(policy)) {
1584 if (has_target())
1585 strncpy(policy->last_governor, policy->governor->name,
1586 CPUFREQ_NAME_LEN);
1587 else
1588 policy->last_policy = policy->policy;
1589 } else if (cpu == policy->cpu) {
1590 /* Nominate new CPU */
1591 policy->cpu = cpumask_any(policy->cpus);
1592 }
1593
1594 /* Start governor again for active policy */
1595 if (!policy_is_inactive(policy)) {
1596 if (has_target()) {
1597 ret = cpufreq_start_governor(policy);
1598 if (ret)
1599 pr_err("%s: Failed to start governor\n", __func__);
1600 }
1601
1602 goto unlock;
1603 }
1604
1605 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1606 cpufreq_cooling_unregister(policy->cdev);
1607 policy->cdev = NULL;
1608 }
1609
1610 if (has_target())
1611 cpufreq_exit_governor(policy);
1612
1613 /*
1614 * Perform the ->offline() during light-weight tear-down, as
1615 * that allows fast recovery when the CPU comes back.
1616 */
1617 if (cpufreq_driver->offline) {
1618 cpufreq_driver->offline(policy);
1619 } else if (cpufreq_driver->exit) {
1620 cpufreq_driver->exit(policy);
1621 policy->freq_table = NULL;
1622 }
1623
1624 unlock:
1625 up_write(&policy->rwsem);
1626 return 0;
1627 }
1628
1629 /*
1630 * cpufreq_remove_dev - remove a CPU device
1631 *
1632 * Removes the cpufreq interface for a CPU device.
1633 */
1634 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1635 {
1636 unsigned int cpu = dev->id;
1637 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1638
1639 if (!policy)
1640 return;
1641
1642 if (cpu_online(cpu))
1643 cpufreq_offline(cpu);
1644
1645 cpumask_clear_cpu(cpu, policy->real_cpus);
1646 remove_cpu_dev_symlink(policy, dev);
1647
1648 if (cpumask_empty(policy->real_cpus)) {
1649 /* We did light-weight exit earlier, do full tear down now */
1650 if (cpufreq_driver->offline)
1651 cpufreq_driver->exit(policy);
1652
1653 cpufreq_policy_free(policy);
1654 }
1655 }
1656
1657 /**
1658 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1659 * @policy: Policy managing CPUs.
1660 * @new_freq: New CPU frequency.
1661 *
1662 * Adjust to the current frequency first and clean up later by either calling
1663 * cpufreq_update_policy(), or scheduling handle_update().
1664 */
1665 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1666 unsigned int new_freq)
1667 {
1668 struct cpufreq_freqs freqs;
1669
1670 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1671 policy->cur, new_freq);
1672
1673 freqs.old = policy->cur;
1674 freqs.new = new_freq;
1675
1676 cpufreq_freq_transition_begin(policy, &freqs);
1677 cpufreq_freq_transition_end(policy, &freqs, 0);
1678 }
1679
1680 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1681 {
1682 unsigned int new_freq;
1683
1684 new_freq = cpufreq_driver->get(policy->cpu);
1685 if (!new_freq)
1686 return 0;
1687
1688 /*
1689 * If fast frequency switching is used with the given policy, the check
1690 * against policy->cur is pointless, so skip it in that case.
1691 */
1692 if (policy->fast_switch_enabled || !has_target())
1693 return new_freq;
1694
1695 if (policy->cur != new_freq) {
1696 cpufreq_out_of_sync(policy, new_freq);
1697 if (update)
1698 schedule_work(&policy->update);
1699 }
1700
1701 return new_freq;
1702 }
1703
1704 /**
1705 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1706 * @cpu: CPU number
1707 *
1708 * This is the last known freq, without actually getting it from the driver.
1709 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1710 */
1711 unsigned int cpufreq_quick_get(unsigned int cpu)
1712 {
1713 struct cpufreq_policy *policy;
1714 unsigned int ret_freq = 0;
1715 unsigned long flags;
1716
1717 read_lock_irqsave(&cpufreq_driver_lock, flags);
1718
1719 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1720 ret_freq = cpufreq_driver->get(cpu);
1721 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1722 return ret_freq;
1723 }
1724
1725 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1726
1727 policy = cpufreq_cpu_get(cpu);
1728 if (policy) {
1729 ret_freq = policy->cur;
1730 cpufreq_cpu_put(policy);
1731 }
1732
1733 return ret_freq;
1734 }
1735 EXPORT_SYMBOL(cpufreq_quick_get);
1736
1737 /**
1738 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1739 * @cpu: CPU number
1740 *
1741 * Just return the max possible frequency for a given CPU.
1742 */
1743 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1744 {
1745 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1746 unsigned int ret_freq = 0;
1747
1748 if (policy) {
1749 ret_freq = policy->max;
1750 cpufreq_cpu_put(policy);
1751 }
1752
1753 return ret_freq;
1754 }
1755 EXPORT_SYMBOL(cpufreq_quick_get_max);
1756
1757 /**
1758 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1759 * @cpu: CPU number
1760 *
1761 * The default return value is the max_freq field of cpuinfo.
1762 */
1763 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1764 {
1765 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1766 unsigned int ret_freq = 0;
1767
1768 if (policy) {
1769 ret_freq = policy->cpuinfo.max_freq;
1770 cpufreq_cpu_put(policy);
1771 }
1772
1773 return ret_freq;
1774 }
1775 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1776
1777 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1778 {
1779 if (unlikely(policy_is_inactive(policy)))
1780 return 0;
1781
1782 return cpufreq_verify_current_freq(policy, true);
1783 }
1784
1785 /**
1786 * cpufreq_get - get the current CPU frequency (in kHz)
1787 * @cpu: CPU number
1788 *
1789 * Get the CPU current (static) CPU frequency
1790 */
1791 unsigned int cpufreq_get(unsigned int cpu)
1792 {
1793 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1794 unsigned int ret_freq = 0;
1795
1796 if (policy) {
1797 down_read(&policy->rwsem);
1798 if (cpufreq_driver->get)
1799 ret_freq = __cpufreq_get(policy);
1800 up_read(&policy->rwsem);
1801
1802 cpufreq_cpu_put(policy);
1803 }
1804
1805 return ret_freq;
1806 }
1807 EXPORT_SYMBOL(cpufreq_get);
1808
1809 static struct subsys_interface cpufreq_interface = {
1810 .name = "cpufreq",
1811 .subsys = &cpu_subsys,
1812 .add_dev = cpufreq_add_dev,
1813 .remove_dev = cpufreq_remove_dev,
1814 };
1815
1816 /*
1817 * In case platform wants some specific frequency to be configured
1818 * during suspend..
1819 */
1820 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1821 {
1822 int ret;
1823
1824 if (!policy->suspend_freq) {
1825 pr_debug("%s: suspend_freq not defined\n", __func__);
1826 return 0;
1827 }
1828
1829 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1830 policy->suspend_freq);
1831
1832 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1833 CPUFREQ_RELATION_H);
1834 if (ret)
1835 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1836 __func__, policy->suspend_freq, ret);
1837
1838 return ret;
1839 }
1840 EXPORT_SYMBOL(cpufreq_generic_suspend);
1841
1842 /**
1843 * cpufreq_suspend() - Suspend CPUFreq governors.
1844 *
1845 * Called during system wide Suspend/Hibernate cycles for suspending governors
1846 * as some platforms can't change frequency after this point in suspend cycle.
1847 * Because some of the devices (like: i2c, regulators, etc) they use for
1848 * changing frequency are suspended quickly after this point.
1849 */
1850 void cpufreq_suspend(void)
1851 {
1852 struct cpufreq_policy *policy;
1853
1854 if (!cpufreq_driver)
1855 return;
1856
1857 if (!has_target() && !cpufreq_driver->suspend)
1858 goto suspend;
1859
1860 pr_debug("%s: Suspending Governors\n", __func__);
1861
1862 for_each_active_policy(policy) {
1863 if (has_target()) {
1864 down_write(&policy->rwsem);
1865 cpufreq_stop_governor(policy);
1866 up_write(&policy->rwsem);
1867 }
1868
1869 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1870 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1871 cpufreq_driver->name);
1872 }
1873
1874 suspend:
1875 cpufreq_suspended = true;
1876 }
1877
1878 /**
1879 * cpufreq_resume() - Resume CPUFreq governors.
1880 *
1881 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1882 * are suspended with cpufreq_suspend().
1883 */
1884 void cpufreq_resume(void)
1885 {
1886 struct cpufreq_policy *policy;
1887 int ret;
1888
1889 if (!cpufreq_driver)
1890 return;
1891
1892 if (unlikely(!cpufreq_suspended))
1893 return;
1894
1895 cpufreq_suspended = false;
1896
1897 if (!has_target() && !cpufreq_driver->resume)
1898 return;
1899
1900 pr_debug("%s: Resuming Governors\n", __func__);
1901
1902 for_each_active_policy(policy) {
1903 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1904 pr_err("%s: Failed to resume driver: %p\n", __func__,
1905 policy);
1906 } else if (has_target()) {
1907 down_write(&policy->rwsem);
1908 ret = cpufreq_start_governor(policy);
1909 up_write(&policy->rwsem);
1910
1911 if (ret)
1912 pr_err("%s: Failed to start governor for policy: %p\n",
1913 __func__, policy);
1914 }
1915 }
1916 }
1917
1918 /**
1919 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1920 * @flags: Flags to test against the current cpufreq driver's flags.
1921 *
1922 * Assumes that the driver is there, so callers must ensure that this is the
1923 * case.
1924 */
1925 bool cpufreq_driver_test_flags(u16 flags)
1926 {
1927 return !!(cpufreq_driver->flags & flags);
1928 }
1929
1930 /**
1931 * cpufreq_get_current_driver - Return the current driver's name.
1932 *
1933 * Return the name string of the currently registered cpufreq driver or NULL if
1934 * none.
1935 */
1936 const char *cpufreq_get_current_driver(void)
1937 {
1938 if (cpufreq_driver)
1939 return cpufreq_driver->name;
1940
1941 return NULL;
1942 }
1943 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1944
1945 /**
1946 * cpufreq_get_driver_data - Return current driver data.
1947 *
1948 * Return the private data of the currently registered cpufreq driver, or NULL
1949 * if no cpufreq driver has been registered.
1950 */
1951 void *cpufreq_get_driver_data(void)
1952 {
1953 if (cpufreq_driver)
1954 return cpufreq_driver->driver_data;
1955
1956 return NULL;
1957 }
1958 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1959
1960 /*********************************************************************
1961 * NOTIFIER LISTS INTERFACE *
1962 *********************************************************************/
1963
1964 /**
1965 * cpufreq_register_notifier - Register a notifier with cpufreq.
1966 * @nb: notifier function to register.
1967 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1968 *
1969 * Add a notifier to one of two lists: either a list of notifiers that run on
1970 * clock rate changes (once before and once after every transition), or a list
1971 * of notifiers that ron on cpufreq policy changes.
1972 *
1973 * This function may sleep and it has the same return values as
1974 * blocking_notifier_chain_register().
1975 */
1976 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1977 {
1978 int ret;
1979
1980 if (cpufreq_disabled())
1981 return -EINVAL;
1982
1983 switch (list) {
1984 case CPUFREQ_TRANSITION_NOTIFIER:
1985 mutex_lock(&cpufreq_fast_switch_lock);
1986
1987 if (cpufreq_fast_switch_count > 0) {
1988 mutex_unlock(&cpufreq_fast_switch_lock);
1989 return -EBUSY;
1990 }
1991 ret = srcu_notifier_chain_register(
1992 &cpufreq_transition_notifier_list, nb);
1993 if (!ret)
1994 cpufreq_fast_switch_count--;
1995
1996 mutex_unlock(&cpufreq_fast_switch_lock);
1997 break;
1998 case CPUFREQ_POLICY_NOTIFIER:
1999 ret = blocking_notifier_chain_register(
2000 &cpufreq_policy_notifier_list, nb);
2001 break;
2002 default:
2003 ret = -EINVAL;
2004 }
2005
2006 return ret;
2007 }
2008 EXPORT_SYMBOL(cpufreq_register_notifier);
2009
2010 /**
2011 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2012 * @nb: notifier block to be unregistered.
2013 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2014 *
2015 * Remove a notifier from one of the cpufreq notifier lists.
2016 *
2017 * This function may sleep and it has the same return values as
2018 * blocking_notifier_chain_unregister().
2019 */
2020 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2021 {
2022 int ret;
2023
2024 if (cpufreq_disabled())
2025 return -EINVAL;
2026
2027 switch (list) {
2028 case CPUFREQ_TRANSITION_NOTIFIER:
2029 mutex_lock(&cpufreq_fast_switch_lock);
2030
2031 ret = srcu_notifier_chain_unregister(
2032 &cpufreq_transition_notifier_list, nb);
2033 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2034 cpufreq_fast_switch_count++;
2035
2036 mutex_unlock(&cpufreq_fast_switch_lock);
2037 break;
2038 case CPUFREQ_POLICY_NOTIFIER:
2039 ret = blocking_notifier_chain_unregister(
2040 &cpufreq_policy_notifier_list, nb);
2041 break;
2042 default:
2043 ret = -EINVAL;
2044 }
2045
2046 return ret;
2047 }
2048 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2049
2050
2051 /*********************************************************************
2052 * GOVERNORS *
2053 *********************************************************************/
2054
2055 /**
2056 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2057 * @policy: cpufreq policy to switch the frequency for.
2058 * @target_freq: New frequency to set (may be approximate).
2059 *
2060 * Carry out a fast frequency switch without sleeping.
2061 *
2062 * The driver's ->fast_switch() callback invoked by this function must be
2063 * suitable for being called from within RCU-sched read-side critical sections
2064 * and it is expected to select the minimum available frequency greater than or
2065 * equal to @target_freq (CPUFREQ_RELATION_L).
2066 *
2067 * This function must not be called if policy->fast_switch_enabled is unset.
2068 *
2069 * Governors calling this function must guarantee that it will never be invoked
2070 * twice in parallel for the same policy and that it will never be called in
2071 * parallel with either ->target() or ->target_index() for the same policy.
2072 *
2073 * Returns the actual frequency set for the CPU.
2074 *
2075 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2076 * error condition, the hardware configuration must be preserved.
2077 */
2078 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2079 unsigned int target_freq)
2080 {
2081 unsigned int freq;
2082 int cpu;
2083
2084 target_freq = clamp_val(target_freq, policy->min, policy->max);
2085 freq = cpufreq_driver->fast_switch(policy, target_freq);
2086
2087 if (!freq)
2088 return 0;
2089
2090 policy->cur = freq;
2091 arch_set_freq_scale(policy->related_cpus, freq,
2092 policy->cpuinfo.max_freq);
2093 cpufreq_stats_record_transition(policy, freq);
2094
2095 if (trace_cpu_frequency_enabled()) {
2096 for_each_cpu(cpu, policy->cpus)
2097 trace_cpu_frequency(freq, cpu);
2098 }
2099
2100 return freq;
2101 }
2102 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2103
2104 /**
2105 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2106 * @cpu: Target CPU.
2107 * @min_perf: Minimum (required) performance level (units of @capacity).
2108 * @target_perf: Target (desired) performance level (units of @capacity).
2109 * @capacity: Capacity of the target CPU.
2110 *
2111 * Carry out a fast performance level switch of @cpu without sleeping.
2112 *
2113 * The driver's ->adjust_perf() callback invoked by this function must be
2114 * suitable for being called from within RCU-sched read-side critical sections
2115 * and it is expected to select a suitable performance level equal to or above
2116 * @min_perf and preferably equal to or below @target_perf.
2117 *
2118 * This function must not be called if policy->fast_switch_enabled is unset.
2119 *
2120 * Governors calling this function must guarantee that it will never be invoked
2121 * twice in parallel for the same CPU and that it will never be called in
2122 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2123 * the same CPU.
2124 */
2125 void cpufreq_driver_adjust_perf(unsigned int cpu,
2126 unsigned long min_perf,
2127 unsigned long target_perf,
2128 unsigned long capacity)
2129 {
2130 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2131 }
2132
2133 /**
2134 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2135 *
2136 * Return 'true' if the ->adjust_perf callback is present for the
2137 * current driver or 'false' otherwise.
2138 */
2139 bool cpufreq_driver_has_adjust_perf(void)
2140 {
2141 return !!cpufreq_driver->adjust_perf;
2142 }
2143
2144 /* Must set freqs->new to intermediate frequency */
2145 static int __target_intermediate(struct cpufreq_policy *policy,
2146 struct cpufreq_freqs *freqs, int index)
2147 {
2148 int ret;
2149
2150 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2151
2152 /* We don't need to switch to intermediate freq */
2153 if (!freqs->new)
2154 return 0;
2155
2156 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2157 __func__, policy->cpu, freqs->old, freqs->new);
2158
2159 cpufreq_freq_transition_begin(policy, freqs);
2160 ret = cpufreq_driver->target_intermediate(policy, index);
2161 cpufreq_freq_transition_end(policy, freqs, ret);
2162
2163 if (ret)
2164 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2165 __func__, ret);
2166
2167 return ret;
2168 }
2169
2170 static int __target_index(struct cpufreq_policy *policy, int index)
2171 {
2172 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2173 unsigned int restore_freq, intermediate_freq = 0;
2174 unsigned int newfreq = policy->freq_table[index].frequency;
2175 int retval = -EINVAL;
2176 bool notify;
2177
2178 if (newfreq == policy->cur)
2179 return 0;
2180
2181 /* Save last value to restore later on errors */
2182 restore_freq = policy->cur;
2183
2184 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2185 if (notify) {
2186 /* Handle switching to intermediate frequency */
2187 if (cpufreq_driver->get_intermediate) {
2188 retval = __target_intermediate(policy, &freqs, index);
2189 if (retval)
2190 return retval;
2191
2192 intermediate_freq = freqs.new;
2193 /* Set old freq to intermediate */
2194 if (intermediate_freq)
2195 freqs.old = freqs.new;
2196 }
2197
2198 freqs.new = newfreq;
2199 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2200 __func__, policy->cpu, freqs.old, freqs.new);
2201
2202 cpufreq_freq_transition_begin(policy, &freqs);
2203 }
2204
2205 retval = cpufreq_driver->target_index(policy, index);
2206 if (retval)
2207 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2208 retval);
2209
2210 if (notify) {
2211 cpufreq_freq_transition_end(policy, &freqs, retval);
2212
2213 /*
2214 * Failed after setting to intermediate freq? Driver should have
2215 * reverted back to initial frequency and so should we. Check
2216 * here for intermediate_freq instead of get_intermediate, in
2217 * case we haven't switched to intermediate freq at all.
2218 */
2219 if (unlikely(retval && intermediate_freq)) {
2220 freqs.old = intermediate_freq;
2221 freqs.new = restore_freq;
2222 cpufreq_freq_transition_begin(policy, &freqs);
2223 cpufreq_freq_transition_end(policy, &freqs, 0);
2224 }
2225 }
2226
2227 return retval;
2228 }
2229
2230 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2231 unsigned int target_freq,
2232 unsigned int relation)
2233 {
2234 unsigned int old_target_freq = target_freq;
2235
2236 if (cpufreq_disabled())
2237 return -ENODEV;
2238
2239 target_freq = __resolve_freq(policy, target_freq, relation);
2240
2241 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2242 policy->cpu, target_freq, relation, old_target_freq);
2243
2244 /*
2245 * This might look like a redundant call as we are checking it again
2246 * after finding index. But it is left intentionally for cases where
2247 * exactly same freq is called again and so we can save on few function
2248 * calls.
2249 */
2250 if (target_freq == policy->cur &&
2251 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2252 return 0;
2253
2254 if (cpufreq_driver->target)
2255 return cpufreq_driver->target(policy, target_freq, relation);
2256
2257 if (!cpufreq_driver->target_index)
2258 return -EINVAL;
2259
2260 return __target_index(policy, policy->cached_resolved_idx);
2261 }
2262 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2263
2264 int cpufreq_driver_target(struct cpufreq_policy *policy,
2265 unsigned int target_freq,
2266 unsigned int relation)
2267 {
2268 int ret;
2269
2270 down_write(&policy->rwsem);
2271
2272 ret = __cpufreq_driver_target(policy, target_freq, relation);
2273
2274 up_write(&policy->rwsem);
2275
2276 return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2279
2280 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2281 {
2282 return NULL;
2283 }
2284
2285 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2286 {
2287 int ret;
2288
2289 /* Don't start any governor operations if we are entering suspend */
2290 if (cpufreq_suspended)
2291 return 0;
2292 /*
2293 * Governor might not be initiated here if ACPI _PPC changed
2294 * notification happened, so check it.
2295 */
2296 if (!policy->governor)
2297 return -EINVAL;
2298
2299 /* Platform doesn't want dynamic frequency switching ? */
2300 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2301 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2302 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2303
2304 if (gov) {
2305 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2306 policy->governor->name, gov->name);
2307 policy->governor = gov;
2308 } else {
2309 return -EINVAL;
2310 }
2311 }
2312
2313 if (!try_module_get(policy->governor->owner))
2314 return -EINVAL;
2315
2316 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2317
2318 if (policy->governor->init) {
2319 ret = policy->governor->init(policy);
2320 if (ret) {
2321 module_put(policy->governor->owner);
2322 return ret;
2323 }
2324 }
2325
2326 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2327
2328 return 0;
2329 }
2330
2331 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2332 {
2333 if (cpufreq_suspended || !policy->governor)
2334 return;
2335
2336 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2337
2338 if (policy->governor->exit)
2339 policy->governor->exit(policy);
2340
2341 module_put(policy->governor->owner);
2342 }
2343
2344 int cpufreq_start_governor(struct cpufreq_policy *policy)
2345 {
2346 int ret;
2347
2348 if (cpufreq_suspended)
2349 return 0;
2350
2351 if (!policy->governor)
2352 return -EINVAL;
2353
2354 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2355
2356 if (cpufreq_driver->get)
2357 cpufreq_verify_current_freq(policy, false);
2358
2359 if (policy->governor->start) {
2360 ret = policy->governor->start(policy);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 if (policy->governor->limits)
2366 policy->governor->limits(policy);
2367
2368 return 0;
2369 }
2370
2371 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2372 {
2373 if (cpufreq_suspended || !policy->governor)
2374 return;
2375
2376 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2377
2378 if (policy->governor->stop)
2379 policy->governor->stop(policy);
2380 }
2381
2382 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2383 {
2384 if (cpufreq_suspended || !policy->governor)
2385 return;
2386
2387 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2388
2389 if (policy->governor->limits)
2390 policy->governor->limits(policy);
2391 }
2392
2393 int cpufreq_register_governor(struct cpufreq_governor *governor)
2394 {
2395 int err;
2396
2397 if (!governor)
2398 return -EINVAL;
2399
2400 if (cpufreq_disabled())
2401 return -ENODEV;
2402
2403 mutex_lock(&cpufreq_governor_mutex);
2404
2405 err = -EBUSY;
2406 if (!find_governor(governor->name)) {
2407 err = 0;
2408 list_add(&governor->governor_list, &cpufreq_governor_list);
2409 }
2410
2411 mutex_unlock(&cpufreq_governor_mutex);
2412 return err;
2413 }
2414 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2415
2416 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2417 {
2418 struct cpufreq_policy *policy;
2419 unsigned long flags;
2420
2421 if (!governor)
2422 return;
2423
2424 if (cpufreq_disabled())
2425 return;
2426
2427 /* clear last_governor for all inactive policies */
2428 read_lock_irqsave(&cpufreq_driver_lock, flags);
2429 for_each_inactive_policy(policy) {
2430 if (!strcmp(policy->last_governor, governor->name)) {
2431 policy->governor = NULL;
2432 strcpy(policy->last_governor, "\0");
2433 }
2434 }
2435 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2436
2437 mutex_lock(&cpufreq_governor_mutex);
2438 list_del(&governor->governor_list);
2439 mutex_unlock(&cpufreq_governor_mutex);
2440 }
2441 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2442
2443
2444 /*********************************************************************
2445 * POLICY INTERFACE *
2446 *********************************************************************/
2447
2448 /**
2449 * cpufreq_get_policy - get the current cpufreq_policy
2450 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2451 * is written
2452 * @cpu: CPU to find the policy for
2453 *
2454 * Reads the current cpufreq policy.
2455 */
2456 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2457 {
2458 struct cpufreq_policy *cpu_policy;
2459 if (!policy)
2460 return -EINVAL;
2461
2462 cpu_policy = cpufreq_cpu_get(cpu);
2463 if (!cpu_policy)
2464 return -EINVAL;
2465
2466 memcpy(policy, cpu_policy, sizeof(*policy));
2467
2468 cpufreq_cpu_put(cpu_policy);
2469 return 0;
2470 }
2471 EXPORT_SYMBOL(cpufreq_get_policy);
2472
2473 /**
2474 * cpufreq_set_policy - Modify cpufreq policy parameters.
2475 * @policy: Policy object to modify.
2476 * @new_gov: Policy governor pointer.
2477 * @new_pol: Policy value (for drivers with built-in governors).
2478 *
2479 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2480 * limits to be set for the policy, update @policy with the verified limits
2481 * values and either invoke the driver's ->setpolicy() callback (if present) or
2482 * carry out a governor update for @policy. That is, run the current governor's
2483 * ->limits() callback (if @new_gov points to the same object as the one in
2484 * @policy) or replace the governor for @policy with @new_gov.
2485 *
2486 * The cpuinfo part of @policy is not updated by this function.
2487 */
2488 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2489 struct cpufreq_governor *new_gov,
2490 unsigned int new_pol)
2491 {
2492 struct cpufreq_policy_data new_data;
2493 struct cpufreq_governor *old_gov;
2494 int ret;
2495
2496 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2497 new_data.freq_table = policy->freq_table;
2498 new_data.cpu = policy->cpu;
2499 /*
2500 * PM QoS framework collects all the requests from users and provide us
2501 * the final aggregated value here.
2502 */
2503 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2504 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2505
2506 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2507 new_data.cpu, new_data.min, new_data.max);
2508
2509 /*
2510 * Verify that the CPU speed can be set within these limits and make sure
2511 * that min <= max.
2512 */
2513 ret = cpufreq_driver->verify(&new_data);
2514 if (ret)
2515 return ret;
2516
2517 policy->min = new_data.min;
2518 policy->max = new_data.max;
2519 trace_cpu_frequency_limits(policy);
2520
2521 policy->cached_target_freq = UINT_MAX;
2522
2523 pr_debug("new min and max freqs are %u - %u kHz\n",
2524 policy->min, policy->max);
2525
2526 if (cpufreq_driver->setpolicy) {
2527 policy->policy = new_pol;
2528 pr_debug("setting range\n");
2529 return cpufreq_driver->setpolicy(policy);
2530 }
2531
2532 if (new_gov == policy->governor) {
2533 pr_debug("governor limits update\n");
2534 cpufreq_governor_limits(policy);
2535 return 0;
2536 }
2537
2538 pr_debug("governor switch\n");
2539
2540 /* save old, working values */
2541 old_gov = policy->governor;
2542 /* end old governor */
2543 if (old_gov) {
2544 cpufreq_stop_governor(policy);
2545 cpufreq_exit_governor(policy);
2546 }
2547
2548 /* start new governor */
2549 policy->governor = new_gov;
2550 ret = cpufreq_init_governor(policy);
2551 if (!ret) {
2552 ret = cpufreq_start_governor(policy);
2553 if (!ret) {
2554 pr_debug("governor change\n");
2555 sched_cpufreq_governor_change(policy, old_gov);
2556 return 0;
2557 }
2558 cpufreq_exit_governor(policy);
2559 }
2560
2561 /* new governor failed, so re-start old one */
2562 pr_debug("starting governor %s failed\n", policy->governor->name);
2563 if (old_gov) {
2564 policy->governor = old_gov;
2565 if (cpufreq_init_governor(policy))
2566 policy->governor = NULL;
2567 else
2568 cpufreq_start_governor(policy);
2569 }
2570
2571 return ret;
2572 }
2573
2574 /**
2575 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2576 * @cpu: CPU to re-evaluate the policy for.
2577 *
2578 * Update the current frequency for the cpufreq policy of @cpu and use
2579 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2580 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2581 * for the policy in question, among other things.
2582 */
2583 void cpufreq_update_policy(unsigned int cpu)
2584 {
2585 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2586
2587 if (!policy)
2588 return;
2589
2590 /*
2591 * BIOS might change freq behind our back
2592 * -> ask driver for current freq and notify governors about a change
2593 */
2594 if (cpufreq_driver->get && has_target() &&
2595 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2596 goto unlock;
2597
2598 refresh_frequency_limits(policy);
2599
2600 unlock:
2601 cpufreq_cpu_release(policy);
2602 }
2603 EXPORT_SYMBOL(cpufreq_update_policy);
2604
2605 /**
2606 * cpufreq_update_limits - Update policy limits for a given CPU.
2607 * @cpu: CPU to update the policy limits for.
2608 *
2609 * Invoke the driver's ->update_limits callback if present or call
2610 * cpufreq_update_policy() for @cpu.
2611 */
2612 void cpufreq_update_limits(unsigned int cpu)
2613 {
2614 if (cpufreq_driver->update_limits)
2615 cpufreq_driver->update_limits(cpu);
2616 else
2617 cpufreq_update_policy(cpu);
2618 }
2619 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2620
2621 /*********************************************************************
2622 * BOOST *
2623 *********************************************************************/
2624 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2625 {
2626 int ret;
2627
2628 if (!policy->freq_table)
2629 return -ENXIO;
2630
2631 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2632 if (ret) {
2633 pr_err("%s: Policy frequency update failed\n", __func__);
2634 return ret;
2635 }
2636
2637 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2638 if (ret < 0)
2639 return ret;
2640
2641 return 0;
2642 }
2643
2644 int cpufreq_boost_trigger_state(int state)
2645 {
2646 struct cpufreq_policy *policy;
2647 unsigned long flags;
2648 int ret = 0;
2649
2650 if (cpufreq_driver->boost_enabled == state)
2651 return 0;
2652
2653 write_lock_irqsave(&cpufreq_driver_lock, flags);
2654 cpufreq_driver->boost_enabled = state;
2655 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2656
2657 get_online_cpus();
2658 for_each_active_policy(policy) {
2659 ret = cpufreq_driver->set_boost(policy, state);
2660 if (ret)
2661 goto err_reset_state;
2662 }
2663 put_online_cpus();
2664
2665 return 0;
2666
2667 err_reset_state:
2668 put_online_cpus();
2669
2670 write_lock_irqsave(&cpufreq_driver_lock, flags);
2671 cpufreq_driver->boost_enabled = !state;
2672 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2673
2674 pr_err("%s: Cannot %s BOOST\n",
2675 __func__, state ? "enable" : "disable");
2676
2677 return ret;
2678 }
2679
2680 static bool cpufreq_boost_supported(void)
2681 {
2682 return cpufreq_driver->set_boost;
2683 }
2684
2685 static int create_boost_sysfs_file(void)
2686 {
2687 int ret;
2688
2689 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2690 if (ret)
2691 pr_err("%s: cannot register global BOOST sysfs file\n",
2692 __func__);
2693
2694 return ret;
2695 }
2696
2697 static void remove_boost_sysfs_file(void)
2698 {
2699 if (cpufreq_boost_supported())
2700 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2701 }
2702
2703 int cpufreq_enable_boost_support(void)
2704 {
2705 if (!cpufreq_driver)
2706 return -EINVAL;
2707
2708 if (cpufreq_boost_supported())
2709 return 0;
2710
2711 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2712
2713 /* This will get removed on driver unregister */
2714 return create_boost_sysfs_file();
2715 }
2716 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2717
2718 int cpufreq_boost_enabled(void)
2719 {
2720 return cpufreq_driver->boost_enabled;
2721 }
2722 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2723
2724 /*********************************************************************
2725 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2726 *********************************************************************/
2727 static enum cpuhp_state hp_online;
2728
2729 static int cpuhp_cpufreq_online(unsigned int cpu)
2730 {
2731 cpufreq_online(cpu);
2732
2733 return 0;
2734 }
2735
2736 static int cpuhp_cpufreq_offline(unsigned int cpu)
2737 {
2738 cpufreq_offline(cpu);
2739
2740 return 0;
2741 }
2742
2743 /**
2744 * cpufreq_register_driver - register a CPU Frequency driver
2745 * @driver_data: A struct cpufreq_driver containing the values#
2746 * submitted by the CPU Frequency driver.
2747 *
2748 * Registers a CPU Frequency driver to this core code. This code
2749 * returns zero on success, -EEXIST when another driver got here first
2750 * (and isn't unregistered in the meantime).
2751 *
2752 */
2753 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2754 {
2755 unsigned long flags;
2756 int ret;
2757
2758 if (cpufreq_disabled())
2759 return -ENODEV;
2760
2761 /*
2762 * The cpufreq core depends heavily on the availability of device
2763 * structure, make sure they are available before proceeding further.
2764 */
2765 if (!get_cpu_device(0))
2766 return -EPROBE_DEFER;
2767
2768 if (!driver_data || !driver_data->verify || !driver_data->init ||
2769 !(driver_data->setpolicy || driver_data->target_index ||
2770 driver_data->target) ||
2771 (driver_data->setpolicy && (driver_data->target_index ||
2772 driver_data->target)) ||
2773 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2774 (!driver_data->online != !driver_data->offline))
2775 return -EINVAL;
2776
2777 pr_debug("trying to register driver %s\n", driver_data->name);
2778
2779 /* Protect against concurrent CPU online/offline. */
2780 cpus_read_lock();
2781
2782 write_lock_irqsave(&cpufreq_driver_lock, flags);
2783 if (cpufreq_driver) {
2784 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2785 ret = -EEXIST;
2786 goto out;
2787 }
2788 cpufreq_driver = driver_data;
2789 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790
2791 /*
2792 * Mark support for the scheduler's frequency invariance engine for
2793 * drivers that implement target(), target_index() or fast_switch().
2794 */
2795 if (!cpufreq_driver->setpolicy) {
2796 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2797 pr_debug("supports frequency invariance");
2798 }
2799
2800 if (driver_data->setpolicy)
2801 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2802
2803 if (cpufreq_boost_supported()) {
2804 ret = create_boost_sysfs_file();
2805 if (ret)
2806 goto err_null_driver;
2807 }
2808
2809 ret = subsys_interface_register(&cpufreq_interface);
2810 if (ret)
2811 goto err_boost_unreg;
2812
2813 if (unlikely(list_empty(&cpufreq_policy_list))) {
2814 /* if all ->init() calls failed, unregister */
2815 ret = -ENODEV;
2816 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2817 driver_data->name);
2818 goto err_if_unreg;
2819 }
2820
2821 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2822 "cpufreq:online",
2823 cpuhp_cpufreq_online,
2824 cpuhp_cpufreq_offline);
2825 if (ret < 0)
2826 goto err_if_unreg;
2827 hp_online = ret;
2828 ret = 0;
2829
2830 pr_debug("driver %s up and running\n", driver_data->name);
2831 goto out;
2832
2833 err_if_unreg:
2834 subsys_interface_unregister(&cpufreq_interface);
2835 err_boost_unreg:
2836 remove_boost_sysfs_file();
2837 err_null_driver:
2838 write_lock_irqsave(&cpufreq_driver_lock, flags);
2839 cpufreq_driver = NULL;
2840 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2841 out:
2842 cpus_read_unlock();
2843 return ret;
2844 }
2845 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2846
2847 /*
2848 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2849 *
2850 * Unregister the current CPUFreq driver. Only call this if you have
2851 * the right to do so, i.e. if you have succeeded in initialising before!
2852 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2853 * currently not initialised.
2854 */
2855 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2856 {
2857 unsigned long flags;
2858
2859 if (!cpufreq_driver || (driver != cpufreq_driver))
2860 return -EINVAL;
2861
2862 pr_debug("unregistering driver %s\n", driver->name);
2863
2864 /* Protect against concurrent cpu hotplug */
2865 cpus_read_lock();
2866 subsys_interface_unregister(&cpufreq_interface);
2867 remove_boost_sysfs_file();
2868 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2869 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2870
2871 write_lock_irqsave(&cpufreq_driver_lock, flags);
2872
2873 cpufreq_driver = NULL;
2874
2875 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2876 cpus_read_unlock();
2877
2878 return 0;
2879 }
2880 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2881
2882 static int __init cpufreq_core_init(void)
2883 {
2884 struct cpufreq_governor *gov = cpufreq_default_governor();
2885
2886 if (cpufreq_disabled())
2887 return -ENODEV;
2888
2889 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2890 BUG_ON(!cpufreq_global_kobject);
2891
2892 if (!strlen(default_governor))
2893 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2894
2895 return 0;
2896 }
2897 module_param(off, int, 0444);
2898 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2899 core_initcall(cpufreq_core_init);