]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/cpufreq.c
5f7585c1712f7ce3ca137cb16690bb596ca74782
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98 init_cpufreq_transition_notifier_list_called = true;
99 return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 return off;
107 }
108 void disable_cpufreq(void)
109 {
110 off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113
114 bool have_governor_per_policy(void)
115 {
116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 u64 idle_time;
132 u64 cur_wall_time;
133 u64 busy_time;
134
135 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
136
137 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143
144 idle_time = cur_wall_time - busy_time;
145 if (wall)
146 *wall = cputime_to_usecs(cur_wall_time);
147
148 return cputime_to_usecs(idle_time);
149 }
150
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155 if (idle_time == -1ULL)
156 return get_cpu_idle_time_jiffy(cpu, wall);
157 else if (!io_busy)
158 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160 return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165 * This is a generic cpufreq init() routine which can be used by cpufreq
166 * drivers of SMP systems. It will do following:
167 * - validate & show freq table passed
168 * - set policies transition latency
169 * - policy->cpus with all possible CPUs
170 */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172 struct cpufreq_frequency_table *table,
173 unsigned int transition_latency)
174 {
175 int ret;
176
177 ret = cpufreq_table_validate_and_show(policy, table);
178 if (ret) {
179 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180 return ret;
181 }
182
183 policy->cpuinfo.transition_latency = transition_latency;
184
185 /*
186 * The driver only supports the SMP configuration where all processors
187 * share the clock and voltage and clock.
188 */
189 cpumask_setall(policy->cpus);
190
191 return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198
199 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206
207 if (!policy || IS_ERR(policy->clk)) {
208 pr_err("%s: No %s associated to cpu: %d\n",
209 __func__, policy ? "clk" : "policy", cpu);
210 return 0;
211 }
212
213 return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216
217 /**
218 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219 *
220 * @cpu: cpu to find policy for.
221 *
222 * This returns policy for 'cpu', returns NULL if it doesn't exist.
223 * It also increments the kobject reference count to mark it busy and so would
224 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226 * freed as that depends on the kobj count.
227 *
228 * Return: A valid policy on success, otherwise NULL on failure.
229 */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232 struct cpufreq_policy *policy = NULL;
233 unsigned long flags;
234
235 if (WARN_ON(cpu >= nr_cpu_ids))
236 return NULL;
237
238 /* get the cpufreq driver */
239 read_lock_irqsave(&cpufreq_driver_lock, flags);
240
241 if (cpufreq_driver) {
242 /* get the CPU */
243 policy = cpufreq_cpu_get_raw(cpu);
244 if (policy)
245 kobject_get(&policy->kobj);
246 }
247
248 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249
250 return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253
254 /**
255 * cpufreq_cpu_put: Decrements the usage count of a policy
256 *
257 * @policy: policy earlier returned by cpufreq_cpu_get().
258 *
259 * This decrements the kobject reference count incremented earlier by calling
260 * cpufreq_cpu_get().
261 */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264 kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267
268 /*********************************************************************
269 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
270 *********************************************************************/
271
272 /**
273 * adjust_jiffies - adjust the system "loops_per_jiffy"
274 *
275 * This function alters the system "loops_per_jiffy" for the clock
276 * speed change. Note that loops_per_jiffy cannot be updated on SMP
277 * systems as each CPU might be scaled differently. So, use the arch
278 * per-CPU loops_per_jiffy value wherever possible.
279 */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283 static unsigned long l_p_j_ref;
284 static unsigned int l_p_j_ref_freq;
285
286 if (ci->flags & CPUFREQ_CONST_LOOPS)
287 return;
288
289 if (!l_p_j_ref_freq) {
290 l_p_j_ref = loops_per_jiffy;
291 l_p_j_ref_freq = ci->old;
292 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293 l_p_j_ref, l_p_j_ref_freq);
294 }
295 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299 loops_per_jiffy, ci->new);
300 }
301 #endif
302 }
303
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305 struct cpufreq_freqs *freqs, unsigned int state)
306 {
307 BUG_ON(irqs_disabled());
308
309 if (cpufreq_disabled())
310 return;
311
312 freqs->flags = cpufreq_driver->flags;
313 pr_debug("notification %u of frequency transition to %u kHz\n",
314 state, freqs->new);
315
316 switch (state) {
317
318 case CPUFREQ_PRECHANGE:
319 /* detect if the driver reported a value as "old frequency"
320 * which is not equal to what the cpufreq core thinks is
321 * "old frequency".
322 */
323 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324 if ((policy) && (policy->cpu == freqs->cpu) &&
325 (policy->cur) && (policy->cur != freqs->old)) {
326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 freqs->old, policy->cur);
328 freqs->old = policy->cur;
329 }
330 }
331 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332 CPUFREQ_PRECHANGE, freqs);
333 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334 break;
335
336 case CPUFREQ_POSTCHANGE:
337 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338 pr_debug("FREQ: %lu - CPU: %lu\n",
339 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340 trace_cpu_frequency(freqs->new, freqs->cpu);
341 cpufreq_stats_record_transition(policy, freqs->new);
342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343 CPUFREQ_POSTCHANGE, freqs);
344 if (likely(policy) && likely(policy->cpu == freqs->cpu))
345 policy->cur = freqs->new;
346 break;
347 }
348 }
349
350 /**
351 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352 * on frequency transition.
353 *
354 * This function calls the transition notifiers and the "adjust_jiffies"
355 * function. It is called twice on all CPU frequency changes that have
356 * external effects.
357 */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359 struct cpufreq_freqs *freqs, unsigned int state)
360 {
361 for_each_cpu(freqs->cpu, policy->cpus)
362 __cpufreq_notify_transition(policy, freqs, state);
363 }
364
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367 struct cpufreq_freqs *freqs, int transition_failed)
368 {
369 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 if (!transition_failed)
371 return;
372
373 swap(freqs->old, freqs->new);
374 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379 struct cpufreq_freqs *freqs)
380 {
381
382 /*
383 * Catch double invocations of _begin() which lead to self-deadlock.
384 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385 * doesn't invoke _begin() on their behalf, and hence the chances of
386 * double invocations are very low. Moreover, there are scenarios
387 * where these checks can emit false-positive warnings in these
388 * drivers; so we avoid that by skipping them altogether.
389 */
390 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391 && current == policy->transition_task);
392
393 wait:
394 wait_event(policy->transition_wait, !policy->transition_ongoing);
395
396 spin_lock(&policy->transition_lock);
397
398 if (unlikely(policy->transition_ongoing)) {
399 spin_unlock(&policy->transition_lock);
400 goto wait;
401 }
402
403 policy->transition_ongoing = true;
404 policy->transition_task = current;
405
406 spin_unlock(&policy->transition_lock);
407
408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413 struct cpufreq_freqs *freqs, int transition_failed)
414 {
415 if (unlikely(WARN_ON(!policy->transition_ongoing)))
416 return;
417
418 cpufreq_notify_post_transition(policy, freqs, transition_failed);
419
420 policy->transition_ongoing = false;
421 policy->transition_task = NULL;
422
423 wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428 * Fast frequency switching status count. Positive means "enabled", negative
429 * means "disabled" and 0 means "not decided yet".
430 */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 struct notifier_block *nb;
437
438 pr_info("Registered transition notifiers:\n");
439
440 mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 pr_info("%pF\n", nb->notifier_call);
444
445 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450 * @policy: cpufreq policy to enable fast frequency switching for.
451 *
452 * Try to enable fast frequency switching for @policy.
453 *
454 * The attempt will fail if there is at least one transition notifier registered
455 * at this point, as fast frequency switching is quite fundamentally at odds
456 * with transition notifiers. Thus if successful, it will make registration of
457 * transition notifiers fail going forward.
458 */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 lockdep_assert_held(&policy->rwsem);
462
463 if (!policy->fast_switch_possible)
464 return;
465
466 mutex_lock(&cpufreq_fast_switch_lock);
467 if (cpufreq_fast_switch_count >= 0) {
468 cpufreq_fast_switch_count++;
469 policy->fast_switch_enabled = true;
470 } else {
471 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 policy->cpu);
473 cpufreq_list_transition_notifiers();
474 }
475 mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481 * @policy: cpufreq policy to disable fast frequency switching for.
482 */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 mutex_lock(&cpufreq_fast_switch_lock);
486 if (policy->fast_switch_enabled) {
487 policy->fast_switch_enabled = false;
488 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 cpufreq_fast_switch_count--;
490 }
491 mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495 /**
496 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497 * one.
498 * @target_freq: target frequency to resolve.
499 *
500 * The target to driver frequency mapping is cached in the policy.
501 *
502 * Return: Lowest driver-supported frequency greater than or equal to the
503 * given target_freq, subject to policy (min/max) and driver limitations.
504 */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506 unsigned int target_freq)
507 {
508 target_freq = clamp_val(target_freq, policy->min, policy->max);
509 policy->cached_target_freq = target_freq;
510
511 if (cpufreq_driver->target_index) {
512 int idx;
513
514 idx = cpufreq_frequency_table_target(policy, target_freq,
515 CPUFREQ_RELATION_L);
516 policy->cached_resolved_idx = idx;
517 return policy->freq_table[idx].frequency;
518 }
519
520 if (cpufreq_driver->resolve_freq)
521 return cpufreq_driver->resolve_freq(policy, target_freq);
522
523 return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526
527 /*********************************************************************
528 * SYSFS INTERFACE *
529 *********************************************************************/
530 static ssize_t show_boost(struct kobject *kobj,
531 struct attribute *attr, char *buf)
532 {
533 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
534 }
535
536 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
537 const char *buf, size_t count)
538 {
539 int ret, enable;
540
541 ret = sscanf(buf, "%d", &enable);
542 if (ret != 1 || enable < 0 || enable > 1)
543 return -EINVAL;
544
545 if (cpufreq_boost_trigger_state(enable)) {
546 pr_err("%s: Cannot %s BOOST!\n",
547 __func__, enable ? "enable" : "disable");
548 return -EINVAL;
549 }
550
551 pr_debug("%s: cpufreq BOOST %s\n",
552 __func__, enable ? "enabled" : "disabled");
553
554 return count;
555 }
556 define_one_global_rw(boost);
557
558 static struct cpufreq_governor *find_governor(const char *str_governor)
559 {
560 struct cpufreq_governor *t;
561
562 for_each_governor(t)
563 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
564 return t;
565
566 return NULL;
567 }
568
569 /**
570 * cpufreq_parse_governor - parse a governor string
571 */
572 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
573 struct cpufreq_governor **governor)
574 {
575 int err = -EINVAL;
576
577 if (cpufreq_driver->setpolicy) {
578 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
579 *policy = CPUFREQ_POLICY_PERFORMANCE;
580 err = 0;
581 } else if (!strncasecmp(str_governor, "powersave",
582 CPUFREQ_NAME_LEN)) {
583 *policy = CPUFREQ_POLICY_POWERSAVE;
584 err = 0;
585 }
586 } else {
587 struct cpufreq_governor *t;
588
589 mutex_lock(&cpufreq_governor_mutex);
590
591 t = find_governor(str_governor);
592
593 if (t == NULL) {
594 int ret;
595
596 mutex_unlock(&cpufreq_governor_mutex);
597 ret = request_module("cpufreq_%s", str_governor);
598 mutex_lock(&cpufreq_governor_mutex);
599
600 if (ret == 0)
601 t = find_governor(str_governor);
602 }
603
604 if (t != NULL) {
605 *governor = t;
606 err = 0;
607 }
608
609 mutex_unlock(&cpufreq_governor_mutex);
610 }
611 return err;
612 }
613
614 /**
615 * cpufreq_per_cpu_attr_read() / show_##file_name() -
616 * print out cpufreq information
617 *
618 * Write out information from cpufreq_driver->policy[cpu]; object must be
619 * "unsigned int".
620 */
621
622 #define show_one(file_name, object) \
623 static ssize_t show_##file_name \
624 (struct cpufreq_policy *policy, char *buf) \
625 { \
626 return sprintf(buf, "%u\n", policy->object); \
627 }
628
629 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
630 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
631 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
632 show_one(scaling_min_freq, min);
633 show_one(scaling_max_freq, max);
634
635 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
636 {
637 ssize_t ret;
638
639 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
640 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
641 else
642 ret = sprintf(buf, "%u\n", policy->cur);
643 return ret;
644 }
645
646 static int cpufreq_set_policy(struct cpufreq_policy *policy,
647 struct cpufreq_policy *new_policy);
648
649 /**
650 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
651 */
652 #define store_one(file_name, object) \
653 static ssize_t store_##file_name \
654 (struct cpufreq_policy *policy, const char *buf, size_t count) \
655 { \
656 int ret, temp; \
657 struct cpufreq_policy new_policy; \
658 \
659 memcpy(&new_policy, policy, sizeof(*policy)); \
660 \
661 ret = sscanf(buf, "%u", &new_policy.object); \
662 if (ret != 1) \
663 return -EINVAL; \
664 \
665 temp = new_policy.object; \
666 ret = cpufreq_set_policy(policy, &new_policy); \
667 if (!ret) \
668 policy->user_policy.object = temp; \
669 \
670 return ret ? ret : count; \
671 }
672
673 store_one(scaling_min_freq, min);
674 store_one(scaling_max_freq, max);
675
676 /**
677 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
678 */
679 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
680 char *buf)
681 {
682 unsigned int cur_freq = __cpufreq_get(policy);
683
684 if (cur_freq)
685 return sprintf(buf, "%u\n", cur_freq);
686
687 return sprintf(buf, "<unknown>\n");
688 }
689
690 /**
691 * show_scaling_governor - show the current policy for the specified CPU
692 */
693 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
694 {
695 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
696 return sprintf(buf, "powersave\n");
697 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
698 return sprintf(buf, "performance\n");
699 else if (policy->governor)
700 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
701 policy->governor->name);
702 return -EINVAL;
703 }
704
705 /**
706 * store_scaling_governor - store policy for the specified CPU
707 */
708 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
709 const char *buf, size_t count)
710 {
711 int ret;
712 char str_governor[16];
713 struct cpufreq_policy new_policy;
714
715 memcpy(&new_policy, policy, sizeof(*policy));
716
717 ret = sscanf(buf, "%15s", str_governor);
718 if (ret != 1)
719 return -EINVAL;
720
721 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
722 &new_policy.governor))
723 return -EINVAL;
724
725 ret = cpufreq_set_policy(policy, &new_policy);
726 return ret ? ret : count;
727 }
728
729 /**
730 * show_scaling_driver - show the cpufreq driver currently loaded
731 */
732 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
733 {
734 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
735 }
736
737 /**
738 * show_scaling_available_governors - show the available CPUfreq governors
739 */
740 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
741 char *buf)
742 {
743 ssize_t i = 0;
744 struct cpufreq_governor *t;
745
746 if (!has_target()) {
747 i += sprintf(buf, "performance powersave");
748 goto out;
749 }
750
751 for_each_governor(t) {
752 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
753 - (CPUFREQ_NAME_LEN + 2)))
754 goto out;
755 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
756 }
757 out:
758 i += sprintf(&buf[i], "\n");
759 return i;
760 }
761
762 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
763 {
764 ssize_t i = 0;
765 unsigned int cpu;
766
767 for_each_cpu(cpu, mask) {
768 if (i)
769 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
770 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
771 if (i >= (PAGE_SIZE - 5))
772 break;
773 }
774 i += sprintf(&buf[i], "\n");
775 return i;
776 }
777 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
778
779 /**
780 * show_related_cpus - show the CPUs affected by each transition even if
781 * hw coordination is in use
782 */
783 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
784 {
785 return cpufreq_show_cpus(policy->related_cpus, buf);
786 }
787
788 /**
789 * show_affected_cpus - show the CPUs affected by each transition
790 */
791 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
792 {
793 return cpufreq_show_cpus(policy->cpus, buf);
794 }
795
796 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
797 const char *buf, size_t count)
798 {
799 unsigned int freq = 0;
800 unsigned int ret;
801
802 if (!policy->governor || !policy->governor->store_setspeed)
803 return -EINVAL;
804
805 ret = sscanf(buf, "%u", &freq);
806 if (ret != 1)
807 return -EINVAL;
808
809 policy->governor->store_setspeed(policy, freq);
810
811 return count;
812 }
813
814 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
815 {
816 if (!policy->governor || !policy->governor->show_setspeed)
817 return sprintf(buf, "<unsupported>\n");
818
819 return policy->governor->show_setspeed(policy, buf);
820 }
821
822 /**
823 * show_bios_limit - show the current cpufreq HW/BIOS limitation
824 */
825 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
826 {
827 unsigned int limit;
828 int ret;
829 if (cpufreq_driver->bios_limit) {
830 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
831 if (!ret)
832 return sprintf(buf, "%u\n", limit);
833 }
834 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
835 }
836
837 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
838 cpufreq_freq_attr_ro(cpuinfo_min_freq);
839 cpufreq_freq_attr_ro(cpuinfo_max_freq);
840 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
841 cpufreq_freq_attr_ro(scaling_available_governors);
842 cpufreq_freq_attr_ro(scaling_driver);
843 cpufreq_freq_attr_ro(scaling_cur_freq);
844 cpufreq_freq_attr_ro(bios_limit);
845 cpufreq_freq_attr_ro(related_cpus);
846 cpufreq_freq_attr_ro(affected_cpus);
847 cpufreq_freq_attr_rw(scaling_min_freq);
848 cpufreq_freq_attr_rw(scaling_max_freq);
849 cpufreq_freq_attr_rw(scaling_governor);
850 cpufreq_freq_attr_rw(scaling_setspeed);
851
852 static struct attribute *default_attrs[] = {
853 &cpuinfo_min_freq.attr,
854 &cpuinfo_max_freq.attr,
855 &cpuinfo_transition_latency.attr,
856 &scaling_min_freq.attr,
857 &scaling_max_freq.attr,
858 &affected_cpus.attr,
859 &related_cpus.attr,
860 &scaling_governor.attr,
861 &scaling_driver.attr,
862 &scaling_available_governors.attr,
863 &scaling_setspeed.attr,
864 NULL
865 };
866
867 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
868 #define to_attr(a) container_of(a, struct freq_attr, attr)
869
870 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
871 {
872 struct cpufreq_policy *policy = to_policy(kobj);
873 struct freq_attr *fattr = to_attr(attr);
874 ssize_t ret;
875
876 down_read(&policy->rwsem);
877 ret = fattr->show(policy, buf);
878 up_read(&policy->rwsem);
879
880 return ret;
881 }
882
883 static ssize_t store(struct kobject *kobj, struct attribute *attr,
884 const char *buf, size_t count)
885 {
886 struct cpufreq_policy *policy = to_policy(kobj);
887 struct freq_attr *fattr = to_attr(attr);
888 ssize_t ret = -EINVAL;
889
890 get_online_cpus();
891
892 if (cpu_online(policy->cpu)) {
893 down_write(&policy->rwsem);
894 ret = fattr->store(policy, buf, count);
895 up_write(&policy->rwsem);
896 }
897
898 put_online_cpus();
899
900 return ret;
901 }
902
903 static void cpufreq_sysfs_release(struct kobject *kobj)
904 {
905 struct cpufreq_policy *policy = to_policy(kobj);
906 pr_debug("last reference is dropped\n");
907 complete(&policy->kobj_unregister);
908 }
909
910 static const struct sysfs_ops sysfs_ops = {
911 .show = show,
912 .store = store,
913 };
914
915 static struct kobj_type ktype_cpufreq = {
916 .sysfs_ops = &sysfs_ops,
917 .default_attrs = default_attrs,
918 .release = cpufreq_sysfs_release,
919 };
920
921 static int add_cpu_dev_symlink(struct cpufreq_policy *policy,
922 struct device *dev)
923 {
924 dev_dbg(dev, "%s: Adding symlink\n", __func__);
925 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
926 }
927
928 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
929 struct device *dev)
930 {
931 dev_dbg(dev, "%s: Removing symlink\n", __func__);
932 sysfs_remove_link(&dev->kobj, "cpufreq");
933 }
934
935 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
936 {
937 struct freq_attr **drv_attr;
938 int ret = 0;
939
940 /* set up files for this cpu device */
941 drv_attr = cpufreq_driver->attr;
942 while (drv_attr && *drv_attr) {
943 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
944 if (ret)
945 return ret;
946 drv_attr++;
947 }
948 if (cpufreq_driver->get) {
949 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
950 if (ret)
951 return ret;
952 }
953
954 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
955 if (ret)
956 return ret;
957
958 if (cpufreq_driver->bios_limit) {
959 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
960 if (ret)
961 return ret;
962 }
963
964 return 0;
965 }
966
967 __weak struct cpufreq_governor *cpufreq_default_governor(void)
968 {
969 return NULL;
970 }
971
972 static int cpufreq_init_policy(struct cpufreq_policy *policy)
973 {
974 struct cpufreq_governor *gov = NULL;
975 struct cpufreq_policy new_policy;
976
977 memcpy(&new_policy, policy, sizeof(*policy));
978
979 /* Update governor of new_policy to the governor used before hotplug */
980 gov = find_governor(policy->last_governor);
981 if (gov) {
982 pr_debug("Restoring governor %s for cpu %d\n",
983 policy->governor->name, policy->cpu);
984 } else {
985 gov = cpufreq_default_governor();
986 if (!gov)
987 return -ENODATA;
988 }
989
990 new_policy.governor = gov;
991
992 /* Use the default policy if there is no last_policy. */
993 if (cpufreq_driver->setpolicy) {
994 if (policy->last_policy)
995 new_policy.policy = policy->last_policy;
996 else
997 cpufreq_parse_governor(gov->name, &new_policy.policy,
998 NULL);
999 }
1000 /* set default policy */
1001 return cpufreq_set_policy(policy, &new_policy);
1002 }
1003
1004 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1005 {
1006 int ret = 0;
1007
1008 /* Has this CPU been taken care of already? */
1009 if (cpumask_test_cpu(cpu, policy->cpus))
1010 return 0;
1011
1012 down_write(&policy->rwsem);
1013 if (has_target())
1014 cpufreq_stop_governor(policy);
1015
1016 cpumask_set_cpu(cpu, policy->cpus);
1017
1018 if (has_target()) {
1019 ret = cpufreq_start_governor(policy);
1020 if (ret)
1021 pr_err("%s: Failed to start governor\n", __func__);
1022 }
1023 up_write(&policy->rwsem);
1024 return ret;
1025 }
1026
1027 static void handle_update(struct work_struct *work)
1028 {
1029 struct cpufreq_policy *policy =
1030 container_of(work, struct cpufreq_policy, update);
1031 unsigned int cpu = policy->cpu;
1032 pr_debug("handle_update for cpu %u called\n", cpu);
1033 cpufreq_update_policy(cpu);
1034 }
1035
1036 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1037 {
1038 struct cpufreq_policy *policy;
1039 int ret;
1040
1041 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1042 if (!policy)
1043 return NULL;
1044
1045 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1046 goto err_free_policy;
1047
1048 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1049 goto err_free_cpumask;
1050
1051 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1052 goto err_free_rcpumask;
1053
1054 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1055 cpufreq_global_kobject, "policy%u", cpu);
1056 if (ret) {
1057 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1058 goto err_free_real_cpus;
1059 }
1060
1061 INIT_LIST_HEAD(&policy->policy_list);
1062 init_rwsem(&policy->rwsem);
1063 spin_lock_init(&policy->transition_lock);
1064 init_waitqueue_head(&policy->transition_wait);
1065 init_completion(&policy->kobj_unregister);
1066 INIT_WORK(&policy->update, handle_update);
1067
1068 policy->cpu = cpu;
1069 return policy;
1070
1071 err_free_real_cpus:
1072 free_cpumask_var(policy->real_cpus);
1073 err_free_rcpumask:
1074 free_cpumask_var(policy->related_cpus);
1075 err_free_cpumask:
1076 free_cpumask_var(policy->cpus);
1077 err_free_policy:
1078 kfree(policy);
1079
1080 return NULL;
1081 }
1082
1083 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1084 {
1085 struct kobject *kobj;
1086 struct completion *cmp;
1087
1088 if (notify)
1089 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1090 CPUFREQ_REMOVE_POLICY, policy);
1091
1092 down_write(&policy->rwsem);
1093 cpufreq_stats_free_table(policy);
1094 kobj = &policy->kobj;
1095 cmp = &policy->kobj_unregister;
1096 up_write(&policy->rwsem);
1097 kobject_put(kobj);
1098
1099 /*
1100 * We need to make sure that the underlying kobj is
1101 * actually not referenced anymore by anybody before we
1102 * proceed with unloading.
1103 */
1104 pr_debug("waiting for dropping of refcount\n");
1105 wait_for_completion(cmp);
1106 pr_debug("wait complete\n");
1107 }
1108
1109 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1110 {
1111 unsigned long flags;
1112 int cpu;
1113
1114 /* Remove policy from list */
1115 write_lock_irqsave(&cpufreq_driver_lock, flags);
1116 list_del(&policy->policy_list);
1117
1118 for_each_cpu(cpu, policy->related_cpus)
1119 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1120 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1121
1122 cpufreq_policy_put_kobj(policy, notify);
1123 free_cpumask_var(policy->real_cpus);
1124 free_cpumask_var(policy->related_cpus);
1125 free_cpumask_var(policy->cpus);
1126 kfree(policy);
1127 }
1128
1129 static int cpufreq_online(unsigned int cpu)
1130 {
1131 struct cpufreq_policy *policy;
1132 bool new_policy;
1133 unsigned long flags;
1134 unsigned int j;
1135 int ret;
1136
1137 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1138
1139 /* Check if this CPU already has a policy to manage it */
1140 policy = per_cpu(cpufreq_cpu_data, cpu);
1141 if (policy) {
1142 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1143 if (!policy_is_inactive(policy))
1144 return cpufreq_add_policy_cpu(policy, cpu);
1145
1146 /* This is the only online CPU for the policy. Start over. */
1147 new_policy = false;
1148 down_write(&policy->rwsem);
1149 policy->cpu = cpu;
1150 policy->governor = NULL;
1151 up_write(&policy->rwsem);
1152 } else {
1153 new_policy = true;
1154 policy = cpufreq_policy_alloc(cpu);
1155 if (!policy)
1156 return -ENOMEM;
1157 }
1158
1159 cpumask_copy(policy->cpus, cpumask_of(cpu));
1160
1161 /* call driver. From then on the cpufreq must be able
1162 * to accept all calls to ->verify and ->setpolicy for this CPU
1163 */
1164 ret = cpufreq_driver->init(policy);
1165 if (ret) {
1166 pr_debug("initialization failed\n");
1167 goto out_free_policy;
1168 }
1169
1170 down_write(&policy->rwsem);
1171
1172 if (new_policy) {
1173 /* related_cpus should at least include policy->cpus. */
1174 cpumask_copy(policy->related_cpus, policy->cpus);
1175 /* Clear mask of registered CPUs */
1176 cpumask_clear(policy->real_cpus);
1177 }
1178
1179 /*
1180 * affected cpus must always be the one, which are online. We aren't
1181 * managing offline cpus here.
1182 */
1183 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1184
1185 if (new_policy) {
1186 policy->user_policy.min = policy->min;
1187 policy->user_policy.max = policy->max;
1188
1189 write_lock_irqsave(&cpufreq_driver_lock, flags);
1190 for_each_cpu(j, policy->related_cpus)
1191 per_cpu(cpufreq_cpu_data, j) = policy;
1192 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1193 }
1194
1195 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1196 policy->cur = cpufreq_driver->get(policy->cpu);
1197 if (!policy->cur) {
1198 pr_err("%s: ->get() failed\n", __func__);
1199 goto out_exit_policy;
1200 }
1201 }
1202
1203 /*
1204 * Sometimes boot loaders set CPU frequency to a value outside of
1205 * frequency table present with cpufreq core. In such cases CPU might be
1206 * unstable if it has to run on that frequency for long duration of time
1207 * and so its better to set it to a frequency which is specified in
1208 * freq-table. This also makes cpufreq stats inconsistent as
1209 * cpufreq-stats would fail to register because current frequency of CPU
1210 * isn't found in freq-table.
1211 *
1212 * Because we don't want this change to effect boot process badly, we go
1213 * for the next freq which is >= policy->cur ('cur' must be set by now,
1214 * otherwise we will end up setting freq to lowest of the table as 'cur'
1215 * is initialized to zero).
1216 *
1217 * We are passing target-freq as "policy->cur - 1" otherwise
1218 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1219 * equal to target-freq.
1220 */
1221 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1222 && has_target()) {
1223 /* Are we running at unknown frequency ? */
1224 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1225 if (ret == -EINVAL) {
1226 /* Warn user and fix it */
1227 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1228 __func__, policy->cpu, policy->cur);
1229 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1230 CPUFREQ_RELATION_L);
1231
1232 /*
1233 * Reaching here after boot in a few seconds may not
1234 * mean that system will remain stable at "unknown"
1235 * frequency for longer duration. Hence, a BUG_ON().
1236 */
1237 BUG_ON(ret);
1238 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1239 __func__, policy->cpu, policy->cur);
1240 }
1241 }
1242
1243 if (new_policy) {
1244 ret = cpufreq_add_dev_interface(policy);
1245 if (ret)
1246 goto out_exit_policy;
1247
1248 cpufreq_stats_create_table(policy);
1249 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1250 CPUFREQ_CREATE_POLICY, policy);
1251
1252 write_lock_irqsave(&cpufreq_driver_lock, flags);
1253 list_add(&policy->policy_list, &cpufreq_policy_list);
1254 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1255 }
1256
1257 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1258 CPUFREQ_START, policy);
1259
1260 ret = cpufreq_init_policy(policy);
1261 if (ret) {
1262 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1263 __func__, cpu, ret);
1264 /* cpufreq_policy_free() will notify based on this */
1265 new_policy = false;
1266 goto out_exit_policy;
1267 }
1268
1269 up_write(&policy->rwsem);
1270
1271 kobject_uevent(&policy->kobj, KOBJ_ADD);
1272
1273 /* Callback for handling stuff after policy is ready */
1274 if (cpufreq_driver->ready)
1275 cpufreq_driver->ready(policy);
1276
1277 pr_debug("initialization complete\n");
1278
1279 return 0;
1280
1281 out_exit_policy:
1282 up_write(&policy->rwsem);
1283
1284 if (cpufreq_driver->exit)
1285 cpufreq_driver->exit(policy);
1286 out_free_policy:
1287 cpufreq_policy_free(policy, !new_policy);
1288 return ret;
1289 }
1290
1291 static int cpufreq_offline(unsigned int cpu);
1292
1293 /**
1294 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1295 * @dev: CPU device.
1296 * @sif: Subsystem interface structure pointer (not used)
1297 */
1298 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1299 {
1300 struct cpufreq_policy *policy;
1301 unsigned cpu = dev->id;
1302 int ret;
1303
1304 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1305
1306 if (cpu_online(cpu)) {
1307 ret = cpufreq_online(cpu);
1308 if (ret)
1309 return ret;
1310 }
1311
1312 /* Create sysfs link on CPU registration */
1313 policy = per_cpu(cpufreq_cpu_data, cpu);
1314 if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1315 return 0;
1316
1317 ret = add_cpu_dev_symlink(policy, dev);
1318 if (ret) {
1319 cpumask_clear_cpu(cpu, policy->real_cpus);
1320 cpufreq_offline(cpu);
1321 }
1322
1323 return ret;
1324 }
1325
1326 static int cpufreq_offline(unsigned int cpu)
1327 {
1328 struct cpufreq_policy *policy;
1329 int ret;
1330
1331 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333 policy = cpufreq_cpu_get_raw(cpu);
1334 if (!policy) {
1335 pr_debug("%s: No cpu_data found\n", __func__);
1336 return 0;
1337 }
1338
1339 down_write(&policy->rwsem);
1340 if (has_target())
1341 cpufreq_stop_governor(policy);
1342
1343 cpumask_clear_cpu(cpu, policy->cpus);
1344
1345 if (policy_is_inactive(policy)) {
1346 if (has_target())
1347 strncpy(policy->last_governor, policy->governor->name,
1348 CPUFREQ_NAME_LEN);
1349 else
1350 policy->last_policy = policy->policy;
1351 } else if (cpu == policy->cpu) {
1352 /* Nominate new CPU */
1353 policy->cpu = cpumask_any(policy->cpus);
1354 }
1355
1356 /* Start governor again for active policy */
1357 if (!policy_is_inactive(policy)) {
1358 if (has_target()) {
1359 ret = cpufreq_start_governor(policy);
1360 if (ret)
1361 pr_err("%s: Failed to start governor\n", __func__);
1362 }
1363
1364 goto unlock;
1365 }
1366
1367 if (cpufreq_driver->stop_cpu)
1368 cpufreq_driver->stop_cpu(policy);
1369
1370 if (has_target())
1371 cpufreq_exit_governor(policy);
1372
1373 /*
1374 * Perform the ->exit() even during light-weight tear-down,
1375 * since this is a core component, and is essential for the
1376 * subsequent light-weight ->init() to succeed.
1377 */
1378 if (cpufreq_driver->exit) {
1379 cpufreq_driver->exit(policy);
1380 policy->freq_table = NULL;
1381 }
1382
1383 unlock:
1384 up_write(&policy->rwsem);
1385 return 0;
1386 }
1387
1388 /**
1389 * cpufreq_remove_dev - remove a CPU device
1390 *
1391 * Removes the cpufreq interface for a CPU device.
1392 */
1393 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1394 {
1395 unsigned int cpu = dev->id;
1396 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1397
1398 if (!policy)
1399 return;
1400
1401 if (cpu_online(cpu))
1402 cpufreq_offline(cpu);
1403
1404 cpumask_clear_cpu(cpu, policy->real_cpus);
1405 remove_cpu_dev_symlink(policy, dev);
1406
1407 if (cpumask_empty(policy->real_cpus))
1408 cpufreq_policy_free(policy, true);
1409 }
1410
1411 /**
1412 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1413 * in deep trouble.
1414 * @policy: policy managing CPUs
1415 * @new_freq: CPU frequency the CPU actually runs at
1416 *
1417 * We adjust to current frequency first, and need to clean up later.
1418 * So either call to cpufreq_update_policy() or schedule handle_update()).
1419 */
1420 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1421 unsigned int new_freq)
1422 {
1423 struct cpufreq_freqs freqs;
1424
1425 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1426 policy->cur, new_freq);
1427
1428 freqs.old = policy->cur;
1429 freqs.new = new_freq;
1430
1431 cpufreq_freq_transition_begin(policy, &freqs);
1432 cpufreq_freq_transition_end(policy, &freqs, 0);
1433 }
1434
1435 /**
1436 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1437 * @cpu: CPU number
1438 *
1439 * This is the last known freq, without actually getting it from the driver.
1440 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1441 */
1442 unsigned int cpufreq_quick_get(unsigned int cpu)
1443 {
1444 struct cpufreq_policy *policy;
1445 unsigned int ret_freq = 0;
1446 unsigned long flags;
1447
1448 read_lock_irqsave(&cpufreq_driver_lock, flags);
1449
1450 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1451 ret_freq = cpufreq_driver->get(cpu);
1452 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1453 return ret_freq;
1454 }
1455
1456 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1457
1458 policy = cpufreq_cpu_get(cpu);
1459 if (policy) {
1460 ret_freq = policy->cur;
1461 cpufreq_cpu_put(policy);
1462 }
1463
1464 return ret_freq;
1465 }
1466 EXPORT_SYMBOL(cpufreq_quick_get);
1467
1468 /**
1469 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1470 * @cpu: CPU number
1471 *
1472 * Just return the max possible frequency for a given CPU.
1473 */
1474 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1475 {
1476 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1477 unsigned int ret_freq = 0;
1478
1479 if (policy) {
1480 ret_freq = policy->max;
1481 cpufreq_cpu_put(policy);
1482 }
1483
1484 return ret_freq;
1485 }
1486 EXPORT_SYMBOL(cpufreq_quick_get_max);
1487
1488 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1489 {
1490 unsigned int ret_freq = 0;
1491
1492 if (!cpufreq_driver->get)
1493 return ret_freq;
1494
1495 ret_freq = cpufreq_driver->get(policy->cpu);
1496
1497 /*
1498 * Updating inactive policies is invalid, so avoid doing that. Also
1499 * if fast frequency switching is used with the given policy, the check
1500 * against policy->cur is pointless, so skip it in that case too.
1501 */
1502 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1503 return ret_freq;
1504
1505 if (ret_freq && policy->cur &&
1506 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1507 /* verify no discrepancy between actual and
1508 saved value exists */
1509 if (unlikely(ret_freq != policy->cur)) {
1510 cpufreq_out_of_sync(policy, ret_freq);
1511 schedule_work(&policy->update);
1512 }
1513 }
1514
1515 return ret_freq;
1516 }
1517
1518 /**
1519 * cpufreq_get - get the current CPU frequency (in kHz)
1520 * @cpu: CPU number
1521 *
1522 * Get the CPU current (static) CPU frequency
1523 */
1524 unsigned int cpufreq_get(unsigned int cpu)
1525 {
1526 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1527 unsigned int ret_freq = 0;
1528
1529 if (policy) {
1530 down_read(&policy->rwsem);
1531
1532 if (!policy_is_inactive(policy))
1533 ret_freq = __cpufreq_get(policy);
1534
1535 up_read(&policy->rwsem);
1536
1537 cpufreq_cpu_put(policy);
1538 }
1539
1540 return ret_freq;
1541 }
1542 EXPORT_SYMBOL(cpufreq_get);
1543
1544 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1545 {
1546 unsigned int new_freq;
1547
1548 new_freq = cpufreq_driver->get(policy->cpu);
1549 if (!new_freq)
1550 return 0;
1551
1552 if (!policy->cur) {
1553 pr_debug("cpufreq: Driver did not initialize current freq\n");
1554 policy->cur = new_freq;
1555 } else if (policy->cur != new_freq && has_target()) {
1556 cpufreq_out_of_sync(policy, new_freq);
1557 }
1558
1559 return new_freq;
1560 }
1561
1562 static struct subsys_interface cpufreq_interface = {
1563 .name = "cpufreq",
1564 .subsys = &cpu_subsys,
1565 .add_dev = cpufreq_add_dev,
1566 .remove_dev = cpufreq_remove_dev,
1567 };
1568
1569 /*
1570 * In case platform wants some specific frequency to be configured
1571 * during suspend..
1572 */
1573 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1574 {
1575 int ret;
1576
1577 if (!policy->suspend_freq) {
1578 pr_debug("%s: suspend_freq not defined\n", __func__);
1579 return 0;
1580 }
1581
1582 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1583 policy->suspend_freq);
1584
1585 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1586 CPUFREQ_RELATION_H);
1587 if (ret)
1588 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1589 __func__, policy->suspend_freq, ret);
1590
1591 return ret;
1592 }
1593 EXPORT_SYMBOL(cpufreq_generic_suspend);
1594
1595 /**
1596 * cpufreq_suspend() - Suspend CPUFreq governors
1597 *
1598 * Called during system wide Suspend/Hibernate cycles for suspending governors
1599 * as some platforms can't change frequency after this point in suspend cycle.
1600 * Because some of the devices (like: i2c, regulators, etc) they use for
1601 * changing frequency are suspended quickly after this point.
1602 */
1603 void cpufreq_suspend(void)
1604 {
1605 struct cpufreq_policy *policy;
1606
1607 if (!cpufreq_driver)
1608 return;
1609
1610 if (!has_target() && !cpufreq_driver->suspend)
1611 goto suspend;
1612
1613 pr_debug("%s: Suspending Governors\n", __func__);
1614
1615 for_each_active_policy(policy) {
1616 if (has_target()) {
1617 down_write(&policy->rwsem);
1618 cpufreq_stop_governor(policy);
1619 up_write(&policy->rwsem);
1620 }
1621
1622 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1623 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1624 policy);
1625 }
1626
1627 suspend:
1628 cpufreq_suspended = true;
1629 }
1630
1631 /**
1632 * cpufreq_resume() - Resume CPUFreq governors
1633 *
1634 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1635 * are suspended with cpufreq_suspend().
1636 */
1637 void cpufreq_resume(void)
1638 {
1639 struct cpufreq_policy *policy;
1640 int ret;
1641
1642 if (!cpufreq_driver)
1643 return;
1644
1645 cpufreq_suspended = false;
1646
1647 if (!has_target() && !cpufreq_driver->resume)
1648 return;
1649
1650 pr_debug("%s: Resuming Governors\n", __func__);
1651
1652 for_each_active_policy(policy) {
1653 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1654 pr_err("%s: Failed to resume driver: %p\n", __func__,
1655 policy);
1656 } else if (has_target()) {
1657 down_write(&policy->rwsem);
1658 ret = cpufreq_start_governor(policy);
1659 up_write(&policy->rwsem);
1660
1661 if (ret)
1662 pr_err("%s: Failed to start governor for policy: %p\n",
1663 __func__, policy);
1664 }
1665 }
1666 }
1667
1668 /**
1669 * cpufreq_get_current_driver - return current driver's name
1670 *
1671 * Return the name string of the currently loaded cpufreq driver
1672 * or NULL, if none.
1673 */
1674 const char *cpufreq_get_current_driver(void)
1675 {
1676 if (cpufreq_driver)
1677 return cpufreq_driver->name;
1678
1679 return NULL;
1680 }
1681 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1682
1683 /**
1684 * cpufreq_get_driver_data - return current driver data
1685 *
1686 * Return the private data of the currently loaded cpufreq
1687 * driver, or NULL if no cpufreq driver is loaded.
1688 */
1689 void *cpufreq_get_driver_data(void)
1690 {
1691 if (cpufreq_driver)
1692 return cpufreq_driver->driver_data;
1693
1694 return NULL;
1695 }
1696 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1697
1698 /*********************************************************************
1699 * NOTIFIER LISTS INTERFACE *
1700 *********************************************************************/
1701
1702 /**
1703 * cpufreq_register_notifier - register a driver with cpufreq
1704 * @nb: notifier function to register
1705 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1706 *
1707 * Add a driver to one of two lists: either a list of drivers that
1708 * are notified about clock rate changes (once before and once after
1709 * the transition), or a list of drivers that are notified about
1710 * changes in cpufreq policy.
1711 *
1712 * This function may sleep, and has the same return conditions as
1713 * blocking_notifier_chain_register.
1714 */
1715 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1716 {
1717 int ret;
1718
1719 if (cpufreq_disabled())
1720 return -EINVAL;
1721
1722 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1723
1724 switch (list) {
1725 case CPUFREQ_TRANSITION_NOTIFIER:
1726 mutex_lock(&cpufreq_fast_switch_lock);
1727
1728 if (cpufreq_fast_switch_count > 0) {
1729 mutex_unlock(&cpufreq_fast_switch_lock);
1730 return -EBUSY;
1731 }
1732 ret = srcu_notifier_chain_register(
1733 &cpufreq_transition_notifier_list, nb);
1734 if (!ret)
1735 cpufreq_fast_switch_count--;
1736
1737 mutex_unlock(&cpufreq_fast_switch_lock);
1738 break;
1739 case CPUFREQ_POLICY_NOTIFIER:
1740 ret = blocking_notifier_chain_register(
1741 &cpufreq_policy_notifier_list, nb);
1742 break;
1743 default:
1744 ret = -EINVAL;
1745 }
1746
1747 return ret;
1748 }
1749 EXPORT_SYMBOL(cpufreq_register_notifier);
1750
1751 /**
1752 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1753 * @nb: notifier block to be unregistered
1754 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1755 *
1756 * Remove a driver from the CPU frequency notifier list.
1757 *
1758 * This function may sleep, and has the same return conditions as
1759 * blocking_notifier_chain_unregister.
1760 */
1761 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1762 {
1763 int ret;
1764
1765 if (cpufreq_disabled())
1766 return -EINVAL;
1767
1768 switch (list) {
1769 case CPUFREQ_TRANSITION_NOTIFIER:
1770 mutex_lock(&cpufreq_fast_switch_lock);
1771
1772 ret = srcu_notifier_chain_unregister(
1773 &cpufreq_transition_notifier_list, nb);
1774 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1775 cpufreq_fast_switch_count++;
1776
1777 mutex_unlock(&cpufreq_fast_switch_lock);
1778 break;
1779 case CPUFREQ_POLICY_NOTIFIER:
1780 ret = blocking_notifier_chain_unregister(
1781 &cpufreq_policy_notifier_list, nb);
1782 break;
1783 default:
1784 ret = -EINVAL;
1785 }
1786
1787 return ret;
1788 }
1789 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1790
1791
1792 /*********************************************************************
1793 * GOVERNORS *
1794 *********************************************************************/
1795
1796 /**
1797 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1798 * @policy: cpufreq policy to switch the frequency for.
1799 * @target_freq: New frequency to set (may be approximate).
1800 *
1801 * Carry out a fast frequency switch without sleeping.
1802 *
1803 * The driver's ->fast_switch() callback invoked by this function must be
1804 * suitable for being called from within RCU-sched read-side critical sections
1805 * and it is expected to select the minimum available frequency greater than or
1806 * equal to @target_freq (CPUFREQ_RELATION_L).
1807 *
1808 * This function must not be called if policy->fast_switch_enabled is unset.
1809 *
1810 * Governors calling this function must guarantee that it will never be invoked
1811 * twice in parallel for the same policy and that it will never be called in
1812 * parallel with either ->target() or ->target_index() for the same policy.
1813 *
1814 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch()
1815 * callback to indicate an error condition, the hardware configuration must be
1816 * preserved.
1817 */
1818 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1819 unsigned int target_freq)
1820 {
1821 target_freq = clamp_val(target_freq, policy->min, policy->max);
1822
1823 return cpufreq_driver->fast_switch(policy, target_freq);
1824 }
1825 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1826
1827 /* Must set freqs->new to intermediate frequency */
1828 static int __target_intermediate(struct cpufreq_policy *policy,
1829 struct cpufreq_freqs *freqs, int index)
1830 {
1831 int ret;
1832
1833 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1834
1835 /* We don't need to switch to intermediate freq */
1836 if (!freqs->new)
1837 return 0;
1838
1839 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1840 __func__, policy->cpu, freqs->old, freqs->new);
1841
1842 cpufreq_freq_transition_begin(policy, freqs);
1843 ret = cpufreq_driver->target_intermediate(policy, index);
1844 cpufreq_freq_transition_end(policy, freqs, ret);
1845
1846 if (ret)
1847 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1848 __func__, ret);
1849
1850 return ret;
1851 }
1852
1853 static int __target_index(struct cpufreq_policy *policy, int index)
1854 {
1855 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1856 unsigned int intermediate_freq = 0;
1857 unsigned int newfreq = policy->freq_table[index].frequency;
1858 int retval = -EINVAL;
1859 bool notify;
1860
1861 if (newfreq == policy->cur)
1862 return 0;
1863
1864 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1865 if (notify) {
1866 /* Handle switching to intermediate frequency */
1867 if (cpufreq_driver->get_intermediate) {
1868 retval = __target_intermediate(policy, &freqs, index);
1869 if (retval)
1870 return retval;
1871
1872 intermediate_freq = freqs.new;
1873 /* Set old freq to intermediate */
1874 if (intermediate_freq)
1875 freqs.old = freqs.new;
1876 }
1877
1878 freqs.new = newfreq;
1879 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1880 __func__, policy->cpu, freqs.old, freqs.new);
1881
1882 cpufreq_freq_transition_begin(policy, &freqs);
1883 }
1884
1885 retval = cpufreq_driver->target_index(policy, index);
1886 if (retval)
1887 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1888 retval);
1889
1890 if (notify) {
1891 cpufreq_freq_transition_end(policy, &freqs, retval);
1892
1893 /*
1894 * Failed after setting to intermediate freq? Driver should have
1895 * reverted back to initial frequency and so should we. Check
1896 * here for intermediate_freq instead of get_intermediate, in
1897 * case we haven't switched to intermediate freq at all.
1898 */
1899 if (unlikely(retval && intermediate_freq)) {
1900 freqs.old = intermediate_freq;
1901 freqs.new = policy->restore_freq;
1902 cpufreq_freq_transition_begin(policy, &freqs);
1903 cpufreq_freq_transition_end(policy, &freqs, 0);
1904 }
1905 }
1906
1907 return retval;
1908 }
1909
1910 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1911 unsigned int target_freq,
1912 unsigned int relation)
1913 {
1914 unsigned int old_target_freq = target_freq;
1915 int index;
1916
1917 if (cpufreq_disabled())
1918 return -ENODEV;
1919
1920 /* Make sure that target_freq is within supported range */
1921 target_freq = clamp_val(target_freq, policy->min, policy->max);
1922
1923 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1924 policy->cpu, target_freq, relation, old_target_freq);
1925
1926 /*
1927 * This might look like a redundant call as we are checking it again
1928 * after finding index. But it is left intentionally for cases where
1929 * exactly same freq is called again and so we can save on few function
1930 * calls.
1931 */
1932 if (target_freq == policy->cur)
1933 return 0;
1934
1935 /* Save last value to restore later on errors */
1936 policy->restore_freq = policy->cur;
1937
1938 if (cpufreq_driver->target)
1939 return cpufreq_driver->target(policy, target_freq, relation);
1940
1941 if (!cpufreq_driver->target_index)
1942 return -EINVAL;
1943
1944 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1945
1946 return __target_index(policy, index);
1947 }
1948 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1949
1950 int cpufreq_driver_target(struct cpufreq_policy *policy,
1951 unsigned int target_freq,
1952 unsigned int relation)
1953 {
1954 int ret = -EINVAL;
1955
1956 down_write(&policy->rwsem);
1957
1958 ret = __cpufreq_driver_target(policy, target_freq, relation);
1959
1960 up_write(&policy->rwsem);
1961
1962 return ret;
1963 }
1964 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1965
1966 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1967 {
1968 return NULL;
1969 }
1970
1971 static int cpufreq_init_governor(struct cpufreq_policy *policy)
1972 {
1973 int ret;
1974
1975 /* Don't start any governor operations if we are entering suspend */
1976 if (cpufreq_suspended)
1977 return 0;
1978 /*
1979 * Governor might not be initiated here if ACPI _PPC changed
1980 * notification happened, so check it.
1981 */
1982 if (!policy->governor)
1983 return -EINVAL;
1984
1985 if (policy->governor->max_transition_latency &&
1986 policy->cpuinfo.transition_latency >
1987 policy->governor->max_transition_latency) {
1988 struct cpufreq_governor *gov = cpufreq_fallback_governor();
1989
1990 if (gov) {
1991 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1992 policy->governor->name, gov->name);
1993 policy->governor = gov;
1994 } else {
1995 return -EINVAL;
1996 }
1997 }
1998
1999 if (!try_module_get(policy->governor->owner))
2000 return -EINVAL;
2001
2002 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2003
2004 if (policy->governor->init) {
2005 ret = policy->governor->init(policy);
2006 if (ret) {
2007 module_put(policy->governor->owner);
2008 return ret;
2009 }
2010 }
2011
2012 return 0;
2013 }
2014
2015 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2016 {
2017 if (cpufreq_suspended || !policy->governor)
2018 return;
2019
2020 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2021
2022 if (policy->governor->exit)
2023 policy->governor->exit(policy);
2024
2025 module_put(policy->governor->owner);
2026 }
2027
2028 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2029 {
2030 int ret;
2031
2032 if (cpufreq_suspended)
2033 return 0;
2034
2035 if (!policy->governor)
2036 return -EINVAL;
2037
2038 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2039
2040 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2041 cpufreq_update_current_freq(policy);
2042
2043 if (policy->governor->start) {
2044 ret = policy->governor->start(policy);
2045 if (ret)
2046 return ret;
2047 }
2048
2049 if (policy->governor->limits)
2050 policy->governor->limits(policy);
2051
2052 return 0;
2053 }
2054
2055 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2056 {
2057 if (cpufreq_suspended || !policy->governor)
2058 return;
2059
2060 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2061
2062 if (policy->governor->stop)
2063 policy->governor->stop(policy);
2064 }
2065
2066 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2067 {
2068 if (cpufreq_suspended || !policy->governor)
2069 return;
2070
2071 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2072
2073 if (policy->governor->limits)
2074 policy->governor->limits(policy);
2075 }
2076
2077 int cpufreq_register_governor(struct cpufreq_governor *governor)
2078 {
2079 int err;
2080
2081 if (!governor)
2082 return -EINVAL;
2083
2084 if (cpufreq_disabled())
2085 return -ENODEV;
2086
2087 mutex_lock(&cpufreq_governor_mutex);
2088
2089 err = -EBUSY;
2090 if (!find_governor(governor->name)) {
2091 err = 0;
2092 list_add(&governor->governor_list, &cpufreq_governor_list);
2093 }
2094
2095 mutex_unlock(&cpufreq_governor_mutex);
2096 return err;
2097 }
2098 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2099
2100 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2101 {
2102 struct cpufreq_policy *policy;
2103 unsigned long flags;
2104
2105 if (!governor)
2106 return;
2107
2108 if (cpufreq_disabled())
2109 return;
2110
2111 /* clear last_governor for all inactive policies */
2112 read_lock_irqsave(&cpufreq_driver_lock, flags);
2113 for_each_inactive_policy(policy) {
2114 if (!strcmp(policy->last_governor, governor->name)) {
2115 policy->governor = NULL;
2116 strcpy(policy->last_governor, "\0");
2117 }
2118 }
2119 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2120
2121 mutex_lock(&cpufreq_governor_mutex);
2122 list_del(&governor->governor_list);
2123 mutex_unlock(&cpufreq_governor_mutex);
2124 return;
2125 }
2126 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2127
2128
2129 /*********************************************************************
2130 * POLICY INTERFACE *
2131 *********************************************************************/
2132
2133 /**
2134 * cpufreq_get_policy - get the current cpufreq_policy
2135 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2136 * is written
2137 *
2138 * Reads the current cpufreq policy.
2139 */
2140 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2141 {
2142 struct cpufreq_policy *cpu_policy;
2143 if (!policy)
2144 return -EINVAL;
2145
2146 cpu_policy = cpufreq_cpu_get(cpu);
2147 if (!cpu_policy)
2148 return -EINVAL;
2149
2150 memcpy(policy, cpu_policy, sizeof(*policy));
2151
2152 cpufreq_cpu_put(cpu_policy);
2153 return 0;
2154 }
2155 EXPORT_SYMBOL(cpufreq_get_policy);
2156
2157 /*
2158 * policy : current policy.
2159 * new_policy: policy to be set.
2160 */
2161 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2162 struct cpufreq_policy *new_policy)
2163 {
2164 struct cpufreq_governor *old_gov;
2165 int ret;
2166
2167 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2168 new_policy->cpu, new_policy->min, new_policy->max);
2169
2170 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2171
2172 /*
2173 * This check works well when we store new min/max freq attributes,
2174 * because new_policy is a copy of policy with one field updated.
2175 */
2176 if (new_policy->min > new_policy->max)
2177 return -EINVAL;
2178
2179 /* verify the cpu speed can be set within this limit */
2180 ret = cpufreq_driver->verify(new_policy);
2181 if (ret)
2182 return ret;
2183
2184 /* adjust if necessary - all reasons */
2185 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2186 CPUFREQ_ADJUST, new_policy);
2187
2188 /*
2189 * verify the cpu speed can be set within this limit, which might be
2190 * different to the first one
2191 */
2192 ret = cpufreq_driver->verify(new_policy);
2193 if (ret)
2194 return ret;
2195
2196 /* notification of the new policy */
2197 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2198 CPUFREQ_NOTIFY, new_policy);
2199
2200 policy->min = new_policy->min;
2201 policy->max = new_policy->max;
2202
2203 policy->cached_target_freq = UINT_MAX;
2204
2205 pr_debug("new min and max freqs are %u - %u kHz\n",
2206 policy->min, policy->max);
2207
2208 if (cpufreq_driver->setpolicy) {
2209 policy->policy = new_policy->policy;
2210 pr_debug("setting range\n");
2211 return cpufreq_driver->setpolicy(new_policy);
2212 }
2213
2214 if (new_policy->governor == policy->governor) {
2215 pr_debug("cpufreq: governor limits update\n");
2216 cpufreq_governor_limits(policy);
2217 return 0;
2218 }
2219
2220 pr_debug("governor switch\n");
2221
2222 /* save old, working values */
2223 old_gov = policy->governor;
2224 /* end old governor */
2225 if (old_gov) {
2226 cpufreq_stop_governor(policy);
2227 cpufreq_exit_governor(policy);
2228 }
2229
2230 /* start new governor */
2231 policy->governor = new_policy->governor;
2232 ret = cpufreq_init_governor(policy);
2233 if (!ret) {
2234 ret = cpufreq_start_governor(policy);
2235 if (!ret) {
2236 pr_debug("cpufreq: governor change\n");
2237 return 0;
2238 }
2239 cpufreq_exit_governor(policy);
2240 }
2241
2242 /* new governor failed, so re-start old one */
2243 pr_debug("starting governor %s failed\n", policy->governor->name);
2244 if (old_gov) {
2245 policy->governor = old_gov;
2246 if (cpufreq_init_governor(policy))
2247 policy->governor = NULL;
2248 else
2249 cpufreq_start_governor(policy);
2250 }
2251
2252 return ret;
2253 }
2254
2255 /**
2256 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2257 * @cpu: CPU which shall be re-evaluated
2258 *
2259 * Useful for policy notifiers which have different necessities
2260 * at different times.
2261 */
2262 void cpufreq_update_policy(unsigned int cpu)
2263 {
2264 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2265 struct cpufreq_policy new_policy;
2266
2267 if (!policy)
2268 return;
2269
2270 down_write(&policy->rwsem);
2271
2272 if (policy_is_inactive(policy))
2273 goto unlock;
2274
2275 pr_debug("updating policy for CPU %u\n", cpu);
2276 memcpy(&new_policy, policy, sizeof(*policy));
2277 new_policy.min = policy->user_policy.min;
2278 new_policy.max = policy->user_policy.max;
2279
2280 /*
2281 * BIOS might change freq behind our back
2282 * -> ask driver for current freq and notify governors about a change
2283 */
2284 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2285 if (cpufreq_suspended)
2286 goto unlock;
2287
2288 new_policy.cur = cpufreq_update_current_freq(policy);
2289 if (WARN_ON(!new_policy.cur))
2290 goto unlock;
2291 }
2292
2293 cpufreq_set_policy(policy, &new_policy);
2294
2295 unlock:
2296 up_write(&policy->rwsem);
2297
2298 cpufreq_cpu_put(policy);
2299 }
2300 EXPORT_SYMBOL(cpufreq_update_policy);
2301
2302 /*********************************************************************
2303 * BOOST *
2304 *********************************************************************/
2305 static int cpufreq_boost_set_sw(int state)
2306 {
2307 struct cpufreq_policy *policy;
2308 int ret = -EINVAL;
2309
2310 for_each_active_policy(policy) {
2311 if (!policy->freq_table)
2312 continue;
2313
2314 ret = cpufreq_frequency_table_cpuinfo(policy,
2315 policy->freq_table);
2316 if (ret) {
2317 pr_err("%s: Policy frequency update failed\n",
2318 __func__);
2319 break;
2320 }
2321
2322 down_write(&policy->rwsem);
2323 policy->user_policy.max = policy->max;
2324 cpufreq_governor_limits(policy);
2325 up_write(&policy->rwsem);
2326 }
2327
2328 return ret;
2329 }
2330
2331 int cpufreq_boost_trigger_state(int state)
2332 {
2333 unsigned long flags;
2334 int ret = 0;
2335
2336 if (cpufreq_driver->boost_enabled == state)
2337 return 0;
2338
2339 write_lock_irqsave(&cpufreq_driver_lock, flags);
2340 cpufreq_driver->boost_enabled = state;
2341 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2342
2343 ret = cpufreq_driver->set_boost(state);
2344 if (ret) {
2345 write_lock_irqsave(&cpufreq_driver_lock, flags);
2346 cpufreq_driver->boost_enabled = !state;
2347 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2348
2349 pr_err("%s: Cannot %s BOOST\n",
2350 __func__, state ? "enable" : "disable");
2351 }
2352
2353 return ret;
2354 }
2355
2356 static bool cpufreq_boost_supported(void)
2357 {
2358 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2359 }
2360
2361 static int create_boost_sysfs_file(void)
2362 {
2363 int ret;
2364
2365 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2366 if (ret)
2367 pr_err("%s: cannot register global BOOST sysfs file\n",
2368 __func__);
2369
2370 return ret;
2371 }
2372
2373 static void remove_boost_sysfs_file(void)
2374 {
2375 if (cpufreq_boost_supported())
2376 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2377 }
2378
2379 int cpufreq_enable_boost_support(void)
2380 {
2381 if (!cpufreq_driver)
2382 return -EINVAL;
2383
2384 if (cpufreq_boost_supported())
2385 return 0;
2386
2387 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2388
2389 /* This will get removed on driver unregister */
2390 return create_boost_sysfs_file();
2391 }
2392 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2393
2394 int cpufreq_boost_enabled(void)
2395 {
2396 return cpufreq_driver->boost_enabled;
2397 }
2398 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2399
2400 /*********************************************************************
2401 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2402 *********************************************************************/
2403 static enum cpuhp_state hp_online;
2404
2405 static char cpufreq_driver_name[CPUFREQ_NAME_LEN];
2406
2407 static int __init cpufreq_driver_setup(char *str)
2408 {
2409 strlcpy(cpufreq_driver_name, str, CPUFREQ_NAME_LEN);
2410 return 1;
2411 }
2412
2413 /*
2414 * Set this name to only allow one specific cpu freq driver, e.g.,
2415 * cpufreq_driver=powernow-k8
2416 */
2417 __setup("cpufreq_driver=", cpufreq_driver_setup);
2418
2419 /**
2420 * cpufreq_register_driver - register a CPU Frequency driver
2421 * @driver_data: A struct cpufreq_driver containing the values#
2422 * submitted by the CPU Frequency driver.
2423 *
2424 * Registers a CPU Frequency driver to this core code. This code
2425 * returns zero on success, -EEXIST when another driver got here first
2426 * (and isn't unregistered in the meantime).
2427 *
2428 */
2429 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2430 {
2431 unsigned long flags;
2432 int ret;
2433
2434 if (cpufreq_disabled())
2435 return -ENODEV;
2436
2437 if (!driver_data || !driver_data->verify || !driver_data->init ||
2438 !(driver_data->setpolicy || driver_data->target_index ||
2439 driver_data->target) ||
2440 (driver_data->setpolicy && (driver_data->target_index ||
2441 driver_data->target)) ||
2442 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2443 return -EINVAL;
2444
2445 pr_debug("trying to register driver %s, cpufreq_driver=%s\n",
2446 driver_data->name, cpufreq_driver_name);
2447
2448 if (cpufreq_driver_name[0])
2449 if (!driver_data->name ||
2450 strcmp(cpufreq_driver_name, driver_data->name))
2451 return -EINVAL;
2452
2453 /* Protect against concurrent CPU online/offline. */
2454 get_online_cpus();
2455
2456 write_lock_irqsave(&cpufreq_driver_lock, flags);
2457 if (cpufreq_driver) {
2458 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2459 ret = -EEXIST;
2460 goto out;
2461 }
2462 cpufreq_driver = driver_data;
2463 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2464
2465 if (driver_data->setpolicy)
2466 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2467
2468 if (cpufreq_boost_supported()) {
2469 ret = create_boost_sysfs_file();
2470 if (ret)
2471 goto err_null_driver;
2472 }
2473
2474 ret = subsys_interface_register(&cpufreq_interface);
2475 if (ret)
2476 goto err_boost_unreg;
2477
2478 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2479 list_empty(&cpufreq_policy_list)) {
2480 /* if all ->init() calls failed, unregister */
2481 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2482 driver_data->name);
2483 goto err_if_unreg;
2484 }
2485
2486 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "cpufreq:online",
2487 cpufreq_online,
2488 cpufreq_offline);
2489 if (ret < 0)
2490 goto err_if_unreg;
2491 hp_online = ret;
2492 ret = 0;
2493
2494 pr_debug("driver %s up and running\n", driver_data->name);
2495 goto out;
2496
2497 err_if_unreg:
2498 subsys_interface_unregister(&cpufreq_interface);
2499 err_boost_unreg:
2500 remove_boost_sysfs_file();
2501 err_null_driver:
2502 write_lock_irqsave(&cpufreq_driver_lock, flags);
2503 cpufreq_driver = NULL;
2504 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2505 out:
2506 put_online_cpus();
2507 return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2510
2511 /**
2512 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2513 *
2514 * Unregister the current CPUFreq driver. Only call this if you have
2515 * the right to do so, i.e. if you have succeeded in initialising before!
2516 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2517 * currently not initialised.
2518 */
2519 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2520 {
2521 unsigned long flags;
2522
2523 if (!cpufreq_driver || (driver != cpufreq_driver))
2524 return -EINVAL;
2525
2526 pr_debug("unregistering driver %s\n", driver->name);
2527
2528 /* Protect against concurrent cpu hotplug */
2529 get_online_cpus();
2530 subsys_interface_unregister(&cpufreq_interface);
2531 remove_boost_sysfs_file();
2532 cpuhp_remove_state_nocalls(hp_online);
2533
2534 write_lock_irqsave(&cpufreq_driver_lock, flags);
2535
2536 cpufreq_driver = NULL;
2537
2538 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2539 put_online_cpus();
2540
2541 return 0;
2542 }
2543 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2544
2545 /*
2546 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2547 * or mutexes when secondary CPUs are halted.
2548 */
2549 static struct syscore_ops cpufreq_syscore_ops = {
2550 .shutdown = cpufreq_suspend,
2551 };
2552
2553 struct kobject *cpufreq_global_kobject;
2554 EXPORT_SYMBOL(cpufreq_global_kobject);
2555
2556 static int __init cpufreq_core_init(void)
2557 {
2558 if (cpufreq_disabled())
2559 return -ENODEV;
2560
2561 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2562 BUG_ON(!cpufreq_global_kobject);
2563
2564 register_syscore_ops(&cpufreq_syscore_ops);
2565
2566 return 0;
2567 }
2568 core_initcall(cpufreq_core_init);