]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge branch 'am335x-phy-fixes' into omap-for-v5.0/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active) \
43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy) \
47 for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy) \
49 for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy) \
52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor) \
57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60 * The "cpufreq driver" - the arch- or hardware-dependent low
61 * level driver of CPUFreq support, and its spinlock. This lock
62 * also protects the cpufreq_cpu_data array.
63 */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97 return off;
98 }
99 void disable_cpufreq(void)
100 {
101 off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104
105 bool have_governor_per_policy(void)
106 {
107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110
111 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
112 {
113 if (have_governor_per_policy())
114 return &policy->kobj;
115 else
116 return cpufreq_global_kobject;
117 }
118 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
119
120 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
121 {
122 u64 idle_time;
123 u64 cur_wall_time;
124 u64 busy_time;
125
126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
129 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
130 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
134
135 idle_time = cur_wall_time - busy_time;
136 if (wall)
137 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
138
139 return div_u64(idle_time, NSEC_PER_USEC);
140 }
141
142 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
143 {
144 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
145
146 if (idle_time == -1ULL)
147 return get_cpu_idle_time_jiffy(cpu, wall);
148 else if (!io_busy)
149 idle_time += get_cpu_iowait_time_us(cpu, wall);
150
151 return idle_time;
152 }
153 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
154
155 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
156 unsigned long max_freq)
157 {
158 }
159 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
160
161 /*
162 * This is a generic cpufreq init() routine which can be used by cpufreq
163 * drivers of SMP systems. It will do following:
164 * - validate & show freq table passed
165 * - set policies transition latency
166 * - policy->cpus with all possible CPUs
167 */
168 int cpufreq_generic_init(struct cpufreq_policy *policy,
169 struct cpufreq_frequency_table *table,
170 unsigned int transition_latency)
171 {
172 policy->freq_table = table;
173 policy->cpuinfo.transition_latency = transition_latency;
174
175 /*
176 * The driver only supports the SMP configuration where all processors
177 * share the clock and voltage and clock.
178 */
179 cpumask_setall(policy->cpus);
180
181 return 0;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197 if (!policy || IS_ERR(policy->clk)) {
198 pr_err("%s: No %s associated to cpu: %d\n",
199 __func__, policy ? "clk" : "policy", cpu);
200 return 0;
201 }
202
203 return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
209 *
210 * @cpu: cpu to find policy for.
211 *
212 * This returns policy for 'cpu', returns NULL if it doesn't exist.
213 * It also increments the kobject reference count to mark it busy and so would
214 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
215 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
216 * freed as that depends on the kobj count.
217 *
218 * Return: A valid policy on success, otherwise NULL on failure.
219 */
220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
221 {
222 struct cpufreq_policy *policy = NULL;
223 unsigned long flags;
224
225 if (WARN_ON(cpu >= nr_cpu_ids))
226 return NULL;
227
228 /* get the cpufreq driver */
229 read_lock_irqsave(&cpufreq_driver_lock, flags);
230
231 if (cpufreq_driver) {
232 /* get the CPU */
233 policy = cpufreq_cpu_get_raw(cpu);
234 if (policy)
235 kobject_get(&policy->kobj);
236 }
237
238 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
239
240 return policy;
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
243
244 /**
245 * cpufreq_cpu_put: Decrements the usage count of a policy
246 *
247 * @policy: policy earlier returned by cpufreq_cpu_get().
248 *
249 * This decrements the kobject reference count incremented earlier by calling
250 * cpufreq_cpu_get().
251 */
252 void cpufreq_cpu_put(struct cpufreq_policy *policy)
253 {
254 kobject_put(&policy->kobj);
255 }
256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
257
258 /*********************************************************************
259 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
260 *********************************************************************/
261
262 /**
263 * adjust_jiffies - adjust the system "loops_per_jiffy"
264 *
265 * This function alters the system "loops_per_jiffy" for the clock
266 * speed change. Note that loops_per_jiffy cannot be updated on SMP
267 * systems as each CPU might be scaled differently. So, use the arch
268 * per-CPU loops_per_jiffy value wherever possible.
269 */
270 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
271 {
272 #ifndef CONFIG_SMP
273 static unsigned long l_p_j_ref;
274 static unsigned int l_p_j_ref_freq;
275
276 if (ci->flags & CPUFREQ_CONST_LOOPS)
277 return;
278
279 if (!l_p_j_ref_freq) {
280 l_p_j_ref = loops_per_jiffy;
281 l_p_j_ref_freq = ci->old;
282 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
283 l_p_j_ref, l_p_j_ref_freq);
284 }
285 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
286 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
287 ci->new);
288 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
289 loops_per_jiffy, ci->new);
290 }
291 #endif
292 }
293
294 /**
295 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
296 * @policy: cpufreq policy to enable fast frequency switching for.
297 * @freqs: contain details of the frequency update.
298 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
299 *
300 * This function calls the transition notifiers and the "adjust_jiffies"
301 * function. It is called twice on all CPU frequency changes that have
302 * external effects.
303 */
304 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
305 struct cpufreq_freqs *freqs,
306 unsigned int state)
307 {
308 BUG_ON(irqs_disabled());
309
310 if (cpufreq_disabled())
311 return;
312
313 freqs->flags = cpufreq_driver->flags;
314 pr_debug("notification %u of frequency transition to %u kHz\n",
315 state, freqs->new);
316
317 switch (state) {
318 case CPUFREQ_PRECHANGE:
319 /*
320 * Detect if the driver reported a value as "old frequency"
321 * which is not equal to what the cpufreq core thinks is
322 * "old frequency".
323 */
324 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
325 if (policy->cur && (policy->cur != freqs->old)) {
326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327 freqs->old, policy->cur);
328 freqs->old = policy->cur;
329 }
330 }
331
332 for_each_cpu(freqs->cpu, policy->cpus) {
333 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
334 CPUFREQ_PRECHANGE, freqs);
335 }
336
337 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
338 break;
339
340 case CPUFREQ_POSTCHANGE:
341 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
342 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
343 cpumask_pr_args(policy->cpus));
344
345 for_each_cpu(freqs->cpu, policy->cpus) {
346 trace_cpu_frequency(freqs->new, freqs->cpu);
347 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348 CPUFREQ_POSTCHANGE, freqs);
349 }
350
351 cpufreq_stats_record_transition(policy, freqs->new);
352 policy->cur = freqs->new;
353 }
354 }
355
356 /* Do post notifications when there are chances that transition has failed */
357 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
358 struct cpufreq_freqs *freqs, int transition_failed)
359 {
360 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
361 if (!transition_failed)
362 return;
363
364 swap(freqs->old, freqs->new);
365 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
366 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
367 }
368
369 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
370 struct cpufreq_freqs *freqs)
371 {
372
373 /*
374 * Catch double invocations of _begin() which lead to self-deadlock.
375 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
376 * doesn't invoke _begin() on their behalf, and hence the chances of
377 * double invocations are very low. Moreover, there are scenarios
378 * where these checks can emit false-positive warnings in these
379 * drivers; so we avoid that by skipping them altogether.
380 */
381 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
382 && current == policy->transition_task);
383
384 wait:
385 wait_event(policy->transition_wait, !policy->transition_ongoing);
386
387 spin_lock(&policy->transition_lock);
388
389 if (unlikely(policy->transition_ongoing)) {
390 spin_unlock(&policy->transition_lock);
391 goto wait;
392 }
393
394 policy->transition_ongoing = true;
395 policy->transition_task = current;
396
397 spin_unlock(&policy->transition_lock);
398
399 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
402
403 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
404 struct cpufreq_freqs *freqs, int transition_failed)
405 {
406 if (WARN_ON(!policy->transition_ongoing))
407 return;
408
409 cpufreq_notify_post_transition(policy, freqs, transition_failed);
410
411 policy->transition_ongoing = false;
412 policy->transition_task = NULL;
413
414 wake_up(&policy->transition_wait);
415 }
416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
417
418 /*
419 * Fast frequency switching status count. Positive means "enabled", negative
420 * means "disabled" and 0 means "not decided yet".
421 */
422 static int cpufreq_fast_switch_count;
423 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
424
425 static void cpufreq_list_transition_notifiers(void)
426 {
427 struct notifier_block *nb;
428
429 pr_info("Registered transition notifiers:\n");
430
431 mutex_lock(&cpufreq_transition_notifier_list.mutex);
432
433 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
434 pr_info("%pF\n", nb->notifier_call);
435
436 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
437 }
438
439 /**
440 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
441 * @policy: cpufreq policy to enable fast frequency switching for.
442 *
443 * Try to enable fast frequency switching for @policy.
444 *
445 * The attempt will fail if there is at least one transition notifier registered
446 * at this point, as fast frequency switching is quite fundamentally at odds
447 * with transition notifiers. Thus if successful, it will make registration of
448 * transition notifiers fail going forward.
449 */
450 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
451 {
452 lockdep_assert_held(&policy->rwsem);
453
454 if (!policy->fast_switch_possible)
455 return;
456
457 mutex_lock(&cpufreq_fast_switch_lock);
458 if (cpufreq_fast_switch_count >= 0) {
459 cpufreq_fast_switch_count++;
460 policy->fast_switch_enabled = true;
461 } else {
462 pr_warn("CPU%u: Fast frequency switching not enabled\n",
463 policy->cpu);
464 cpufreq_list_transition_notifiers();
465 }
466 mutex_unlock(&cpufreq_fast_switch_lock);
467 }
468 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
469
470 /**
471 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
472 * @policy: cpufreq policy to disable fast frequency switching for.
473 */
474 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
475 {
476 mutex_lock(&cpufreq_fast_switch_lock);
477 if (policy->fast_switch_enabled) {
478 policy->fast_switch_enabled = false;
479 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
480 cpufreq_fast_switch_count--;
481 }
482 mutex_unlock(&cpufreq_fast_switch_lock);
483 }
484 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
485
486 /**
487 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
488 * one.
489 * @target_freq: target frequency to resolve.
490 *
491 * The target to driver frequency mapping is cached in the policy.
492 *
493 * Return: Lowest driver-supported frequency greater than or equal to the
494 * given target_freq, subject to policy (min/max) and driver limitations.
495 */
496 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
497 unsigned int target_freq)
498 {
499 target_freq = clamp_val(target_freq, policy->min, policy->max);
500 policy->cached_target_freq = target_freq;
501
502 if (cpufreq_driver->target_index) {
503 int idx;
504
505 idx = cpufreq_frequency_table_target(policy, target_freq,
506 CPUFREQ_RELATION_L);
507 policy->cached_resolved_idx = idx;
508 return policy->freq_table[idx].frequency;
509 }
510
511 if (cpufreq_driver->resolve_freq)
512 return cpufreq_driver->resolve_freq(policy, target_freq);
513
514 return target_freq;
515 }
516 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
517
518 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
519 {
520 unsigned int latency;
521
522 if (policy->transition_delay_us)
523 return policy->transition_delay_us;
524
525 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
526 if (latency) {
527 /*
528 * For platforms that can change the frequency very fast (< 10
529 * us), the above formula gives a decent transition delay. But
530 * for platforms where transition_latency is in milliseconds, it
531 * ends up giving unrealistic values.
532 *
533 * Cap the default transition delay to 10 ms, which seems to be
534 * a reasonable amount of time after which we should reevaluate
535 * the frequency.
536 */
537 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
538 }
539
540 return LATENCY_MULTIPLIER;
541 }
542 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
543
544 /*********************************************************************
545 * SYSFS INTERFACE *
546 *********************************************************************/
547 static ssize_t show_boost(struct kobject *kobj,
548 struct attribute *attr, char *buf)
549 {
550 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
551 }
552
553 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
554 const char *buf, size_t count)
555 {
556 int ret, enable;
557
558 ret = sscanf(buf, "%d", &enable);
559 if (ret != 1 || enable < 0 || enable > 1)
560 return -EINVAL;
561
562 if (cpufreq_boost_trigger_state(enable)) {
563 pr_err("%s: Cannot %s BOOST!\n",
564 __func__, enable ? "enable" : "disable");
565 return -EINVAL;
566 }
567
568 pr_debug("%s: cpufreq BOOST %s\n",
569 __func__, enable ? "enabled" : "disabled");
570
571 return count;
572 }
573 define_one_global_rw(boost);
574
575 static struct cpufreq_governor *find_governor(const char *str_governor)
576 {
577 struct cpufreq_governor *t;
578
579 for_each_governor(t)
580 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
581 return t;
582
583 return NULL;
584 }
585
586 /**
587 * cpufreq_parse_governor - parse a governor string
588 */
589 static int cpufreq_parse_governor(char *str_governor,
590 struct cpufreq_policy *policy)
591 {
592 if (cpufreq_driver->setpolicy) {
593 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
594 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
595 return 0;
596 }
597
598 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
599 policy->policy = CPUFREQ_POLICY_POWERSAVE;
600 return 0;
601 }
602 } else {
603 struct cpufreq_governor *t;
604
605 mutex_lock(&cpufreq_governor_mutex);
606
607 t = find_governor(str_governor);
608 if (!t) {
609 int ret;
610
611 mutex_unlock(&cpufreq_governor_mutex);
612
613 ret = request_module("cpufreq_%s", str_governor);
614 if (ret)
615 return -EINVAL;
616
617 mutex_lock(&cpufreq_governor_mutex);
618
619 t = find_governor(str_governor);
620 }
621 if (t && !try_module_get(t->owner))
622 t = NULL;
623
624 mutex_unlock(&cpufreq_governor_mutex);
625
626 if (t) {
627 policy->governor = t;
628 return 0;
629 }
630 }
631
632 return -EINVAL;
633 }
634
635 /**
636 * cpufreq_per_cpu_attr_read() / show_##file_name() -
637 * print out cpufreq information
638 *
639 * Write out information from cpufreq_driver->policy[cpu]; object must be
640 * "unsigned int".
641 */
642
643 #define show_one(file_name, object) \
644 static ssize_t show_##file_name \
645 (struct cpufreq_policy *policy, char *buf) \
646 { \
647 return sprintf(buf, "%u\n", policy->object); \
648 }
649
650 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
651 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
652 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
653 show_one(scaling_min_freq, min);
654 show_one(scaling_max_freq, max);
655
656 __weak unsigned int arch_freq_get_on_cpu(int cpu)
657 {
658 return 0;
659 }
660
661 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
662 {
663 ssize_t ret;
664 unsigned int freq;
665
666 freq = arch_freq_get_on_cpu(policy->cpu);
667 if (freq)
668 ret = sprintf(buf, "%u\n", freq);
669 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
670 cpufreq_driver->get)
671 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
672 else
673 ret = sprintf(buf, "%u\n", policy->cur);
674 return ret;
675 }
676
677 static int cpufreq_set_policy(struct cpufreq_policy *policy,
678 struct cpufreq_policy *new_policy);
679
680 /**
681 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
682 */
683 #define store_one(file_name, object) \
684 static ssize_t store_##file_name \
685 (struct cpufreq_policy *policy, const char *buf, size_t count) \
686 { \
687 int ret, temp; \
688 struct cpufreq_policy new_policy; \
689 \
690 memcpy(&new_policy, policy, sizeof(*policy)); \
691 new_policy.min = policy->user_policy.min; \
692 new_policy.max = policy->user_policy.max; \
693 \
694 ret = sscanf(buf, "%u", &new_policy.object); \
695 if (ret != 1) \
696 return -EINVAL; \
697 \
698 temp = new_policy.object; \
699 ret = cpufreq_set_policy(policy, &new_policy); \
700 if (!ret) \
701 policy->user_policy.object = temp; \
702 \
703 return ret ? ret : count; \
704 }
705
706 store_one(scaling_min_freq, min);
707 store_one(scaling_max_freq, max);
708
709 /**
710 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
711 */
712 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
713 char *buf)
714 {
715 unsigned int cur_freq = __cpufreq_get(policy);
716
717 if (cur_freq)
718 return sprintf(buf, "%u\n", cur_freq);
719
720 return sprintf(buf, "<unknown>\n");
721 }
722
723 /**
724 * show_scaling_governor - show the current policy for the specified CPU
725 */
726 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
727 {
728 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
729 return sprintf(buf, "powersave\n");
730 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
731 return sprintf(buf, "performance\n");
732 else if (policy->governor)
733 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
734 policy->governor->name);
735 return -EINVAL;
736 }
737
738 /**
739 * store_scaling_governor - store policy for the specified CPU
740 */
741 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
742 const char *buf, size_t count)
743 {
744 int ret;
745 char str_governor[16];
746 struct cpufreq_policy new_policy;
747
748 memcpy(&new_policy, policy, sizeof(*policy));
749
750 ret = sscanf(buf, "%15s", str_governor);
751 if (ret != 1)
752 return -EINVAL;
753
754 if (cpufreq_parse_governor(str_governor, &new_policy))
755 return -EINVAL;
756
757 ret = cpufreq_set_policy(policy, &new_policy);
758
759 if (new_policy.governor)
760 module_put(new_policy.governor->owner);
761
762 return ret ? ret : count;
763 }
764
765 /**
766 * show_scaling_driver - show the cpufreq driver currently loaded
767 */
768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
769 {
770 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
771 }
772
773 /**
774 * show_scaling_available_governors - show the available CPUfreq governors
775 */
776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
777 char *buf)
778 {
779 ssize_t i = 0;
780 struct cpufreq_governor *t;
781
782 if (!has_target()) {
783 i += sprintf(buf, "performance powersave");
784 goto out;
785 }
786
787 for_each_governor(t) {
788 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
789 - (CPUFREQ_NAME_LEN + 2)))
790 goto out;
791 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
792 }
793 out:
794 i += sprintf(&buf[i], "\n");
795 return i;
796 }
797
798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
799 {
800 ssize_t i = 0;
801 unsigned int cpu;
802
803 for_each_cpu(cpu, mask) {
804 if (i)
805 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
806 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
807 if (i >= (PAGE_SIZE - 5))
808 break;
809 }
810 i += sprintf(&buf[i], "\n");
811 return i;
812 }
813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
814
815 /**
816 * show_related_cpus - show the CPUs affected by each transition even if
817 * hw coordination is in use
818 */
819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
820 {
821 return cpufreq_show_cpus(policy->related_cpus, buf);
822 }
823
824 /**
825 * show_affected_cpus - show the CPUs affected by each transition
826 */
827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
828 {
829 return cpufreq_show_cpus(policy->cpus, buf);
830 }
831
832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
833 const char *buf, size_t count)
834 {
835 unsigned int freq = 0;
836 unsigned int ret;
837
838 if (!policy->governor || !policy->governor->store_setspeed)
839 return -EINVAL;
840
841 ret = sscanf(buf, "%u", &freq);
842 if (ret != 1)
843 return -EINVAL;
844
845 policy->governor->store_setspeed(policy, freq);
846
847 return count;
848 }
849
850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
851 {
852 if (!policy->governor || !policy->governor->show_setspeed)
853 return sprintf(buf, "<unsupported>\n");
854
855 return policy->governor->show_setspeed(policy, buf);
856 }
857
858 /**
859 * show_bios_limit - show the current cpufreq HW/BIOS limitation
860 */
861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
862 {
863 unsigned int limit;
864 int ret;
865 if (cpufreq_driver->bios_limit) {
866 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
867 if (!ret)
868 return sprintf(buf, "%u\n", limit);
869 }
870 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
871 }
872
873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
874 cpufreq_freq_attr_ro(cpuinfo_min_freq);
875 cpufreq_freq_attr_ro(cpuinfo_max_freq);
876 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
877 cpufreq_freq_attr_ro(scaling_available_governors);
878 cpufreq_freq_attr_ro(scaling_driver);
879 cpufreq_freq_attr_ro(scaling_cur_freq);
880 cpufreq_freq_attr_ro(bios_limit);
881 cpufreq_freq_attr_ro(related_cpus);
882 cpufreq_freq_attr_ro(affected_cpus);
883 cpufreq_freq_attr_rw(scaling_min_freq);
884 cpufreq_freq_attr_rw(scaling_max_freq);
885 cpufreq_freq_attr_rw(scaling_governor);
886 cpufreq_freq_attr_rw(scaling_setspeed);
887
888 static struct attribute *default_attrs[] = {
889 &cpuinfo_min_freq.attr,
890 &cpuinfo_max_freq.attr,
891 &cpuinfo_transition_latency.attr,
892 &scaling_min_freq.attr,
893 &scaling_max_freq.attr,
894 &affected_cpus.attr,
895 &related_cpus.attr,
896 &scaling_governor.attr,
897 &scaling_driver.attr,
898 &scaling_available_governors.attr,
899 &scaling_setspeed.attr,
900 NULL
901 };
902
903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
904 #define to_attr(a) container_of(a, struct freq_attr, attr)
905
906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
907 {
908 struct cpufreq_policy *policy = to_policy(kobj);
909 struct freq_attr *fattr = to_attr(attr);
910 ssize_t ret;
911
912 down_read(&policy->rwsem);
913 ret = fattr->show(policy, buf);
914 up_read(&policy->rwsem);
915
916 return ret;
917 }
918
919 static ssize_t store(struct kobject *kobj, struct attribute *attr,
920 const char *buf, size_t count)
921 {
922 struct cpufreq_policy *policy = to_policy(kobj);
923 struct freq_attr *fattr = to_attr(attr);
924 ssize_t ret = -EINVAL;
925
926 /*
927 * cpus_read_trylock() is used here to work around a circular lock
928 * dependency problem with respect to the cpufreq_register_driver().
929 */
930 if (!cpus_read_trylock())
931 return -EBUSY;
932
933 if (cpu_online(policy->cpu)) {
934 down_write(&policy->rwsem);
935 ret = fattr->store(policy, buf, count);
936 up_write(&policy->rwsem);
937 }
938
939 cpus_read_unlock();
940
941 return ret;
942 }
943
944 static void cpufreq_sysfs_release(struct kobject *kobj)
945 {
946 struct cpufreq_policy *policy = to_policy(kobj);
947 pr_debug("last reference is dropped\n");
948 complete(&policy->kobj_unregister);
949 }
950
951 static const struct sysfs_ops sysfs_ops = {
952 .show = show,
953 .store = store,
954 };
955
956 static struct kobj_type ktype_cpufreq = {
957 .sysfs_ops = &sysfs_ops,
958 .default_attrs = default_attrs,
959 .release = cpufreq_sysfs_release,
960 };
961
962 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
963 {
964 struct device *dev = get_cpu_device(cpu);
965
966 if (!dev)
967 return;
968
969 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
970 return;
971
972 dev_dbg(dev, "%s: Adding symlink\n", __func__);
973 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
974 dev_err(dev, "cpufreq symlink creation failed\n");
975 }
976
977 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
978 struct device *dev)
979 {
980 dev_dbg(dev, "%s: Removing symlink\n", __func__);
981 sysfs_remove_link(&dev->kobj, "cpufreq");
982 }
983
984 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
985 {
986 struct freq_attr **drv_attr;
987 int ret = 0;
988
989 /* set up files for this cpu device */
990 drv_attr = cpufreq_driver->attr;
991 while (drv_attr && *drv_attr) {
992 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
993 if (ret)
994 return ret;
995 drv_attr++;
996 }
997 if (cpufreq_driver->get) {
998 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
999 if (ret)
1000 return ret;
1001 }
1002
1003 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1004 if (ret)
1005 return ret;
1006
1007 if (cpufreq_driver->bios_limit) {
1008 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1009 if (ret)
1010 return ret;
1011 }
1012
1013 return 0;
1014 }
1015
1016 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1017 {
1018 return NULL;
1019 }
1020
1021 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1022 {
1023 struct cpufreq_governor *gov = NULL;
1024 struct cpufreq_policy new_policy;
1025
1026 memcpy(&new_policy, policy, sizeof(*policy));
1027
1028 /* Update governor of new_policy to the governor used before hotplug */
1029 gov = find_governor(policy->last_governor);
1030 if (gov) {
1031 pr_debug("Restoring governor %s for cpu %d\n",
1032 policy->governor->name, policy->cpu);
1033 } else {
1034 gov = cpufreq_default_governor();
1035 if (!gov)
1036 return -ENODATA;
1037 }
1038
1039 new_policy.governor = gov;
1040
1041 /* Use the default policy if there is no last_policy. */
1042 if (cpufreq_driver->setpolicy) {
1043 if (policy->last_policy)
1044 new_policy.policy = policy->last_policy;
1045 else
1046 cpufreq_parse_governor(gov->name, &new_policy);
1047 }
1048 /* set default policy */
1049 return cpufreq_set_policy(policy, &new_policy);
1050 }
1051
1052 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1053 {
1054 int ret = 0;
1055
1056 /* Has this CPU been taken care of already? */
1057 if (cpumask_test_cpu(cpu, policy->cpus))
1058 return 0;
1059
1060 down_write(&policy->rwsem);
1061 if (has_target())
1062 cpufreq_stop_governor(policy);
1063
1064 cpumask_set_cpu(cpu, policy->cpus);
1065
1066 if (has_target()) {
1067 ret = cpufreq_start_governor(policy);
1068 if (ret)
1069 pr_err("%s: Failed to start governor\n", __func__);
1070 }
1071 up_write(&policy->rwsem);
1072 return ret;
1073 }
1074
1075 static void handle_update(struct work_struct *work)
1076 {
1077 struct cpufreq_policy *policy =
1078 container_of(work, struct cpufreq_policy, update);
1079 unsigned int cpu = policy->cpu;
1080 pr_debug("handle_update for cpu %u called\n", cpu);
1081 cpufreq_update_policy(cpu);
1082 }
1083
1084 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1085 {
1086 struct cpufreq_policy *policy;
1087 int ret;
1088
1089 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1090 if (!policy)
1091 return NULL;
1092
1093 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1094 goto err_free_policy;
1095
1096 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1097 goto err_free_cpumask;
1098
1099 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1100 goto err_free_rcpumask;
1101
1102 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1103 cpufreq_global_kobject, "policy%u", cpu);
1104 if (ret) {
1105 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1106 goto err_free_real_cpus;
1107 }
1108
1109 INIT_LIST_HEAD(&policy->policy_list);
1110 init_rwsem(&policy->rwsem);
1111 spin_lock_init(&policy->transition_lock);
1112 init_waitqueue_head(&policy->transition_wait);
1113 init_completion(&policy->kobj_unregister);
1114 INIT_WORK(&policy->update, handle_update);
1115
1116 policy->cpu = cpu;
1117 return policy;
1118
1119 err_free_real_cpus:
1120 free_cpumask_var(policy->real_cpus);
1121 err_free_rcpumask:
1122 free_cpumask_var(policy->related_cpus);
1123 err_free_cpumask:
1124 free_cpumask_var(policy->cpus);
1125 err_free_policy:
1126 kfree(policy);
1127
1128 return NULL;
1129 }
1130
1131 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1132 {
1133 struct kobject *kobj;
1134 struct completion *cmp;
1135
1136 down_write(&policy->rwsem);
1137 cpufreq_stats_free_table(policy);
1138 kobj = &policy->kobj;
1139 cmp = &policy->kobj_unregister;
1140 up_write(&policy->rwsem);
1141 kobject_put(kobj);
1142
1143 /*
1144 * We need to make sure that the underlying kobj is
1145 * actually not referenced anymore by anybody before we
1146 * proceed with unloading.
1147 */
1148 pr_debug("waiting for dropping of refcount\n");
1149 wait_for_completion(cmp);
1150 pr_debug("wait complete\n");
1151 }
1152
1153 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1154 {
1155 unsigned long flags;
1156 int cpu;
1157
1158 /* Remove policy from list */
1159 write_lock_irqsave(&cpufreq_driver_lock, flags);
1160 list_del(&policy->policy_list);
1161
1162 for_each_cpu(cpu, policy->related_cpus)
1163 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1164 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1165
1166 cpufreq_policy_put_kobj(policy);
1167 free_cpumask_var(policy->real_cpus);
1168 free_cpumask_var(policy->related_cpus);
1169 free_cpumask_var(policy->cpus);
1170 kfree(policy);
1171 }
1172
1173 static int cpufreq_online(unsigned int cpu)
1174 {
1175 struct cpufreq_policy *policy;
1176 bool new_policy;
1177 unsigned long flags;
1178 unsigned int j;
1179 int ret;
1180
1181 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1182
1183 /* Check if this CPU already has a policy to manage it */
1184 policy = per_cpu(cpufreq_cpu_data, cpu);
1185 if (policy) {
1186 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1187 if (!policy_is_inactive(policy))
1188 return cpufreq_add_policy_cpu(policy, cpu);
1189
1190 /* This is the only online CPU for the policy. Start over. */
1191 new_policy = false;
1192 down_write(&policy->rwsem);
1193 policy->cpu = cpu;
1194 policy->governor = NULL;
1195 up_write(&policy->rwsem);
1196 } else {
1197 new_policy = true;
1198 policy = cpufreq_policy_alloc(cpu);
1199 if (!policy)
1200 return -ENOMEM;
1201 }
1202
1203 cpumask_copy(policy->cpus, cpumask_of(cpu));
1204
1205 /* call driver. From then on the cpufreq must be able
1206 * to accept all calls to ->verify and ->setpolicy for this CPU
1207 */
1208 ret = cpufreq_driver->init(policy);
1209 if (ret) {
1210 pr_debug("initialization failed\n");
1211 goto out_free_policy;
1212 }
1213
1214 ret = cpufreq_table_validate_and_sort(policy);
1215 if (ret)
1216 goto out_exit_policy;
1217
1218 down_write(&policy->rwsem);
1219
1220 if (new_policy) {
1221 /* related_cpus should at least include policy->cpus. */
1222 cpumask_copy(policy->related_cpus, policy->cpus);
1223 }
1224
1225 /*
1226 * affected cpus must always be the one, which are online. We aren't
1227 * managing offline cpus here.
1228 */
1229 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1230
1231 if (new_policy) {
1232 policy->user_policy.min = policy->min;
1233 policy->user_policy.max = policy->max;
1234
1235 for_each_cpu(j, policy->related_cpus) {
1236 per_cpu(cpufreq_cpu_data, j) = policy;
1237 add_cpu_dev_symlink(policy, j);
1238 }
1239 } else {
1240 policy->min = policy->user_policy.min;
1241 policy->max = policy->user_policy.max;
1242 }
1243
1244 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1245 policy->cur = cpufreq_driver->get(policy->cpu);
1246 if (!policy->cur) {
1247 pr_err("%s: ->get() failed\n", __func__);
1248 goto out_destroy_policy;
1249 }
1250 }
1251
1252 /*
1253 * Sometimes boot loaders set CPU frequency to a value outside of
1254 * frequency table present with cpufreq core. In such cases CPU might be
1255 * unstable if it has to run on that frequency for long duration of time
1256 * and so its better to set it to a frequency which is specified in
1257 * freq-table. This also makes cpufreq stats inconsistent as
1258 * cpufreq-stats would fail to register because current frequency of CPU
1259 * isn't found in freq-table.
1260 *
1261 * Because we don't want this change to effect boot process badly, we go
1262 * for the next freq which is >= policy->cur ('cur' must be set by now,
1263 * otherwise we will end up setting freq to lowest of the table as 'cur'
1264 * is initialized to zero).
1265 *
1266 * We are passing target-freq as "policy->cur - 1" otherwise
1267 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1268 * equal to target-freq.
1269 */
1270 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1271 && has_target()) {
1272 /* Are we running at unknown frequency ? */
1273 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1274 if (ret == -EINVAL) {
1275 /* Warn user and fix it */
1276 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1277 __func__, policy->cpu, policy->cur);
1278 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1279 CPUFREQ_RELATION_L);
1280
1281 /*
1282 * Reaching here after boot in a few seconds may not
1283 * mean that system will remain stable at "unknown"
1284 * frequency for longer duration. Hence, a BUG_ON().
1285 */
1286 BUG_ON(ret);
1287 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1288 __func__, policy->cpu, policy->cur);
1289 }
1290 }
1291
1292 if (new_policy) {
1293 ret = cpufreq_add_dev_interface(policy);
1294 if (ret)
1295 goto out_destroy_policy;
1296
1297 cpufreq_stats_create_table(policy);
1298
1299 write_lock_irqsave(&cpufreq_driver_lock, flags);
1300 list_add(&policy->policy_list, &cpufreq_policy_list);
1301 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1302 }
1303
1304 ret = cpufreq_init_policy(policy);
1305 if (ret) {
1306 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1307 __func__, cpu, ret);
1308 /* cpufreq_policy_free() will notify based on this */
1309 new_policy = false;
1310 goto out_destroy_policy;
1311 }
1312
1313 up_write(&policy->rwsem);
1314
1315 kobject_uevent(&policy->kobj, KOBJ_ADD);
1316
1317 /* Callback for handling stuff after policy is ready */
1318 if (cpufreq_driver->ready)
1319 cpufreq_driver->ready(policy);
1320
1321 pr_debug("initialization complete\n");
1322
1323 return 0;
1324
1325 out_destroy_policy:
1326 for_each_cpu(j, policy->real_cpus)
1327 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1328
1329 up_write(&policy->rwsem);
1330
1331 out_exit_policy:
1332 if (cpufreq_driver->exit)
1333 cpufreq_driver->exit(policy);
1334
1335 out_free_policy:
1336 cpufreq_policy_free(policy);
1337 return ret;
1338 }
1339
1340 /**
1341 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1342 * @dev: CPU device.
1343 * @sif: Subsystem interface structure pointer (not used)
1344 */
1345 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1346 {
1347 struct cpufreq_policy *policy;
1348 unsigned cpu = dev->id;
1349 int ret;
1350
1351 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1352
1353 if (cpu_online(cpu)) {
1354 ret = cpufreq_online(cpu);
1355 if (ret)
1356 return ret;
1357 }
1358
1359 /* Create sysfs link on CPU registration */
1360 policy = per_cpu(cpufreq_cpu_data, cpu);
1361 if (policy)
1362 add_cpu_dev_symlink(policy, cpu);
1363
1364 return 0;
1365 }
1366
1367 static int cpufreq_offline(unsigned int cpu)
1368 {
1369 struct cpufreq_policy *policy;
1370 int ret;
1371
1372 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1373
1374 policy = cpufreq_cpu_get_raw(cpu);
1375 if (!policy) {
1376 pr_debug("%s: No cpu_data found\n", __func__);
1377 return 0;
1378 }
1379
1380 down_write(&policy->rwsem);
1381 if (has_target())
1382 cpufreq_stop_governor(policy);
1383
1384 cpumask_clear_cpu(cpu, policy->cpus);
1385
1386 if (policy_is_inactive(policy)) {
1387 if (has_target())
1388 strncpy(policy->last_governor, policy->governor->name,
1389 CPUFREQ_NAME_LEN);
1390 else
1391 policy->last_policy = policy->policy;
1392 } else if (cpu == policy->cpu) {
1393 /* Nominate new CPU */
1394 policy->cpu = cpumask_any(policy->cpus);
1395 }
1396
1397 /* Start governor again for active policy */
1398 if (!policy_is_inactive(policy)) {
1399 if (has_target()) {
1400 ret = cpufreq_start_governor(policy);
1401 if (ret)
1402 pr_err("%s: Failed to start governor\n", __func__);
1403 }
1404
1405 goto unlock;
1406 }
1407
1408 if (cpufreq_driver->stop_cpu)
1409 cpufreq_driver->stop_cpu(policy);
1410
1411 if (has_target())
1412 cpufreq_exit_governor(policy);
1413
1414 /*
1415 * Perform the ->exit() even during light-weight tear-down,
1416 * since this is a core component, and is essential for the
1417 * subsequent light-weight ->init() to succeed.
1418 */
1419 if (cpufreq_driver->exit) {
1420 cpufreq_driver->exit(policy);
1421 policy->freq_table = NULL;
1422 }
1423
1424 unlock:
1425 up_write(&policy->rwsem);
1426 return 0;
1427 }
1428
1429 /**
1430 * cpufreq_remove_dev - remove a CPU device
1431 *
1432 * Removes the cpufreq interface for a CPU device.
1433 */
1434 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1435 {
1436 unsigned int cpu = dev->id;
1437 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1438
1439 if (!policy)
1440 return;
1441
1442 if (cpu_online(cpu))
1443 cpufreq_offline(cpu);
1444
1445 cpumask_clear_cpu(cpu, policy->real_cpus);
1446 remove_cpu_dev_symlink(policy, dev);
1447
1448 if (cpumask_empty(policy->real_cpus))
1449 cpufreq_policy_free(policy);
1450 }
1451
1452 /**
1453 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1454 * in deep trouble.
1455 * @policy: policy managing CPUs
1456 * @new_freq: CPU frequency the CPU actually runs at
1457 *
1458 * We adjust to current frequency first, and need to clean up later.
1459 * So either call to cpufreq_update_policy() or schedule handle_update()).
1460 */
1461 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1462 unsigned int new_freq)
1463 {
1464 struct cpufreq_freqs freqs;
1465
1466 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1467 policy->cur, new_freq);
1468
1469 freqs.old = policy->cur;
1470 freqs.new = new_freq;
1471
1472 cpufreq_freq_transition_begin(policy, &freqs);
1473 cpufreq_freq_transition_end(policy, &freqs, 0);
1474 }
1475
1476 /**
1477 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1478 * @cpu: CPU number
1479 *
1480 * This is the last known freq, without actually getting it from the driver.
1481 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1482 */
1483 unsigned int cpufreq_quick_get(unsigned int cpu)
1484 {
1485 struct cpufreq_policy *policy;
1486 unsigned int ret_freq = 0;
1487 unsigned long flags;
1488
1489 read_lock_irqsave(&cpufreq_driver_lock, flags);
1490
1491 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1492 ret_freq = cpufreq_driver->get(cpu);
1493 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1494 return ret_freq;
1495 }
1496
1497 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1498
1499 policy = cpufreq_cpu_get(cpu);
1500 if (policy) {
1501 ret_freq = policy->cur;
1502 cpufreq_cpu_put(policy);
1503 }
1504
1505 return ret_freq;
1506 }
1507 EXPORT_SYMBOL(cpufreq_quick_get);
1508
1509 /**
1510 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1511 * @cpu: CPU number
1512 *
1513 * Just return the max possible frequency for a given CPU.
1514 */
1515 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1516 {
1517 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1518 unsigned int ret_freq = 0;
1519
1520 if (policy) {
1521 ret_freq = policy->max;
1522 cpufreq_cpu_put(policy);
1523 }
1524
1525 return ret_freq;
1526 }
1527 EXPORT_SYMBOL(cpufreq_quick_get_max);
1528
1529 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1530 {
1531 unsigned int ret_freq = 0;
1532
1533 if (!cpufreq_driver->get)
1534 return ret_freq;
1535
1536 ret_freq = cpufreq_driver->get(policy->cpu);
1537
1538 /*
1539 * Updating inactive policies is invalid, so avoid doing that. Also
1540 * if fast frequency switching is used with the given policy, the check
1541 * against policy->cur is pointless, so skip it in that case too.
1542 */
1543 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1544 return ret_freq;
1545
1546 if (ret_freq && policy->cur &&
1547 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1548 /* verify no discrepancy between actual and
1549 saved value exists */
1550 if (unlikely(ret_freq != policy->cur)) {
1551 cpufreq_out_of_sync(policy, ret_freq);
1552 schedule_work(&policy->update);
1553 }
1554 }
1555
1556 return ret_freq;
1557 }
1558
1559 /**
1560 * cpufreq_get - get the current CPU frequency (in kHz)
1561 * @cpu: CPU number
1562 *
1563 * Get the CPU current (static) CPU frequency
1564 */
1565 unsigned int cpufreq_get(unsigned int cpu)
1566 {
1567 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1568 unsigned int ret_freq = 0;
1569
1570 if (policy) {
1571 down_read(&policy->rwsem);
1572
1573 if (!policy_is_inactive(policy))
1574 ret_freq = __cpufreq_get(policy);
1575
1576 up_read(&policy->rwsem);
1577
1578 cpufreq_cpu_put(policy);
1579 }
1580
1581 return ret_freq;
1582 }
1583 EXPORT_SYMBOL(cpufreq_get);
1584
1585 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1586 {
1587 unsigned int new_freq;
1588
1589 new_freq = cpufreq_driver->get(policy->cpu);
1590 if (!new_freq)
1591 return 0;
1592
1593 if (!policy->cur) {
1594 pr_debug("cpufreq: Driver did not initialize current freq\n");
1595 policy->cur = new_freq;
1596 } else if (policy->cur != new_freq && has_target()) {
1597 cpufreq_out_of_sync(policy, new_freq);
1598 }
1599
1600 return new_freq;
1601 }
1602
1603 static struct subsys_interface cpufreq_interface = {
1604 .name = "cpufreq",
1605 .subsys = &cpu_subsys,
1606 .add_dev = cpufreq_add_dev,
1607 .remove_dev = cpufreq_remove_dev,
1608 };
1609
1610 /*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615 {
1616 int ret;
1617
1618 if (!policy->suspend_freq) {
1619 pr_debug("%s: suspend_freq not defined\n", __func__);
1620 return 0;
1621 }
1622
1623 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624 policy->suspend_freq);
1625
1626 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627 CPUFREQ_RELATION_H);
1628 if (ret)
1629 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630 __func__, policy->suspend_freq, ret);
1631
1632 return ret;
1633 }
1634 EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636 /**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644 void cpufreq_suspend(void)
1645 {
1646 struct cpufreq_policy *policy;
1647
1648 if (!cpufreq_driver)
1649 return;
1650
1651 if (!has_target() && !cpufreq_driver->suspend)
1652 goto suspend;
1653
1654 pr_debug("%s: Suspending Governors\n", __func__);
1655
1656 for_each_active_policy(policy) {
1657 if (has_target()) {
1658 down_write(&policy->rwsem);
1659 cpufreq_stop_governor(policy);
1660 up_write(&policy->rwsem);
1661 }
1662
1663 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1664 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1665 policy);
1666 }
1667
1668 suspend:
1669 cpufreq_suspended = true;
1670 }
1671
1672 /**
1673 * cpufreq_resume() - Resume CPUFreq governors
1674 *
1675 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1676 * are suspended with cpufreq_suspend().
1677 */
1678 void cpufreq_resume(void)
1679 {
1680 struct cpufreq_policy *policy;
1681 int ret;
1682
1683 if (!cpufreq_driver)
1684 return;
1685
1686 if (unlikely(!cpufreq_suspended))
1687 return;
1688
1689 cpufreq_suspended = false;
1690
1691 if (!has_target() && !cpufreq_driver->resume)
1692 return;
1693
1694 pr_debug("%s: Resuming Governors\n", __func__);
1695
1696 for_each_active_policy(policy) {
1697 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1698 pr_err("%s: Failed to resume driver: %p\n", __func__,
1699 policy);
1700 } else if (has_target()) {
1701 down_write(&policy->rwsem);
1702 ret = cpufreq_start_governor(policy);
1703 up_write(&policy->rwsem);
1704
1705 if (ret)
1706 pr_err("%s: Failed to start governor for policy: %p\n",
1707 __func__, policy);
1708 }
1709 }
1710 }
1711
1712 /**
1713 * cpufreq_get_current_driver - return current driver's name
1714 *
1715 * Return the name string of the currently loaded cpufreq driver
1716 * or NULL, if none.
1717 */
1718 const char *cpufreq_get_current_driver(void)
1719 {
1720 if (cpufreq_driver)
1721 return cpufreq_driver->name;
1722
1723 return NULL;
1724 }
1725 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1726
1727 /**
1728 * cpufreq_get_driver_data - return current driver data
1729 *
1730 * Return the private data of the currently loaded cpufreq
1731 * driver, or NULL if no cpufreq driver is loaded.
1732 */
1733 void *cpufreq_get_driver_data(void)
1734 {
1735 if (cpufreq_driver)
1736 return cpufreq_driver->driver_data;
1737
1738 return NULL;
1739 }
1740 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1741
1742 /*********************************************************************
1743 * NOTIFIER LISTS INTERFACE *
1744 *********************************************************************/
1745
1746 /**
1747 * cpufreq_register_notifier - register a driver with cpufreq
1748 * @nb: notifier function to register
1749 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1750 *
1751 * Add a driver to one of two lists: either a list of drivers that
1752 * are notified about clock rate changes (once before and once after
1753 * the transition), or a list of drivers that are notified about
1754 * changes in cpufreq policy.
1755 *
1756 * This function may sleep, and has the same return conditions as
1757 * blocking_notifier_chain_register.
1758 */
1759 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1760 {
1761 int ret;
1762
1763 if (cpufreq_disabled())
1764 return -EINVAL;
1765
1766 switch (list) {
1767 case CPUFREQ_TRANSITION_NOTIFIER:
1768 mutex_lock(&cpufreq_fast_switch_lock);
1769
1770 if (cpufreq_fast_switch_count > 0) {
1771 mutex_unlock(&cpufreq_fast_switch_lock);
1772 return -EBUSY;
1773 }
1774 ret = srcu_notifier_chain_register(
1775 &cpufreq_transition_notifier_list, nb);
1776 if (!ret)
1777 cpufreq_fast_switch_count--;
1778
1779 mutex_unlock(&cpufreq_fast_switch_lock);
1780 break;
1781 case CPUFREQ_POLICY_NOTIFIER:
1782 ret = blocking_notifier_chain_register(
1783 &cpufreq_policy_notifier_list, nb);
1784 break;
1785 default:
1786 ret = -EINVAL;
1787 }
1788
1789 return ret;
1790 }
1791 EXPORT_SYMBOL(cpufreq_register_notifier);
1792
1793 /**
1794 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1795 * @nb: notifier block to be unregistered
1796 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1797 *
1798 * Remove a driver from the CPU frequency notifier list.
1799 *
1800 * This function may sleep, and has the same return conditions as
1801 * blocking_notifier_chain_unregister.
1802 */
1803 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1804 {
1805 int ret;
1806
1807 if (cpufreq_disabled())
1808 return -EINVAL;
1809
1810 switch (list) {
1811 case CPUFREQ_TRANSITION_NOTIFIER:
1812 mutex_lock(&cpufreq_fast_switch_lock);
1813
1814 ret = srcu_notifier_chain_unregister(
1815 &cpufreq_transition_notifier_list, nb);
1816 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1817 cpufreq_fast_switch_count++;
1818
1819 mutex_unlock(&cpufreq_fast_switch_lock);
1820 break;
1821 case CPUFREQ_POLICY_NOTIFIER:
1822 ret = blocking_notifier_chain_unregister(
1823 &cpufreq_policy_notifier_list, nb);
1824 break;
1825 default:
1826 ret = -EINVAL;
1827 }
1828
1829 return ret;
1830 }
1831 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1832
1833
1834 /*********************************************************************
1835 * GOVERNORS *
1836 *********************************************************************/
1837
1838 /**
1839 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1840 * @policy: cpufreq policy to switch the frequency for.
1841 * @target_freq: New frequency to set (may be approximate).
1842 *
1843 * Carry out a fast frequency switch without sleeping.
1844 *
1845 * The driver's ->fast_switch() callback invoked by this function must be
1846 * suitable for being called from within RCU-sched read-side critical sections
1847 * and it is expected to select the minimum available frequency greater than or
1848 * equal to @target_freq (CPUFREQ_RELATION_L).
1849 *
1850 * This function must not be called if policy->fast_switch_enabled is unset.
1851 *
1852 * Governors calling this function must guarantee that it will never be invoked
1853 * twice in parallel for the same policy and that it will never be called in
1854 * parallel with either ->target() or ->target_index() for the same policy.
1855 *
1856 * Returns the actual frequency set for the CPU.
1857 *
1858 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1859 * error condition, the hardware configuration must be preserved.
1860 */
1861 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1862 unsigned int target_freq)
1863 {
1864 target_freq = clamp_val(target_freq, policy->min, policy->max);
1865
1866 return cpufreq_driver->fast_switch(policy, target_freq);
1867 }
1868 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1869
1870 /* Must set freqs->new to intermediate frequency */
1871 static int __target_intermediate(struct cpufreq_policy *policy,
1872 struct cpufreq_freqs *freqs, int index)
1873 {
1874 int ret;
1875
1876 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1877
1878 /* We don't need to switch to intermediate freq */
1879 if (!freqs->new)
1880 return 0;
1881
1882 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1883 __func__, policy->cpu, freqs->old, freqs->new);
1884
1885 cpufreq_freq_transition_begin(policy, freqs);
1886 ret = cpufreq_driver->target_intermediate(policy, index);
1887 cpufreq_freq_transition_end(policy, freqs, ret);
1888
1889 if (ret)
1890 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1891 __func__, ret);
1892
1893 return ret;
1894 }
1895
1896 static int __target_index(struct cpufreq_policy *policy, int index)
1897 {
1898 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1899 unsigned int intermediate_freq = 0;
1900 unsigned int newfreq = policy->freq_table[index].frequency;
1901 int retval = -EINVAL;
1902 bool notify;
1903
1904 if (newfreq == policy->cur)
1905 return 0;
1906
1907 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1908 if (notify) {
1909 /* Handle switching to intermediate frequency */
1910 if (cpufreq_driver->get_intermediate) {
1911 retval = __target_intermediate(policy, &freqs, index);
1912 if (retval)
1913 return retval;
1914
1915 intermediate_freq = freqs.new;
1916 /* Set old freq to intermediate */
1917 if (intermediate_freq)
1918 freqs.old = freqs.new;
1919 }
1920
1921 freqs.new = newfreq;
1922 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1923 __func__, policy->cpu, freqs.old, freqs.new);
1924
1925 cpufreq_freq_transition_begin(policy, &freqs);
1926 }
1927
1928 retval = cpufreq_driver->target_index(policy, index);
1929 if (retval)
1930 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1931 retval);
1932
1933 if (notify) {
1934 cpufreq_freq_transition_end(policy, &freqs, retval);
1935
1936 /*
1937 * Failed after setting to intermediate freq? Driver should have
1938 * reverted back to initial frequency and so should we. Check
1939 * here for intermediate_freq instead of get_intermediate, in
1940 * case we haven't switched to intermediate freq at all.
1941 */
1942 if (unlikely(retval && intermediate_freq)) {
1943 freqs.old = intermediate_freq;
1944 freqs.new = policy->restore_freq;
1945 cpufreq_freq_transition_begin(policy, &freqs);
1946 cpufreq_freq_transition_end(policy, &freqs, 0);
1947 }
1948 }
1949
1950 return retval;
1951 }
1952
1953 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1954 unsigned int target_freq,
1955 unsigned int relation)
1956 {
1957 unsigned int old_target_freq = target_freq;
1958 int index;
1959
1960 if (cpufreq_disabled())
1961 return -ENODEV;
1962
1963 /* Make sure that target_freq is within supported range */
1964 target_freq = clamp_val(target_freq, policy->min, policy->max);
1965
1966 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1967 policy->cpu, target_freq, relation, old_target_freq);
1968
1969 /*
1970 * This might look like a redundant call as we are checking it again
1971 * after finding index. But it is left intentionally for cases where
1972 * exactly same freq is called again and so we can save on few function
1973 * calls.
1974 */
1975 if (target_freq == policy->cur)
1976 return 0;
1977
1978 /* Save last value to restore later on errors */
1979 policy->restore_freq = policy->cur;
1980
1981 if (cpufreq_driver->target)
1982 return cpufreq_driver->target(policy, target_freq, relation);
1983
1984 if (!cpufreq_driver->target_index)
1985 return -EINVAL;
1986
1987 index = cpufreq_frequency_table_target(policy, target_freq, relation);
1988
1989 return __target_index(policy, index);
1990 }
1991 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1992
1993 int cpufreq_driver_target(struct cpufreq_policy *policy,
1994 unsigned int target_freq,
1995 unsigned int relation)
1996 {
1997 int ret = -EINVAL;
1998
1999 down_write(&policy->rwsem);
2000
2001 ret = __cpufreq_driver_target(policy, target_freq, relation);
2002
2003 up_write(&policy->rwsem);
2004
2005 return ret;
2006 }
2007 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2008
2009 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2010 {
2011 return NULL;
2012 }
2013
2014 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2015 {
2016 int ret;
2017
2018 /* Don't start any governor operations if we are entering suspend */
2019 if (cpufreq_suspended)
2020 return 0;
2021 /*
2022 * Governor might not be initiated here if ACPI _PPC changed
2023 * notification happened, so check it.
2024 */
2025 if (!policy->governor)
2026 return -EINVAL;
2027
2028 /* Platform doesn't want dynamic frequency switching ? */
2029 if (policy->governor->dynamic_switching &&
2030 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2031 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2032
2033 if (gov) {
2034 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2035 policy->governor->name, gov->name);
2036 policy->governor = gov;
2037 } else {
2038 return -EINVAL;
2039 }
2040 }
2041
2042 if (!try_module_get(policy->governor->owner))
2043 return -EINVAL;
2044
2045 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2046
2047 if (policy->governor->init) {
2048 ret = policy->governor->init(policy);
2049 if (ret) {
2050 module_put(policy->governor->owner);
2051 return ret;
2052 }
2053 }
2054
2055 return 0;
2056 }
2057
2058 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2059 {
2060 if (cpufreq_suspended || !policy->governor)
2061 return;
2062
2063 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2064
2065 if (policy->governor->exit)
2066 policy->governor->exit(policy);
2067
2068 module_put(policy->governor->owner);
2069 }
2070
2071 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2072 {
2073 int ret;
2074
2075 if (cpufreq_suspended)
2076 return 0;
2077
2078 if (!policy->governor)
2079 return -EINVAL;
2080
2081 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2082
2083 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2084 cpufreq_update_current_freq(policy);
2085
2086 if (policy->governor->start) {
2087 ret = policy->governor->start(policy);
2088 if (ret)
2089 return ret;
2090 }
2091
2092 if (policy->governor->limits)
2093 policy->governor->limits(policy);
2094
2095 return 0;
2096 }
2097
2098 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2099 {
2100 if (cpufreq_suspended || !policy->governor)
2101 return;
2102
2103 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2104
2105 if (policy->governor->stop)
2106 policy->governor->stop(policy);
2107 }
2108
2109 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2110 {
2111 if (cpufreq_suspended || !policy->governor)
2112 return;
2113
2114 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2115
2116 if (policy->governor->limits)
2117 policy->governor->limits(policy);
2118 }
2119
2120 int cpufreq_register_governor(struct cpufreq_governor *governor)
2121 {
2122 int err;
2123
2124 if (!governor)
2125 return -EINVAL;
2126
2127 if (cpufreq_disabled())
2128 return -ENODEV;
2129
2130 mutex_lock(&cpufreq_governor_mutex);
2131
2132 err = -EBUSY;
2133 if (!find_governor(governor->name)) {
2134 err = 0;
2135 list_add(&governor->governor_list, &cpufreq_governor_list);
2136 }
2137
2138 mutex_unlock(&cpufreq_governor_mutex);
2139 return err;
2140 }
2141 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2142
2143 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2144 {
2145 struct cpufreq_policy *policy;
2146 unsigned long flags;
2147
2148 if (!governor)
2149 return;
2150
2151 if (cpufreq_disabled())
2152 return;
2153
2154 /* clear last_governor for all inactive policies */
2155 read_lock_irqsave(&cpufreq_driver_lock, flags);
2156 for_each_inactive_policy(policy) {
2157 if (!strcmp(policy->last_governor, governor->name)) {
2158 policy->governor = NULL;
2159 strcpy(policy->last_governor, "\0");
2160 }
2161 }
2162 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2163
2164 mutex_lock(&cpufreq_governor_mutex);
2165 list_del(&governor->governor_list);
2166 mutex_unlock(&cpufreq_governor_mutex);
2167 }
2168 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2169
2170
2171 /*********************************************************************
2172 * POLICY INTERFACE *
2173 *********************************************************************/
2174
2175 /**
2176 * cpufreq_get_policy - get the current cpufreq_policy
2177 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2178 * is written
2179 *
2180 * Reads the current cpufreq policy.
2181 */
2182 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2183 {
2184 struct cpufreq_policy *cpu_policy;
2185 if (!policy)
2186 return -EINVAL;
2187
2188 cpu_policy = cpufreq_cpu_get(cpu);
2189 if (!cpu_policy)
2190 return -EINVAL;
2191
2192 memcpy(policy, cpu_policy, sizeof(*policy));
2193
2194 cpufreq_cpu_put(cpu_policy);
2195 return 0;
2196 }
2197 EXPORT_SYMBOL(cpufreq_get_policy);
2198
2199 /*
2200 * policy : current policy.
2201 * new_policy: policy to be set.
2202 */
2203 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2204 struct cpufreq_policy *new_policy)
2205 {
2206 struct cpufreq_governor *old_gov;
2207 int ret;
2208
2209 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2210 new_policy->cpu, new_policy->min, new_policy->max);
2211
2212 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2213
2214 /*
2215 * This check works well when we store new min/max freq attributes,
2216 * because new_policy is a copy of policy with one field updated.
2217 */
2218 if (new_policy->min > new_policy->max)
2219 return -EINVAL;
2220
2221 /* verify the cpu speed can be set within this limit */
2222 ret = cpufreq_driver->verify(new_policy);
2223 if (ret)
2224 return ret;
2225
2226 /* adjust if necessary - all reasons */
2227 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2228 CPUFREQ_ADJUST, new_policy);
2229
2230 /*
2231 * verify the cpu speed can be set within this limit, which might be
2232 * different to the first one
2233 */
2234 ret = cpufreq_driver->verify(new_policy);
2235 if (ret)
2236 return ret;
2237
2238 /* notification of the new policy */
2239 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2240 CPUFREQ_NOTIFY, new_policy);
2241
2242 policy->min = new_policy->min;
2243 policy->max = new_policy->max;
2244 trace_cpu_frequency_limits(policy);
2245
2246 policy->cached_target_freq = UINT_MAX;
2247
2248 pr_debug("new min and max freqs are %u - %u kHz\n",
2249 policy->min, policy->max);
2250
2251 if (cpufreq_driver->setpolicy) {
2252 policy->policy = new_policy->policy;
2253 pr_debug("setting range\n");
2254 return cpufreq_driver->setpolicy(new_policy);
2255 }
2256
2257 if (new_policy->governor == policy->governor) {
2258 pr_debug("cpufreq: governor limits update\n");
2259 cpufreq_governor_limits(policy);
2260 return 0;
2261 }
2262
2263 pr_debug("governor switch\n");
2264
2265 /* save old, working values */
2266 old_gov = policy->governor;
2267 /* end old governor */
2268 if (old_gov) {
2269 cpufreq_stop_governor(policy);
2270 cpufreq_exit_governor(policy);
2271 }
2272
2273 /* start new governor */
2274 policy->governor = new_policy->governor;
2275 ret = cpufreq_init_governor(policy);
2276 if (!ret) {
2277 ret = cpufreq_start_governor(policy);
2278 if (!ret) {
2279 pr_debug("cpufreq: governor change\n");
2280 sched_cpufreq_governor_change(policy, old_gov);
2281 return 0;
2282 }
2283 cpufreq_exit_governor(policy);
2284 }
2285
2286 /* new governor failed, so re-start old one */
2287 pr_debug("starting governor %s failed\n", policy->governor->name);
2288 if (old_gov) {
2289 policy->governor = old_gov;
2290 if (cpufreq_init_governor(policy))
2291 policy->governor = NULL;
2292 else
2293 cpufreq_start_governor(policy);
2294 }
2295
2296 return ret;
2297 }
2298
2299 /**
2300 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2301 * @cpu: CPU which shall be re-evaluated
2302 *
2303 * Useful for policy notifiers which have different necessities
2304 * at different times.
2305 */
2306 void cpufreq_update_policy(unsigned int cpu)
2307 {
2308 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2309 struct cpufreq_policy new_policy;
2310
2311 if (!policy)
2312 return;
2313
2314 down_write(&policy->rwsem);
2315
2316 if (policy_is_inactive(policy))
2317 goto unlock;
2318
2319 pr_debug("updating policy for CPU %u\n", cpu);
2320 memcpy(&new_policy, policy, sizeof(*policy));
2321 new_policy.min = policy->user_policy.min;
2322 new_policy.max = policy->user_policy.max;
2323
2324 /*
2325 * BIOS might change freq behind our back
2326 * -> ask driver for current freq and notify governors about a change
2327 */
2328 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2329 if (cpufreq_suspended)
2330 goto unlock;
2331
2332 new_policy.cur = cpufreq_update_current_freq(policy);
2333 if (WARN_ON(!new_policy.cur))
2334 goto unlock;
2335 }
2336
2337 cpufreq_set_policy(policy, &new_policy);
2338
2339 unlock:
2340 up_write(&policy->rwsem);
2341
2342 cpufreq_cpu_put(policy);
2343 }
2344 EXPORT_SYMBOL(cpufreq_update_policy);
2345
2346 /*********************************************************************
2347 * BOOST *
2348 *********************************************************************/
2349 static int cpufreq_boost_set_sw(int state)
2350 {
2351 struct cpufreq_policy *policy;
2352 int ret = -EINVAL;
2353
2354 for_each_active_policy(policy) {
2355 if (!policy->freq_table)
2356 continue;
2357
2358 ret = cpufreq_frequency_table_cpuinfo(policy,
2359 policy->freq_table);
2360 if (ret) {
2361 pr_err("%s: Policy frequency update failed\n",
2362 __func__);
2363 break;
2364 }
2365
2366 down_write(&policy->rwsem);
2367 policy->user_policy.max = policy->max;
2368 cpufreq_governor_limits(policy);
2369 up_write(&policy->rwsem);
2370 }
2371
2372 return ret;
2373 }
2374
2375 int cpufreq_boost_trigger_state(int state)
2376 {
2377 unsigned long flags;
2378 int ret = 0;
2379
2380 if (cpufreq_driver->boost_enabled == state)
2381 return 0;
2382
2383 write_lock_irqsave(&cpufreq_driver_lock, flags);
2384 cpufreq_driver->boost_enabled = state;
2385 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2386
2387 ret = cpufreq_driver->set_boost(state);
2388 if (ret) {
2389 write_lock_irqsave(&cpufreq_driver_lock, flags);
2390 cpufreq_driver->boost_enabled = !state;
2391 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2392
2393 pr_err("%s: Cannot %s BOOST\n",
2394 __func__, state ? "enable" : "disable");
2395 }
2396
2397 return ret;
2398 }
2399
2400 static bool cpufreq_boost_supported(void)
2401 {
2402 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2403 }
2404
2405 static int create_boost_sysfs_file(void)
2406 {
2407 int ret;
2408
2409 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2410 if (ret)
2411 pr_err("%s: cannot register global BOOST sysfs file\n",
2412 __func__);
2413
2414 return ret;
2415 }
2416
2417 static void remove_boost_sysfs_file(void)
2418 {
2419 if (cpufreq_boost_supported())
2420 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2421 }
2422
2423 int cpufreq_enable_boost_support(void)
2424 {
2425 if (!cpufreq_driver)
2426 return -EINVAL;
2427
2428 if (cpufreq_boost_supported())
2429 return 0;
2430
2431 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2432
2433 /* This will get removed on driver unregister */
2434 return create_boost_sysfs_file();
2435 }
2436 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2437
2438 int cpufreq_boost_enabled(void)
2439 {
2440 return cpufreq_driver->boost_enabled;
2441 }
2442 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2443
2444 /*********************************************************************
2445 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2446 *********************************************************************/
2447 static enum cpuhp_state hp_online;
2448
2449 static int cpuhp_cpufreq_online(unsigned int cpu)
2450 {
2451 cpufreq_online(cpu);
2452
2453 return 0;
2454 }
2455
2456 static int cpuhp_cpufreq_offline(unsigned int cpu)
2457 {
2458 cpufreq_offline(cpu);
2459
2460 return 0;
2461 }
2462
2463 /**
2464 * cpufreq_register_driver - register a CPU Frequency driver
2465 * @driver_data: A struct cpufreq_driver containing the values#
2466 * submitted by the CPU Frequency driver.
2467 *
2468 * Registers a CPU Frequency driver to this core code. This code
2469 * returns zero on success, -EEXIST when another driver got here first
2470 * (and isn't unregistered in the meantime).
2471 *
2472 */
2473 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2474 {
2475 unsigned long flags;
2476 int ret;
2477
2478 if (cpufreq_disabled())
2479 return -ENODEV;
2480
2481 if (!driver_data || !driver_data->verify || !driver_data->init ||
2482 !(driver_data->setpolicy || driver_data->target_index ||
2483 driver_data->target) ||
2484 (driver_data->setpolicy && (driver_data->target_index ||
2485 driver_data->target)) ||
2486 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2487 return -EINVAL;
2488
2489 pr_debug("trying to register driver %s\n", driver_data->name);
2490
2491 /* Protect against concurrent CPU online/offline. */
2492 cpus_read_lock();
2493
2494 write_lock_irqsave(&cpufreq_driver_lock, flags);
2495 if (cpufreq_driver) {
2496 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2497 ret = -EEXIST;
2498 goto out;
2499 }
2500 cpufreq_driver = driver_data;
2501 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2502
2503 if (driver_data->setpolicy)
2504 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2505
2506 if (cpufreq_boost_supported()) {
2507 ret = create_boost_sysfs_file();
2508 if (ret)
2509 goto err_null_driver;
2510 }
2511
2512 ret = subsys_interface_register(&cpufreq_interface);
2513 if (ret)
2514 goto err_boost_unreg;
2515
2516 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2517 list_empty(&cpufreq_policy_list)) {
2518 /* if all ->init() calls failed, unregister */
2519 ret = -ENODEV;
2520 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2521 driver_data->name);
2522 goto err_if_unreg;
2523 }
2524
2525 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2526 "cpufreq:online",
2527 cpuhp_cpufreq_online,
2528 cpuhp_cpufreq_offline);
2529 if (ret < 0)
2530 goto err_if_unreg;
2531 hp_online = ret;
2532 ret = 0;
2533
2534 pr_debug("driver %s up and running\n", driver_data->name);
2535 goto out;
2536
2537 err_if_unreg:
2538 subsys_interface_unregister(&cpufreq_interface);
2539 err_boost_unreg:
2540 remove_boost_sysfs_file();
2541 err_null_driver:
2542 write_lock_irqsave(&cpufreq_driver_lock, flags);
2543 cpufreq_driver = NULL;
2544 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2545 out:
2546 cpus_read_unlock();
2547 return ret;
2548 }
2549 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2550
2551 /**
2552 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2553 *
2554 * Unregister the current CPUFreq driver. Only call this if you have
2555 * the right to do so, i.e. if you have succeeded in initialising before!
2556 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2557 * currently not initialised.
2558 */
2559 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2560 {
2561 unsigned long flags;
2562
2563 if (!cpufreq_driver || (driver != cpufreq_driver))
2564 return -EINVAL;
2565
2566 pr_debug("unregistering driver %s\n", driver->name);
2567
2568 /* Protect against concurrent cpu hotplug */
2569 cpus_read_lock();
2570 subsys_interface_unregister(&cpufreq_interface);
2571 remove_boost_sysfs_file();
2572 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2573
2574 write_lock_irqsave(&cpufreq_driver_lock, flags);
2575
2576 cpufreq_driver = NULL;
2577
2578 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2579 cpus_read_unlock();
2580
2581 return 0;
2582 }
2583 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2584
2585 /*
2586 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2587 * or mutexes when secondary CPUs are halted.
2588 */
2589 static struct syscore_ops cpufreq_syscore_ops = {
2590 .shutdown = cpufreq_suspend,
2591 };
2592
2593 struct kobject *cpufreq_global_kobject;
2594 EXPORT_SYMBOL(cpufreq_global_kobject);
2595
2596 static int __init cpufreq_core_init(void)
2597 {
2598 if (cpufreq_disabled())
2599 return -ENODEV;
2600
2601 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2602 BUG_ON(!cpufreq_global_kobject);
2603
2604 register_syscore_ops(&cpufreq_syscore_ops);
2605
2606 return 0;
2607 }
2608 module_param(off, int, 0444);
2609 core_initcall(cpufreq_core_init);