]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/cpufreq.c
[CPUFREQ] Factor out policy setting from cpufreq_add_dev
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(struct cpufreq_governor *, cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu) \
69 int lock_policy_rwsem_##mode \
70 (int cpu) \
71 { \
72 int policy_cpu = per_cpu(policy_cpu, cpu); \
73 BUG_ON(policy_cpu == -1); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
75 if (unlikely(!cpu_online(cpu))) { \
76 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 return -1; \
78 } \
79 \
80 return 0; \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89 void unlock_policy_rwsem_read(int cpu)
90 {
91 int policy_cpu = per_cpu(policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97 void unlock_policy_rwsem_write(int cpu)
98 {
99 int policy_cpu = per_cpu(policy_cpu, cpu);
100 BUG_ON(policy_cpu == -1);
101 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy,
108 unsigned int event);
109 static unsigned int __cpufreq_get(unsigned int cpu);
110 static void handle_update(struct work_struct *work);
111
112 /**
113 * Two notifier lists: the "policy" list is involved in the
114 * validation process for a new CPU frequency policy; the
115 * "transition" list for kernel code that needs to handle
116 * changes to devices when the CPU clock speed changes.
117 * The mutex locks both lists.
118 */
119 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
120 static struct srcu_notifier_head cpufreq_transition_notifier_list;
121
122 static bool init_cpufreq_transition_notifier_list_called;
123 static int __init init_cpufreq_transition_notifier_list(void)
124 {
125 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
126 init_cpufreq_transition_notifier_list_called = true;
127 return 0;
128 }
129 pure_initcall(init_cpufreq_transition_notifier_list);
130
131 static LIST_HEAD(cpufreq_governor_list);
132 static DEFINE_MUTEX(cpufreq_governor_mutex);
133
134 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
135 {
136 struct cpufreq_policy *data;
137 unsigned long flags;
138
139 if (cpu >= nr_cpu_ids)
140 goto err_out;
141
142 /* get the cpufreq driver */
143 spin_lock_irqsave(&cpufreq_driver_lock, flags);
144
145 if (!cpufreq_driver)
146 goto err_out_unlock;
147
148 if (!try_module_get(cpufreq_driver->owner))
149 goto err_out_unlock;
150
151
152 /* get the CPU */
153 data = per_cpu(cpufreq_cpu_data, cpu);
154
155 if (!data)
156 goto err_out_put_module;
157
158 if (!kobject_get(&data->kobj))
159 goto err_out_put_module;
160
161 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
162 return data;
163
164 err_out_put_module:
165 module_put(cpufreq_driver->owner);
166 err_out_unlock:
167 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
168 err_out:
169 return NULL;
170 }
171 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
172
173
174 void cpufreq_cpu_put(struct cpufreq_policy *data)
175 {
176 kobject_put(&data->kobj);
177 module_put(cpufreq_driver->owner);
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
180
181
182 /*********************************************************************
183 * UNIFIED DEBUG HELPERS *
184 *********************************************************************/
185 #ifdef CONFIG_CPU_FREQ_DEBUG
186
187 /* what part(s) of the CPUfreq subsystem are debugged? */
188 static unsigned int debug;
189
190 /* is the debug output ratelimit'ed using printk_ratelimit? User can
191 * set or modify this value.
192 */
193 static unsigned int debug_ratelimit = 1;
194
195 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
196 * loading of a cpufreq driver, temporarily disabled when a new policy
197 * is set, and disabled upon cpufreq driver removal
198 */
199 static unsigned int disable_ratelimit = 1;
200 static DEFINE_SPINLOCK(disable_ratelimit_lock);
201
202 static void cpufreq_debug_enable_ratelimit(void)
203 {
204 unsigned long flags;
205
206 spin_lock_irqsave(&disable_ratelimit_lock, flags);
207 if (disable_ratelimit)
208 disable_ratelimit--;
209 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
210 }
211
212 static void cpufreq_debug_disable_ratelimit(void)
213 {
214 unsigned long flags;
215
216 spin_lock_irqsave(&disable_ratelimit_lock, flags);
217 disable_ratelimit++;
218 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
219 }
220
221 void cpufreq_debug_printk(unsigned int type, const char *prefix,
222 const char *fmt, ...)
223 {
224 char s[256];
225 va_list args;
226 unsigned int len;
227 unsigned long flags;
228
229 WARN_ON(!prefix);
230 if (type & debug) {
231 spin_lock_irqsave(&disable_ratelimit_lock, flags);
232 if (!disable_ratelimit && debug_ratelimit
233 && !printk_ratelimit()) {
234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235 return;
236 }
237 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
238
239 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
240
241 va_start(args, fmt);
242 len += vsnprintf(&s[len], (256 - len), fmt, args);
243 va_end(args);
244
245 printk(s);
246
247 WARN_ON(len < 5);
248 }
249 }
250 EXPORT_SYMBOL(cpufreq_debug_printk);
251
252
253 module_param(debug, uint, 0644);
254 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
255 " 2 to debug drivers, and 4 to debug governors.");
256
257 module_param(debug_ratelimit, uint, 0644);
258 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
259 " set to 0 to disable ratelimiting.");
260
261 #else /* !CONFIG_CPU_FREQ_DEBUG */
262
263 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
264 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
265
266 #endif /* CONFIG_CPU_FREQ_DEBUG */
267
268
269 /*********************************************************************
270 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
271 *********************************************************************/
272
273 /**
274 * adjust_jiffies - adjust the system "loops_per_jiffy"
275 *
276 * This function alters the system "loops_per_jiffy" for the clock
277 * speed change. Note that loops_per_jiffy cannot be updated on SMP
278 * systems as each CPU might be scaled differently. So, use the arch
279 * per-CPU loops_per_jiffy value wherever possible.
280 */
281 #ifndef CONFIG_SMP
282 static unsigned long l_p_j_ref;
283 static unsigned int l_p_j_ref_freq;
284
285 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
286 {
287 if (ci->flags & CPUFREQ_CONST_LOOPS)
288 return;
289
290 if (!l_p_j_ref_freq) {
291 l_p_j_ref = loops_per_jiffy;
292 l_p_j_ref_freq = ci->old;
293 dprintk("saving %lu as reference value for loops_per_jiffy; "
294 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
295 }
296 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
297 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
298 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
299 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
300 ci->new);
301 dprintk("scaling loops_per_jiffy to %lu "
302 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
303 }
304 }
305 #else
306 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
307 {
308 return;
309 }
310 #endif
311
312
313 /**
314 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
315 * on frequency transition.
316 *
317 * This function calls the transition notifiers and the "adjust_jiffies"
318 * function. It is called twice on all CPU frequency changes that have
319 * external effects.
320 */
321 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
322 {
323 struct cpufreq_policy *policy;
324
325 BUG_ON(irqs_disabled());
326
327 freqs->flags = cpufreq_driver->flags;
328 dprintk("notification %u of frequency transition to %u kHz\n",
329 state, freqs->new);
330
331 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
332 switch (state) {
333
334 case CPUFREQ_PRECHANGE:
335 /* detect if the driver reported a value as "old frequency"
336 * which is not equal to what the cpufreq core thinks is
337 * "old frequency".
338 */
339 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
340 if ((policy) && (policy->cpu == freqs->cpu) &&
341 (policy->cur) && (policy->cur != freqs->old)) {
342 dprintk("Warning: CPU frequency is"
343 " %u, cpufreq assumed %u kHz.\n",
344 freqs->old, policy->cur);
345 freqs->old = policy->cur;
346 }
347 }
348 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349 CPUFREQ_PRECHANGE, freqs);
350 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
351 break;
352
353 case CPUFREQ_POSTCHANGE:
354 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
355 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
356 CPUFREQ_POSTCHANGE, freqs);
357 if (likely(policy) && likely(policy->cpu == freqs->cpu))
358 policy->cur = freqs->new;
359 break;
360 }
361 }
362 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
363
364
365
366 /*********************************************************************
367 * SYSFS INTERFACE *
368 *********************************************************************/
369
370 static struct cpufreq_governor *__find_governor(const char *str_governor)
371 {
372 struct cpufreq_governor *t;
373
374 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
375 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
376 return t;
377
378 return NULL;
379 }
380
381 /**
382 * cpufreq_parse_governor - parse a governor string
383 */
384 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
385 struct cpufreq_governor **governor)
386 {
387 int err = -EINVAL;
388
389 if (!cpufreq_driver)
390 goto out;
391
392 if (cpufreq_driver->setpolicy) {
393 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
394 *policy = CPUFREQ_POLICY_PERFORMANCE;
395 err = 0;
396 } else if (!strnicmp(str_governor, "powersave",
397 CPUFREQ_NAME_LEN)) {
398 *policy = CPUFREQ_POLICY_POWERSAVE;
399 err = 0;
400 }
401 } else if (cpufreq_driver->target) {
402 struct cpufreq_governor *t;
403
404 mutex_lock(&cpufreq_governor_mutex);
405
406 t = __find_governor(str_governor);
407
408 if (t == NULL) {
409 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
410 str_governor);
411
412 if (name) {
413 int ret;
414
415 mutex_unlock(&cpufreq_governor_mutex);
416 ret = request_module("%s", name);
417 mutex_lock(&cpufreq_governor_mutex);
418
419 if (ret == 0)
420 t = __find_governor(str_governor);
421 }
422
423 kfree(name);
424 }
425
426 if (t != NULL) {
427 *governor = t;
428 err = 0;
429 }
430
431 mutex_unlock(&cpufreq_governor_mutex);
432 }
433 out:
434 return err;
435 }
436
437
438 /**
439 * cpufreq_per_cpu_attr_read() / show_##file_name() -
440 * print out cpufreq information
441 *
442 * Write out information from cpufreq_driver->policy[cpu]; object must be
443 * "unsigned int".
444 */
445
446 #define show_one(file_name, object) \
447 static ssize_t show_##file_name \
448 (struct cpufreq_policy *policy, char *buf) \
449 { \
450 return sprintf(buf, "%u\n", policy->object); \
451 }
452
453 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
454 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
455 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461 struct cpufreq_policy *policy);
462
463 /**
464 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465 */
466 #define store_one(file_name, object) \
467 static ssize_t store_##file_name \
468 (struct cpufreq_policy *policy, const char *buf, size_t count) \
469 { \
470 unsigned int ret = -EINVAL; \
471 struct cpufreq_policy new_policy; \
472 \
473 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
474 if (ret) \
475 return -EINVAL; \
476 \
477 ret = sscanf(buf, "%u", &new_policy.object); \
478 if (ret != 1) \
479 return -EINVAL; \
480 \
481 ret = __cpufreq_set_policy(policy, &new_policy); \
482 policy->user_policy.object = policy->object; \
483 \
484 return ret ? ret : count; \
485 }
486
487 store_one(scaling_min_freq, min);
488 store_one(scaling_max_freq, max);
489
490 /**
491 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492 */
493 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
494 char *buf)
495 {
496 unsigned int cur_freq = __cpufreq_get(policy->cpu);
497 if (!cur_freq)
498 return sprintf(buf, "<unknown>");
499 return sprintf(buf, "%u\n", cur_freq);
500 }
501
502
503 /**
504 * show_scaling_governor - show the current policy for the specified CPU
505 */
506 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
507 {
508 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
509 return sprintf(buf, "powersave\n");
510 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
511 return sprintf(buf, "performance\n");
512 else if (policy->governor)
513 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
514 policy->governor->name);
515 return -EINVAL;
516 }
517
518
519 /**
520 * store_scaling_governor - store policy for the specified CPU
521 */
522 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
523 const char *buf, size_t count)
524 {
525 unsigned int ret = -EINVAL;
526 char str_governor[16];
527 struct cpufreq_policy new_policy;
528
529 ret = cpufreq_get_policy(&new_policy, policy->cpu);
530 if (ret)
531 return ret;
532
533 ret = sscanf(buf, "%15s", str_governor);
534 if (ret != 1)
535 return -EINVAL;
536
537 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538 &new_policy.governor))
539 return -EINVAL;
540
541 /* Do not use cpufreq_set_policy here or the user_policy.max
542 will be wrongly overridden */
543 ret = __cpufreq_set_policy(policy, &new_policy);
544
545 policy->user_policy.policy = policy->policy;
546 policy->user_policy.governor = policy->governor;
547
548 if (ret)
549 return ret;
550 else
551 return count;
552 }
553
554 /**
555 * show_scaling_driver - show the cpufreq driver currently loaded
556 */
557 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
558 {
559 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560 }
561
562 /**
563 * show_scaling_available_governors - show the available CPUfreq governors
564 */
565 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
566 char *buf)
567 {
568 ssize_t i = 0;
569 struct cpufreq_governor *t;
570
571 if (!cpufreq_driver->target) {
572 i += sprintf(buf, "performance powersave");
573 goto out;
574 }
575
576 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
578 - (CPUFREQ_NAME_LEN + 2)))
579 goto out;
580 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
581 }
582 out:
583 i += sprintf(&buf[i], "\n");
584 return i;
585 }
586
587 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
588 {
589 ssize_t i = 0;
590 unsigned int cpu;
591
592 for_each_cpu(cpu, mask) {
593 if (i)
594 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
596 if (i >= (PAGE_SIZE - 5))
597 break;
598 }
599 i += sprintf(&buf[i], "\n");
600 return i;
601 }
602
603 /**
604 * show_related_cpus - show the CPUs affected by each transition even if
605 * hw coordination is in use
606 */
607 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
608 {
609 if (cpumask_empty(policy->related_cpus))
610 return show_cpus(policy->cpus, buf);
611 return show_cpus(policy->related_cpus, buf);
612 }
613
614 /**
615 * show_affected_cpus - show the CPUs affected by each transition
616 */
617 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
618 {
619 return show_cpus(policy->cpus, buf);
620 }
621
622 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
623 const char *buf, size_t count)
624 {
625 unsigned int freq = 0;
626 unsigned int ret;
627
628 if (!policy->governor || !policy->governor->store_setspeed)
629 return -EINVAL;
630
631 ret = sscanf(buf, "%u", &freq);
632 if (ret != 1)
633 return -EINVAL;
634
635 policy->governor->store_setspeed(policy, freq);
636
637 return count;
638 }
639
640 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
641 {
642 if (!policy->governor || !policy->governor->show_setspeed)
643 return sprintf(buf, "<unsupported>\n");
644
645 return policy->governor->show_setspeed(policy, buf);
646 }
647
648 #define define_one_ro(_name) \
649 static struct freq_attr _name = \
650 __ATTR(_name, 0444, show_##_name, NULL)
651
652 #define define_one_ro0400(_name) \
653 static struct freq_attr _name = \
654 __ATTR(_name, 0400, show_##_name, NULL)
655
656 #define define_one_rw(_name) \
657 static struct freq_attr _name = \
658 __ATTR(_name, 0644, show_##_name, store_##_name)
659
660 define_one_ro0400(cpuinfo_cur_freq);
661 define_one_ro(cpuinfo_min_freq);
662 define_one_ro(cpuinfo_max_freq);
663 define_one_ro(cpuinfo_transition_latency);
664 define_one_ro(scaling_available_governors);
665 define_one_ro(scaling_driver);
666 define_one_ro(scaling_cur_freq);
667 define_one_ro(related_cpus);
668 define_one_ro(affected_cpus);
669 define_one_rw(scaling_min_freq);
670 define_one_rw(scaling_max_freq);
671 define_one_rw(scaling_governor);
672 define_one_rw(scaling_setspeed);
673
674 static struct attribute *default_attrs[] = {
675 &cpuinfo_min_freq.attr,
676 &cpuinfo_max_freq.attr,
677 &cpuinfo_transition_latency.attr,
678 &scaling_min_freq.attr,
679 &scaling_max_freq.attr,
680 &affected_cpus.attr,
681 &related_cpus.attr,
682 &scaling_governor.attr,
683 &scaling_driver.attr,
684 &scaling_available_governors.attr,
685 &scaling_setspeed.attr,
686 NULL
687 };
688
689 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
690 #define to_attr(a) container_of(a, struct freq_attr, attr)
691
692 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
693 {
694 struct cpufreq_policy *policy = to_policy(kobj);
695 struct freq_attr *fattr = to_attr(attr);
696 ssize_t ret = -EINVAL;
697 policy = cpufreq_cpu_get(policy->cpu);
698 if (!policy)
699 goto no_policy;
700
701 if (lock_policy_rwsem_read(policy->cpu) < 0)
702 goto fail;
703
704 if (fattr->show)
705 ret = fattr->show(policy, buf);
706 else
707 ret = -EIO;
708
709 unlock_policy_rwsem_read(policy->cpu);
710 fail:
711 cpufreq_cpu_put(policy);
712 no_policy:
713 return ret;
714 }
715
716 static ssize_t store(struct kobject *kobj, struct attribute *attr,
717 const char *buf, size_t count)
718 {
719 struct cpufreq_policy *policy = to_policy(kobj);
720 struct freq_attr *fattr = to_attr(attr);
721 ssize_t ret = -EINVAL;
722 policy = cpufreq_cpu_get(policy->cpu);
723 if (!policy)
724 goto no_policy;
725
726 if (lock_policy_rwsem_write(policy->cpu) < 0)
727 goto fail;
728
729 if (fattr->store)
730 ret = fattr->store(policy, buf, count);
731 else
732 ret = -EIO;
733
734 unlock_policy_rwsem_write(policy->cpu);
735 fail:
736 cpufreq_cpu_put(policy);
737 no_policy:
738 return ret;
739 }
740
741 static void cpufreq_sysfs_release(struct kobject *kobj)
742 {
743 struct cpufreq_policy *policy = to_policy(kobj);
744 dprintk("last reference is dropped\n");
745 complete(&policy->kobj_unregister);
746 }
747
748 static struct sysfs_ops sysfs_ops = {
749 .show = show,
750 .store = store,
751 };
752
753 static struct kobj_type ktype_cpufreq = {
754 .sysfs_ops = &sysfs_ops,
755 .default_attrs = default_attrs,
756 .release = cpufreq_sysfs_release,
757 };
758
759
760 int cpufreq_add_dev_policy(unsigned int cpu, struct cpufreq_policy *policy,
761 struct sys_device *sys_dev)
762 {
763 int ret = 0;
764 #ifdef CONFIG_SMP
765 unsigned long flags;
766 unsigned int j;
767
768 #ifdef CONFIG_HOTPLUG_CPU
769 if (per_cpu(cpufreq_cpu_governor, cpu)) {
770 policy->governor = per_cpu(cpufreq_cpu_governor, cpu);
771 dprintk("Restoring governor %s for cpu %d\n",
772 policy->governor->name, cpu);
773 }
774 #endif
775
776 for_each_cpu(j, policy->cpus) {
777 struct cpufreq_policy *managed_policy;
778
779 if (cpu == j)
780 continue;
781
782 /* Check for existing affected CPUs.
783 * They may not be aware of it due to CPU Hotplug.
784 * cpufreq_cpu_put is called when the device is removed
785 * in __cpufreq_remove_dev()
786 */
787 managed_policy = cpufreq_cpu_get(j);
788 if (unlikely(managed_policy)) {
789
790 /* Set proper policy_cpu */
791 unlock_policy_rwsem_write(cpu);
792 per_cpu(policy_cpu, cpu) = managed_policy->cpu;
793
794 if (lock_policy_rwsem_write(cpu) < 0) {
795 /* Should not go through policy unlock path */
796 if (cpufreq_driver->exit)
797 cpufreq_driver->exit(policy);
798 cpufreq_cpu_put(managed_policy);
799 return -EBUSY;
800 }
801
802 spin_lock_irqsave(&cpufreq_driver_lock, flags);
803 cpumask_copy(managed_policy->cpus, policy->cpus);
804 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
805 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
806
807 dprintk("CPU already managed, adding link\n");
808 ret = sysfs_create_link(&sys_dev->kobj,
809 &managed_policy->kobj,
810 "cpufreq");
811 if (ret)
812 cpufreq_cpu_put(managed_policy);
813 /*
814 * Success. We only needed to be added to the mask.
815 * Call driver->exit() because only the cpu parent of
816 * the kobj needed to call init().
817 */
818 if (cpufreq_driver->exit)
819 cpufreq_driver->exit(policy);
820 return ret;
821 }
822 }
823 #endif
824 return ret;
825 }
826
827
828 /* symlink affected CPUs */
829 int cpufreq_add_dev_symlink(unsigned int cpu, struct cpufreq_policy *policy)
830 {
831 unsigned int j;
832 int ret = 0;
833
834 for_each_cpu(j, policy->cpus) {
835 struct cpufreq_policy *managed_policy;
836 struct sys_device *cpu_sys_dev;
837
838 if (j == cpu)
839 continue;
840 if (!cpu_online(j))
841 continue;
842
843 dprintk("CPU %u already managed, adding link\n", j);
844 managed_policy = cpufreq_cpu_get(cpu);
845 cpu_sys_dev = get_cpu_sysdev(j);
846 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
847 "cpufreq");
848 if (ret) {
849 cpufreq_cpu_put(managed_policy);
850 return ret;
851 }
852 }
853 return ret;
854 }
855
856 int cpufreq_add_dev_interface(unsigned int cpu, struct cpufreq_policy *policy,
857 struct sys_device *sys_dev)
858 {
859 struct cpufreq_policy new_policy;
860 struct freq_attr **drv_attr;
861 unsigned long flags;
862 int ret = 0;
863 unsigned int j;
864
865 /* prepare interface data */
866 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
867 &sys_dev->kobj, "cpufreq");
868 if (ret)
869 return ret;
870
871 /* set up files for this cpu device */
872 drv_attr = cpufreq_driver->attr;
873 while ((drv_attr) && (*drv_attr)) {
874 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
875 if (ret)
876 goto err_out_kobj_put;
877 drv_attr++;
878 }
879 if (cpufreq_driver->get) {
880 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
881 if (ret)
882 goto err_out_kobj_put;
883 }
884 if (cpufreq_driver->target) {
885 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
886 if (ret)
887 goto err_out_kobj_put;
888 }
889
890 spin_lock_irqsave(&cpufreq_driver_lock, flags);
891 for_each_cpu(j, policy->cpus) {
892 if (!cpu_online(j))
893 continue;
894 per_cpu(cpufreq_cpu_data, j) = policy;
895 per_cpu(policy_cpu, j) = policy->cpu;
896 }
897 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
898
899 ret = cpufreq_add_dev_symlink(cpu, policy);
900 if (ret)
901 goto err_out_kobj_put;
902
903 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
904 /* assure that the starting sequence is run in __cpufreq_set_policy */
905 policy->governor = NULL;
906
907 /* set default policy */
908 ret = __cpufreq_set_policy(policy, &new_policy);
909 policy->user_policy.policy = policy->policy;
910 policy->user_policy.governor = policy->governor;
911
912 if (ret) {
913 dprintk("setting policy failed\n");
914 if (cpufreq_driver->exit)
915 cpufreq_driver->exit(policy);
916 }
917 return ret;
918
919 err_out_kobj_put:
920 kobject_put(&policy->kobj);
921 wait_for_completion(&policy->kobj_unregister);
922 return ret;
923 }
924
925
926 /**
927 * cpufreq_add_dev - add a CPU device
928 *
929 * Adds the cpufreq interface for a CPU device.
930 *
931 * The Oracle says: try running cpufreq registration/unregistration concurrently
932 * with with cpu hotplugging and all hell will break loose. Tried to clean this
933 * mess up, but more thorough testing is needed. - Mathieu
934 */
935 static int cpufreq_add_dev(struct sys_device *sys_dev)
936 {
937 unsigned int cpu = sys_dev->id;
938 int ret = 0;
939 struct cpufreq_policy *policy;
940 unsigned long flags;
941 unsigned int j;
942
943 if (cpu_is_offline(cpu))
944 return 0;
945
946 cpufreq_debug_disable_ratelimit();
947 dprintk("adding CPU %u\n", cpu);
948
949 #ifdef CONFIG_SMP
950 /* check whether a different CPU already registered this
951 * CPU because it is in the same boat. */
952 policy = cpufreq_cpu_get(cpu);
953 if (unlikely(policy)) {
954 cpufreq_cpu_put(policy);
955 cpufreq_debug_enable_ratelimit();
956 return 0;
957 }
958 #endif
959
960 if (!try_module_get(cpufreq_driver->owner)) {
961 ret = -EINVAL;
962 goto module_out;
963 }
964
965 ret = -ENOMEM;
966 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
967 if (!policy)
968 goto nomem_out;
969
970 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
971 goto err_free_policy;
972
973 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
974 goto err_free_cpumask;
975
976 policy->cpu = cpu;
977 cpumask_copy(policy->cpus, cpumask_of(cpu));
978
979 /* Initially set CPU itself as the policy_cpu */
980 per_cpu(policy_cpu, cpu) = cpu;
981 ret = (lock_policy_rwsem_write(cpu) < 0);
982 WARN_ON(ret);
983
984 init_completion(&policy->kobj_unregister);
985 INIT_WORK(&policy->update, handle_update);
986
987 /* Set governor before ->init, so that driver could check it */
988 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
989 /* call driver. From then on the cpufreq must be able
990 * to accept all calls to ->verify and ->setpolicy for this CPU
991 */
992 ret = cpufreq_driver->init(policy);
993 if (ret) {
994 dprintk("initialization failed\n");
995 goto err_unlock_policy;
996 }
997 policy->user_policy.min = policy->min;
998 policy->user_policy.max = policy->max;
999
1000 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1001 CPUFREQ_START, policy);
1002
1003 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
1004 if (ret)
1005 goto err_unlock_policy;
1006
1007 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
1008 if (ret)
1009 goto err_out_unregister;
1010
1011 unlock_policy_rwsem_write(cpu);
1012
1013 kobject_uevent(&policy->kobj, KOBJ_ADD);
1014 module_put(cpufreq_driver->owner);
1015 dprintk("initialization complete\n");
1016 cpufreq_debug_enable_ratelimit();
1017
1018 return 0;
1019
1020
1021 err_out_unregister:
1022 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1023 for_each_cpu(j, policy->cpus)
1024 per_cpu(cpufreq_cpu_data, j) = NULL;
1025 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1026
1027 kobject_put(&policy->kobj);
1028 wait_for_completion(&policy->kobj_unregister);
1029
1030 err_unlock_policy:
1031 unlock_policy_rwsem_write(cpu);
1032 err_free_cpumask:
1033 free_cpumask_var(policy->cpus);
1034 err_free_policy:
1035 kfree(policy);
1036 nomem_out:
1037 module_put(cpufreq_driver->owner);
1038 module_out:
1039 cpufreq_debug_enable_ratelimit();
1040 return ret;
1041 }
1042
1043
1044 /**
1045 * __cpufreq_remove_dev - remove a CPU device
1046 *
1047 * Removes the cpufreq interface for a CPU device.
1048 * Caller should already have policy_rwsem in write mode for this CPU.
1049 * This routine frees the rwsem before returning.
1050 */
1051 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1052 {
1053 unsigned int cpu = sys_dev->id;
1054 unsigned long flags;
1055 struct cpufreq_policy *data;
1056 #ifdef CONFIG_SMP
1057 struct sys_device *cpu_sys_dev;
1058 unsigned int j;
1059 #endif
1060
1061 cpufreq_debug_disable_ratelimit();
1062 dprintk("unregistering CPU %u\n", cpu);
1063
1064 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1065 data = per_cpu(cpufreq_cpu_data, cpu);
1066
1067 if (!data) {
1068 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1069 cpufreq_debug_enable_ratelimit();
1070 unlock_policy_rwsem_write(cpu);
1071 return -EINVAL;
1072 }
1073 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1074
1075
1076 #ifdef CONFIG_SMP
1077 /* if this isn't the CPU which is the parent of the kobj, we
1078 * only need to unlink, put and exit
1079 */
1080 if (unlikely(cpu != data->cpu)) {
1081 dprintk("removing link\n");
1082 cpumask_clear_cpu(cpu, data->cpus);
1083 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1084 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1085 cpufreq_cpu_put(data);
1086 cpufreq_debug_enable_ratelimit();
1087 unlock_policy_rwsem_write(cpu);
1088 return 0;
1089 }
1090 #endif
1091
1092 #ifdef CONFIG_SMP
1093
1094 #ifdef CONFIG_HOTPLUG_CPU
1095 per_cpu(cpufreq_cpu_governor, cpu) = data->governor;
1096 #endif
1097
1098 /* if we have other CPUs still registered, we need to unlink them,
1099 * or else wait_for_completion below will lock up. Clean the
1100 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1101 * the sysfs links afterwards.
1102 */
1103 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1104 for_each_cpu(j, data->cpus) {
1105 if (j == cpu)
1106 continue;
1107 per_cpu(cpufreq_cpu_data, j) = NULL;
1108 }
1109 }
1110
1111 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1112
1113 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1114 for_each_cpu(j, data->cpus) {
1115 if (j == cpu)
1116 continue;
1117 dprintk("removing link for cpu %u\n", j);
1118 #ifdef CONFIG_HOTPLUG_CPU
1119 per_cpu(cpufreq_cpu_governor, j) = data->governor;
1120 #endif
1121 cpu_sys_dev = get_cpu_sysdev(j);
1122 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1123 cpufreq_cpu_put(data);
1124 }
1125 }
1126 #else
1127 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1128 #endif
1129
1130 if (cpufreq_driver->target)
1131 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1132
1133 kobject_put(&data->kobj);
1134
1135 /* we need to make sure that the underlying kobj is actually
1136 * not referenced anymore by anybody before we proceed with
1137 * unloading.
1138 */
1139 dprintk("waiting for dropping of refcount\n");
1140 wait_for_completion(&data->kobj_unregister);
1141 dprintk("wait complete\n");
1142
1143 if (cpufreq_driver->exit)
1144 cpufreq_driver->exit(data);
1145
1146 unlock_policy_rwsem_write(cpu);
1147
1148 free_cpumask_var(data->related_cpus);
1149 free_cpumask_var(data->cpus);
1150 kfree(data);
1151 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1152
1153 cpufreq_debug_enable_ratelimit();
1154 return 0;
1155 }
1156
1157
1158 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1159 {
1160 unsigned int cpu = sys_dev->id;
1161 int retval;
1162
1163 if (cpu_is_offline(cpu))
1164 return 0;
1165
1166 if (unlikely(lock_policy_rwsem_write(cpu)))
1167 BUG();
1168
1169 retval = __cpufreq_remove_dev(sys_dev);
1170 return retval;
1171 }
1172
1173
1174 static void handle_update(struct work_struct *work)
1175 {
1176 struct cpufreq_policy *policy =
1177 container_of(work, struct cpufreq_policy, update);
1178 unsigned int cpu = policy->cpu;
1179 dprintk("handle_update for cpu %u called\n", cpu);
1180 cpufreq_update_policy(cpu);
1181 }
1182
1183 /**
1184 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1185 * @cpu: cpu number
1186 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1187 * @new_freq: CPU frequency the CPU actually runs at
1188 *
1189 * We adjust to current frequency first, and need to clean up later.
1190 * So either call to cpufreq_update_policy() or schedule handle_update()).
1191 */
1192 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1193 unsigned int new_freq)
1194 {
1195 struct cpufreq_freqs freqs;
1196
1197 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1198 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1199
1200 freqs.cpu = cpu;
1201 freqs.old = old_freq;
1202 freqs.new = new_freq;
1203 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1204 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1205 }
1206
1207
1208 /**
1209 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1210 * @cpu: CPU number
1211 *
1212 * This is the last known freq, without actually getting it from the driver.
1213 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1214 */
1215 unsigned int cpufreq_quick_get(unsigned int cpu)
1216 {
1217 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1218 unsigned int ret_freq = 0;
1219
1220 if (policy) {
1221 ret_freq = policy->cur;
1222 cpufreq_cpu_put(policy);
1223 }
1224
1225 return ret_freq;
1226 }
1227 EXPORT_SYMBOL(cpufreq_quick_get);
1228
1229
1230 static unsigned int __cpufreq_get(unsigned int cpu)
1231 {
1232 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1233 unsigned int ret_freq = 0;
1234
1235 if (!cpufreq_driver->get)
1236 return ret_freq;
1237
1238 ret_freq = cpufreq_driver->get(cpu);
1239
1240 if (ret_freq && policy->cur &&
1241 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1242 /* verify no discrepancy between actual and
1243 saved value exists */
1244 if (unlikely(ret_freq != policy->cur)) {
1245 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1246 schedule_work(&policy->update);
1247 }
1248 }
1249
1250 return ret_freq;
1251 }
1252
1253 /**
1254 * cpufreq_get - get the current CPU frequency (in kHz)
1255 * @cpu: CPU number
1256 *
1257 * Get the CPU current (static) CPU frequency
1258 */
1259 unsigned int cpufreq_get(unsigned int cpu)
1260 {
1261 unsigned int ret_freq = 0;
1262 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1263
1264 if (!policy)
1265 goto out;
1266
1267 if (unlikely(lock_policy_rwsem_read(cpu)))
1268 goto out_policy;
1269
1270 ret_freq = __cpufreq_get(cpu);
1271
1272 unlock_policy_rwsem_read(cpu);
1273
1274 out_policy:
1275 cpufreq_cpu_put(policy);
1276 out:
1277 return ret_freq;
1278 }
1279 EXPORT_SYMBOL(cpufreq_get);
1280
1281
1282 /**
1283 * cpufreq_suspend - let the low level driver prepare for suspend
1284 */
1285
1286 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1287 {
1288 int ret = 0;
1289
1290 int cpu = sysdev->id;
1291 struct cpufreq_policy *cpu_policy;
1292
1293 dprintk("suspending cpu %u\n", cpu);
1294
1295 if (!cpu_online(cpu))
1296 return 0;
1297
1298 /* we may be lax here as interrupts are off. Nonetheless
1299 * we need to grab the correct cpu policy, as to check
1300 * whether we really run on this CPU.
1301 */
1302
1303 cpu_policy = cpufreq_cpu_get(cpu);
1304 if (!cpu_policy)
1305 return -EINVAL;
1306
1307 /* only handle each CPU group once */
1308 if (unlikely(cpu_policy->cpu != cpu))
1309 goto out;
1310
1311 if (cpufreq_driver->suspend) {
1312 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1313 if (ret)
1314 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1315 "step on CPU %u\n", cpu_policy->cpu);
1316 }
1317
1318 out:
1319 cpufreq_cpu_put(cpu_policy);
1320 return ret;
1321 }
1322
1323 /**
1324 * cpufreq_resume - restore proper CPU frequency handling after resume
1325 *
1326 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1327 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1328 * restored. It will verify that the current freq is in sync with
1329 * what we believe it to be. This is a bit later than when it
1330 * should be, but nonethteless it's better than calling
1331 * cpufreq_driver->get() here which might re-enable interrupts...
1332 */
1333 static int cpufreq_resume(struct sys_device *sysdev)
1334 {
1335 int ret = 0;
1336
1337 int cpu = sysdev->id;
1338 struct cpufreq_policy *cpu_policy;
1339
1340 dprintk("resuming cpu %u\n", cpu);
1341
1342 if (!cpu_online(cpu))
1343 return 0;
1344
1345 /* we may be lax here as interrupts are off. Nonetheless
1346 * we need to grab the correct cpu policy, as to check
1347 * whether we really run on this CPU.
1348 */
1349
1350 cpu_policy = cpufreq_cpu_get(cpu);
1351 if (!cpu_policy)
1352 return -EINVAL;
1353
1354 /* only handle each CPU group once */
1355 if (unlikely(cpu_policy->cpu != cpu))
1356 goto fail;
1357
1358 if (cpufreq_driver->resume) {
1359 ret = cpufreq_driver->resume(cpu_policy);
1360 if (ret) {
1361 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1362 "step on CPU %u\n", cpu_policy->cpu);
1363 goto fail;
1364 }
1365 }
1366
1367 schedule_work(&cpu_policy->update);
1368
1369 fail:
1370 cpufreq_cpu_put(cpu_policy);
1371 return ret;
1372 }
1373
1374 static struct sysdev_driver cpufreq_sysdev_driver = {
1375 .add = cpufreq_add_dev,
1376 .remove = cpufreq_remove_dev,
1377 .suspend = cpufreq_suspend,
1378 .resume = cpufreq_resume,
1379 };
1380
1381
1382 /*********************************************************************
1383 * NOTIFIER LISTS INTERFACE *
1384 *********************************************************************/
1385
1386 /**
1387 * cpufreq_register_notifier - register a driver with cpufreq
1388 * @nb: notifier function to register
1389 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1390 *
1391 * Add a driver to one of two lists: either a list of drivers that
1392 * are notified about clock rate changes (once before and once after
1393 * the transition), or a list of drivers that are notified about
1394 * changes in cpufreq policy.
1395 *
1396 * This function may sleep, and has the same return conditions as
1397 * blocking_notifier_chain_register.
1398 */
1399 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1400 {
1401 int ret;
1402
1403 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1404
1405 switch (list) {
1406 case CPUFREQ_TRANSITION_NOTIFIER:
1407 ret = srcu_notifier_chain_register(
1408 &cpufreq_transition_notifier_list, nb);
1409 break;
1410 case CPUFREQ_POLICY_NOTIFIER:
1411 ret = blocking_notifier_chain_register(
1412 &cpufreq_policy_notifier_list, nb);
1413 break;
1414 default:
1415 ret = -EINVAL;
1416 }
1417
1418 return ret;
1419 }
1420 EXPORT_SYMBOL(cpufreq_register_notifier);
1421
1422
1423 /**
1424 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1425 * @nb: notifier block to be unregistered
1426 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1427 *
1428 * Remove a driver from the CPU frequency notifier list.
1429 *
1430 * This function may sleep, and has the same return conditions as
1431 * blocking_notifier_chain_unregister.
1432 */
1433 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1434 {
1435 int ret;
1436
1437 switch (list) {
1438 case CPUFREQ_TRANSITION_NOTIFIER:
1439 ret = srcu_notifier_chain_unregister(
1440 &cpufreq_transition_notifier_list, nb);
1441 break;
1442 case CPUFREQ_POLICY_NOTIFIER:
1443 ret = blocking_notifier_chain_unregister(
1444 &cpufreq_policy_notifier_list, nb);
1445 break;
1446 default:
1447 ret = -EINVAL;
1448 }
1449
1450 return ret;
1451 }
1452 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1453
1454
1455 /*********************************************************************
1456 * GOVERNORS *
1457 *********************************************************************/
1458
1459
1460 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1461 unsigned int target_freq,
1462 unsigned int relation)
1463 {
1464 int retval = -EINVAL;
1465
1466 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1467 target_freq, relation);
1468 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1469 retval = cpufreq_driver->target(policy, target_freq, relation);
1470
1471 return retval;
1472 }
1473 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1474
1475 int cpufreq_driver_target(struct cpufreq_policy *policy,
1476 unsigned int target_freq,
1477 unsigned int relation)
1478 {
1479 int ret = -EINVAL;
1480
1481 policy = cpufreq_cpu_get(policy->cpu);
1482 if (!policy)
1483 goto no_policy;
1484
1485 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1486 goto fail;
1487
1488 ret = __cpufreq_driver_target(policy, target_freq, relation);
1489
1490 unlock_policy_rwsem_write(policy->cpu);
1491
1492 fail:
1493 cpufreq_cpu_put(policy);
1494 no_policy:
1495 return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1498
1499 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1500 {
1501 int ret = 0;
1502
1503 policy = cpufreq_cpu_get(policy->cpu);
1504 if (!policy)
1505 return -EINVAL;
1506
1507 if (cpu_online(cpu) && cpufreq_driver->getavg)
1508 ret = cpufreq_driver->getavg(policy, cpu);
1509
1510 cpufreq_cpu_put(policy);
1511 return ret;
1512 }
1513 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1514
1515 /*
1516 * when "event" is CPUFREQ_GOV_LIMITS
1517 */
1518
1519 static int __cpufreq_governor(struct cpufreq_policy *policy,
1520 unsigned int event)
1521 {
1522 int ret;
1523
1524 /* Only must be defined when default governor is known to have latency
1525 restrictions, like e.g. conservative or ondemand.
1526 That this is the case is already ensured in Kconfig
1527 */
1528 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1529 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1530 #else
1531 struct cpufreq_governor *gov = NULL;
1532 #endif
1533
1534 if (policy->governor->max_transition_latency &&
1535 policy->cpuinfo.transition_latency >
1536 policy->governor->max_transition_latency) {
1537 if (!gov)
1538 return -EINVAL;
1539 else {
1540 printk(KERN_WARNING "%s governor failed, too long"
1541 " transition latency of HW, fallback"
1542 " to %s governor\n",
1543 policy->governor->name,
1544 gov->name);
1545 policy->governor = gov;
1546 }
1547 }
1548
1549 if (!try_module_get(policy->governor->owner))
1550 return -EINVAL;
1551
1552 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1553 policy->cpu, event);
1554 ret = policy->governor->governor(policy, event);
1555
1556 /* we keep one module reference alive for
1557 each CPU governed by this CPU */
1558 if ((event != CPUFREQ_GOV_START) || ret)
1559 module_put(policy->governor->owner);
1560 if ((event == CPUFREQ_GOV_STOP) && !ret)
1561 module_put(policy->governor->owner);
1562
1563 return ret;
1564 }
1565
1566
1567 int cpufreq_register_governor(struct cpufreq_governor *governor)
1568 {
1569 int err;
1570
1571 if (!governor)
1572 return -EINVAL;
1573
1574 mutex_lock(&cpufreq_governor_mutex);
1575
1576 err = -EBUSY;
1577 if (__find_governor(governor->name) == NULL) {
1578 err = 0;
1579 list_add(&governor->governor_list, &cpufreq_governor_list);
1580 }
1581
1582 mutex_unlock(&cpufreq_governor_mutex);
1583 return err;
1584 }
1585 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1586
1587
1588 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1589 {
1590 if (!governor)
1591 return;
1592
1593 mutex_lock(&cpufreq_governor_mutex);
1594 list_del(&governor->governor_list);
1595 mutex_unlock(&cpufreq_governor_mutex);
1596 return;
1597 }
1598 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1599
1600
1601
1602 /*********************************************************************
1603 * POLICY INTERFACE *
1604 *********************************************************************/
1605
1606 /**
1607 * cpufreq_get_policy - get the current cpufreq_policy
1608 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1609 * is written
1610 *
1611 * Reads the current cpufreq policy.
1612 */
1613 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1614 {
1615 struct cpufreq_policy *cpu_policy;
1616 if (!policy)
1617 return -EINVAL;
1618
1619 cpu_policy = cpufreq_cpu_get(cpu);
1620 if (!cpu_policy)
1621 return -EINVAL;
1622
1623 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1624
1625 cpufreq_cpu_put(cpu_policy);
1626 return 0;
1627 }
1628 EXPORT_SYMBOL(cpufreq_get_policy);
1629
1630
1631 /*
1632 * data : current policy.
1633 * policy : policy to be set.
1634 */
1635 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1636 struct cpufreq_policy *policy)
1637 {
1638 int ret = 0;
1639
1640 cpufreq_debug_disable_ratelimit();
1641 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1642 policy->min, policy->max);
1643
1644 memcpy(&policy->cpuinfo, &data->cpuinfo,
1645 sizeof(struct cpufreq_cpuinfo));
1646
1647 if (policy->min > data->max || policy->max < data->min) {
1648 ret = -EINVAL;
1649 goto error_out;
1650 }
1651
1652 /* verify the cpu speed can be set within this limit */
1653 ret = cpufreq_driver->verify(policy);
1654 if (ret)
1655 goto error_out;
1656
1657 /* adjust if necessary - all reasons */
1658 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1659 CPUFREQ_ADJUST, policy);
1660
1661 /* adjust if necessary - hardware incompatibility*/
1662 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1663 CPUFREQ_INCOMPATIBLE, policy);
1664
1665 /* verify the cpu speed can be set within this limit,
1666 which might be different to the first one */
1667 ret = cpufreq_driver->verify(policy);
1668 if (ret)
1669 goto error_out;
1670
1671 /* notification of the new policy */
1672 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1673 CPUFREQ_NOTIFY, policy);
1674
1675 data->min = policy->min;
1676 data->max = policy->max;
1677
1678 dprintk("new min and max freqs are %u - %u kHz\n",
1679 data->min, data->max);
1680
1681 if (cpufreq_driver->setpolicy) {
1682 data->policy = policy->policy;
1683 dprintk("setting range\n");
1684 ret = cpufreq_driver->setpolicy(policy);
1685 } else {
1686 if (policy->governor != data->governor) {
1687 /* save old, working values */
1688 struct cpufreq_governor *old_gov = data->governor;
1689
1690 dprintk("governor switch\n");
1691
1692 /* end old governor */
1693 if (data->governor)
1694 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1695
1696 /* start new governor */
1697 data->governor = policy->governor;
1698 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1699 /* new governor failed, so re-start old one */
1700 dprintk("starting governor %s failed\n",
1701 data->governor->name);
1702 if (old_gov) {
1703 data->governor = old_gov;
1704 __cpufreq_governor(data,
1705 CPUFREQ_GOV_START);
1706 }
1707 ret = -EINVAL;
1708 goto error_out;
1709 }
1710 /* might be a policy change, too, so fall through */
1711 }
1712 dprintk("governor: change or update limits\n");
1713 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1714 }
1715
1716 error_out:
1717 cpufreq_debug_enable_ratelimit();
1718 return ret;
1719 }
1720
1721 /**
1722 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1723 * @cpu: CPU which shall be re-evaluated
1724 *
1725 * Usefull for policy notifiers which have different necessities
1726 * at different times.
1727 */
1728 int cpufreq_update_policy(unsigned int cpu)
1729 {
1730 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1731 struct cpufreq_policy policy;
1732 int ret;
1733
1734 if (!data) {
1735 ret = -ENODEV;
1736 goto no_policy;
1737 }
1738
1739 if (unlikely(lock_policy_rwsem_write(cpu))) {
1740 ret = -EINVAL;
1741 goto fail;
1742 }
1743
1744 dprintk("updating policy for CPU %u\n", cpu);
1745 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1746 policy.min = data->user_policy.min;
1747 policy.max = data->user_policy.max;
1748 policy.policy = data->user_policy.policy;
1749 policy.governor = data->user_policy.governor;
1750
1751 /* BIOS might change freq behind our back
1752 -> ask driver for current freq and notify governors about a change */
1753 if (cpufreq_driver->get) {
1754 policy.cur = cpufreq_driver->get(cpu);
1755 if (!data->cur) {
1756 dprintk("Driver did not initialize current freq");
1757 data->cur = policy.cur;
1758 } else {
1759 if (data->cur != policy.cur)
1760 cpufreq_out_of_sync(cpu, data->cur,
1761 policy.cur);
1762 }
1763 }
1764
1765 ret = __cpufreq_set_policy(data, &policy);
1766
1767 unlock_policy_rwsem_write(cpu);
1768
1769 fail:
1770 cpufreq_cpu_put(data);
1771 no_policy:
1772 return ret;
1773 }
1774 EXPORT_SYMBOL(cpufreq_update_policy);
1775
1776 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1777 unsigned long action, void *hcpu)
1778 {
1779 unsigned int cpu = (unsigned long)hcpu;
1780 struct sys_device *sys_dev;
1781
1782 sys_dev = get_cpu_sysdev(cpu);
1783 if (sys_dev) {
1784 switch (action) {
1785 case CPU_ONLINE:
1786 case CPU_ONLINE_FROZEN:
1787 cpufreq_add_dev(sys_dev);
1788 break;
1789 case CPU_DOWN_PREPARE:
1790 case CPU_DOWN_PREPARE_FROZEN:
1791 if (unlikely(lock_policy_rwsem_write(cpu)))
1792 BUG();
1793
1794 __cpufreq_remove_dev(sys_dev);
1795 break;
1796 case CPU_DOWN_FAILED:
1797 case CPU_DOWN_FAILED_FROZEN:
1798 cpufreq_add_dev(sys_dev);
1799 break;
1800 }
1801 }
1802 return NOTIFY_OK;
1803 }
1804
1805 static struct notifier_block __refdata cpufreq_cpu_notifier =
1806 {
1807 .notifier_call = cpufreq_cpu_callback,
1808 };
1809
1810 /*********************************************************************
1811 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1812 *********************************************************************/
1813
1814 /**
1815 * cpufreq_register_driver - register a CPU Frequency driver
1816 * @driver_data: A struct cpufreq_driver containing the values#
1817 * submitted by the CPU Frequency driver.
1818 *
1819 * Registers a CPU Frequency driver to this core code. This code
1820 * returns zero on success, -EBUSY when another driver got here first
1821 * (and isn't unregistered in the meantime).
1822 *
1823 */
1824 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1825 {
1826 unsigned long flags;
1827 int ret;
1828
1829 if (!driver_data || !driver_data->verify || !driver_data->init ||
1830 ((!driver_data->setpolicy) && (!driver_data->target)))
1831 return -EINVAL;
1832
1833 dprintk("trying to register driver %s\n", driver_data->name);
1834
1835 if (driver_data->setpolicy)
1836 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1837
1838 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1839 if (cpufreq_driver) {
1840 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1841 return -EBUSY;
1842 }
1843 cpufreq_driver = driver_data;
1844 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1845
1846 ret = sysdev_driver_register(&cpu_sysdev_class,
1847 &cpufreq_sysdev_driver);
1848
1849 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1850 int i;
1851 ret = -ENODEV;
1852
1853 /* check for at least one working CPU */
1854 for (i = 0; i < nr_cpu_ids; i++)
1855 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1856 ret = 0;
1857 break;
1858 }
1859
1860 /* if all ->init() calls failed, unregister */
1861 if (ret) {
1862 dprintk("no CPU initialized for driver %s\n",
1863 driver_data->name);
1864 sysdev_driver_unregister(&cpu_sysdev_class,
1865 &cpufreq_sysdev_driver);
1866
1867 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1868 cpufreq_driver = NULL;
1869 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1870 }
1871 }
1872
1873 if (!ret) {
1874 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1875 dprintk("driver %s up and running\n", driver_data->name);
1876 cpufreq_debug_enable_ratelimit();
1877 }
1878
1879 return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1882
1883
1884 /**
1885 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1886 *
1887 * Unregister the current CPUFreq driver. Only call this if you have
1888 * the right to do so, i.e. if you have succeeded in initialising before!
1889 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1890 * currently not initialised.
1891 */
1892 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1893 {
1894 unsigned long flags;
1895
1896 cpufreq_debug_disable_ratelimit();
1897
1898 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1899 cpufreq_debug_enable_ratelimit();
1900 return -EINVAL;
1901 }
1902
1903 dprintk("unregistering driver %s\n", driver->name);
1904
1905 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1906 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1907
1908 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1909 cpufreq_driver = NULL;
1910 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1911
1912 return 0;
1913 }
1914 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1915
1916 static int __init cpufreq_core_init(void)
1917 {
1918 int cpu;
1919
1920 for_each_possible_cpu(cpu) {
1921 per_cpu(policy_cpu, cpu) = -1;
1922 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1923 }
1924 return 0;
1925 }
1926
1927 core_initcall(cpufreq_core_init);