]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge tag 'powerpc-5.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-hirsute-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/cpu_cooling.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/module.h>
28 #include <linux/mutex.h>
29 #include <linux/slab.h>
30 #include <linux/suspend.h>
31 #include <linux/syscore_ops.h>
32 #include <linux/tick.h>
33 #include <trace/events/power.h>
34
35 static LIST_HEAD(cpufreq_policy_list);
36
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active) \
39 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 if ((__active) == !policy_is_inactive(__policy))
41
42 #define for_each_active_policy(__policy) \
43 for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy) \
45 for_each_suitable_policy(__policy, false)
46
47 #define for_each_policy(__policy) \
48 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
49
50 /* Iterate over governors */
51 static LIST_HEAD(cpufreq_governor_list);
52 #define for_each_governor(__governor) \
53 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
54
55 /**
56 * The "cpufreq driver" - the arch- or hardware-dependent low
57 * level driver of CPUFreq support, and its spinlock. This lock
58 * also protects the cpufreq_cpu_data array.
59 */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64 /* Flag to suspend/resume CPUFreq governors */
65 static bool cpufreq_suspended;
66
67 static inline bool has_target(void)
68 {
69 return cpufreq_driver->target_index || cpufreq_driver->target;
70 }
71
72 /* internal prototypes */
73 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
74 static int cpufreq_init_governor(struct cpufreq_policy *policy);
75 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
76 static int cpufreq_start_governor(struct cpufreq_policy *policy);
77 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
78 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
79
80 /**
81 * Two notifier lists: the "policy" list is involved in the
82 * validation process for a new CPU frequency policy; the
83 * "transition" list for kernel code that needs to handle
84 * changes to devices when the CPU clock speed changes.
85 * The mutex locks both lists.
86 */
87 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
88 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
89
90 static int off __read_mostly;
91 static int cpufreq_disabled(void)
92 {
93 return off;
94 }
95 void disable_cpufreq(void)
96 {
97 off = 1;
98 }
99 static DEFINE_MUTEX(cpufreq_governor_mutex);
100
101 bool have_governor_per_policy(void)
102 {
103 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
104 }
105 EXPORT_SYMBOL_GPL(have_governor_per_policy);
106
107 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
108 {
109 if (have_governor_per_policy())
110 return &policy->kobj;
111 else
112 return cpufreq_global_kobject;
113 }
114 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
115
116 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
117 {
118 u64 idle_time;
119 u64 cur_wall_time;
120 u64 busy_time;
121
122 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
123
124 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
128 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
129 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
130
131 idle_time = cur_wall_time - busy_time;
132 if (wall)
133 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
134
135 return div_u64(idle_time, NSEC_PER_USEC);
136 }
137
138 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
139 {
140 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
141
142 if (idle_time == -1ULL)
143 return get_cpu_idle_time_jiffy(cpu, wall);
144 else if (!io_busy)
145 idle_time += get_cpu_iowait_time_us(cpu, wall);
146
147 return idle_time;
148 }
149 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
150
151 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
152 unsigned long max_freq)
153 {
154 }
155 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
156
157 /*
158 * This is a generic cpufreq init() routine which can be used by cpufreq
159 * drivers of SMP systems. It will do following:
160 * - validate & show freq table passed
161 * - set policies transition latency
162 * - policy->cpus with all possible CPUs
163 */
164 int cpufreq_generic_init(struct cpufreq_policy *policy,
165 struct cpufreq_frequency_table *table,
166 unsigned int transition_latency)
167 {
168 policy->freq_table = table;
169 policy->cpuinfo.transition_latency = transition_latency;
170
171 /*
172 * The driver only supports the SMP configuration where all processors
173 * share the clock and voltage and clock.
174 */
175 cpumask_setall(policy->cpus);
176
177 return 0;
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
180
181 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
182 {
183 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
184
185 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
188
189 unsigned int cpufreq_generic_get(unsigned int cpu)
190 {
191 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
192
193 if (!policy || IS_ERR(policy->clk)) {
194 pr_err("%s: No %s associated to cpu: %d\n",
195 __func__, policy ? "clk" : "policy", cpu);
196 return 0;
197 }
198
199 return clk_get_rate(policy->clk) / 1000;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
202
203 /**
204 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
205 * @cpu: CPU to find the policy for.
206 *
207 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
208 * the kobject reference counter of that policy. Return a valid policy on
209 * success or NULL on failure.
210 *
211 * The policy returned by this function has to be released with the help of
212 * cpufreq_cpu_put() to balance its kobject reference counter properly.
213 */
214 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
215 {
216 struct cpufreq_policy *policy = NULL;
217 unsigned long flags;
218
219 if (WARN_ON(cpu >= nr_cpu_ids))
220 return NULL;
221
222 /* get the cpufreq driver */
223 read_lock_irqsave(&cpufreq_driver_lock, flags);
224
225 if (cpufreq_driver) {
226 /* get the CPU */
227 policy = cpufreq_cpu_get_raw(cpu);
228 if (policy)
229 kobject_get(&policy->kobj);
230 }
231
232 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
233
234 return policy;
235 }
236 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
237
238 /**
239 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
240 * @policy: cpufreq policy returned by cpufreq_cpu_get().
241 */
242 void cpufreq_cpu_put(struct cpufreq_policy *policy)
243 {
244 kobject_put(&policy->kobj);
245 }
246 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
247
248 /**
249 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
250 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
251 */
252 void cpufreq_cpu_release(struct cpufreq_policy *policy)
253 {
254 if (WARN_ON(!policy))
255 return;
256
257 lockdep_assert_held(&policy->rwsem);
258
259 up_write(&policy->rwsem);
260
261 cpufreq_cpu_put(policy);
262 }
263
264 /**
265 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
266 * @cpu: CPU to find the policy for.
267 *
268 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
269 * if the policy returned by it is not NULL, acquire its rwsem for writing.
270 * Return the policy if it is active or release it and return NULL otherwise.
271 *
272 * The policy returned by this function has to be released with the help of
273 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
274 * counter properly.
275 */
276 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
277 {
278 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
279
280 if (!policy)
281 return NULL;
282
283 down_write(&policy->rwsem);
284
285 if (policy_is_inactive(policy)) {
286 cpufreq_cpu_release(policy);
287 return NULL;
288 }
289
290 return policy;
291 }
292
293 /*********************************************************************
294 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
295 *********************************************************************/
296
297 /**
298 * adjust_jiffies - adjust the system "loops_per_jiffy"
299 *
300 * This function alters the system "loops_per_jiffy" for the clock
301 * speed change. Note that loops_per_jiffy cannot be updated on SMP
302 * systems as each CPU might be scaled differently. So, use the arch
303 * per-CPU loops_per_jiffy value wherever possible.
304 */
305 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
306 {
307 #ifndef CONFIG_SMP
308 static unsigned long l_p_j_ref;
309 static unsigned int l_p_j_ref_freq;
310
311 if (ci->flags & CPUFREQ_CONST_LOOPS)
312 return;
313
314 if (!l_p_j_ref_freq) {
315 l_p_j_ref = loops_per_jiffy;
316 l_p_j_ref_freq = ci->old;
317 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
318 l_p_j_ref, l_p_j_ref_freq);
319 }
320 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
321 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
322 ci->new);
323 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
324 loops_per_jiffy, ci->new);
325 }
326 #endif
327 }
328
329 /**
330 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
331 * @policy: cpufreq policy to enable fast frequency switching for.
332 * @freqs: contain details of the frequency update.
333 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
334 *
335 * This function calls the transition notifiers and the "adjust_jiffies"
336 * function. It is called twice on all CPU frequency changes that have
337 * external effects.
338 */
339 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
340 struct cpufreq_freqs *freqs,
341 unsigned int state)
342 {
343 int cpu;
344
345 BUG_ON(irqs_disabled());
346
347 if (cpufreq_disabled())
348 return;
349
350 freqs->policy = policy;
351 freqs->flags = cpufreq_driver->flags;
352 pr_debug("notification %u of frequency transition to %u kHz\n",
353 state, freqs->new);
354
355 switch (state) {
356 case CPUFREQ_PRECHANGE:
357 /*
358 * Detect if the driver reported a value as "old frequency"
359 * which is not equal to what the cpufreq core thinks is
360 * "old frequency".
361 */
362 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
363 if (policy->cur && (policy->cur != freqs->old)) {
364 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
365 freqs->old, policy->cur);
366 freqs->old = policy->cur;
367 }
368 }
369
370 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
371 CPUFREQ_PRECHANGE, freqs);
372
373 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
374 break;
375
376 case CPUFREQ_POSTCHANGE:
377 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
378 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
379 cpumask_pr_args(policy->cpus));
380
381 for_each_cpu(cpu, policy->cpus)
382 trace_cpu_frequency(freqs->new, cpu);
383
384 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
385 CPUFREQ_POSTCHANGE, freqs);
386
387 cpufreq_stats_record_transition(policy, freqs->new);
388 policy->cur = freqs->new;
389 }
390 }
391
392 /* Do post notifications when there are chances that transition has failed */
393 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
394 struct cpufreq_freqs *freqs, int transition_failed)
395 {
396 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 if (!transition_failed)
398 return;
399
400 swap(freqs->old, freqs->new);
401 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
402 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
403 }
404
405 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
406 struct cpufreq_freqs *freqs)
407 {
408
409 /*
410 * Catch double invocations of _begin() which lead to self-deadlock.
411 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
412 * doesn't invoke _begin() on their behalf, and hence the chances of
413 * double invocations are very low. Moreover, there are scenarios
414 * where these checks can emit false-positive warnings in these
415 * drivers; so we avoid that by skipping them altogether.
416 */
417 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
418 && current == policy->transition_task);
419
420 wait:
421 wait_event(policy->transition_wait, !policy->transition_ongoing);
422
423 spin_lock(&policy->transition_lock);
424
425 if (unlikely(policy->transition_ongoing)) {
426 spin_unlock(&policy->transition_lock);
427 goto wait;
428 }
429
430 policy->transition_ongoing = true;
431 policy->transition_task = current;
432
433 spin_unlock(&policy->transition_lock);
434
435 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
436 }
437 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
438
439 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
440 struct cpufreq_freqs *freqs, int transition_failed)
441 {
442 if (WARN_ON(!policy->transition_ongoing))
443 return;
444
445 cpufreq_notify_post_transition(policy, freqs, transition_failed);
446
447 policy->transition_ongoing = false;
448 policy->transition_task = NULL;
449
450 wake_up(&policy->transition_wait);
451 }
452 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
453
454 /*
455 * Fast frequency switching status count. Positive means "enabled", negative
456 * means "disabled" and 0 means "not decided yet".
457 */
458 static int cpufreq_fast_switch_count;
459 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
460
461 static void cpufreq_list_transition_notifiers(void)
462 {
463 struct notifier_block *nb;
464
465 pr_info("Registered transition notifiers:\n");
466
467 mutex_lock(&cpufreq_transition_notifier_list.mutex);
468
469 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
470 pr_info("%pS\n", nb->notifier_call);
471
472 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
473 }
474
475 /**
476 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
477 * @policy: cpufreq policy to enable fast frequency switching for.
478 *
479 * Try to enable fast frequency switching for @policy.
480 *
481 * The attempt will fail if there is at least one transition notifier registered
482 * at this point, as fast frequency switching is quite fundamentally at odds
483 * with transition notifiers. Thus if successful, it will make registration of
484 * transition notifiers fail going forward.
485 */
486 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
487 {
488 lockdep_assert_held(&policy->rwsem);
489
490 if (!policy->fast_switch_possible)
491 return;
492
493 mutex_lock(&cpufreq_fast_switch_lock);
494 if (cpufreq_fast_switch_count >= 0) {
495 cpufreq_fast_switch_count++;
496 policy->fast_switch_enabled = true;
497 } else {
498 pr_warn("CPU%u: Fast frequency switching not enabled\n",
499 policy->cpu);
500 cpufreq_list_transition_notifiers();
501 }
502 mutex_unlock(&cpufreq_fast_switch_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
505
506 /**
507 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
508 * @policy: cpufreq policy to disable fast frequency switching for.
509 */
510 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
511 {
512 mutex_lock(&cpufreq_fast_switch_lock);
513 if (policy->fast_switch_enabled) {
514 policy->fast_switch_enabled = false;
515 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
516 cpufreq_fast_switch_count--;
517 }
518 mutex_unlock(&cpufreq_fast_switch_lock);
519 }
520 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
521
522 /**
523 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
524 * one.
525 * @target_freq: target frequency to resolve.
526 *
527 * The target to driver frequency mapping is cached in the policy.
528 *
529 * Return: Lowest driver-supported frequency greater than or equal to the
530 * given target_freq, subject to policy (min/max) and driver limitations.
531 */
532 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
533 unsigned int target_freq)
534 {
535 target_freq = clamp_val(target_freq, policy->min, policy->max);
536 policy->cached_target_freq = target_freq;
537
538 if (cpufreq_driver->target_index) {
539 int idx;
540
541 idx = cpufreq_frequency_table_target(policy, target_freq,
542 CPUFREQ_RELATION_L);
543 policy->cached_resolved_idx = idx;
544 return policy->freq_table[idx].frequency;
545 }
546
547 if (cpufreq_driver->resolve_freq)
548 return cpufreq_driver->resolve_freq(policy, target_freq);
549
550 return target_freq;
551 }
552 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
553
554 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
555 {
556 unsigned int latency;
557
558 if (policy->transition_delay_us)
559 return policy->transition_delay_us;
560
561 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
562 if (latency) {
563 /*
564 * For platforms that can change the frequency very fast (< 10
565 * us), the above formula gives a decent transition delay. But
566 * for platforms where transition_latency is in milliseconds, it
567 * ends up giving unrealistic values.
568 *
569 * Cap the default transition delay to 10 ms, which seems to be
570 * a reasonable amount of time after which we should reevaluate
571 * the frequency.
572 */
573 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
574 }
575
576 return LATENCY_MULTIPLIER;
577 }
578 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
579
580 /*********************************************************************
581 * SYSFS INTERFACE *
582 *********************************************************************/
583 static ssize_t show_boost(struct kobject *kobj,
584 struct kobj_attribute *attr, char *buf)
585 {
586 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
587 }
588
589 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
590 const char *buf, size_t count)
591 {
592 int ret, enable;
593
594 ret = sscanf(buf, "%d", &enable);
595 if (ret != 1 || enable < 0 || enable > 1)
596 return -EINVAL;
597
598 if (cpufreq_boost_trigger_state(enable)) {
599 pr_err("%s: Cannot %s BOOST!\n",
600 __func__, enable ? "enable" : "disable");
601 return -EINVAL;
602 }
603
604 pr_debug("%s: cpufreq BOOST %s\n",
605 __func__, enable ? "enabled" : "disabled");
606
607 return count;
608 }
609 define_one_global_rw(boost);
610
611 static struct cpufreq_governor *find_governor(const char *str_governor)
612 {
613 struct cpufreq_governor *t;
614
615 for_each_governor(t)
616 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
617 return t;
618
619 return NULL;
620 }
621
622 static int cpufreq_parse_policy(char *str_governor,
623 struct cpufreq_policy *policy)
624 {
625 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
626 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
627 return 0;
628 }
629 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
630 policy->policy = CPUFREQ_POLICY_POWERSAVE;
631 return 0;
632 }
633 return -EINVAL;
634 }
635
636 /**
637 * cpufreq_parse_governor - parse a governor string only for !setpolicy
638 */
639 static int cpufreq_parse_governor(char *str_governor,
640 struct cpufreq_policy *policy)
641 {
642 struct cpufreq_governor *t;
643
644 mutex_lock(&cpufreq_governor_mutex);
645
646 t = find_governor(str_governor);
647 if (!t) {
648 int ret;
649
650 mutex_unlock(&cpufreq_governor_mutex);
651
652 ret = request_module("cpufreq_%s", str_governor);
653 if (ret)
654 return -EINVAL;
655
656 mutex_lock(&cpufreq_governor_mutex);
657
658 t = find_governor(str_governor);
659 }
660 if (t && !try_module_get(t->owner))
661 t = NULL;
662
663 mutex_unlock(&cpufreq_governor_mutex);
664
665 if (t) {
666 policy->governor = t;
667 return 0;
668 }
669
670 return -EINVAL;
671 }
672
673 /**
674 * cpufreq_per_cpu_attr_read() / show_##file_name() -
675 * print out cpufreq information
676 *
677 * Write out information from cpufreq_driver->policy[cpu]; object must be
678 * "unsigned int".
679 */
680
681 #define show_one(file_name, object) \
682 static ssize_t show_##file_name \
683 (struct cpufreq_policy *policy, char *buf) \
684 { \
685 return sprintf(buf, "%u\n", policy->object); \
686 }
687
688 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
689 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
690 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
691 show_one(scaling_min_freq, min);
692 show_one(scaling_max_freq, max);
693
694 __weak unsigned int arch_freq_get_on_cpu(int cpu)
695 {
696 return 0;
697 }
698
699 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
700 {
701 ssize_t ret;
702 unsigned int freq;
703
704 freq = arch_freq_get_on_cpu(policy->cpu);
705 if (freq)
706 ret = sprintf(buf, "%u\n", freq);
707 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
708 cpufreq_driver->get)
709 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
710 else
711 ret = sprintf(buf, "%u\n", policy->cur);
712 return ret;
713 }
714
715 /**
716 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
717 */
718 #define store_one(file_name, object) \
719 static ssize_t store_##file_name \
720 (struct cpufreq_policy *policy, const char *buf, size_t count) \
721 { \
722 int ret, temp; \
723 struct cpufreq_policy new_policy; \
724 \
725 memcpy(&new_policy, policy, sizeof(*policy)); \
726 new_policy.min = policy->user_policy.min; \
727 new_policy.max = policy->user_policy.max; \
728 \
729 ret = sscanf(buf, "%u", &new_policy.object); \
730 if (ret != 1) \
731 return -EINVAL; \
732 \
733 temp = new_policy.object; \
734 ret = cpufreq_set_policy(policy, &new_policy); \
735 if (!ret) \
736 policy->user_policy.object = temp; \
737 \
738 return ret ? ret : count; \
739 }
740
741 store_one(scaling_min_freq, min);
742 store_one(scaling_max_freq, max);
743
744 /**
745 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
746 */
747 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
748 char *buf)
749 {
750 unsigned int cur_freq = __cpufreq_get(policy);
751
752 if (cur_freq)
753 return sprintf(buf, "%u\n", cur_freq);
754
755 return sprintf(buf, "<unknown>\n");
756 }
757
758 /**
759 * show_scaling_governor - show the current policy for the specified CPU
760 */
761 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
762 {
763 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
764 return sprintf(buf, "powersave\n");
765 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
766 return sprintf(buf, "performance\n");
767 else if (policy->governor)
768 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
769 policy->governor->name);
770 return -EINVAL;
771 }
772
773 /**
774 * store_scaling_governor - store policy for the specified CPU
775 */
776 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
777 const char *buf, size_t count)
778 {
779 int ret;
780 char str_governor[16];
781 struct cpufreq_policy new_policy;
782
783 memcpy(&new_policy, policy, sizeof(*policy));
784
785 ret = sscanf(buf, "%15s", str_governor);
786 if (ret != 1)
787 return -EINVAL;
788
789 if (cpufreq_driver->setpolicy) {
790 if (cpufreq_parse_policy(str_governor, &new_policy))
791 return -EINVAL;
792 } else {
793 if (cpufreq_parse_governor(str_governor, &new_policy))
794 return -EINVAL;
795 }
796
797 ret = cpufreq_set_policy(policy, &new_policy);
798
799 if (new_policy.governor)
800 module_put(new_policy.governor->owner);
801
802 return ret ? ret : count;
803 }
804
805 /**
806 * show_scaling_driver - show the cpufreq driver currently loaded
807 */
808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
809 {
810 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
811 }
812
813 /**
814 * show_scaling_available_governors - show the available CPUfreq governors
815 */
816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
817 char *buf)
818 {
819 ssize_t i = 0;
820 struct cpufreq_governor *t;
821
822 if (!has_target()) {
823 i += sprintf(buf, "performance powersave");
824 goto out;
825 }
826
827 for_each_governor(t) {
828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 - (CPUFREQ_NAME_LEN + 2)))
830 goto out;
831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 }
833 out:
834 i += sprintf(&buf[i], "\n");
835 return i;
836 }
837
838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
839 {
840 ssize_t i = 0;
841 unsigned int cpu;
842
843 for_each_cpu(cpu, mask) {
844 if (i)
845 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
847 if (i >= (PAGE_SIZE - 5))
848 break;
849 }
850 i += sprintf(&buf[i], "\n");
851 return i;
852 }
853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
854
855 /**
856 * show_related_cpus - show the CPUs affected by each transition even if
857 * hw coordination is in use
858 */
859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
860 {
861 return cpufreq_show_cpus(policy->related_cpus, buf);
862 }
863
864 /**
865 * show_affected_cpus - show the CPUs affected by each transition
866 */
867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
868 {
869 return cpufreq_show_cpus(policy->cpus, buf);
870 }
871
872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
873 const char *buf, size_t count)
874 {
875 unsigned int freq = 0;
876 unsigned int ret;
877
878 if (!policy->governor || !policy->governor->store_setspeed)
879 return -EINVAL;
880
881 ret = sscanf(buf, "%u", &freq);
882 if (ret != 1)
883 return -EINVAL;
884
885 policy->governor->store_setspeed(policy, freq);
886
887 return count;
888 }
889
890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
891 {
892 if (!policy->governor || !policy->governor->show_setspeed)
893 return sprintf(buf, "<unsupported>\n");
894
895 return policy->governor->show_setspeed(policy, buf);
896 }
897
898 /**
899 * show_bios_limit - show the current cpufreq HW/BIOS limitation
900 */
901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
902 {
903 unsigned int limit;
904 int ret;
905 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
906 if (!ret)
907 return sprintf(buf, "%u\n", limit);
908 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
909 }
910
911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
912 cpufreq_freq_attr_ro(cpuinfo_min_freq);
913 cpufreq_freq_attr_ro(cpuinfo_max_freq);
914 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
915 cpufreq_freq_attr_ro(scaling_available_governors);
916 cpufreq_freq_attr_ro(scaling_driver);
917 cpufreq_freq_attr_ro(scaling_cur_freq);
918 cpufreq_freq_attr_ro(bios_limit);
919 cpufreq_freq_attr_ro(related_cpus);
920 cpufreq_freq_attr_ro(affected_cpus);
921 cpufreq_freq_attr_rw(scaling_min_freq);
922 cpufreq_freq_attr_rw(scaling_max_freq);
923 cpufreq_freq_attr_rw(scaling_governor);
924 cpufreq_freq_attr_rw(scaling_setspeed);
925
926 static struct attribute *default_attrs[] = {
927 &cpuinfo_min_freq.attr,
928 &cpuinfo_max_freq.attr,
929 &cpuinfo_transition_latency.attr,
930 &scaling_min_freq.attr,
931 &scaling_max_freq.attr,
932 &affected_cpus.attr,
933 &related_cpus.attr,
934 &scaling_governor.attr,
935 &scaling_driver.attr,
936 &scaling_available_governors.attr,
937 &scaling_setspeed.attr,
938 NULL
939 };
940
941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
942 #define to_attr(a) container_of(a, struct freq_attr, attr)
943
944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
945 {
946 struct cpufreq_policy *policy = to_policy(kobj);
947 struct freq_attr *fattr = to_attr(attr);
948 ssize_t ret;
949
950 down_read(&policy->rwsem);
951 ret = fattr->show(policy, buf);
952 up_read(&policy->rwsem);
953
954 return ret;
955 }
956
957 static ssize_t store(struct kobject *kobj, struct attribute *attr,
958 const char *buf, size_t count)
959 {
960 struct cpufreq_policy *policy = to_policy(kobj);
961 struct freq_attr *fattr = to_attr(attr);
962 ssize_t ret = -EINVAL;
963
964 /*
965 * cpus_read_trylock() is used here to work around a circular lock
966 * dependency problem with respect to the cpufreq_register_driver().
967 */
968 if (!cpus_read_trylock())
969 return -EBUSY;
970
971 if (cpu_online(policy->cpu)) {
972 down_write(&policy->rwsem);
973 ret = fattr->store(policy, buf, count);
974 up_write(&policy->rwsem);
975 }
976
977 cpus_read_unlock();
978
979 return ret;
980 }
981
982 static void cpufreq_sysfs_release(struct kobject *kobj)
983 {
984 struct cpufreq_policy *policy = to_policy(kobj);
985 pr_debug("last reference is dropped\n");
986 complete(&policy->kobj_unregister);
987 }
988
989 static const struct sysfs_ops sysfs_ops = {
990 .show = show,
991 .store = store,
992 };
993
994 static struct kobj_type ktype_cpufreq = {
995 .sysfs_ops = &sysfs_ops,
996 .default_attrs = default_attrs,
997 .release = cpufreq_sysfs_release,
998 };
999
1000 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1001 {
1002 struct device *dev = get_cpu_device(cpu);
1003
1004 if (!dev)
1005 return;
1006
1007 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1008 return;
1009
1010 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1011 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1012 dev_err(dev, "cpufreq symlink creation failed\n");
1013 }
1014
1015 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1016 struct device *dev)
1017 {
1018 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1019 sysfs_remove_link(&dev->kobj, "cpufreq");
1020 }
1021
1022 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1023 {
1024 struct freq_attr **drv_attr;
1025 int ret = 0;
1026
1027 /* set up files for this cpu device */
1028 drv_attr = cpufreq_driver->attr;
1029 while (drv_attr && *drv_attr) {
1030 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1031 if (ret)
1032 return ret;
1033 drv_attr++;
1034 }
1035 if (cpufreq_driver->get) {
1036 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1037 if (ret)
1038 return ret;
1039 }
1040
1041 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1042 if (ret)
1043 return ret;
1044
1045 if (cpufreq_driver->bios_limit) {
1046 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1047 if (ret)
1048 return ret;
1049 }
1050
1051 return 0;
1052 }
1053
1054 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1055 {
1056 return NULL;
1057 }
1058
1059 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1060 {
1061 struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1062 struct cpufreq_policy new_policy;
1063
1064 memcpy(&new_policy, policy, sizeof(*policy));
1065
1066 def_gov = cpufreq_default_governor();
1067
1068 if (has_target()) {
1069 /*
1070 * Update governor of new_policy to the governor used before
1071 * hotplug
1072 */
1073 gov = find_governor(policy->last_governor);
1074 if (gov) {
1075 pr_debug("Restoring governor %s for cpu %d\n",
1076 policy->governor->name, policy->cpu);
1077 } else {
1078 if (!def_gov)
1079 return -ENODATA;
1080 gov = def_gov;
1081 }
1082 new_policy.governor = gov;
1083 } else {
1084 /* Use the default policy if there is no last_policy. */
1085 if (policy->last_policy) {
1086 new_policy.policy = policy->last_policy;
1087 } else {
1088 if (!def_gov)
1089 return -ENODATA;
1090 cpufreq_parse_policy(def_gov->name, &new_policy);
1091 }
1092 }
1093
1094 return cpufreq_set_policy(policy, &new_policy);
1095 }
1096
1097 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1098 {
1099 int ret = 0;
1100
1101 /* Has this CPU been taken care of already? */
1102 if (cpumask_test_cpu(cpu, policy->cpus))
1103 return 0;
1104
1105 down_write(&policy->rwsem);
1106 if (has_target())
1107 cpufreq_stop_governor(policy);
1108
1109 cpumask_set_cpu(cpu, policy->cpus);
1110
1111 if (has_target()) {
1112 ret = cpufreq_start_governor(policy);
1113 if (ret)
1114 pr_err("%s: Failed to start governor\n", __func__);
1115 }
1116 up_write(&policy->rwsem);
1117 return ret;
1118 }
1119
1120 static void handle_update(struct work_struct *work)
1121 {
1122 struct cpufreq_policy *policy =
1123 container_of(work, struct cpufreq_policy, update);
1124 unsigned int cpu = policy->cpu;
1125 pr_debug("handle_update for cpu %u called\n", cpu);
1126 cpufreq_update_policy(cpu);
1127 }
1128
1129 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1130 {
1131 struct cpufreq_policy *policy;
1132 int ret;
1133
1134 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1135 if (!policy)
1136 return NULL;
1137
1138 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1139 goto err_free_policy;
1140
1141 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1142 goto err_free_cpumask;
1143
1144 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1145 goto err_free_rcpumask;
1146
1147 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1148 cpufreq_global_kobject, "policy%u", cpu);
1149 if (ret) {
1150 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1151 /*
1152 * The entire policy object will be freed below, but the extra
1153 * memory allocated for the kobject name needs to be freed by
1154 * releasing the kobject.
1155 */
1156 kobject_put(&policy->kobj);
1157 goto err_free_real_cpus;
1158 }
1159
1160 INIT_LIST_HEAD(&policy->policy_list);
1161 init_rwsem(&policy->rwsem);
1162 spin_lock_init(&policy->transition_lock);
1163 init_waitqueue_head(&policy->transition_wait);
1164 init_completion(&policy->kobj_unregister);
1165 INIT_WORK(&policy->update, handle_update);
1166
1167 policy->cpu = cpu;
1168 return policy;
1169
1170 err_free_real_cpus:
1171 free_cpumask_var(policy->real_cpus);
1172 err_free_rcpumask:
1173 free_cpumask_var(policy->related_cpus);
1174 err_free_cpumask:
1175 free_cpumask_var(policy->cpus);
1176 err_free_policy:
1177 kfree(policy);
1178
1179 return NULL;
1180 }
1181
1182 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1183 {
1184 struct kobject *kobj;
1185 struct completion *cmp;
1186
1187 down_write(&policy->rwsem);
1188 cpufreq_stats_free_table(policy);
1189 kobj = &policy->kobj;
1190 cmp = &policy->kobj_unregister;
1191 up_write(&policy->rwsem);
1192 kobject_put(kobj);
1193
1194 /*
1195 * We need to make sure that the underlying kobj is
1196 * actually not referenced anymore by anybody before we
1197 * proceed with unloading.
1198 */
1199 pr_debug("waiting for dropping of refcount\n");
1200 wait_for_completion(cmp);
1201 pr_debug("wait complete\n");
1202 }
1203
1204 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1205 {
1206 unsigned long flags;
1207 int cpu;
1208
1209 /* Remove policy from list */
1210 write_lock_irqsave(&cpufreq_driver_lock, flags);
1211 list_del(&policy->policy_list);
1212
1213 for_each_cpu(cpu, policy->related_cpus)
1214 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1215 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1216
1217 cpufreq_policy_put_kobj(policy);
1218 free_cpumask_var(policy->real_cpus);
1219 free_cpumask_var(policy->related_cpus);
1220 free_cpumask_var(policy->cpus);
1221 kfree(policy);
1222 }
1223
1224 static int cpufreq_online(unsigned int cpu)
1225 {
1226 struct cpufreq_policy *policy;
1227 bool new_policy;
1228 unsigned long flags;
1229 unsigned int j;
1230 int ret;
1231
1232 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1233
1234 /* Check if this CPU already has a policy to manage it */
1235 policy = per_cpu(cpufreq_cpu_data, cpu);
1236 if (policy) {
1237 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1238 if (!policy_is_inactive(policy))
1239 return cpufreq_add_policy_cpu(policy, cpu);
1240
1241 /* This is the only online CPU for the policy. Start over. */
1242 new_policy = false;
1243 down_write(&policy->rwsem);
1244 policy->cpu = cpu;
1245 policy->governor = NULL;
1246 up_write(&policy->rwsem);
1247 } else {
1248 new_policy = true;
1249 policy = cpufreq_policy_alloc(cpu);
1250 if (!policy)
1251 return -ENOMEM;
1252 }
1253
1254 if (!new_policy && cpufreq_driver->online) {
1255 ret = cpufreq_driver->online(policy);
1256 if (ret) {
1257 pr_debug("%s: %d: initialization failed\n", __func__,
1258 __LINE__);
1259 goto out_exit_policy;
1260 }
1261
1262 /* Recover policy->cpus using related_cpus */
1263 cpumask_copy(policy->cpus, policy->related_cpus);
1264 } else {
1265 cpumask_copy(policy->cpus, cpumask_of(cpu));
1266
1267 /*
1268 * Call driver. From then on the cpufreq must be able
1269 * to accept all calls to ->verify and ->setpolicy for this CPU.
1270 */
1271 ret = cpufreq_driver->init(policy);
1272 if (ret) {
1273 pr_debug("%s: %d: initialization failed\n", __func__,
1274 __LINE__);
1275 goto out_free_policy;
1276 }
1277
1278 ret = cpufreq_table_validate_and_sort(policy);
1279 if (ret)
1280 goto out_exit_policy;
1281
1282 /* related_cpus should at least include policy->cpus. */
1283 cpumask_copy(policy->related_cpus, policy->cpus);
1284 }
1285
1286 down_write(&policy->rwsem);
1287 /*
1288 * affected cpus must always be the one, which are online. We aren't
1289 * managing offline cpus here.
1290 */
1291 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1292
1293 if (new_policy) {
1294 policy->user_policy.min = policy->min;
1295 policy->user_policy.max = policy->max;
1296
1297 for_each_cpu(j, policy->related_cpus) {
1298 per_cpu(cpufreq_cpu_data, j) = policy;
1299 add_cpu_dev_symlink(policy, j);
1300 }
1301 } else {
1302 policy->min = policy->user_policy.min;
1303 policy->max = policy->user_policy.max;
1304 }
1305
1306 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1307 policy->cur = cpufreq_driver->get(policy->cpu);
1308 if (!policy->cur) {
1309 pr_err("%s: ->get() failed\n", __func__);
1310 goto out_destroy_policy;
1311 }
1312 }
1313
1314 /*
1315 * Sometimes boot loaders set CPU frequency to a value outside of
1316 * frequency table present with cpufreq core. In such cases CPU might be
1317 * unstable if it has to run on that frequency for long duration of time
1318 * and so its better to set it to a frequency which is specified in
1319 * freq-table. This also makes cpufreq stats inconsistent as
1320 * cpufreq-stats would fail to register because current frequency of CPU
1321 * isn't found in freq-table.
1322 *
1323 * Because we don't want this change to effect boot process badly, we go
1324 * for the next freq which is >= policy->cur ('cur' must be set by now,
1325 * otherwise we will end up setting freq to lowest of the table as 'cur'
1326 * is initialized to zero).
1327 *
1328 * We are passing target-freq as "policy->cur - 1" otherwise
1329 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1330 * equal to target-freq.
1331 */
1332 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1333 && has_target()) {
1334 /* Are we running at unknown frequency ? */
1335 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1336 if (ret == -EINVAL) {
1337 /* Warn user and fix it */
1338 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1339 __func__, policy->cpu, policy->cur);
1340 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1341 CPUFREQ_RELATION_L);
1342
1343 /*
1344 * Reaching here after boot in a few seconds may not
1345 * mean that system will remain stable at "unknown"
1346 * frequency for longer duration. Hence, a BUG_ON().
1347 */
1348 BUG_ON(ret);
1349 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1350 __func__, policy->cpu, policy->cur);
1351 }
1352 }
1353
1354 if (new_policy) {
1355 ret = cpufreq_add_dev_interface(policy);
1356 if (ret)
1357 goto out_destroy_policy;
1358
1359 cpufreq_stats_create_table(policy);
1360
1361 write_lock_irqsave(&cpufreq_driver_lock, flags);
1362 list_add(&policy->policy_list, &cpufreq_policy_list);
1363 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1364 }
1365
1366 ret = cpufreq_init_policy(policy);
1367 if (ret) {
1368 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1369 __func__, cpu, ret);
1370 goto out_destroy_policy;
1371 }
1372
1373 up_write(&policy->rwsem);
1374
1375 kobject_uevent(&policy->kobj, KOBJ_ADD);
1376
1377 /* Callback for handling stuff after policy is ready */
1378 if (cpufreq_driver->ready)
1379 cpufreq_driver->ready(policy);
1380
1381 if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1382 cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV)
1383 policy->cdev = of_cpufreq_cooling_register(policy);
1384
1385 pr_debug("initialization complete\n");
1386
1387 return 0;
1388
1389 out_destroy_policy:
1390 for_each_cpu(j, policy->real_cpus)
1391 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1392
1393 up_write(&policy->rwsem);
1394
1395 out_exit_policy:
1396 if (cpufreq_driver->exit)
1397 cpufreq_driver->exit(policy);
1398
1399 out_free_policy:
1400 cpufreq_policy_free(policy);
1401 return ret;
1402 }
1403
1404 /**
1405 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1406 * @dev: CPU device.
1407 * @sif: Subsystem interface structure pointer (not used)
1408 */
1409 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1410 {
1411 struct cpufreq_policy *policy;
1412 unsigned cpu = dev->id;
1413 int ret;
1414
1415 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1416
1417 if (cpu_online(cpu)) {
1418 ret = cpufreq_online(cpu);
1419 if (ret)
1420 return ret;
1421 }
1422
1423 /* Create sysfs link on CPU registration */
1424 policy = per_cpu(cpufreq_cpu_data, cpu);
1425 if (policy)
1426 add_cpu_dev_symlink(policy, cpu);
1427
1428 return 0;
1429 }
1430
1431 static int cpufreq_offline(unsigned int cpu)
1432 {
1433 struct cpufreq_policy *policy;
1434 int ret;
1435
1436 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1437
1438 policy = cpufreq_cpu_get_raw(cpu);
1439 if (!policy) {
1440 pr_debug("%s: No cpu_data found\n", __func__);
1441 return 0;
1442 }
1443
1444 down_write(&policy->rwsem);
1445 if (has_target())
1446 cpufreq_stop_governor(policy);
1447
1448 cpumask_clear_cpu(cpu, policy->cpus);
1449
1450 if (policy_is_inactive(policy)) {
1451 if (has_target())
1452 strncpy(policy->last_governor, policy->governor->name,
1453 CPUFREQ_NAME_LEN);
1454 else
1455 policy->last_policy = policy->policy;
1456 } else if (cpu == policy->cpu) {
1457 /* Nominate new CPU */
1458 policy->cpu = cpumask_any(policy->cpus);
1459 }
1460
1461 /* Start governor again for active policy */
1462 if (!policy_is_inactive(policy)) {
1463 if (has_target()) {
1464 ret = cpufreq_start_governor(policy);
1465 if (ret)
1466 pr_err("%s: Failed to start governor\n", __func__);
1467 }
1468
1469 goto unlock;
1470 }
1471
1472 if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1473 cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) {
1474 cpufreq_cooling_unregister(policy->cdev);
1475 policy->cdev = NULL;
1476 }
1477
1478 if (cpufreq_driver->stop_cpu)
1479 cpufreq_driver->stop_cpu(policy);
1480
1481 if (has_target())
1482 cpufreq_exit_governor(policy);
1483
1484 /*
1485 * Perform the ->offline() during light-weight tear-down, as
1486 * that allows fast recovery when the CPU comes back.
1487 */
1488 if (cpufreq_driver->offline) {
1489 cpufreq_driver->offline(policy);
1490 } else if (cpufreq_driver->exit) {
1491 cpufreq_driver->exit(policy);
1492 policy->freq_table = NULL;
1493 }
1494
1495 unlock:
1496 up_write(&policy->rwsem);
1497 return 0;
1498 }
1499
1500 /**
1501 * cpufreq_remove_dev - remove a CPU device
1502 *
1503 * Removes the cpufreq interface for a CPU device.
1504 */
1505 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1506 {
1507 unsigned int cpu = dev->id;
1508 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1509
1510 if (!policy)
1511 return;
1512
1513 if (cpu_online(cpu))
1514 cpufreq_offline(cpu);
1515
1516 cpumask_clear_cpu(cpu, policy->real_cpus);
1517 remove_cpu_dev_symlink(policy, dev);
1518
1519 if (cpumask_empty(policy->real_cpus)) {
1520 /* We did light-weight exit earlier, do full tear down now */
1521 if (cpufreq_driver->offline)
1522 cpufreq_driver->exit(policy);
1523
1524 cpufreq_policy_free(policy);
1525 }
1526 }
1527
1528 /**
1529 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1530 * in deep trouble.
1531 * @policy: policy managing CPUs
1532 * @new_freq: CPU frequency the CPU actually runs at
1533 *
1534 * We adjust to current frequency first, and need to clean up later.
1535 * So either call to cpufreq_update_policy() or schedule handle_update()).
1536 */
1537 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1538 unsigned int new_freq)
1539 {
1540 struct cpufreq_freqs freqs;
1541
1542 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1543 policy->cur, new_freq);
1544
1545 freqs.old = policy->cur;
1546 freqs.new = new_freq;
1547
1548 cpufreq_freq_transition_begin(policy, &freqs);
1549 cpufreq_freq_transition_end(policy, &freqs, 0);
1550 }
1551
1552 /**
1553 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1554 * @cpu: CPU number
1555 *
1556 * This is the last known freq, without actually getting it from the driver.
1557 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1558 */
1559 unsigned int cpufreq_quick_get(unsigned int cpu)
1560 {
1561 struct cpufreq_policy *policy;
1562 unsigned int ret_freq = 0;
1563 unsigned long flags;
1564
1565 read_lock_irqsave(&cpufreq_driver_lock, flags);
1566
1567 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1568 ret_freq = cpufreq_driver->get(cpu);
1569 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1570 return ret_freq;
1571 }
1572
1573 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1574
1575 policy = cpufreq_cpu_get(cpu);
1576 if (policy) {
1577 ret_freq = policy->cur;
1578 cpufreq_cpu_put(policy);
1579 }
1580
1581 return ret_freq;
1582 }
1583 EXPORT_SYMBOL(cpufreq_quick_get);
1584
1585 /**
1586 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1587 * @cpu: CPU number
1588 *
1589 * Just return the max possible frequency for a given CPU.
1590 */
1591 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1592 {
1593 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1594 unsigned int ret_freq = 0;
1595
1596 if (policy) {
1597 ret_freq = policy->max;
1598 cpufreq_cpu_put(policy);
1599 }
1600
1601 return ret_freq;
1602 }
1603 EXPORT_SYMBOL(cpufreq_quick_get_max);
1604
1605 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1606 {
1607 unsigned int ret_freq = 0;
1608
1609 if (unlikely(policy_is_inactive(policy)))
1610 return ret_freq;
1611
1612 ret_freq = cpufreq_driver->get(policy->cpu);
1613
1614 /*
1615 * If fast frequency switching is used with the given policy, the check
1616 * against policy->cur is pointless, so skip it in that case too.
1617 */
1618 if (policy->fast_switch_enabled)
1619 return ret_freq;
1620
1621 if (ret_freq && policy->cur &&
1622 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1623 /* verify no discrepancy between actual and
1624 saved value exists */
1625 if (unlikely(ret_freq != policy->cur)) {
1626 cpufreq_out_of_sync(policy, ret_freq);
1627 schedule_work(&policy->update);
1628 }
1629 }
1630
1631 return ret_freq;
1632 }
1633
1634 /**
1635 * cpufreq_get - get the current CPU frequency (in kHz)
1636 * @cpu: CPU number
1637 *
1638 * Get the CPU current (static) CPU frequency
1639 */
1640 unsigned int cpufreq_get(unsigned int cpu)
1641 {
1642 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1643 unsigned int ret_freq = 0;
1644
1645 if (policy) {
1646 down_read(&policy->rwsem);
1647 if (cpufreq_driver->get)
1648 ret_freq = __cpufreq_get(policy);
1649 up_read(&policy->rwsem);
1650
1651 cpufreq_cpu_put(policy);
1652 }
1653
1654 return ret_freq;
1655 }
1656 EXPORT_SYMBOL(cpufreq_get);
1657
1658 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1659 {
1660 unsigned int new_freq;
1661
1662 new_freq = cpufreq_driver->get(policy->cpu);
1663 if (!new_freq)
1664 return 0;
1665
1666 if (!policy->cur) {
1667 pr_debug("cpufreq: Driver did not initialize current freq\n");
1668 policy->cur = new_freq;
1669 } else if (policy->cur != new_freq && has_target()) {
1670 cpufreq_out_of_sync(policy, new_freq);
1671 }
1672
1673 return new_freq;
1674 }
1675
1676 static struct subsys_interface cpufreq_interface = {
1677 .name = "cpufreq",
1678 .subsys = &cpu_subsys,
1679 .add_dev = cpufreq_add_dev,
1680 .remove_dev = cpufreq_remove_dev,
1681 };
1682
1683 /*
1684 * In case platform wants some specific frequency to be configured
1685 * during suspend..
1686 */
1687 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1688 {
1689 int ret;
1690
1691 if (!policy->suspend_freq) {
1692 pr_debug("%s: suspend_freq not defined\n", __func__);
1693 return 0;
1694 }
1695
1696 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1697 policy->suspend_freq);
1698
1699 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1700 CPUFREQ_RELATION_H);
1701 if (ret)
1702 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1703 __func__, policy->suspend_freq, ret);
1704
1705 return ret;
1706 }
1707 EXPORT_SYMBOL(cpufreq_generic_suspend);
1708
1709 /**
1710 * cpufreq_suspend() - Suspend CPUFreq governors
1711 *
1712 * Called during system wide Suspend/Hibernate cycles for suspending governors
1713 * as some platforms can't change frequency after this point in suspend cycle.
1714 * Because some of the devices (like: i2c, regulators, etc) they use for
1715 * changing frequency are suspended quickly after this point.
1716 */
1717 void cpufreq_suspend(void)
1718 {
1719 struct cpufreq_policy *policy;
1720
1721 if (!cpufreq_driver)
1722 return;
1723
1724 if (!has_target() && !cpufreq_driver->suspend)
1725 goto suspend;
1726
1727 pr_debug("%s: Suspending Governors\n", __func__);
1728
1729 for_each_active_policy(policy) {
1730 if (has_target()) {
1731 down_write(&policy->rwsem);
1732 cpufreq_stop_governor(policy);
1733 up_write(&policy->rwsem);
1734 }
1735
1736 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1737 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1738 policy);
1739 }
1740
1741 suspend:
1742 cpufreq_suspended = true;
1743 }
1744
1745 /**
1746 * cpufreq_resume() - Resume CPUFreq governors
1747 *
1748 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1749 * are suspended with cpufreq_suspend().
1750 */
1751 void cpufreq_resume(void)
1752 {
1753 struct cpufreq_policy *policy;
1754 int ret;
1755
1756 if (!cpufreq_driver)
1757 return;
1758
1759 if (unlikely(!cpufreq_suspended))
1760 return;
1761
1762 cpufreq_suspended = false;
1763
1764 if (!has_target() && !cpufreq_driver->resume)
1765 return;
1766
1767 pr_debug("%s: Resuming Governors\n", __func__);
1768
1769 for_each_active_policy(policy) {
1770 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1771 pr_err("%s: Failed to resume driver: %p\n", __func__,
1772 policy);
1773 } else if (has_target()) {
1774 down_write(&policy->rwsem);
1775 ret = cpufreq_start_governor(policy);
1776 up_write(&policy->rwsem);
1777
1778 if (ret)
1779 pr_err("%s: Failed to start governor for policy: %p\n",
1780 __func__, policy);
1781 }
1782 }
1783 }
1784
1785 /**
1786 * cpufreq_get_current_driver - return current driver's name
1787 *
1788 * Return the name string of the currently loaded cpufreq driver
1789 * or NULL, if none.
1790 */
1791 const char *cpufreq_get_current_driver(void)
1792 {
1793 if (cpufreq_driver)
1794 return cpufreq_driver->name;
1795
1796 return NULL;
1797 }
1798 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1799
1800 /**
1801 * cpufreq_get_driver_data - return current driver data
1802 *
1803 * Return the private data of the currently loaded cpufreq
1804 * driver, or NULL if no cpufreq driver is loaded.
1805 */
1806 void *cpufreq_get_driver_data(void)
1807 {
1808 if (cpufreq_driver)
1809 return cpufreq_driver->driver_data;
1810
1811 return NULL;
1812 }
1813 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1814
1815 /*********************************************************************
1816 * NOTIFIER LISTS INTERFACE *
1817 *********************************************************************/
1818
1819 /**
1820 * cpufreq_register_notifier - register a driver with cpufreq
1821 * @nb: notifier function to register
1822 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1823 *
1824 * Add a driver to one of two lists: either a list of drivers that
1825 * are notified about clock rate changes (once before and once after
1826 * the transition), or a list of drivers that are notified about
1827 * changes in cpufreq policy.
1828 *
1829 * This function may sleep, and has the same return conditions as
1830 * blocking_notifier_chain_register.
1831 */
1832 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1833 {
1834 int ret;
1835
1836 if (cpufreq_disabled())
1837 return -EINVAL;
1838
1839 switch (list) {
1840 case CPUFREQ_TRANSITION_NOTIFIER:
1841 mutex_lock(&cpufreq_fast_switch_lock);
1842
1843 if (cpufreq_fast_switch_count > 0) {
1844 mutex_unlock(&cpufreq_fast_switch_lock);
1845 return -EBUSY;
1846 }
1847 ret = srcu_notifier_chain_register(
1848 &cpufreq_transition_notifier_list, nb);
1849 if (!ret)
1850 cpufreq_fast_switch_count--;
1851
1852 mutex_unlock(&cpufreq_fast_switch_lock);
1853 break;
1854 case CPUFREQ_POLICY_NOTIFIER:
1855 ret = blocking_notifier_chain_register(
1856 &cpufreq_policy_notifier_list, nb);
1857 break;
1858 default:
1859 ret = -EINVAL;
1860 }
1861
1862 return ret;
1863 }
1864 EXPORT_SYMBOL(cpufreq_register_notifier);
1865
1866 /**
1867 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1868 * @nb: notifier block to be unregistered
1869 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1870 *
1871 * Remove a driver from the CPU frequency notifier list.
1872 *
1873 * This function may sleep, and has the same return conditions as
1874 * blocking_notifier_chain_unregister.
1875 */
1876 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1877 {
1878 int ret;
1879
1880 if (cpufreq_disabled())
1881 return -EINVAL;
1882
1883 switch (list) {
1884 case CPUFREQ_TRANSITION_NOTIFIER:
1885 mutex_lock(&cpufreq_fast_switch_lock);
1886
1887 ret = srcu_notifier_chain_unregister(
1888 &cpufreq_transition_notifier_list, nb);
1889 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1890 cpufreq_fast_switch_count++;
1891
1892 mutex_unlock(&cpufreq_fast_switch_lock);
1893 break;
1894 case CPUFREQ_POLICY_NOTIFIER:
1895 ret = blocking_notifier_chain_unregister(
1896 &cpufreq_policy_notifier_list, nb);
1897 break;
1898 default:
1899 ret = -EINVAL;
1900 }
1901
1902 return ret;
1903 }
1904 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1905
1906
1907 /*********************************************************************
1908 * GOVERNORS *
1909 *********************************************************************/
1910
1911 /**
1912 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1913 * @policy: cpufreq policy to switch the frequency for.
1914 * @target_freq: New frequency to set (may be approximate).
1915 *
1916 * Carry out a fast frequency switch without sleeping.
1917 *
1918 * The driver's ->fast_switch() callback invoked by this function must be
1919 * suitable for being called from within RCU-sched read-side critical sections
1920 * and it is expected to select the minimum available frequency greater than or
1921 * equal to @target_freq (CPUFREQ_RELATION_L).
1922 *
1923 * This function must not be called if policy->fast_switch_enabled is unset.
1924 *
1925 * Governors calling this function must guarantee that it will never be invoked
1926 * twice in parallel for the same policy and that it will never be called in
1927 * parallel with either ->target() or ->target_index() for the same policy.
1928 *
1929 * Returns the actual frequency set for the CPU.
1930 *
1931 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1932 * error condition, the hardware configuration must be preserved.
1933 */
1934 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1935 unsigned int target_freq)
1936 {
1937 target_freq = clamp_val(target_freq, policy->min, policy->max);
1938
1939 return cpufreq_driver->fast_switch(policy, target_freq);
1940 }
1941 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1942
1943 /* Must set freqs->new to intermediate frequency */
1944 static int __target_intermediate(struct cpufreq_policy *policy,
1945 struct cpufreq_freqs *freqs, int index)
1946 {
1947 int ret;
1948
1949 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1950
1951 /* We don't need to switch to intermediate freq */
1952 if (!freqs->new)
1953 return 0;
1954
1955 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1956 __func__, policy->cpu, freqs->old, freqs->new);
1957
1958 cpufreq_freq_transition_begin(policy, freqs);
1959 ret = cpufreq_driver->target_intermediate(policy, index);
1960 cpufreq_freq_transition_end(policy, freqs, ret);
1961
1962 if (ret)
1963 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1964 __func__, ret);
1965
1966 return ret;
1967 }
1968
1969 static int __target_index(struct cpufreq_policy *policy, int index)
1970 {
1971 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1972 unsigned int intermediate_freq = 0;
1973 unsigned int newfreq = policy->freq_table[index].frequency;
1974 int retval = -EINVAL;
1975 bool notify;
1976
1977 if (newfreq == policy->cur)
1978 return 0;
1979
1980 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1981 if (notify) {
1982 /* Handle switching to intermediate frequency */
1983 if (cpufreq_driver->get_intermediate) {
1984 retval = __target_intermediate(policy, &freqs, index);
1985 if (retval)
1986 return retval;
1987
1988 intermediate_freq = freqs.new;
1989 /* Set old freq to intermediate */
1990 if (intermediate_freq)
1991 freqs.old = freqs.new;
1992 }
1993
1994 freqs.new = newfreq;
1995 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1996 __func__, policy->cpu, freqs.old, freqs.new);
1997
1998 cpufreq_freq_transition_begin(policy, &freqs);
1999 }
2000
2001 retval = cpufreq_driver->target_index(policy, index);
2002 if (retval)
2003 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2004 retval);
2005
2006 if (notify) {
2007 cpufreq_freq_transition_end(policy, &freqs, retval);
2008
2009 /*
2010 * Failed after setting to intermediate freq? Driver should have
2011 * reverted back to initial frequency and so should we. Check
2012 * here for intermediate_freq instead of get_intermediate, in
2013 * case we haven't switched to intermediate freq at all.
2014 */
2015 if (unlikely(retval && intermediate_freq)) {
2016 freqs.old = intermediate_freq;
2017 freqs.new = policy->restore_freq;
2018 cpufreq_freq_transition_begin(policy, &freqs);
2019 cpufreq_freq_transition_end(policy, &freqs, 0);
2020 }
2021 }
2022
2023 return retval;
2024 }
2025
2026 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2027 unsigned int target_freq,
2028 unsigned int relation)
2029 {
2030 unsigned int old_target_freq = target_freq;
2031 int index;
2032
2033 if (cpufreq_disabled())
2034 return -ENODEV;
2035
2036 /* Make sure that target_freq is within supported range */
2037 target_freq = clamp_val(target_freq, policy->min, policy->max);
2038
2039 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2040 policy->cpu, target_freq, relation, old_target_freq);
2041
2042 /*
2043 * This might look like a redundant call as we are checking it again
2044 * after finding index. But it is left intentionally for cases where
2045 * exactly same freq is called again and so we can save on few function
2046 * calls.
2047 */
2048 if (target_freq == policy->cur)
2049 return 0;
2050
2051 /* Save last value to restore later on errors */
2052 policy->restore_freq = policy->cur;
2053
2054 if (cpufreq_driver->target)
2055 return cpufreq_driver->target(policy, target_freq, relation);
2056
2057 if (!cpufreq_driver->target_index)
2058 return -EINVAL;
2059
2060 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2061
2062 return __target_index(policy, index);
2063 }
2064 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2065
2066 int cpufreq_driver_target(struct cpufreq_policy *policy,
2067 unsigned int target_freq,
2068 unsigned int relation)
2069 {
2070 int ret = -EINVAL;
2071
2072 down_write(&policy->rwsem);
2073
2074 ret = __cpufreq_driver_target(policy, target_freq, relation);
2075
2076 up_write(&policy->rwsem);
2077
2078 return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2081
2082 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2083 {
2084 return NULL;
2085 }
2086
2087 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2088 {
2089 int ret;
2090
2091 /* Don't start any governor operations if we are entering suspend */
2092 if (cpufreq_suspended)
2093 return 0;
2094 /*
2095 * Governor might not be initiated here if ACPI _PPC changed
2096 * notification happened, so check it.
2097 */
2098 if (!policy->governor)
2099 return -EINVAL;
2100
2101 /* Platform doesn't want dynamic frequency switching ? */
2102 if (policy->governor->dynamic_switching &&
2103 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2104 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2105
2106 if (gov) {
2107 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2108 policy->governor->name, gov->name);
2109 policy->governor = gov;
2110 } else {
2111 return -EINVAL;
2112 }
2113 }
2114
2115 if (!try_module_get(policy->governor->owner))
2116 return -EINVAL;
2117
2118 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2119
2120 if (policy->governor->init) {
2121 ret = policy->governor->init(policy);
2122 if (ret) {
2123 module_put(policy->governor->owner);
2124 return ret;
2125 }
2126 }
2127
2128 return 0;
2129 }
2130
2131 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2132 {
2133 if (cpufreq_suspended || !policy->governor)
2134 return;
2135
2136 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2137
2138 if (policy->governor->exit)
2139 policy->governor->exit(policy);
2140
2141 module_put(policy->governor->owner);
2142 }
2143
2144 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2145 {
2146 int ret;
2147
2148 if (cpufreq_suspended)
2149 return 0;
2150
2151 if (!policy->governor)
2152 return -EINVAL;
2153
2154 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2155
2156 if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2157 cpufreq_update_current_freq(policy);
2158
2159 if (policy->governor->start) {
2160 ret = policy->governor->start(policy);
2161 if (ret)
2162 return ret;
2163 }
2164
2165 if (policy->governor->limits)
2166 policy->governor->limits(policy);
2167
2168 return 0;
2169 }
2170
2171 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2172 {
2173 if (cpufreq_suspended || !policy->governor)
2174 return;
2175
2176 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2177
2178 if (policy->governor->stop)
2179 policy->governor->stop(policy);
2180 }
2181
2182 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2183 {
2184 if (cpufreq_suspended || !policy->governor)
2185 return;
2186
2187 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2188
2189 if (policy->governor->limits)
2190 policy->governor->limits(policy);
2191 }
2192
2193 int cpufreq_register_governor(struct cpufreq_governor *governor)
2194 {
2195 int err;
2196
2197 if (!governor)
2198 return -EINVAL;
2199
2200 if (cpufreq_disabled())
2201 return -ENODEV;
2202
2203 mutex_lock(&cpufreq_governor_mutex);
2204
2205 err = -EBUSY;
2206 if (!find_governor(governor->name)) {
2207 err = 0;
2208 list_add(&governor->governor_list, &cpufreq_governor_list);
2209 }
2210
2211 mutex_unlock(&cpufreq_governor_mutex);
2212 return err;
2213 }
2214 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2215
2216 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2217 {
2218 struct cpufreq_policy *policy;
2219 unsigned long flags;
2220
2221 if (!governor)
2222 return;
2223
2224 if (cpufreq_disabled())
2225 return;
2226
2227 /* clear last_governor for all inactive policies */
2228 read_lock_irqsave(&cpufreq_driver_lock, flags);
2229 for_each_inactive_policy(policy) {
2230 if (!strcmp(policy->last_governor, governor->name)) {
2231 policy->governor = NULL;
2232 strcpy(policy->last_governor, "\0");
2233 }
2234 }
2235 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2236
2237 mutex_lock(&cpufreq_governor_mutex);
2238 list_del(&governor->governor_list);
2239 mutex_unlock(&cpufreq_governor_mutex);
2240 }
2241 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2242
2243
2244 /*********************************************************************
2245 * POLICY INTERFACE *
2246 *********************************************************************/
2247
2248 /**
2249 * cpufreq_get_policy - get the current cpufreq_policy
2250 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2251 * is written
2252 *
2253 * Reads the current cpufreq policy.
2254 */
2255 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2256 {
2257 struct cpufreq_policy *cpu_policy;
2258 if (!policy)
2259 return -EINVAL;
2260
2261 cpu_policy = cpufreq_cpu_get(cpu);
2262 if (!cpu_policy)
2263 return -EINVAL;
2264
2265 memcpy(policy, cpu_policy, sizeof(*policy));
2266
2267 cpufreq_cpu_put(cpu_policy);
2268 return 0;
2269 }
2270 EXPORT_SYMBOL(cpufreq_get_policy);
2271
2272 /**
2273 * cpufreq_set_policy - Modify cpufreq policy parameters.
2274 * @policy: Policy object to modify.
2275 * @new_policy: New policy data.
2276 *
2277 * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2278 * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2279 * the driver's ->verify() callback again and run the notifiers for it again
2280 * with the CPUFREQ_NOTIFY value. Next, copy the min and max parameters
2281 * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2282 * callback (if present) or carry out a governor update for @policy. That is,
2283 * run the current governor's ->limits() callback (if the governor field in
2284 * @new_policy points to the same object as the one in @policy) or replace the
2285 * governor for @policy with the new one stored in @new_policy.
2286 *
2287 * The cpuinfo part of @policy is not updated by this function.
2288 */
2289 int cpufreq_set_policy(struct cpufreq_policy *policy,
2290 struct cpufreq_policy *new_policy)
2291 {
2292 struct cpufreq_governor *old_gov;
2293 int ret;
2294
2295 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2296 new_policy->cpu, new_policy->min, new_policy->max);
2297
2298 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2299
2300 /*
2301 * This check works well when we store new min/max freq attributes,
2302 * because new_policy is a copy of policy with one field updated.
2303 */
2304 if (new_policy->min > new_policy->max)
2305 return -EINVAL;
2306
2307 /* verify the cpu speed can be set within this limit */
2308 ret = cpufreq_driver->verify(new_policy);
2309 if (ret)
2310 return ret;
2311
2312 /* adjust if necessary - all reasons */
2313 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2314 CPUFREQ_ADJUST, new_policy);
2315
2316 /*
2317 * verify the cpu speed can be set within this limit, which might be
2318 * different to the first one
2319 */
2320 ret = cpufreq_driver->verify(new_policy);
2321 if (ret)
2322 return ret;
2323
2324 /* notification of the new policy */
2325 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2326 CPUFREQ_NOTIFY, new_policy);
2327
2328 policy->min = new_policy->min;
2329 policy->max = new_policy->max;
2330 trace_cpu_frequency_limits(policy);
2331
2332 policy->cached_target_freq = UINT_MAX;
2333
2334 pr_debug("new min and max freqs are %u - %u kHz\n",
2335 policy->min, policy->max);
2336
2337 if (cpufreq_driver->setpolicy) {
2338 policy->policy = new_policy->policy;
2339 pr_debug("setting range\n");
2340 return cpufreq_driver->setpolicy(policy);
2341 }
2342
2343 if (new_policy->governor == policy->governor) {
2344 pr_debug("governor limits update\n");
2345 cpufreq_governor_limits(policy);
2346 return 0;
2347 }
2348
2349 pr_debug("governor switch\n");
2350
2351 /* save old, working values */
2352 old_gov = policy->governor;
2353 /* end old governor */
2354 if (old_gov) {
2355 cpufreq_stop_governor(policy);
2356 cpufreq_exit_governor(policy);
2357 }
2358
2359 /* start new governor */
2360 policy->governor = new_policy->governor;
2361 ret = cpufreq_init_governor(policy);
2362 if (!ret) {
2363 ret = cpufreq_start_governor(policy);
2364 if (!ret) {
2365 pr_debug("governor change\n");
2366 sched_cpufreq_governor_change(policy, old_gov);
2367 return 0;
2368 }
2369 cpufreq_exit_governor(policy);
2370 }
2371
2372 /* new governor failed, so re-start old one */
2373 pr_debug("starting governor %s failed\n", policy->governor->name);
2374 if (old_gov) {
2375 policy->governor = old_gov;
2376 if (cpufreq_init_governor(policy))
2377 policy->governor = NULL;
2378 else
2379 cpufreq_start_governor(policy);
2380 }
2381
2382 return ret;
2383 }
2384
2385 /**
2386 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2387 * @cpu: CPU to re-evaluate the policy for.
2388 *
2389 * Update the current frequency for the cpufreq policy of @cpu and use
2390 * cpufreq_set_policy() to re-apply the min and max limits saved in the
2391 * user_policy sub-structure of that policy, which triggers the evaluation
2392 * of policy notifiers and the cpufreq driver's ->verify() callback for the
2393 * policy in question, among other things.
2394 */
2395 void cpufreq_update_policy(unsigned int cpu)
2396 {
2397 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2398 struct cpufreq_policy new_policy;
2399
2400 if (!policy)
2401 return;
2402
2403 /*
2404 * BIOS might change freq behind our back
2405 * -> ask driver for current freq and notify governors about a change
2406 */
2407 if (cpufreq_driver->get && !cpufreq_driver->setpolicy &&
2408 (cpufreq_suspended || WARN_ON(!cpufreq_update_current_freq(policy))))
2409 goto unlock;
2410
2411 pr_debug("updating policy for CPU %u\n", cpu);
2412 memcpy(&new_policy, policy, sizeof(*policy));
2413 new_policy.min = policy->user_policy.min;
2414 new_policy.max = policy->user_policy.max;
2415
2416 cpufreq_set_policy(policy, &new_policy);
2417
2418 unlock:
2419 cpufreq_cpu_release(policy);
2420 }
2421 EXPORT_SYMBOL(cpufreq_update_policy);
2422
2423 /**
2424 * cpufreq_update_limits - Update policy limits for a given CPU.
2425 * @cpu: CPU to update the policy limits for.
2426 *
2427 * Invoke the driver's ->update_limits callback if present or call
2428 * cpufreq_update_policy() for @cpu.
2429 */
2430 void cpufreq_update_limits(unsigned int cpu)
2431 {
2432 if (cpufreq_driver->update_limits)
2433 cpufreq_driver->update_limits(cpu);
2434 else
2435 cpufreq_update_policy(cpu);
2436 }
2437 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2438
2439 /*********************************************************************
2440 * BOOST *
2441 *********************************************************************/
2442 static int cpufreq_boost_set_sw(int state)
2443 {
2444 struct cpufreq_policy *policy;
2445 int ret = -EINVAL;
2446
2447 for_each_active_policy(policy) {
2448 if (!policy->freq_table)
2449 continue;
2450
2451 ret = cpufreq_frequency_table_cpuinfo(policy,
2452 policy->freq_table);
2453 if (ret) {
2454 pr_err("%s: Policy frequency update failed\n",
2455 __func__);
2456 break;
2457 }
2458
2459 down_write(&policy->rwsem);
2460 policy->user_policy.max = policy->max;
2461 cpufreq_governor_limits(policy);
2462 up_write(&policy->rwsem);
2463 }
2464
2465 return ret;
2466 }
2467
2468 int cpufreq_boost_trigger_state(int state)
2469 {
2470 unsigned long flags;
2471 int ret = 0;
2472
2473 if (cpufreq_driver->boost_enabled == state)
2474 return 0;
2475
2476 write_lock_irqsave(&cpufreq_driver_lock, flags);
2477 cpufreq_driver->boost_enabled = state;
2478 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2479
2480 ret = cpufreq_driver->set_boost(state);
2481 if (ret) {
2482 write_lock_irqsave(&cpufreq_driver_lock, flags);
2483 cpufreq_driver->boost_enabled = !state;
2484 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2485
2486 pr_err("%s: Cannot %s BOOST\n",
2487 __func__, state ? "enable" : "disable");
2488 }
2489
2490 return ret;
2491 }
2492
2493 static bool cpufreq_boost_supported(void)
2494 {
2495 return cpufreq_driver->set_boost;
2496 }
2497
2498 static int create_boost_sysfs_file(void)
2499 {
2500 int ret;
2501
2502 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2503 if (ret)
2504 pr_err("%s: cannot register global BOOST sysfs file\n",
2505 __func__);
2506
2507 return ret;
2508 }
2509
2510 static void remove_boost_sysfs_file(void)
2511 {
2512 if (cpufreq_boost_supported())
2513 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2514 }
2515
2516 int cpufreq_enable_boost_support(void)
2517 {
2518 if (!cpufreq_driver)
2519 return -EINVAL;
2520
2521 if (cpufreq_boost_supported())
2522 return 0;
2523
2524 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2525
2526 /* This will get removed on driver unregister */
2527 return create_boost_sysfs_file();
2528 }
2529 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2530
2531 int cpufreq_boost_enabled(void)
2532 {
2533 return cpufreq_driver->boost_enabled;
2534 }
2535 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2536
2537 /*********************************************************************
2538 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2539 *********************************************************************/
2540 static enum cpuhp_state hp_online;
2541
2542 static int cpuhp_cpufreq_online(unsigned int cpu)
2543 {
2544 cpufreq_online(cpu);
2545
2546 return 0;
2547 }
2548
2549 static int cpuhp_cpufreq_offline(unsigned int cpu)
2550 {
2551 cpufreq_offline(cpu);
2552
2553 return 0;
2554 }
2555
2556 /**
2557 * cpufreq_register_driver - register a CPU Frequency driver
2558 * @driver_data: A struct cpufreq_driver containing the values#
2559 * submitted by the CPU Frequency driver.
2560 *
2561 * Registers a CPU Frequency driver to this core code. This code
2562 * returns zero on success, -EEXIST when another driver got here first
2563 * (and isn't unregistered in the meantime).
2564 *
2565 */
2566 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2567 {
2568 unsigned long flags;
2569 int ret;
2570
2571 if (cpufreq_disabled())
2572 return -ENODEV;
2573
2574 if (!driver_data || !driver_data->verify || !driver_data->init ||
2575 !(driver_data->setpolicy || driver_data->target_index ||
2576 driver_data->target) ||
2577 (driver_data->setpolicy && (driver_data->target_index ||
2578 driver_data->target)) ||
2579 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2580 (!driver_data->online != !driver_data->offline))
2581 return -EINVAL;
2582
2583 pr_debug("trying to register driver %s\n", driver_data->name);
2584
2585 /* Protect against concurrent CPU online/offline. */
2586 cpus_read_lock();
2587
2588 write_lock_irqsave(&cpufreq_driver_lock, flags);
2589 if (cpufreq_driver) {
2590 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2591 ret = -EEXIST;
2592 goto out;
2593 }
2594 cpufreq_driver = driver_data;
2595 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2596
2597 if (driver_data->setpolicy)
2598 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2599
2600 if (cpufreq_boost_supported()) {
2601 ret = create_boost_sysfs_file();
2602 if (ret)
2603 goto err_null_driver;
2604 }
2605
2606 ret = subsys_interface_register(&cpufreq_interface);
2607 if (ret)
2608 goto err_boost_unreg;
2609
2610 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2611 list_empty(&cpufreq_policy_list)) {
2612 /* if all ->init() calls failed, unregister */
2613 ret = -ENODEV;
2614 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2615 driver_data->name);
2616 goto err_if_unreg;
2617 }
2618
2619 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2620 "cpufreq:online",
2621 cpuhp_cpufreq_online,
2622 cpuhp_cpufreq_offline);
2623 if (ret < 0)
2624 goto err_if_unreg;
2625 hp_online = ret;
2626 ret = 0;
2627
2628 pr_debug("driver %s up and running\n", driver_data->name);
2629 goto out;
2630
2631 err_if_unreg:
2632 subsys_interface_unregister(&cpufreq_interface);
2633 err_boost_unreg:
2634 remove_boost_sysfs_file();
2635 err_null_driver:
2636 write_lock_irqsave(&cpufreq_driver_lock, flags);
2637 cpufreq_driver = NULL;
2638 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2639 out:
2640 cpus_read_unlock();
2641 return ret;
2642 }
2643 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2644
2645 /**
2646 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2647 *
2648 * Unregister the current CPUFreq driver. Only call this if you have
2649 * the right to do so, i.e. if you have succeeded in initialising before!
2650 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2651 * currently not initialised.
2652 */
2653 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2654 {
2655 unsigned long flags;
2656
2657 if (!cpufreq_driver || (driver != cpufreq_driver))
2658 return -EINVAL;
2659
2660 pr_debug("unregistering driver %s\n", driver->name);
2661
2662 /* Protect against concurrent cpu hotplug */
2663 cpus_read_lock();
2664 subsys_interface_unregister(&cpufreq_interface);
2665 remove_boost_sysfs_file();
2666 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2667
2668 write_lock_irqsave(&cpufreq_driver_lock, flags);
2669
2670 cpufreq_driver = NULL;
2671
2672 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2673 cpus_read_unlock();
2674
2675 return 0;
2676 }
2677 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2678
2679 /*
2680 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2681 * or mutexes when secondary CPUs are halted.
2682 */
2683 static struct syscore_ops cpufreq_syscore_ops = {
2684 .shutdown = cpufreq_suspend,
2685 };
2686
2687 struct kobject *cpufreq_global_kobject;
2688 EXPORT_SYMBOL(cpufreq_global_kobject);
2689
2690 static int __init cpufreq_core_init(void)
2691 {
2692 if (cpufreq_disabled())
2693 return -ENODEV;
2694
2695 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2696 BUG_ON(!cpufreq_global_kobject);
2697
2698 register_syscore_ops(&cpufreq_syscore_ops);
2699
2700 return 0;
2701 }
2702 module_param(off, int, 0444);
2703 core_initcall(cpufreq_core_init);