]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/cpufreq.c
percpu: make percpu symbols in cpufreq unique
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(struct cpufreq_governor *, cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 * - Lock should not be held across
65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66 */
67 static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
69
70 #define lock_policy_rwsem(mode, cpu) \
71 int lock_policy_rwsem_##mode \
72 (int cpu) \
73 { \
74 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
75 BUG_ON(policy_cpu == -1); \
76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 if (unlikely(!cpu_online(cpu))) { \
78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
79 return -1; \
80 } \
81 \
82 return 0; \
83 }
84
85 lock_policy_rwsem(read, cpu);
86 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
87
88 lock_policy_rwsem(write, cpu);
89 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
90
91 void unlock_policy_rwsem_read(int cpu)
92 {
93 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
94 BUG_ON(policy_cpu == -1);
95 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
96 }
97 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
98
99 void unlock_policy_rwsem_write(int cpu)
100 {
101 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
102 BUG_ON(policy_cpu == -1);
103 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
104 }
105 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
106
107
108 /* internal prototypes */
109 static int __cpufreq_governor(struct cpufreq_policy *policy,
110 unsigned int event);
111 static unsigned int __cpufreq_get(unsigned int cpu);
112 static void handle_update(struct work_struct *work);
113
114 /**
115 * Two notifier lists: the "policy" list is involved in the
116 * validation process for a new CPU frequency policy; the
117 * "transition" list for kernel code that needs to handle
118 * changes to devices when the CPU clock speed changes.
119 * The mutex locks both lists.
120 */
121 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
122 static struct srcu_notifier_head cpufreq_transition_notifier_list;
123
124 static bool init_cpufreq_transition_notifier_list_called;
125 static int __init init_cpufreq_transition_notifier_list(void)
126 {
127 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
128 init_cpufreq_transition_notifier_list_called = true;
129 return 0;
130 }
131 pure_initcall(init_cpufreq_transition_notifier_list);
132
133 static LIST_HEAD(cpufreq_governor_list);
134 static DEFINE_MUTEX(cpufreq_governor_mutex);
135
136 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
137 {
138 struct cpufreq_policy *data;
139 unsigned long flags;
140
141 if (cpu >= nr_cpu_ids)
142 goto err_out;
143
144 /* get the cpufreq driver */
145 spin_lock_irqsave(&cpufreq_driver_lock, flags);
146
147 if (!cpufreq_driver)
148 goto err_out_unlock;
149
150 if (!try_module_get(cpufreq_driver->owner))
151 goto err_out_unlock;
152
153
154 /* get the CPU */
155 data = per_cpu(cpufreq_cpu_data, cpu);
156
157 if (!data)
158 goto err_out_put_module;
159
160 if (!kobject_get(&data->kobj))
161 goto err_out_put_module;
162
163 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
164 return data;
165
166 err_out_put_module:
167 module_put(cpufreq_driver->owner);
168 err_out_unlock:
169 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
170 err_out:
171 return NULL;
172 }
173 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
174
175
176 void cpufreq_cpu_put(struct cpufreq_policy *data)
177 {
178 kobject_put(&data->kobj);
179 module_put(cpufreq_driver->owner);
180 }
181 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
182
183
184 /*********************************************************************
185 * UNIFIED DEBUG HELPERS *
186 *********************************************************************/
187 #ifdef CONFIG_CPU_FREQ_DEBUG
188
189 /* what part(s) of the CPUfreq subsystem are debugged? */
190 static unsigned int debug;
191
192 /* is the debug output ratelimit'ed using printk_ratelimit? User can
193 * set or modify this value.
194 */
195 static unsigned int debug_ratelimit = 1;
196
197 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
198 * loading of a cpufreq driver, temporarily disabled when a new policy
199 * is set, and disabled upon cpufreq driver removal
200 */
201 static unsigned int disable_ratelimit = 1;
202 static DEFINE_SPINLOCK(disable_ratelimit_lock);
203
204 static void cpufreq_debug_enable_ratelimit(void)
205 {
206 unsigned long flags;
207
208 spin_lock_irqsave(&disable_ratelimit_lock, flags);
209 if (disable_ratelimit)
210 disable_ratelimit--;
211 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
212 }
213
214 static void cpufreq_debug_disable_ratelimit(void)
215 {
216 unsigned long flags;
217
218 spin_lock_irqsave(&disable_ratelimit_lock, flags);
219 disable_ratelimit++;
220 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
221 }
222
223 void cpufreq_debug_printk(unsigned int type, const char *prefix,
224 const char *fmt, ...)
225 {
226 char s[256];
227 va_list args;
228 unsigned int len;
229 unsigned long flags;
230
231 WARN_ON(!prefix);
232 if (type & debug) {
233 spin_lock_irqsave(&disable_ratelimit_lock, flags);
234 if (!disable_ratelimit && debug_ratelimit
235 && !printk_ratelimit()) {
236 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
237 return;
238 }
239 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
240
241 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
242
243 va_start(args, fmt);
244 len += vsnprintf(&s[len], (256 - len), fmt, args);
245 va_end(args);
246
247 printk(s);
248
249 WARN_ON(len < 5);
250 }
251 }
252 EXPORT_SYMBOL(cpufreq_debug_printk);
253
254
255 module_param(debug, uint, 0644);
256 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
257 " 2 to debug drivers, and 4 to debug governors.");
258
259 module_param(debug_ratelimit, uint, 0644);
260 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
261 " set to 0 to disable ratelimiting.");
262
263 #else /* !CONFIG_CPU_FREQ_DEBUG */
264
265 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
266 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
267
268 #endif /* CONFIG_CPU_FREQ_DEBUG */
269
270
271 /*********************************************************************
272 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
273 *********************************************************************/
274
275 /**
276 * adjust_jiffies - adjust the system "loops_per_jiffy"
277 *
278 * This function alters the system "loops_per_jiffy" for the clock
279 * speed change. Note that loops_per_jiffy cannot be updated on SMP
280 * systems as each CPU might be scaled differently. So, use the arch
281 * per-CPU loops_per_jiffy value wherever possible.
282 */
283 #ifndef CONFIG_SMP
284 static unsigned long l_p_j_ref;
285 static unsigned int l_p_j_ref_freq;
286
287 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
288 {
289 if (ci->flags & CPUFREQ_CONST_LOOPS)
290 return;
291
292 if (!l_p_j_ref_freq) {
293 l_p_j_ref = loops_per_jiffy;
294 l_p_j_ref_freq = ci->old;
295 dprintk("saving %lu as reference value for loops_per_jiffy; "
296 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
297 }
298 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
299 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
300 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
301 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
302 ci->new);
303 dprintk("scaling loops_per_jiffy to %lu "
304 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
305 }
306 }
307 #else
308 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 return;
311 }
312 #endif
313
314
315 /**
316 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
317 * on frequency transition.
318 *
319 * This function calls the transition notifiers and the "adjust_jiffies"
320 * function. It is called twice on all CPU frequency changes that have
321 * external effects.
322 */
323 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
324 {
325 struct cpufreq_policy *policy;
326
327 BUG_ON(irqs_disabled());
328
329 freqs->flags = cpufreq_driver->flags;
330 dprintk("notification %u of frequency transition to %u kHz\n",
331 state, freqs->new);
332
333 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
334 switch (state) {
335
336 case CPUFREQ_PRECHANGE:
337 /* detect if the driver reported a value as "old frequency"
338 * which is not equal to what the cpufreq core thinks is
339 * "old frequency".
340 */
341 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
342 if ((policy) && (policy->cpu == freqs->cpu) &&
343 (policy->cur) && (policy->cur != freqs->old)) {
344 dprintk("Warning: CPU frequency is"
345 " %u, cpufreq assumed %u kHz.\n",
346 freqs->old, policy->cur);
347 freqs->old = policy->cur;
348 }
349 }
350 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
351 CPUFREQ_PRECHANGE, freqs);
352 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
353 break;
354
355 case CPUFREQ_POSTCHANGE:
356 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
357 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
358 CPUFREQ_POSTCHANGE, freqs);
359 if (likely(policy) && likely(policy->cpu == freqs->cpu))
360 policy->cur = freqs->new;
361 break;
362 }
363 }
364 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
365
366
367
368 /*********************************************************************
369 * SYSFS INTERFACE *
370 *********************************************************************/
371
372 static struct cpufreq_governor *__find_governor(const char *str_governor)
373 {
374 struct cpufreq_governor *t;
375
376 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
377 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
378 return t;
379
380 return NULL;
381 }
382
383 /**
384 * cpufreq_parse_governor - parse a governor string
385 */
386 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
387 struct cpufreq_governor **governor)
388 {
389 int err = -EINVAL;
390
391 if (!cpufreq_driver)
392 goto out;
393
394 if (cpufreq_driver->setpolicy) {
395 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
396 *policy = CPUFREQ_POLICY_PERFORMANCE;
397 err = 0;
398 } else if (!strnicmp(str_governor, "powersave",
399 CPUFREQ_NAME_LEN)) {
400 *policy = CPUFREQ_POLICY_POWERSAVE;
401 err = 0;
402 }
403 } else if (cpufreq_driver->target) {
404 struct cpufreq_governor *t;
405
406 mutex_lock(&cpufreq_governor_mutex);
407
408 t = __find_governor(str_governor);
409
410 if (t == NULL) {
411 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
412 str_governor);
413
414 if (name) {
415 int ret;
416
417 mutex_unlock(&cpufreq_governor_mutex);
418 ret = request_module("%s", name);
419 mutex_lock(&cpufreq_governor_mutex);
420
421 if (ret == 0)
422 t = __find_governor(str_governor);
423 }
424
425 kfree(name);
426 }
427
428 if (t != NULL) {
429 *governor = t;
430 err = 0;
431 }
432
433 mutex_unlock(&cpufreq_governor_mutex);
434 }
435 out:
436 return err;
437 }
438
439
440 /**
441 * cpufreq_per_cpu_attr_read() / show_##file_name() -
442 * print out cpufreq information
443 *
444 * Write out information from cpufreq_driver->policy[cpu]; object must be
445 * "unsigned int".
446 */
447
448 #define show_one(file_name, object) \
449 static ssize_t show_##file_name \
450 (struct cpufreq_policy *policy, char *buf) \
451 { \
452 return sprintf(buf, "%u\n", policy->object); \
453 }
454
455 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
456 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
457 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
458 show_one(scaling_min_freq, min);
459 show_one(scaling_max_freq, max);
460 show_one(scaling_cur_freq, cur);
461
462 static int __cpufreq_set_policy(struct cpufreq_policy *data,
463 struct cpufreq_policy *policy);
464
465 /**
466 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
467 */
468 #define store_one(file_name, object) \
469 static ssize_t store_##file_name \
470 (struct cpufreq_policy *policy, const char *buf, size_t count) \
471 { \
472 unsigned int ret = -EINVAL; \
473 struct cpufreq_policy new_policy; \
474 \
475 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
476 if (ret) \
477 return -EINVAL; \
478 \
479 ret = sscanf(buf, "%u", &new_policy.object); \
480 if (ret != 1) \
481 return -EINVAL; \
482 \
483 ret = __cpufreq_set_policy(policy, &new_policy); \
484 policy->user_policy.object = policy->object; \
485 \
486 return ret ? ret : count; \
487 }
488
489 store_one(scaling_min_freq, min);
490 store_one(scaling_max_freq, max);
491
492 /**
493 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
494 */
495 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
496 char *buf)
497 {
498 unsigned int cur_freq = __cpufreq_get(policy->cpu);
499 if (!cur_freq)
500 return sprintf(buf, "<unknown>");
501 return sprintf(buf, "%u\n", cur_freq);
502 }
503
504
505 /**
506 * show_scaling_governor - show the current policy for the specified CPU
507 */
508 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
509 {
510 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
511 return sprintf(buf, "powersave\n");
512 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
513 return sprintf(buf, "performance\n");
514 else if (policy->governor)
515 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
516 policy->governor->name);
517 return -EINVAL;
518 }
519
520
521 /**
522 * store_scaling_governor - store policy for the specified CPU
523 */
524 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
525 const char *buf, size_t count)
526 {
527 unsigned int ret = -EINVAL;
528 char str_governor[16];
529 struct cpufreq_policy new_policy;
530
531 ret = cpufreq_get_policy(&new_policy, policy->cpu);
532 if (ret)
533 return ret;
534
535 ret = sscanf(buf, "%15s", str_governor);
536 if (ret != 1)
537 return -EINVAL;
538
539 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
540 &new_policy.governor))
541 return -EINVAL;
542
543 /* Do not use cpufreq_set_policy here or the user_policy.max
544 will be wrongly overridden */
545 ret = __cpufreq_set_policy(policy, &new_policy);
546
547 policy->user_policy.policy = policy->policy;
548 policy->user_policy.governor = policy->governor;
549
550 if (ret)
551 return ret;
552 else
553 return count;
554 }
555
556 /**
557 * show_scaling_driver - show the cpufreq driver currently loaded
558 */
559 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
560 {
561 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
562 }
563
564 /**
565 * show_scaling_available_governors - show the available CPUfreq governors
566 */
567 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
568 char *buf)
569 {
570 ssize_t i = 0;
571 struct cpufreq_governor *t;
572
573 if (!cpufreq_driver->target) {
574 i += sprintf(buf, "performance powersave");
575 goto out;
576 }
577
578 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
579 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
580 - (CPUFREQ_NAME_LEN + 2)))
581 goto out;
582 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
583 }
584 out:
585 i += sprintf(&buf[i], "\n");
586 return i;
587 }
588
589 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
590 {
591 ssize_t i = 0;
592 unsigned int cpu;
593
594 for_each_cpu(cpu, mask) {
595 if (i)
596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
597 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
598 if (i >= (PAGE_SIZE - 5))
599 break;
600 }
601 i += sprintf(&buf[i], "\n");
602 return i;
603 }
604
605 /**
606 * show_related_cpus - show the CPUs affected by each transition even if
607 * hw coordination is in use
608 */
609 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
610 {
611 if (cpumask_empty(policy->related_cpus))
612 return show_cpus(policy->cpus, buf);
613 return show_cpus(policy->related_cpus, buf);
614 }
615
616 /**
617 * show_affected_cpus - show the CPUs affected by each transition
618 */
619 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
620 {
621 return show_cpus(policy->cpus, buf);
622 }
623
624 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
625 const char *buf, size_t count)
626 {
627 unsigned int freq = 0;
628 unsigned int ret;
629
630 if (!policy->governor || !policy->governor->store_setspeed)
631 return -EINVAL;
632
633 ret = sscanf(buf, "%u", &freq);
634 if (ret != 1)
635 return -EINVAL;
636
637 policy->governor->store_setspeed(policy, freq);
638
639 return count;
640 }
641
642 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
643 {
644 if (!policy->governor || !policy->governor->show_setspeed)
645 return sprintf(buf, "<unsupported>\n");
646
647 return policy->governor->show_setspeed(policy, buf);
648 }
649
650 #define define_one_ro(_name) \
651 static struct freq_attr _name = \
652 __ATTR(_name, 0444, show_##_name, NULL)
653
654 #define define_one_ro0400(_name) \
655 static struct freq_attr _name = \
656 __ATTR(_name, 0400, show_##_name, NULL)
657
658 #define define_one_rw(_name) \
659 static struct freq_attr _name = \
660 __ATTR(_name, 0644, show_##_name, store_##_name)
661
662 define_one_ro0400(cpuinfo_cur_freq);
663 define_one_ro(cpuinfo_min_freq);
664 define_one_ro(cpuinfo_max_freq);
665 define_one_ro(cpuinfo_transition_latency);
666 define_one_ro(scaling_available_governors);
667 define_one_ro(scaling_driver);
668 define_one_ro(scaling_cur_freq);
669 define_one_ro(related_cpus);
670 define_one_ro(affected_cpus);
671 define_one_rw(scaling_min_freq);
672 define_one_rw(scaling_max_freq);
673 define_one_rw(scaling_governor);
674 define_one_rw(scaling_setspeed);
675
676 static struct attribute *default_attrs[] = {
677 &cpuinfo_min_freq.attr,
678 &cpuinfo_max_freq.attr,
679 &cpuinfo_transition_latency.attr,
680 &scaling_min_freq.attr,
681 &scaling_max_freq.attr,
682 &affected_cpus.attr,
683 &related_cpus.attr,
684 &scaling_governor.attr,
685 &scaling_driver.attr,
686 &scaling_available_governors.attr,
687 &scaling_setspeed.attr,
688 NULL
689 };
690
691 struct kobject *cpufreq_global_kobject;
692 EXPORT_SYMBOL(cpufreq_global_kobject);
693
694 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
695 #define to_attr(a) container_of(a, struct freq_attr, attr)
696
697 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
698 {
699 struct cpufreq_policy *policy = to_policy(kobj);
700 struct freq_attr *fattr = to_attr(attr);
701 ssize_t ret = -EINVAL;
702 policy = cpufreq_cpu_get(policy->cpu);
703 if (!policy)
704 goto no_policy;
705
706 if (lock_policy_rwsem_read(policy->cpu) < 0)
707 goto fail;
708
709 if (fattr->show)
710 ret = fattr->show(policy, buf);
711 else
712 ret = -EIO;
713
714 unlock_policy_rwsem_read(policy->cpu);
715 fail:
716 cpufreq_cpu_put(policy);
717 no_policy:
718 return ret;
719 }
720
721 static ssize_t store(struct kobject *kobj, struct attribute *attr,
722 const char *buf, size_t count)
723 {
724 struct cpufreq_policy *policy = to_policy(kobj);
725 struct freq_attr *fattr = to_attr(attr);
726 ssize_t ret = -EINVAL;
727 policy = cpufreq_cpu_get(policy->cpu);
728 if (!policy)
729 goto no_policy;
730
731 if (lock_policy_rwsem_write(policy->cpu) < 0)
732 goto fail;
733
734 if (fattr->store)
735 ret = fattr->store(policy, buf, count);
736 else
737 ret = -EIO;
738
739 unlock_policy_rwsem_write(policy->cpu);
740 fail:
741 cpufreq_cpu_put(policy);
742 no_policy:
743 return ret;
744 }
745
746 static void cpufreq_sysfs_release(struct kobject *kobj)
747 {
748 struct cpufreq_policy *policy = to_policy(kobj);
749 dprintk("last reference is dropped\n");
750 complete(&policy->kobj_unregister);
751 }
752
753 static struct sysfs_ops sysfs_ops = {
754 .show = show,
755 .store = store,
756 };
757
758 static struct kobj_type ktype_cpufreq = {
759 .sysfs_ops = &sysfs_ops,
760 .default_attrs = default_attrs,
761 .release = cpufreq_sysfs_release,
762 };
763
764 /*
765 * Returns:
766 * Negative: Failure
767 * 0: Success
768 * Positive: When we have a managed CPU and the sysfs got symlinked
769 */
770 int cpufreq_add_dev_policy(unsigned int cpu, struct cpufreq_policy *policy,
771 struct sys_device *sys_dev)
772 {
773 int ret = 0;
774 #ifdef CONFIG_SMP
775 unsigned long flags;
776 unsigned int j;
777
778 #ifdef CONFIG_HOTPLUG_CPU
779 if (per_cpu(cpufreq_cpu_governor, cpu)) {
780 policy->governor = per_cpu(cpufreq_cpu_governor, cpu);
781 dprintk("Restoring governor %s for cpu %d\n",
782 policy->governor->name, cpu);
783 }
784 #endif
785
786 for_each_cpu(j, policy->cpus) {
787 struct cpufreq_policy *managed_policy;
788
789 if (cpu == j)
790 continue;
791
792 /* Check for existing affected CPUs.
793 * They may not be aware of it due to CPU Hotplug.
794 * cpufreq_cpu_put is called when the device is removed
795 * in __cpufreq_remove_dev()
796 */
797 managed_policy = cpufreq_cpu_get(j);
798 if (unlikely(managed_policy)) {
799
800 /* Set proper policy_cpu */
801 unlock_policy_rwsem_write(cpu);
802 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
803
804 if (lock_policy_rwsem_write(cpu) < 0) {
805 /* Should not go through policy unlock path */
806 if (cpufreq_driver->exit)
807 cpufreq_driver->exit(policy);
808 cpufreq_cpu_put(managed_policy);
809 return -EBUSY;
810 }
811
812 spin_lock_irqsave(&cpufreq_driver_lock, flags);
813 cpumask_copy(managed_policy->cpus, policy->cpus);
814 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
815 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
816
817 dprintk("CPU already managed, adding link\n");
818 ret = sysfs_create_link(&sys_dev->kobj,
819 &managed_policy->kobj,
820 "cpufreq");
821 if (ret)
822 cpufreq_cpu_put(managed_policy);
823 /*
824 * Success. We only needed to be added to the mask.
825 * Call driver->exit() because only the cpu parent of
826 * the kobj needed to call init().
827 */
828 if (cpufreq_driver->exit)
829 cpufreq_driver->exit(policy);
830
831 if (!ret)
832 return 1;
833 else
834 return ret;
835 }
836 }
837 #endif
838 return ret;
839 }
840
841
842 /* symlink affected CPUs */
843 int cpufreq_add_dev_symlink(unsigned int cpu, struct cpufreq_policy *policy)
844 {
845 unsigned int j;
846 int ret = 0;
847
848 for_each_cpu(j, policy->cpus) {
849 struct cpufreq_policy *managed_policy;
850 struct sys_device *cpu_sys_dev;
851
852 if (j == cpu)
853 continue;
854 if (!cpu_online(j))
855 continue;
856
857 dprintk("CPU %u already managed, adding link\n", j);
858 managed_policy = cpufreq_cpu_get(cpu);
859 cpu_sys_dev = get_cpu_sysdev(j);
860 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
861 "cpufreq");
862 if (ret) {
863 cpufreq_cpu_put(managed_policy);
864 return ret;
865 }
866 }
867 return ret;
868 }
869
870 int cpufreq_add_dev_interface(unsigned int cpu, struct cpufreq_policy *policy,
871 struct sys_device *sys_dev)
872 {
873 struct cpufreq_policy new_policy;
874 struct freq_attr **drv_attr;
875 unsigned long flags;
876 int ret = 0;
877 unsigned int j;
878
879 /* prepare interface data */
880 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
881 &sys_dev->kobj, "cpufreq");
882 if (ret)
883 return ret;
884
885 /* set up files for this cpu device */
886 drv_attr = cpufreq_driver->attr;
887 while ((drv_attr) && (*drv_attr)) {
888 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
889 if (ret)
890 goto err_out_kobj_put;
891 drv_attr++;
892 }
893 if (cpufreq_driver->get) {
894 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
895 if (ret)
896 goto err_out_kobj_put;
897 }
898 if (cpufreq_driver->target) {
899 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
900 if (ret)
901 goto err_out_kobj_put;
902 }
903
904 spin_lock_irqsave(&cpufreq_driver_lock, flags);
905 for_each_cpu(j, policy->cpus) {
906 if (!cpu_online(j))
907 continue;
908 per_cpu(cpufreq_cpu_data, j) = policy;
909 per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
910 }
911 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
912
913 ret = cpufreq_add_dev_symlink(cpu, policy);
914 if (ret)
915 goto err_out_kobj_put;
916
917 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
918 /* assure that the starting sequence is run in __cpufreq_set_policy */
919 policy->governor = NULL;
920
921 /* set default policy */
922 ret = __cpufreq_set_policy(policy, &new_policy);
923 policy->user_policy.policy = policy->policy;
924 policy->user_policy.governor = policy->governor;
925
926 if (ret) {
927 dprintk("setting policy failed\n");
928 if (cpufreq_driver->exit)
929 cpufreq_driver->exit(policy);
930 }
931 return ret;
932
933 err_out_kobj_put:
934 kobject_put(&policy->kobj);
935 wait_for_completion(&policy->kobj_unregister);
936 return ret;
937 }
938
939
940 /**
941 * cpufreq_add_dev - add a CPU device
942 *
943 * Adds the cpufreq interface for a CPU device.
944 *
945 * The Oracle says: try running cpufreq registration/unregistration concurrently
946 * with with cpu hotplugging and all hell will break loose. Tried to clean this
947 * mess up, but more thorough testing is needed. - Mathieu
948 */
949 static int cpufreq_add_dev(struct sys_device *sys_dev)
950 {
951 unsigned int cpu = sys_dev->id;
952 int ret = 0;
953 struct cpufreq_policy *policy;
954 unsigned long flags;
955 unsigned int j;
956
957 if (cpu_is_offline(cpu))
958 return 0;
959
960 cpufreq_debug_disable_ratelimit();
961 dprintk("adding CPU %u\n", cpu);
962
963 #ifdef CONFIG_SMP
964 /* check whether a different CPU already registered this
965 * CPU because it is in the same boat. */
966 policy = cpufreq_cpu_get(cpu);
967 if (unlikely(policy)) {
968 cpufreq_cpu_put(policy);
969 cpufreq_debug_enable_ratelimit();
970 return 0;
971 }
972 #endif
973
974 if (!try_module_get(cpufreq_driver->owner)) {
975 ret = -EINVAL;
976 goto module_out;
977 }
978
979 ret = -ENOMEM;
980 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
981 if (!policy)
982 goto nomem_out;
983
984 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
985 goto err_free_policy;
986
987 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
988 goto err_free_cpumask;
989
990 policy->cpu = cpu;
991 cpumask_copy(policy->cpus, cpumask_of(cpu));
992
993 /* Initially set CPU itself as the policy_cpu */
994 per_cpu(cpufreq_policy_cpu, cpu) = cpu;
995 ret = (lock_policy_rwsem_write(cpu) < 0);
996 WARN_ON(ret);
997
998 init_completion(&policy->kobj_unregister);
999 INIT_WORK(&policy->update, handle_update);
1000
1001 /* Set governor before ->init, so that driver could check it */
1002 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1003 /* call driver. From then on the cpufreq must be able
1004 * to accept all calls to ->verify and ->setpolicy for this CPU
1005 */
1006 ret = cpufreq_driver->init(policy);
1007 if (ret) {
1008 dprintk("initialization failed\n");
1009 goto err_unlock_policy;
1010 }
1011 policy->user_policy.min = policy->min;
1012 policy->user_policy.max = policy->max;
1013
1014 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1015 CPUFREQ_START, policy);
1016
1017 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
1018 if (ret) {
1019 if (ret > 0)
1020 /* This is a managed cpu, symlink created,
1021 exit with 0 */
1022 ret = 0;
1023 goto err_unlock_policy;
1024 }
1025
1026 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
1027 if (ret)
1028 goto err_out_unregister;
1029
1030 unlock_policy_rwsem_write(cpu);
1031
1032 kobject_uevent(&policy->kobj, KOBJ_ADD);
1033 module_put(cpufreq_driver->owner);
1034 dprintk("initialization complete\n");
1035 cpufreq_debug_enable_ratelimit();
1036
1037 return 0;
1038
1039
1040 err_out_unregister:
1041 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1042 for_each_cpu(j, policy->cpus)
1043 per_cpu(cpufreq_cpu_data, j) = NULL;
1044 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1045
1046 kobject_put(&policy->kobj);
1047 wait_for_completion(&policy->kobj_unregister);
1048
1049 err_unlock_policy:
1050 unlock_policy_rwsem_write(cpu);
1051 err_free_cpumask:
1052 free_cpumask_var(policy->cpus);
1053 err_free_policy:
1054 kfree(policy);
1055 nomem_out:
1056 module_put(cpufreq_driver->owner);
1057 module_out:
1058 cpufreq_debug_enable_ratelimit();
1059 return ret;
1060 }
1061
1062
1063 /**
1064 * __cpufreq_remove_dev - remove a CPU device
1065 *
1066 * Removes the cpufreq interface for a CPU device.
1067 * Caller should already have policy_rwsem in write mode for this CPU.
1068 * This routine frees the rwsem before returning.
1069 */
1070 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1071 {
1072 unsigned int cpu = sys_dev->id;
1073 unsigned long flags;
1074 struct cpufreq_policy *data;
1075 #ifdef CONFIG_SMP
1076 struct sys_device *cpu_sys_dev;
1077 unsigned int j;
1078 #endif
1079
1080 cpufreq_debug_disable_ratelimit();
1081 dprintk("unregistering CPU %u\n", cpu);
1082
1083 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1084 data = per_cpu(cpufreq_cpu_data, cpu);
1085
1086 if (!data) {
1087 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1088 cpufreq_debug_enable_ratelimit();
1089 unlock_policy_rwsem_write(cpu);
1090 return -EINVAL;
1091 }
1092 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1093
1094
1095 #ifdef CONFIG_SMP
1096 /* if this isn't the CPU which is the parent of the kobj, we
1097 * only need to unlink, put and exit
1098 */
1099 if (unlikely(cpu != data->cpu)) {
1100 dprintk("removing link\n");
1101 cpumask_clear_cpu(cpu, data->cpus);
1102 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1103 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1104 cpufreq_cpu_put(data);
1105 cpufreq_debug_enable_ratelimit();
1106 unlock_policy_rwsem_write(cpu);
1107 return 0;
1108 }
1109 #endif
1110
1111 #ifdef CONFIG_SMP
1112
1113 #ifdef CONFIG_HOTPLUG_CPU
1114 per_cpu(cpufreq_cpu_governor, cpu) = data->governor;
1115 #endif
1116
1117 /* if we have other CPUs still registered, we need to unlink them,
1118 * or else wait_for_completion below will lock up. Clean the
1119 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1120 * the sysfs links afterwards.
1121 */
1122 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1123 for_each_cpu(j, data->cpus) {
1124 if (j == cpu)
1125 continue;
1126 per_cpu(cpufreq_cpu_data, j) = NULL;
1127 }
1128 }
1129
1130 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1131
1132 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1133 for_each_cpu(j, data->cpus) {
1134 if (j == cpu)
1135 continue;
1136 dprintk("removing link for cpu %u\n", j);
1137 #ifdef CONFIG_HOTPLUG_CPU
1138 per_cpu(cpufreq_cpu_governor, j) = data->governor;
1139 #endif
1140 cpu_sys_dev = get_cpu_sysdev(j);
1141 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1142 cpufreq_cpu_put(data);
1143 }
1144 }
1145 #else
1146 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1147 #endif
1148
1149 if (cpufreq_driver->target)
1150 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1151
1152 kobject_put(&data->kobj);
1153
1154 /* we need to make sure that the underlying kobj is actually
1155 * not referenced anymore by anybody before we proceed with
1156 * unloading.
1157 */
1158 dprintk("waiting for dropping of refcount\n");
1159 wait_for_completion(&data->kobj_unregister);
1160 dprintk("wait complete\n");
1161
1162 if (cpufreq_driver->exit)
1163 cpufreq_driver->exit(data);
1164
1165 unlock_policy_rwsem_write(cpu);
1166
1167 free_cpumask_var(data->related_cpus);
1168 free_cpumask_var(data->cpus);
1169 kfree(data);
1170 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1171
1172 cpufreq_debug_enable_ratelimit();
1173 return 0;
1174 }
1175
1176
1177 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1178 {
1179 unsigned int cpu = sys_dev->id;
1180 int retval;
1181
1182 if (cpu_is_offline(cpu))
1183 return 0;
1184
1185 if (unlikely(lock_policy_rwsem_write(cpu)))
1186 BUG();
1187
1188 retval = __cpufreq_remove_dev(sys_dev);
1189 return retval;
1190 }
1191
1192
1193 static void handle_update(struct work_struct *work)
1194 {
1195 struct cpufreq_policy *policy =
1196 container_of(work, struct cpufreq_policy, update);
1197 unsigned int cpu = policy->cpu;
1198 dprintk("handle_update for cpu %u called\n", cpu);
1199 cpufreq_update_policy(cpu);
1200 }
1201
1202 /**
1203 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1204 * @cpu: cpu number
1205 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1206 * @new_freq: CPU frequency the CPU actually runs at
1207 *
1208 * We adjust to current frequency first, and need to clean up later.
1209 * So either call to cpufreq_update_policy() or schedule handle_update()).
1210 */
1211 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1212 unsigned int new_freq)
1213 {
1214 struct cpufreq_freqs freqs;
1215
1216 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1217 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1218
1219 freqs.cpu = cpu;
1220 freqs.old = old_freq;
1221 freqs.new = new_freq;
1222 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1223 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1224 }
1225
1226
1227 /**
1228 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1229 * @cpu: CPU number
1230 *
1231 * This is the last known freq, without actually getting it from the driver.
1232 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1233 */
1234 unsigned int cpufreq_quick_get(unsigned int cpu)
1235 {
1236 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1237 unsigned int ret_freq = 0;
1238
1239 if (policy) {
1240 ret_freq = policy->cur;
1241 cpufreq_cpu_put(policy);
1242 }
1243
1244 return ret_freq;
1245 }
1246 EXPORT_SYMBOL(cpufreq_quick_get);
1247
1248
1249 static unsigned int __cpufreq_get(unsigned int cpu)
1250 {
1251 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1252 unsigned int ret_freq = 0;
1253
1254 if (!cpufreq_driver->get)
1255 return ret_freq;
1256
1257 ret_freq = cpufreq_driver->get(cpu);
1258
1259 if (ret_freq && policy->cur &&
1260 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1261 /* verify no discrepancy between actual and
1262 saved value exists */
1263 if (unlikely(ret_freq != policy->cur)) {
1264 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1265 schedule_work(&policy->update);
1266 }
1267 }
1268
1269 return ret_freq;
1270 }
1271
1272 /**
1273 * cpufreq_get - get the current CPU frequency (in kHz)
1274 * @cpu: CPU number
1275 *
1276 * Get the CPU current (static) CPU frequency
1277 */
1278 unsigned int cpufreq_get(unsigned int cpu)
1279 {
1280 unsigned int ret_freq = 0;
1281 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1282
1283 if (!policy)
1284 goto out;
1285
1286 if (unlikely(lock_policy_rwsem_read(cpu)))
1287 goto out_policy;
1288
1289 ret_freq = __cpufreq_get(cpu);
1290
1291 unlock_policy_rwsem_read(cpu);
1292
1293 out_policy:
1294 cpufreq_cpu_put(policy);
1295 out:
1296 return ret_freq;
1297 }
1298 EXPORT_SYMBOL(cpufreq_get);
1299
1300
1301 /**
1302 * cpufreq_suspend - let the low level driver prepare for suspend
1303 */
1304
1305 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1306 {
1307 int ret = 0;
1308
1309 int cpu = sysdev->id;
1310 struct cpufreq_policy *cpu_policy;
1311
1312 dprintk("suspending cpu %u\n", cpu);
1313
1314 if (!cpu_online(cpu))
1315 return 0;
1316
1317 /* we may be lax here as interrupts are off. Nonetheless
1318 * we need to grab the correct cpu policy, as to check
1319 * whether we really run on this CPU.
1320 */
1321
1322 cpu_policy = cpufreq_cpu_get(cpu);
1323 if (!cpu_policy)
1324 return -EINVAL;
1325
1326 /* only handle each CPU group once */
1327 if (unlikely(cpu_policy->cpu != cpu))
1328 goto out;
1329
1330 if (cpufreq_driver->suspend) {
1331 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1332 if (ret)
1333 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1334 "step on CPU %u\n", cpu_policy->cpu);
1335 }
1336
1337 out:
1338 cpufreq_cpu_put(cpu_policy);
1339 return ret;
1340 }
1341
1342 /**
1343 * cpufreq_resume - restore proper CPU frequency handling after resume
1344 *
1345 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1346 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1347 * restored. It will verify that the current freq is in sync with
1348 * what we believe it to be. This is a bit later than when it
1349 * should be, but nonethteless it's better than calling
1350 * cpufreq_driver->get() here which might re-enable interrupts...
1351 */
1352 static int cpufreq_resume(struct sys_device *sysdev)
1353 {
1354 int ret = 0;
1355
1356 int cpu = sysdev->id;
1357 struct cpufreq_policy *cpu_policy;
1358
1359 dprintk("resuming cpu %u\n", cpu);
1360
1361 if (!cpu_online(cpu))
1362 return 0;
1363
1364 /* we may be lax here as interrupts are off. Nonetheless
1365 * we need to grab the correct cpu policy, as to check
1366 * whether we really run on this CPU.
1367 */
1368
1369 cpu_policy = cpufreq_cpu_get(cpu);
1370 if (!cpu_policy)
1371 return -EINVAL;
1372
1373 /* only handle each CPU group once */
1374 if (unlikely(cpu_policy->cpu != cpu))
1375 goto fail;
1376
1377 if (cpufreq_driver->resume) {
1378 ret = cpufreq_driver->resume(cpu_policy);
1379 if (ret) {
1380 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1381 "step on CPU %u\n", cpu_policy->cpu);
1382 goto fail;
1383 }
1384 }
1385
1386 schedule_work(&cpu_policy->update);
1387
1388 fail:
1389 cpufreq_cpu_put(cpu_policy);
1390 return ret;
1391 }
1392
1393 static struct sysdev_driver cpufreq_sysdev_driver = {
1394 .add = cpufreq_add_dev,
1395 .remove = cpufreq_remove_dev,
1396 .suspend = cpufreq_suspend,
1397 .resume = cpufreq_resume,
1398 };
1399
1400
1401 /*********************************************************************
1402 * NOTIFIER LISTS INTERFACE *
1403 *********************************************************************/
1404
1405 /**
1406 * cpufreq_register_notifier - register a driver with cpufreq
1407 * @nb: notifier function to register
1408 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1409 *
1410 * Add a driver to one of two lists: either a list of drivers that
1411 * are notified about clock rate changes (once before and once after
1412 * the transition), or a list of drivers that are notified about
1413 * changes in cpufreq policy.
1414 *
1415 * This function may sleep, and has the same return conditions as
1416 * blocking_notifier_chain_register.
1417 */
1418 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1419 {
1420 int ret;
1421
1422 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1423
1424 switch (list) {
1425 case CPUFREQ_TRANSITION_NOTIFIER:
1426 ret = srcu_notifier_chain_register(
1427 &cpufreq_transition_notifier_list, nb);
1428 break;
1429 case CPUFREQ_POLICY_NOTIFIER:
1430 ret = blocking_notifier_chain_register(
1431 &cpufreq_policy_notifier_list, nb);
1432 break;
1433 default:
1434 ret = -EINVAL;
1435 }
1436
1437 return ret;
1438 }
1439 EXPORT_SYMBOL(cpufreq_register_notifier);
1440
1441
1442 /**
1443 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1444 * @nb: notifier block to be unregistered
1445 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1446 *
1447 * Remove a driver from the CPU frequency notifier list.
1448 *
1449 * This function may sleep, and has the same return conditions as
1450 * blocking_notifier_chain_unregister.
1451 */
1452 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1453 {
1454 int ret;
1455
1456 switch (list) {
1457 case CPUFREQ_TRANSITION_NOTIFIER:
1458 ret = srcu_notifier_chain_unregister(
1459 &cpufreq_transition_notifier_list, nb);
1460 break;
1461 case CPUFREQ_POLICY_NOTIFIER:
1462 ret = blocking_notifier_chain_unregister(
1463 &cpufreq_policy_notifier_list, nb);
1464 break;
1465 default:
1466 ret = -EINVAL;
1467 }
1468
1469 return ret;
1470 }
1471 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1472
1473
1474 /*********************************************************************
1475 * GOVERNORS *
1476 *********************************************************************/
1477
1478
1479 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1480 unsigned int target_freq,
1481 unsigned int relation)
1482 {
1483 int retval = -EINVAL;
1484
1485 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1486 target_freq, relation);
1487 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1488 retval = cpufreq_driver->target(policy, target_freq, relation);
1489
1490 return retval;
1491 }
1492 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1493
1494 int cpufreq_driver_target(struct cpufreq_policy *policy,
1495 unsigned int target_freq,
1496 unsigned int relation)
1497 {
1498 int ret = -EINVAL;
1499
1500 policy = cpufreq_cpu_get(policy->cpu);
1501 if (!policy)
1502 goto no_policy;
1503
1504 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1505 goto fail;
1506
1507 ret = __cpufreq_driver_target(policy, target_freq, relation);
1508
1509 unlock_policy_rwsem_write(policy->cpu);
1510
1511 fail:
1512 cpufreq_cpu_put(policy);
1513 no_policy:
1514 return ret;
1515 }
1516 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1517
1518 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1519 {
1520 int ret = 0;
1521
1522 policy = cpufreq_cpu_get(policy->cpu);
1523 if (!policy)
1524 return -EINVAL;
1525
1526 if (cpu_online(cpu) && cpufreq_driver->getavg)
1527 ret = cpufreq_driver->getavg(policy, cpu);
1528
1529 cpufreq_cpu_put(policy);
1530 return ret;
1531 }
1532 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1533
1534 /*
1535 * when "event" is CPUFREQ_GOV_LIMITS
1536 */
1537
1538 static int __cpufreq_governor(struct cpufreq_policy *policy,
1539 unsigned int event)
1540 {
1541 int ret;
1542
1543 /* Only must be defined when default governor is known to have latency
1544 restrictions, like e.g. conservative or ondemand.
1545 That this is the case is already ensured in Kconfig
1546 */
1547 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1548 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1549 #else
1550 struct cpufreq_governor *gov = NULL;
1551 #endif
1552
1553 if (policy->governor->max_transition_latency &&
1554 policy->cpuinfo.transition_latency >
1555 policy->governor->max_transition_latency) {
1556 if (!gov)
1557 return -EINVAL;
1558 else {
1559 printk(KERN_WARNING "%s governor failed, too long"
1560 " transition latency of HW, fallback"
1561 " to %s governor\n",
1562 policy->governor->name,
1563 gov->name);
1564 policy->governor = gov;
1565 }
1566 }
1567
1568 if (!try_module_get(policy->governor->owner))
1569 return -EINVAL;
1570
1571 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1572 policy->cpu, event);
1573 ret = policy->governor->governor(policy, event);
1574
1575 /* we keep one module reference alive for
1576 each CPU governed by this CPU */
1577 if ((event != CPUFREQ_GOV_START) || ret)
1578 module_put(policy->governor->owner);
1579 if ((event == CPUFREQ_GOV_STOP) && !ret)
1580 module_put(policy->governor->owner);
1581
1582 return ret;
1583 }
1584
1585
1586 int cpufreq_register_governor(struct cpufreq_governor *governor)
1587 {
1588 int err;
1589
1590 if (!governor)
1591 return -EINVAL;
1592
1593 mutex_lock(&cpufreq_governor_mutex);
1594
1595 err = -EBUSY;
1596 if (__find_governor(governor->name) == NULL) {
1597 err = 0;
1598 list_add(&governor->governor_list, &cpufreq_governor_list);
1599 }
1600
1601 mutex_unlock(&cpufreq_governor_mutex);
1602 return err;
1603 }
1604 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1605
1606
1607 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1608 {
1609 if (!governor)
1610 return;
1611
1612 mutex_lock(&cpufreq_governor_mutex);
1613 list_del(&governor->governor_list);
1614 mutex_unlock(&cpufreq_governor_mutex);
1615 return;
1616 }
1617 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1618
1619
1620
1621 /*********************************************************************
1622 * POLICY INTERFACE *
1623 *********************************************************************/
1624
1625 /**
1626 * cpufreq_get_policy - get the current cpufreq_policy
1627 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1628 * is written
1629 *
1630 * Reads the current cpufreq policy.
1631 */
1632 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1633 {
1634 struct cpufreq_policy *cpu_policy;
1635 if (!policy)
1636 return -EINVAL;
1637
1638 cpu_policy = cpufreq_cpu_get(cpu);
1639 if (!cpu_policy)
1640 return -EINVAL;
1641
1642 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1643
1644 cpufreq_cpu_put(cpu_policy);
1645 return 0;
1646 }
1647 EXPORT_SYMBOL(cpufreq_get_policy);
1648
1649
1650 /*
1651 * data : current policy.
1652 * policy : policy to be set.
1653 */
1654 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1655 struct cpufreq_policy *policy)
1656 {
1657 int ret = 0;
1658
1659 cpufreq_debug_disable_ratelimit();
1660 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1661 policy->min, policy->max);
1662
1663 memcpy(&policy->cpuinfo, &data->cpuinfo,
1664 sizeof(struct cpufreq_cpuinfo));
1665
1666 if (policy->min > data->max || policy->max < data->min) {
1667 ret = -EINVAL;
1668 goto error_out;
1669 }
1670
1671 /* verify the cpu speed can be set within this limit */
1672 ret = cpufreq_driver->verify(policy);
1673 if (ret)
1674 goto error_out;
1675
1676 /* adjust if necessary - all reasons */
1677 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1678 CPUFREQ_ADJUST, policy);
1679
1680 /* adjust if necessary - hardware incompatibility*/
1681 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1682 CPUFREQ_INCOMPATIBLE, policy);
1683
1684 /* verify the cpu speed can be set within this limit,
1685 which might be different to the first one */
1686 ret = cpufreq_driver->verify(policy);
1687 if (ret)
1688 goto error_out;
1689
1690 /* notification of the new policy */
1691 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1692 CPUFREQ_NOTIFY, policy);
1693
1694 data->min = policy->min;
1695 data->max = policy->max;
1696
1697 dprintk("new min and max freqs are %u - %u kHz\n",
1698 data->min, data->max);
1699
1700 if (cpufreq_driver->setpolicy) {
1701 data->policy = policy->policy;
1702 dprintk("setting range\n");
1703 ret = cpufreq_driver->setpolicy(policy);
1704 } else {
1705 if (policy->governor != data->governor) {
1706 /* save old, working values */
1707 struct cpufreq_governor *old_gov = data->governor;
1708
1709 dprintk("governor switch\n");
1710
1711 /* end old governor */
1712 if (data->governor) {
1713 /*
1714 * Need to release the rwsem around governor
1715 * stop due to lock dependency between
1716 * cancel_delayed_work_sync and the read lock
1717 * taken in the delayed work handler.
1718 */
1719 unlock_policy_rwsem_write(data->cpu);
1720 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1721 lock_policy_rwsem_write(data->cpu);
1722 }
1723
1724 /* start new governor */
1725 data->governor = policy->governor;
1726 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1727 /* new governor failed, so re-start old one */
1728 dprintk("starting governor %s failed\n",
1729 data->governor->name);
1730 if (old_gov) {
1731 data->governor = old_gov;
1732 __cpufreq_governor(data,
1733 CPUFREQ_GOV_START);
1734 }
1735 ret = -EINVAL;
1736 goto error_out;
1737 }
1738 /* might be a policy change, too, so fall through */
1739 }
1740 dprintk("governor: change or update limits\n");
1741 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1742 }
1743
1744 error_out:
1745 cpufreq_debug_enable_ratelimit();
1746 return ret;
1747 }
1748
1749 /**
1750 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1751 * @cpu: CPU which shall be re-evaluated
1752 *
1753 * Usefull for policy notifiers which have different necessities
1754 * at different times.
1755 */
1756 int cpufreq_update_policy(unsigned int cpu)
1757 {
1758 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1759 struct cpufreq_policy policy;
1760 int ret;
1761
1762 if (!data) {
1763 ret = -ENODEV;
1764 goto no_policy;
1765 }
1766
1767 if (unlikely(lock_policy_rwsem_write(cpu))) {
1768 ret = -EINVAL;
1769 goto fail;
1770 }
1771
1772 dprintk("updating policy for CPU %u\n", cpu);
1773 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1774 policy.min = data->user_policy.min;
1775 policy.max = data->user_policy.max;
1776 policy.policy = data->user_policy.policy;
1777 policy.governor = data->user_policy.governor;
1778
1779 /* BIOS might change freq behind our back
1780 -> ask driver for current freq and notify governors about a change */
1781 if (cpufreq_driver->get) {
1782 policy.cur = cpufreq_driver->get(cpu);
1783 if (!data->cur) {
1784 dprintk("Driver did not initialize current freq");
1785 data->cur = policy.cur;
1786 } else {
1787 if (data->cur != policy.cur)
1788 cpufreq_out_of_sync(cpu, data->cur,
1789 policy.cur);
1790 }
1791 }
1792
1793 ret = __cpufreq_set_policy(data, &policy);
1794
1795 unlock_policy_rwsem_write(cpu);
1796
1797 fail:
1798 cpufreq_cpu_put(data);
1799 no_policy:
1800 return ret;
1801 }
1802 EXPORT_SYMBOL(cpufreq_update_policy);
1803
1804 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1805 unsigned long action, void *hcpu)
1806 {
1807 unsigned int cpu = (unsigned long)hcpu;
1808 struct sys_device *sys_dev;
1809
1810 sys_dev = get_cpu_sysdev(cpu);
1811 if (sys_dev) {
1812 switch (action) {
1813 case CPU_ONLINE:
1814 case CPU_ONLINE_FROZEN:
1815 cpufreq_add_dev(sys_dev);
1816 break;
1817 case CPU_DOWN_PREPARE:
1818 case CPU_DOWN_PREPARE_FROZEN:
1819 if (unlikely(lock_policy_rwsem_write(cpu)))
1820 BUG();
1821
1822 __cpufreq_remove_dev(sys_dev);
1823 break;
1824 case CPU_DOWN_FAILED:
1825 case CPU_DOWN_FAILED_FROZEN:
1826 cpufreq_add_dev(sys_dev);
1827 break;
1828 }
1829 }
1830 return NOTIFY_OK;
1831 }
1832
1833 static struct notifier_block __refdata cpufreq_cpu_notifier =
1834 {
1835 .notifier_call = cpufreq_cpu_callback,
1836 };
1837
1838 /*********************************************************************
1839 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1840 *********************************************************************/
1841
1842 /**
1843 * cpufreq_register_driver - register a CPU Frequency driver
1844 * @driver_data: A struct cpufreq_driver containing the values#
1845 * submitted by the CPU Frequency driver.
1846 *
1847 * Registers a CPU Frequency driver to this core code. This code
1848 * returns zero on success, -EBUSY when another driver got here first
1849 * (and isn't unregistered in the meantime).
1850 *
1851 */
1852 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1853 {
1854 unsigned long flags;
1855 int ret;
1856
1857 if (!driver_data || !driver_data->verify || !driver_data->init ||
1858 ((!driver_data->setpolicy) && (!driver_data->target)))
1859 return -EINVAL;
1860
1861 dprintk("trying to register driver %s\n", driver_data->name);
1862
1863 if (driver_data->setpolicy)
1864 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1865
1866 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1867 if (cpufreq_driver) {
1868 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1869 return -EBUSY;
1870 }
1871 cpufreq_driver = driver_data;
1872 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1873
1874 ret = sysdev_driver_register(&cpu_sysdev_class,
1875 &cpufreq_sysdev_driver);
1876
1877 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1878 int i;
1879 ret = -ENODEV;
1880
1881 /* check for at least one working CPU */
1882 for (i = 0; i < nr_cpu_ids; i++)
1883 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1884 ret = 0;
1885 break;
1886 }
1887
1888 /* if all ->init() calls failed, unregister */
1889 if (ret) {
1890 dprintk("no CPU initialized for driver %s\n",
1891 driver_data->name);
1892 sysdev_driver_unregister(&cpu_sysdev_class,
1893 &cpufreq_sysdev_driver);
1894
1895 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1896 cpufreq_driver = NULL;
1897 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1898 }
1899 }
1900
1901 if (!ret) {
1902 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1903 dprintk("driver %s up and running\n", driver_data->name);
1904 cpufreq_debug_enable_ratelimit();
1905 }
1906
1907 return ret;
1908 }
1909 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1910
1911
1912 /**
1913 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1914 *
1915 * Unregister the current CPUFreq driver. Only call this if you have
1916 * the right to do so, i.e. if you have succeeded in initialising before!
1917 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1918 * currently not initialised.
1919 */
1920 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1921 {
1922 unsigned long flags;
1923
1924 cpufreq_debug_disable_ratelimit();
1925
1926 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1927 cpufreq_debug_enable_ratelimit();
1928 return -EINVAL;
1929 }
1930
1931 dprintk("unregistering driver %s\n", driver->name);
1932
1933 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1934 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1935
1936 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1937 cpufreq_driver = NULL;
1938 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1939
1940 return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1943
1944 static int __init cpufreq_core_init(void)
1945 {
1946 int cpu;
1947
1948 for_each_possible_cpu(cpu) {
1949 per_cpu(cpufreq_policy_cpu, cpu) = -1;
1950 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1951 }
1952
1953 cpufreq_global_kobject = kobject_create_and_add("cpufreq",
1954 &cpu_sysdev_class.kset.kobj);
1955 BUG_ON(!cpufreq_global_kobject);
1956
1957 return 0;
1958 }
1959 core_initcall(cpufreq_core_init);