]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/cpufreq/cpufreq.c
drivers: net: Fix Kconfig indentation
[mirror_ubuntu-hirsute-kernel.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy) \
46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor) \
51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67 return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77
78 /**
79 * Two notifier lists: the "policy" list is involved in the
80 * validation process for a new CPU frequency policy; the
81 * "transition" list for kernel code that needs to handle
82 * changes to devices when the CPU clock speed changes.
83 * The mutex locks both lists.
84 */
85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
87
88 static int off __read_mostly;
89 static int cpufreq_disabled(void)
90 {
91 return off;
92 }
93 void disable_cpufreq(void)
94 {
95 off = 1;
96 }
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99 bool have_governor_per_policy(void)
100 {
101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 if (have_governor_per_policy())
108 return &policy->kobj;
109 else
110 return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 u64 idle_time;
117 u64 cur_wall_time;
118 u64 busy_time;
119
120 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
121
122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129 idle_time = cur_wall_time - busy_time;
130 if (wall)
131 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
132
133 return div_u64(idle_time, NSEC_PER_USEC);
134 }
135
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140 if (idle_time == -1ULL)
141 return get_cpu_idle_time_jiffy(cpu, wall);
142 else if (!io_busy)
143 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145 return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
150 unsigned long max_freq)
151 {
152 }
153 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
154
155 /*
156 * This is a generic cpufreq init() routine which can be used by cpufreq
157 * drivers of SMP systems. It will do following:
158 * - validate & show freq table passed
159 * - set policies transition latency
160 * - policy->cpus with all possible CPUs
161 */
162 void cpufreq_generic_init(struct cpufreq_policy *policy,
163 struct cpufreq_frequency_table *table,
164 unsigned int transition_latency)
165 {
166 policy->freq_table = table;
167 policy->cpuinfo.transition_latency = transition_latency;
168
169 /*
170 * The driver only supports the SMP configuration where all processors
171 * share the clock and voltage and clock.
172 */
173 cpumask_setall(policy->cpus);
174 }
175 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
176
177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
178 {
179 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
180
181 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
184
185 unsigned int cpufreq_generic_get(unsigned int cpu)
186 {
187 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
188
189 if (!policy || IS_ERR(policy->clk)) {
190 pr_err("%s: No %s associated to cpu: %d\n",
191 __func__, policy ? "clk" : "policy", cpu);
192 return 0;
193 }
194
195 return clk_get_rate(policy->clk) / 1000;
196 }
197 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
198
199 /**
200 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
201 * @cpu: CPU to find the policy for.
202 *
203 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
204 * the kobject reference counter of that policy. Return a valid policy on
205 * success or NULL on failure.
206 *
207 * The policy returned by this function has to be released with the help of
208 * cpufreq_cpu_put() to balance its kobject reference counter properly.
209 */
210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
211 {
212 struct cpufreq_policy *policy = NULL;
213 unsigned long flags;
214
215 if (WARN_ON(cpu >= nr_cpu_ids))
216 return NULL;
217
218 /* get the cpufreq driver */
219 read_lock_irqsave(&cpufreq_driver_lock, flags);
220
221 if (cpufreq_driver) {
222 /* get the CPU */
223 policy = cpufreq_cpu_get_raw(cpu);
224 if (policy)
225 kobject_get(&policy->kobj);
226 }
227
228 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
229
230 return policy;
231 }
232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
233
234 /**
235 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
236 * @policy: cpufreq policy returned by cpufreq_cpu_get().
237 */
238 void cpufreq_cpu_put(struct cpufreq_policy *policy)
239 {
240 kobject_put(&policy->kobj);
241 }
242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
243
244 /**
245 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
246 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
247 */
248 void cpufreq_cpu_release(struct cpufreq_policy *policy)
249 {
250 if (WARN_ON(!policy))
251 return;
252
253 lockdep_assert_held(&policy->rwsem);
254
255 up_write(&policy->rwsem);
256
257 cpufreq_cpu_put(policy);
258 }
259
260 /**
261 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
262 * @cpu: CPU to find the policy for.
263 *
264 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
265 * if the policy returned by it is not NULL, acquire its rwsem for writing.
266 * Return the policy if it is active or release it and return NULL otherwise.
267 *
268 * The policy returned by this function has to be released with the help of
269 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
270 * counter properly.
271 */
272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
273 {
274 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
275
276 if (!policy)
277 return NULL;
278
279 down_write(&policy->rwsem);
280
281 if (policy_is_inactive(policy)) {
282 cpufreq_cpu_release(policy);
283 return NULL;
284 }
285
286 return policy;
287 }
288
289 /*********************************************************************
290 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
291 *********************************************************************/
292
293 /**
294 * adjust_jiffies - adjust the system "loops_per_jiffy"
295 *
296 * This function alters the system "loops_per_jiffy" for the clock
297 * speed change. Note that loops_per_jiffy cannot be updated on SMP
298 * systems as each CPU might be scaled differently. So, use the arch
299 * per-CPU loops_per_jiffy value wherever possible.
300 */
301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
302 {
303 #ifndef CONFIG_SMP
304 static unsigned long l_p_j_ref;
305 static unsigned int l_p_j_ref_freq;
306
307 if (ci->flags & CPUFREQ_CONST_LOOPS)
308 return;
309
310 if (!l_p_j_ref_freq) {
311 l_p_j_ref = loops_per_jiffy;
312 l_p_j_ref_freq = ci->old;
313 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
314 l_p_j_ref, l_p_j_ref_freq);
315 }
316 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
317 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
318 ci->new);
319 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
320 loops_per_jiffy, ci->new);
321 }
322 #endif
323 }
324
325 /**
326 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
327 * @policy: cpufreq policy to enable fast frequency switching for.
328 * @freqs: contain details of the frequency update.
329 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
330 *
331 * This function calls the transition notifiers and the "adjust_jiffies"
332 * function. It is called twice on all CPU frequency changes that have
333 * external effects.
334 */
335 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
336 struct cpufreq_freqs *freqs,
337 unsigned int state)
338 {
339 int cpu;
340
341 BUG_ON(irqs_disabled());
342
343 if (cpufreq_disabled())
344 return;
345
346 freqs->policy = policy;
347 freqs->flags = cpufreq_driver->flags;
348 pr_debug("notification %u of frequency transition to %u kHz\n",
349 state, freqs->new);
350
351 switch (state) {
352 case CPUFREQ_PRECHANGE:
353 /*
354 * Detect if the driver reported a value as "old frequency"
355 * which is not equal to what the cpufreq core thinks is
356 * "old frequency".
357 */
358 if (policy->cur && policy->cur != freqs->old) {
359 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
360 freqs->old, policy->cur);
361 freqs->old = policy->cur;
362 }
363
364 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
365 CPUFREQ_PRECHANGE, freqs);
366
367 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
368 break;
369
370 case CPUFREQ_POSTCHANGE:
371 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
372 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
373 cpumask_pr_args(policy->cpus));
374
375 for_each_cpu(cpu, policy->cpus)
376 trace_cpu_frequency(freqs->new, cpu);
377
378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 CPUFREQ_POSTCHANGE, freqs);
380
381 cpufreq_stats_record_transition(policy, freqs->new);
382 policy->cur = freqs->new;
383 }
384 }
385
386 /* Do post notifications when there are chances that transition has failed */
387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
388 struct cpufreq_freqs *freqs, int transition_failed)
389 {
390 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
391 if (!transition_failed)
392 return;
393
394 swap(freqs->old, freqs->new);
395 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
396 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
397 }
398
399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
400 struct cpufreq_freqs *freqs)
401 {
402
403 /*
404 * Catch double invocations of _begin() which lead to self-deadlock.
405 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
406 * doesn't invoke _begin() on their behalf, and hence the chances of
407 * double invocations are very low. Moreover, there are scenarios
408 * where these checks can emit false-positive warnings in these
409 * drivers; so we avoid that by skipping them altogether.
410 */
411 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
412 && current == policy->transition_task);
413
414 wait:
415 wait_event(policy->transition_wait, !policy->transition_ongoing);
416
417 spin_lock(&policy->transition_lock);
418
419 if (unlikely(policy->transition_ongoing)) {
420 spin_unlock(&policy->transition_lock);
421 goto wait;
422 }
423
424 policy->transition_ongoing = true;
425 policy->transition_task = current;
426
427 spin_unlock(&policy->transition_lock);
428
429 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
430 }
431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
432
433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
434 struct cpufreq_freqs *freqs, int transition_failed)
435 {
436 if (WARN_ON(!policy->transition_ongoing))
437 return;
438
439 cpufreq_notify_post_transition(policy, freqs, transition_failed);
440
441 policy->transition_ongoing = false;
442 policy->transition_task = NULL;
443
444 wake_up(&policy->transition_wait);
445 }
446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
447
448 /*
449 * Fast frequency switching status count. Positive means "enabled", negative
450 * means "disabled" and 0 means "not decided yet".
451 */
452 static int cpufreq_fast_switch_count;
453 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
454
455 static void cpufreq_list_transition_notifiers(void)
456 {
457 struct notifier_block *nb;
458
459 pr_info("Registered transition notifiers:\n");
460
461 mutex_lock(&cpufreq_transition_notifier_list.mutex);
462
463 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
464 pr_info("%pS\n", nb->notifier_call);
465
466 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
467 }
468
469 /**
470 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
471 * @policy: cpufreq policy to enable fast frequency switching for.
472 *
473 * Try to enable fast frequency switching for @policy.
474 *
475 * The attempt will fail if there is at least one transition notifier registered
476 * at this point, as fast frequency switching is quite fundamentally at odds
477 * with transition notifiers. Thus if successful, it will make registration of
478 * transition notifiers fail going forward.
479 */
480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
481 {
482 lockdep_assert_held(&policy->rwsem);
483
484 if (!policy->fast_switch_possible)
485 return;
486
487 mutex_lock(&cpufreq_fast_switch_lock);
488 if (cpufreq_fast_switch_count >= 0) {
489 cpufreq_fast_switch_count++;
490 policy->fast_switch_enabled = true;
491 } else {
492 pr_warn("CPU%u: Fast frequency switching not enabled\n",
493 policy->cpu);
494 cpufreq_list_transition_notifiers();
495 }
496 mutex_unlock(&cpufreq_fast_switch_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
499
500 /**
501 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
502 * @policy: cpufreq policy to disable fast frequency switching for.
503 */
504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
505 {
506 mutex_lock(&cpufreq_fast_switch_lock);
507 if (policy->fast_switch_enabled) {
508 policy->fast_switch_enabled = false;
509 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
510 cpufreq_fast_switch_count--;
511 }
512 mutex_unlock(&cpufreq_fast_switch_lock);
513 }
514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
515
516 /**
517 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
518 * one.
519 * @target_freq: target frequency to resolve.
520 *
521 * The target to driver frequency mapping is cached in the policy.
522 *
523 * Return: Lowest driver-supported frequency greater than or equal to the
524 * given target_freq, subject to policy (min/max) and driver limitations.
525 */
526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
527 unsigned int target_freq)
528 {
529 target_freq = clamp_val(target_freq, policy->min, policy->max);
530 policy->cached_target_freq = target_freq;
531
532 if (cpufreq_driver->target_index) {
533 int idx;
534
535 idx = cpufreq_frequency_table_target(policy, target_freq,
536 CPUFREQ_RELATION_L);
537 policy->cached_resolved_idx = idx;
538 return policy->freq_table[idx].frequency;
539 }
540
541 if (cpufreq_driver->resolve_freq)
542 return cpufreq_driver->resolve_freq(policy, target_freq);
543
544 return target_freq;
545 }
546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
547
548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
549 {
550 unsigned int latency;
551
552 if (policy->transition_delay_us)
553 return policy->transition_delay_us;
554
555 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
556 if (latency) {
557 /*
558 * For platforms that can change the frequency very fast (< 10
559 * us), the above formula gives a decent transition delay. But
560 * for platforms where transition_latency is in milliseconds, it
561 * ends up giving unrealistic values.
562 *
563 * Cap the default transition delay to 10 ms, which seems to be
564 * a reasonable amount of time after which we should reevaluate
565 * the frequency.
566 */
567 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
568 }
569
570 return LATENCY_MULTIPLIER;
571 }
572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
573
574 /*********************************************************************
575 * SYSFS INTERFACE *
576 *********************************************************************/
577 static ssize_t show_boost(struct kobject *kobj,
578 struct kobj_attribute *attr, char *buf)
579 {
580 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
581 }
582
583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
584 const char *buf, size_t count)
585 {
586 int ret, enable;
587
588 ret = sscanf(buf, "%d", &enable);
589 if (ret != 1 || enable < 0 || enable > 1)
590 return -EINVAL;
591
592 if (cpufreq_boost_trigger_state(enable)) {
593 pr_err("%s: Cannot %s BOOST!\n",
594 __func__, enable ? "enable" : "disable");
595 return -EINVAL;
596 }
597
598 pr_debug("%s: cpufreq BOOST %s\n",
599 __func__, enable ? "enabled" : "disabled");
600
601 return count;
602 }
603 define_one_global_rw(boost);
604
605 static struct cpufreq_governor *find_governor(const char *str_governor)
606 {
607 struct cpufreq_governor *t;
608
609 for_each_governor(t)
610 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
611 return t;
612
613 return NULL;
614 }
615
616 static int cpufreq_parse_policy(char *str_governor,
617 struct cpufreq_policy *policy)
618 {
619 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
620 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
621 return 0;
622 }
623 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
624 policy->policy = CPUFREQ_POLICY_POWERSAVE;
625 return 0;
626 }
627 return -EINVAL;
628 }
629
630 /**
631 * cpufreq_parse_governor - parse a governor string only for has_target()
632 */
633 static int cpufreq_parse_governor(char *str_governor,
634 struct cpufreq_policy *policy)
635 {
636 struct cpufreq_governor *t;
637
638 mutex_lock(&cpufreq_governor_mutex);
639
640 t = find_governor(str_governor);
641 if (!t) {
642 int ret;
643
644 mutex_unlock(&cpufreq_governor_mutex);
645
646 ret = request_module("cpufreq_%s", str_governor);
647 if (ret)
648 return -EINVAL;
649
650 mutex_lock(&cpufreq_governor_mutex);
651
652 t = find_governor(str_governor);
653 }
654 if (t && !try_module_get(t->owner))
655 t = NULL;
656
657 mutex_unlock(&cpufreq_governor_mutex);
658
659 if (t) {
660 policy->governor = t;
661 return 0;
662 }
663
664 return -EINVAL;
665 }
666
667 /**
668 * cpufreq_per_cpu_attr_read() / show_##file_name() -
669 * print out cpufreq information
670 *
671 * Write out information from cpufreq_driver->policy[cpu]; object must be
672 * "unsigned int".
673 */
674
675 #define show_one(file_name, object) \
676 static ssize_t show_##file_name \
677 (struct cpufreq_policy *policy, char *buf) \
678 { \
679 return sprintf(buf, "%u\n", policy->object); \
680 }
681
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690 return 0;
691 }
692
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695 ssize_t ret;
696 unsigned int freq;
697
698 freq = arch_freq_get_on_cpu(policy->cpu);
699 if (freq)
700 ret = sprintf(buf, "%u\n", freq);
701 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702 cpufreq_driver->get)
703 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704 else
705 ret = sprintf(buf, "%u\n", policy->cur);
706 return ret;
707 }
708
709 /**
710 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711 */
712 #define store_one(file_name, object) \
713 static ssize_t store_##file_name \
714 (struct cpufreq_policy *policy, const char *buf, size_t count) \
715 { \
716 unsigned long val; \
717 int ret; \
718 \
719 ret = sscanf(buf, "%lu", &val); \
720 if (ret != 1) \
721 return -EINVAL; \
722 \
723 ret = dev_pm_qos_update_request(policy->object##_freq_req, val);\
724 return ret >= 0 ? count : ret; \
725 }
726
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729
730 /**
731 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732 */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734 char *buf)
735 {
736 unsigned int cur_freq = __cpufreq_get(policy);
737
738 if (cur_freq)
739 return sprintf(buf, "%u\n", cur_freq);
740
741 return sprintf(buf, "<unknown>\n");
742 }
743
744 /**
745 * show_scaling_governor - show the current policy for the specified CPU
746 */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750 return sprintf(buf, "powersave\n");
751 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752 return sprintf(buf, "performance\n");
753 else if (policy->governor)
754 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755 policy->governor->name);
756 return -EINVAL;
757 }
758
759 /**
760 * store_scaling_governor - store policy for the specified CPU
761 */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763 const char *buf, size_t count)
764 {
765 int ret;
766 char str_governor[16];
767 struct cpufreq_policy new_policy;
768
769 memcpy(&new_policy, policy, sizeof(*policy));
770
771 ret = sscanf(buf, "%15s", str_governor);
772 if (ret != 1)
773 return -EINVAL;
774
775 if (cpufreq_driver->setpolicy) {
776 if (cpufreq_parse_policy(str_governor, &new_policy))
777 return -EINVAL;
778 } else {
779 if (cpufreq_parse_governor(str_governor, &new_policy))
780 return -EINVAL;
781 }
782
783 ret = cpufreq_set_policy(policy, &new_policy);
784
785 if (new_policy.governor)
786 module_put(new_policy.governor->owner);
787
788 return ret ? ret : count;
789 }
790
791 /**
792 * show_scaling_driver - show the cpufreq driver currently loaded
793 */
794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
795 {
796 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
797 }
798
799 /**
800 * show_scaling_available_governors - show the available CPUfreq governors
801 */
802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
803 char *buf)
804 {
805 ssize_t i = 0;
806 struct cpufreq_governor *t;
807
808 if (!has_target()) {
809 i += sprintf(buf, "performance powersave");
810 goto out;
811 }
812
813 for_each_governor(t) {
814 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
815 - (CPUFREQ_NAME_LEN + 2)))
816 goto out;
817 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
818 }
819 out:
820 i += sprintf(&buf[i], "\n");
821 return i;
822 }
823
824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
825 {
826 ssize_t i = 0;
827 unsigned int cpu;
828
829 for_each_cpu(cpu, mask) {
830 if (i)
831 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
832 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
833 if (i >= (PAGE_SIZE - 5))
834 break;
835 }
836 i += sprintf(&buf[i], "\n");
837 return i;
838 }
839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
840
841 /**
842 * show_related_cpus - show the CPUs affected by each transition even if
843 * hw coordination is in use
844 */
845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
846 {
847 return cpufreq_show_cpus(policy->related_cpus, buf);
848 }
849
850 /**
851 * show_affected_cpus - show the CPUs affected by each transition
852 */
853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
854 {
855 return cpufreq_show_cpus(policy->cpus, buf);
856 }
857
858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
859 const char *buf, size_t count)
860 {
861 unsigned int freq = 0;
862 unsigned int ret;
863
864 if (!policy->governor || !policy->governor->store_setspeed)
865 return -EINVAL;
866
867 ret = sscanf(buf, "%u", &freq);
868 if (ret != 1)
869 return -EINVAL;
870
871 policy->governor->store_setspeed(policy, freq);
872
873 return count;
874 }
875
876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
877 {
878 if (!policy->governor || !policy->governor->show_setspeed)
879 return sprintf(buf, "<unsupported>\n");
880
881 return policy->governor->show_setspeed(policy, buf);
882 }
883
884 /**
885 * show_bios_limit - show the current cpufreq HW/BIOS limitation
886 */
887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
888 {
889 unsigned int limit;
890 int ret;
891 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
892 if (!ret)
893 return sprintf(buf, "%u\n", limit);
894 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
895 }
896
897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
898 cpufreq_freq_attr_ro(cpuinfo_min_freq);
899 cpufreq_freq_attr_ro(cpuinfo_max_freq);
900 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
901 cpufreq_freq_attr_ro(scaling_available_governors);
902 cpufreq_freq_attr_ro(scaling_driver);
903 cpufreq_freq_attr_ro(scaling_cur_freq);
904 cpufreq_freq_attr_ro(bios_limit);
905 cpufreq_freq_attr_ro(related_cpus);
906 cpufreq_freq_attr_ro(affected_cpus);
907 cpufreq_freq_attr_rw(scaling_min_freq);
908 cpufreq_freq_attr_rw(scaling_max_freq);
909 cpufreq_freq_attr_rw(scaling_governor);
910 cpufreq_freq_attr_rw(scaling_setspeed);
911
912 static struct attribute *default_attrs[] = {
913 &cpuinfo_min_freq.attr,
914 &cpuinfo_max_freq.attr,
915 &cpuinfo_transition_latency.attr,
916 &scaling_min_freq.attr,
917 &scaling_max_freq.attr,
918 &affected_cpus.attr,
919 &related_cpus.attr,
920 &scaling_governor.attr,
921 &scaling_driver.attr,
922 &scaling_available_governors.attr,
923 &scaling_setspeed.attr,
924 NULL
925 };
926
927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
928 #define to_attr(a) container_of(a, struct freq_attr, attr)
929
930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
931 {
932 struct cpufreq_policy *policy = to_policy(kobj);
933 struct freq_attr *fattr = to_attr(attr);
934 ssize_t ret;
935
936 down_read(&policy->rwsem);
937 ret = fattr->show(policy, buf);
938 up_read(&policy->rwsem);
939
940 return ret;
941 }
942
943 static ssize_t store(struct kobject *kobj, struct attribute *attr,
944 const char *buf, size_t count)
945 {
946 struct cpufreq_policy *policy = to_policy(kobj);
947 struct freq_attr *fattr = to_attr(attr);
948 ssize_t ret = -EINVAL;
949
950 /*
951 * cpus_read_trylock() is used here to work around a circular lock
952 * dependency problem with respect to the cpufreq_register_driver().
953 */
954 if (!cpus_read_trylock())
955 return -EBUSY;
956
957 if (cpu_online(policy->cpu)) {
958 down_write(&policy->rwsem);
959 ret = fattr->store(policy, buf, count);
960 up_write(&policy->rwsem);
961 }
962
963 cpus_read_unlock();
964
965 return ret;
966 }
967
968 static void cpufreq_sysfs_release(struct kobject *kobj)
969 {
970 struct cpufreq_policy *policy = to_policy(kobj);
971 pr_debug("last reference is dropped\n");
972 complete(&policy->kobj_unregister);
973 }
974
975 static const struct sysfs_ops sysfs_ops = {
976 .show = show,
977 .store = store,
978 };
979
980 static struct kobj_type ktype_cpufreq = {
981 .sysfs_ops = &sysfs_ops,
982 .default_attrs = default_attrs,
983 .release = cpufreq_sysfs_release,
984 };
985
986 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
987 {
988 struct device *dev = get_cpu_device(cpu);
989
990 if (unlikely(!dev))
991 return;
992
993 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
994 return;
995
996 dev_dbg(dev, "%s: Adding symlink\n", __func__);
997 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
998 dev_err(dev, "cpufreq symlink creation failed\n");
999 }
1000
1001 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1002 struct device *dev)
1003 {
1004 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1005 sysfs_remove_link(&dev->kobj, "cpufreq");
1006 }
1007
1008 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1009 {
1010 struct freq_attr **drv_attr;
1011 int ret = 0;
1012
1013 /* set up files for this cpu device */
1014 drv_attr = cpufreq_driver->attr;
1015 while (drv_attr && *drv_attr) {
1016 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1017 if (ret)
1018 return ret;
1019 drv_attr++;
1020 }
1021 if (cpufreq_driver->get) {
1022 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1023 if (ret)
1024 return ret;
1025 }
1026
1027 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1028 if (ret)
1029 return ret;
1030
1031 if (cpufreq_driver->bios_limit) {
1032 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1033 if (ret)
1034 return ret;
1035 }
1036
1037 return 0;
1038 }
1039
1040 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1041 {
1042 return NULL;
1043 }
1044
1045 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1046 {
1047 struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1048 struct cpufreq_policy new_policy;
1049
1050 memcpy(&new_policy, policy, sizeof(*policy));
1051
1052 def_gov = cpufreq_default_governor();
1053
1054 if (has_target()) {
1055 /*
1056 * Update governor of new_policy to the governor used before
1057 * hotplug
1058 */
1059 gov = find_governor(policy->last_governor);
1060 if (gov) {
1061 pr_debug("Restoring governor %s for cpu %d\n",
1062 policy->governor->name, policy->cpu);
1063 } else {
1064 if (!def_gov)
1065 return -ENODATA;
1066 gov = def_gov;
1067 }
1068 new_policy.governor = gov;
1069 } else {
1070 /* Use the default policy if there is no last_policy. */
1071 if (policy->last_policy) {
1072 new_policy.policy = policy->last_policy;
1073 } else {
1074 if (!def_gov)
1075 return -ENODATA;
1076 cpufreq_parse_policy(def_gov->name, &new_policy);
1077 }
1078 }
1079
1080 return cpufreq_set_policy(policy, &new_policy);
1081 }
1082
1083 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1084 {
1085 int ret = 0;
1086
1087 /* Has this CPU been taken care of already? */
1088 if (cpumask_test_cpu(cpu, policy->cpus))
1089 return 0;
1090
1091 down_write(&policy->rwsem);
1092 if (has_target())
1093 cpufreq_stop_governor(policy);
1094
1095 cpumask_set_cpu(cpu, policy->cpus);
1096
1097 if (has_target()) {
1098 ret = cpufreq_start_governor(policy);
1099 if (ret)
1100 pr_err("%s: Failed to start governor\n", __func__);
1101 }
1102 up_write(&policy->rwsem);
1103 return ret;
1104 }
1105
1106 void refresh_frequency_limits(struct cpufreq_policy *policy)
1107 {
1108 struct cpufreq_policy new_policy;
1109
1110 if (!policy_is_inactive(policy)) {
1111 new_policy = *policy;
1112 pr_debug("updating policy for CPU %u\n", policy->cpu);
1113
1114 cpufreq_set_policy(policy, &new_policy);
1115 }
1116 }
1117 EXPORT_SYMBOL(refresh_frequency_limits);
1118
1119 static void handle_update(struct work_struct *work)
1120 {
1121 struct cpufreq_policy *policy =
1122 container_of(work, struct cpufreq_policy, update);
1123
1124 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1125 down_write(&policy->rwsem);
1126 refresh_frequency_limits(policy);
1127 up_write(&policy->rwsem);
1128 }
1129
1130 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1131 void *data)
1132 {
1133 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1134
1135 schedule_work(&policy->update);
1136 return 0;
1137 }
1138
1139 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1140 void *data)
1141 {
1142 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1143
1144 schedule_work(&policy->update);
1145 return 0;
1146 }
1147
1148 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1149 {
1150 struct kobject *kobj;
1151 struct completion *cmp;
1152
1153 down_write(&policy->rwsem);
1154 cpufreq_stats_free_table(policy);
1155 kobj = &policy->kobj;
1156 cmp = &policy->kobj_unregister;
1157 up_write(&policy->rwsem);
1158 kobject_put(kobj);
1159
1160 /*
1161 * We need to make sure that the underlying kobj is
1162 * actually not referenced anymore by anybody before we
1163 * proceed with unloading.
1164 */
1165 pr_debug("waiting for dropping of refcount\n");
1166 wait_for_completion(cmp);
1167 pr_debug("wait complete\n");
1168 }
1169
1170 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1171 {
1172 struct cpufreq_policy *policy;
1173 struct device *dev = get_cpu_device(cpu);
1174 int ret;
1175
1176 if (!dev)
1177 return NULL;
1178
1179 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1180 if (!policy)
1181 return NULL;
1182
1183 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1184 goto err_free_policy;
1185
1186 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1187 goto err_free_cpumask;
1188
1189 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1190 goto err_free_rcpumask;
1191
1192 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1193 cpufreq_global_kobject, "policy%u", cpu);
1194 if (ret) {
1195 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1196 /*
1197 * The entire policy object will be freed below, but the extra
1198 * memory allocated for the kobject name needs to be freed by
1199 * releasing the kobject.
1200 */
1201 kobject_put(&policy->kobj);
1202 goto err_free_real_cpus;
1203 }
1204
1205 policy->nb_min.notifier_call = cpufreq_notifier_min;
1206 policy->nb_max.notifier_call = cpufreq_notifier_max;
1207
1208 ret = dev_pm_qos_add_notifier(dev, &policy->nb_min,
1209 DEV_PM_QOS_MIN_FREQUENCY);
1210 if (ret) {
1211 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1212 ret, cpumask_pr_args(policy->cpus));
1213 goto err_kobj_remove;
1214 }
1215
1216 ret = dev_pm_qos_add_notifier(dev, &policy->nb_max,
1217 DEV_PM_QOS_MAX_FREQUENCY);
1218 if (ret) {
1219 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1220 ret, cpumask_pr_args(policy->cpus));
1221 goto err_min_qos_notifier;
1222 }
1223
1224 INIT_LIST_HEAD(&policy->policy_list);
1225 init_rwsem(&policy->rwsem);
1226 spin_lock_init(&policy->transition_lock);
1227 init_waitqueue_head(&policy->transition_wait);
1228 init_completion(&policy->kobj_unregister);
1229 INIT_WORK(&policy->update, handle_update);
1230
1231 policy->cpu = cpu;
1232 return policy;
1233
1234 err_min_qos_notifier:
1235 dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1236 DEV_PM_QOS_MIN_FREQUENCY);
1237 err_kobj_remove:
1238 cpufreq_policy_put_kobj(policy);
1239 err_free_real_cpus:
1240 free_cpumask_var(policy->real_cpus);
1241 err_free_rcpumask:
1242 free_cpumask_var(policy->related_cpus);
1243 err_free_cpumask:
1244 free_cpumask_var(policy->cpus);
1245 err_free_policy:
1246 kfree(policy);
1247
1248 return NULL;
1249 }
1250
1251 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1252 {
1253 struct device *dev = get_cpu_device(policy->cpu);
1254 unsigned long flags;
1255 int cpu;
1256
1257 /* Remove policy from list */
1258 write_lock_irqsave(&cpufreq_driver_lock, flags);
1259 list_del(&policy->policy_list);
1260
1261 for_each_cpu(cpu, policy->related_cpus)
1262 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1263 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1264
1265 dev_pm_qos_remove_notifier(dev, &policy->nb_max,
1266 DEV_PM_QOS_MAX_FREQUENCY);
1267 dev_pm_qos_remove_notifier(dev, &policy->nb_min,
1268 DEV_PM_QOS_MIN_FREQUENCY);
1269
1270 if (policy->max_freq_req) {
1271 /*
1272 * CPUFREQ_CREATE_POLICY notification is sent only after
1273 * successfully adding max_freq_req request.
1274 */
1275 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1276 CPUFREQ_REMOVE_POLICY, policy);
1277 dev_pm_qos_remove_request(policy->max_freq_req);
1278 }
1279
1280 dev_pm_qos_remove_request(policy->min_freq_req);
1281 kfree(policy->min_freq_req);
1282
1283 cpufreq_policy_put_kobj(policy);
1284 free_cpumask_var(policy->real_cpus);
1285 free_cpumask_var(policy->related_cpus);
1286 free_cpumask_var(policy->cpus);
1287 kfree(policy);
1288 }
1289
1290 static int cpufreq_online(unsigned int cpu)
1291 {
1292 struct cpufreq_policy *policy;
1293 bool new_policy;
1294 unsigned long flags;
1295 unsigned int j;
1296 int ret;
1297
1298 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1299
1300 /* Check if this CPU already has a policy to manage it */
1301 policy = per_cpu(cpufreq_cpu_data, cpu);
1302 if (policy) {
1303 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1304 if (!policy_is_inactive(policy))
1305 return cpufreq_add_policy_cpu(policy, cpu);
1306
1307 /* This is the only online CPU for the policy. Start over. */
1308 new_policy = false;
1309 down_write(&policy->rwsem);
1310 policy->cpu = cpu;
1311 policy->governor = NULL;
1312 up_write(&policy->rwsem);
1313 } else {
1314 new_policy = true;
1315 policy = cpufreq_policy_alloc(cpu);
1316 if (!policy)
1317 return -ENOMEM;
1318 }
1319
1320 if (!new_policy && cpufreq_driver->online) {
1321 ret = cpufreq_driver->online(policy);
1322 if (ret) {
1323 pr_debug("%s: %d: initialization failed\n", __func__,
1324 __LINE__);
1325 goto out_exit_policy;
1326 }
1327
1328 /* Recover policy->cpus using related_cpus */
1329 cpumask_copy(policy->cpus, policy->related_cpus);
1330 } else {
1331 cpumask_copy(policy->cpus, cpumask_of(cpu));
1332
1333 /*
1334 * Call driver. From then on the cpufreq must be able
1335 * to accept all calls to ->verify and ->setpolicy for this CPU.
1336 */
1337 ret = cpufreq_driver->init(policy);
1338 if (ret) {
1339 pr_debug("%s: %d: initialization failed\n", __func__,
1340 __LINE__);
1341 goto out_free_policy;
1342 }
1343
1344 ret = cpufreq_table_validate_and_sort(policy);
1345 if (ret)
1346 goto out_exit_policy;
1347
1348 /* related_cpus should at least include policy->cpus. */
1349 cpumask_copy(policy->related_cpus, policy->cpus);
1350 }
1351
1352 down_write(&policy->rwsem);
1353 /*
1354 * affected cpus must always be the one, which are online. We aren't
1355 * managing offline cpus here.
1356 */
1357 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1358
1359 if (new_policy) {
1360 struct device *dev = get_cpu_device(cpu);
1361
1362 for_each_cpu(j, policy->related_cpus) {
1363 per_cpu(cpufreq_cpu_data, j) = policy;
1364 add_cpu_dev_symlink(policy, j);
1365 }
1366
1367 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1368 GFP_KERNEL);
1369 if (!policy->min_freq_req)
1370 goto out_destroy_policy;
1371
1372 ret = dev_pm_qos_add_request(dev, policy->min_freq_req,
1373 DEV_PM_QOS_MIN_FREQUENCY,
1374 policy->min);
1375 if (ret < 0) {
1376 /*
1377 * So we don't call dev_pm_qos_remove_request() for an
1378 * uninitialized request.
1379 */
1380 kfree(policy->min_freq_req);
1381 policy->min_freq_req = NULL;
1382
1383 dev_err(dev, "Failed to add min-freq constraint (%d)\n",
1384 ret);
1385 goto out_destroy_policy;
1386 }
1387
1388 /*
1389 * This must be initialized right here to avoid calling
1390 * dev_pm_qos_remove_request() on uninitialized request in case
1391 * of errors.
1392 */
1393 policy->max_freq_req = policy->min_freq_req + 1;
1394
1395 ret = dev_pm_qos_add_request(dev, policy->max_freq_req,
1396 DEV_PM_QOS_MAX_FREQUENCY,
1397 policy->max);
1398 if (ret < 0) {
1399 policy->max_freq_req = NULL;
1400 dev_err(dev, "Failed to add max-freq constraint (%d)\n",
1401 ret);
1402 goto out_destroy_policy;
1403 }
1404
1405 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1406 CPUFREQ_CREATE_POLICY, policy);
1407 }
1408
1409 if (cpufreq_driver->get && has_target()) {
1410 policy->cur = cpufreq_driver->get(policy->cpu);
1411 if (!policy->cur) {
1412 pr_err("%s: ->get() failed\n", __func__);
1413 goto out_destroy_policy;
1414 }
1415 }
1416
1417 /*
1418 * Sometimes boot loaders set CPU frequency to a value outside of
1419 * frequency table present with cpufreq core. In such cases CPU might be
1420 * unstable if it has to run on that frequency for long duration of time
1421 * and so its better to set it to a frequency which is specified in
1422 * freq-table. This also makes cpufreq stats inconsistent as
1423 * cpufreq-stats would fail to register because current frequency of CPU
1424 * isn't found in freq-table.
1425 *
1426 * Because we don't want this change to effect boot process badly, we go
1427 * for the next freq which is >= policy->cur ('cur' must be set by now,
1428 * otherwise we will end up setting freq to lowest of the table as 'cur'
1429 * is initialized to zero).
1430 *
1431 * We are passing target-freq as "policy->cur - 1" otherwise
1432 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1433 * equal to target-freq.
1434 */
1435 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1436 && has_target()) {
1437 /* Are we running at unknown frequency ? */
1438 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1439 if (ret == -EINVAL) {
1440 /* Warn user and fix it */
1441 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1442 __func__, policy->cpu, policy->cur);
1443 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1444 CPUFREQ_RELATION_L);
1445
1446 /*
1447 * Reaching here after boot in a few seconds may not
1448 * mean that system will remain stable at "unknown"
1449 * frequency for longer duration. Hence, a BUG_ON().
1450 */
1451 BUG_ON(ret);
1452 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1453 __func__, policy->cpu, policy->cur);
1454 }
1455 }
1456
1457 if (new_policy) {
1458 ret = cpufreq_add_dev_interface(policy);
1459 if (ret)
1460 goto out_destroy_policy;
1461
1462 cpufreq_stats_create_table(policy);
1463
1464 write_lock_irqsave(&cpufreq_driver_lock, flags);
1465 list_add(&policy->policy_list, &cpufreq_policy_list);
1466 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1467 }
1468
1469 ret = cpufreq_init_policy(policy);
1470 if (ret) {
1471 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1472 __func__, cpu, ret);
1473 goto out_destroy_policy;
1474 }
1475
1476 up_write(&policy->rwsem);
1477
1478 kobject_uevent(&policy->kobj, KOBJ_ADD);
1479
1480 /* Callback for handling stuff after policy is ready */
1481 if (cpufreq_driver->ready)
1482 cpufreq_driver->ready(policy);
1483
1484 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1485 policy->cdev = of_cpufreq_cooling_register(policy);
1486
1487 pr_debug("initialization complete\n");
1488
1489 return 0;
1490
1491 out_destroy_policy:
1492 for_each_cpu(j, policy->real_cpus)
1493 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1494
1495 up_write(&policy->rwsem);
1496
1497 out_exit_policy:
1498 if (cpufreq_driver->exit)
1499 cpufreq_driver->exit(policy);
1500
1501 out_free_policy:
1502 cpufreq_policy_free(policy);
1503 return ret;
1504 }
1505
1506 /**
1507 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1508 * @dev: CPU device.
1509 * @sif: Subsystem interface structure pointer (not used)
1510 */
1511 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1512 {
1513 struct cpufreq_policy *policy;
1514 unsigned cpu = dev->id;
1515 int ret;
1516
1517 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1518
1519 if (cpu_online(cpu)) {
1520 ret = cpufreq_online(cpu);
1521 if (ret)
1522 return ret;
1523 }
1524
1525 /* Create sysfs link on CPU registration */
1526 policy = per_cpu(cpufreq_cpu_data, cpu);
1527 if (policy)
1528 add_cpu_dev_symlink(policy, cpu);
1529
1530 return 0;
1531 }
1532
1533 static int cpufreq_offline(unsigned int cpu)
1534 {
1535 struct cpufreq_policy *policy;
1536 int ret;
1537
1538 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1539
1540 policy = cpufreq_cpu_get_raw(cpu);
1541 if (!policy) {
1542 pr_debug("%s: No cpu_data found\n", __func__);
1543 return 0;
1544 }
1545
1546 down_write(&policy->rwsem);
1547 if (has_target())
1548 cpufreq_stop_governor(policy);
1549
1550 cpumask_clear_cpu(cpu, policy->cpus);
1551
1552 if (policy_is_inactive(policy)) {
1553 if (has_target())
1554 strncpy(policy->last_governor, policy->governor->name,
1555 CPUFREQ_NAME_LEN);
1556 else
1557 policy->last_policy = policy->policy;
1558 } else if (cpu == policy->cpu) {
1559 /* Nominate new CPU */
1560 policy->cpu = cpumask_any(policy->cpus);
1561 }
1562
1563 /* Start governor again for active policy */
1564 if (!policy_is_inactive(policy)) {
1565 if (has_target()) {
1566 ret = cpufreq_start_governor(policy);
1567 if (ret)
1568 pr_err("%s: Failed to start governor\n", __func__);
1569 }
1570
1571 goto unlock;
1572 }
1573
1574 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1575 cpufreq_cooling_unregister(policy->cdev);
1576 policy->cdev = NULL;
1577 }
1578
1579 if (cpufreq_driver->stop_cpu)
1580 cpufreq_driver->stop_cpu(policy);
1581
1582 if (has_target())
1583 cpufreq_exit_governor(policy);
1584
1585 /*
1586 * Perform the ->offline() during light-weight tear-down, as
1587 * that allows fast recovery when the CPU comes back.
1588 */
1589 if (cpufreq_driver->offline) {
1590 cpufreq_driver->offline(policy);
1591 } else if (cpufreq_driver->exit) {
1592 cpufreq_driver->exit(policy);
1593 policy->freq_table = NULL;
1594 }
1595
1596 unlock:
1597 up_write(&policy->rwsem);
1598 return 0;
1599 }
1600
1601 /**
1602 * cpufreq_remove_dev - remove a CPU device
1603 *
1604 * Removes the cpufreq interface for a CPU device.
1605 */
1606 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1607 {
1608 unsigned int cpu = dev->id;
1609 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1610
1611 if (!policy)
1612 return;
1613
1614 if (cpu_online(cpu))
1615 cpufreq_offline(cpu);
1616
1617 cpumask_clear_cpu(cpu, policy->real_cpus);
1618 remove_cpu_dev_symlink(policy, dev);
1619
1620 if (cpumask_empty(policy->real_cpus)) {
1621 /* We did light-weight exit earlier, do full tear down now */
1622 if (cpufreq_driver->offline)
1623 cpufreq_driver->exit(policy);
1624
1625 cpufreq_policy_free(policy);
1626 }
1627 }
1628
1629 /**
1630 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1631 * in deep trouble.
1632 * @policy: policy managing CPUs
1633 * @new_freq: CPU frequency the CPU actually runs at
1634 *
1635 * We adjust to current frequency first, and need to clean up later.
1636 * So either call to cpufreq_update_policy() or schedule handle_update()).
1637 */
1638 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1639 unsigned int new_freq)
1640 {
1641 struct cpufreq_freqs freqs;
1642
1643 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1644 policy->cur, new_freq);
1645
1646 freqs.old = policy->cur;
1647 freqs.new = new_freq;
1648
1649 cpufreq_freq_transition_begin(policy, &freqs);
1650 cpufreq_freq_transition_end(policy, &freqs, 0);
1651 }
1652
1653 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1654 {
1655 unsigned int new_freq;
1656
1657 new_freq = cpufreq_driver->get(policy->cpu);
1658 if (!new_freq)
1659 return 0;
1660
1661 /*
1662 * If fast frequency switching is used with the given policy, the check
1663 * against policy->cur is pointless, so skip it in that case.
1664 */
1665 if (policy->fast_switch_enabled || !has_target())
1666 return new_freq;
1667
1668 if (policy->cur != new_freq) {
1669 cpufreq_out_of_sync(policy, new_freq);
1670 if (update)
1671 schedule_work(&policy->update);
1672 }
1673
1674 return new_freq;
1675 }
1676
1677 /**
1678 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1679 * @cpu: CPU number
1680 *
1681 * This is the last known freq, without actually getting it from the driver.
1682 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1683 */
1684 unsigned int cpufreq_quick_get(unsigned int cpu)
1685 {
1686 struct cpufreq_policy *policy;
1687 unsigned int ret_freq = 0;
1688 unsigned long flags;
1689
1690 read_lock_irqsave(&cpufreq_driver_lock, flags);
1691
1692 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1693 ret_freq = cpufreq_driver->get(cpu);
1694 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1695 return ret_freq;
1696 }
1697
1698 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1699
1700 policy = cpufreq_cpu_get(cpu);
1701 if (policy) {
1702 ret_freq = policy->cur;
1703 cpufreq_cpu_put(policy);
1704 }
1705
1706 return ret_freq;
1707 }
1708 EXPORT_SYMBOL(cpufreq_quick_get);
1709
1710 /**
1711 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1712 * @cpu: CPU number
1713 *
1714 * Just return the max possible frequency for a given CPU.
1715 */
1716 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1717 {
1718 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1719 unsigned int ret_freq = 0;
1720
1721 if (policy) {
1722 ret_freq = policy->max;
1723 cpufreq_cpu_put(policy);
1724 }
1725
1726 return ret_freq;
1727 }
1728 EXPORT_SYMBOL(cpufreq_quick_get_max);
1729
1730 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1731 {
1732 if (unlikely(policy_is_inactive(policy)))
1733 return 0;
1734
1735 return cpufreq_verify_current_freq(policy, true);
1736 }
1737
1738 /**
1739 * cpufreq_get - get the current CPU frequency (in kHz)
1740 * @cpu: CPU number
1741 *
1742 * Get the CPU current (static) CPU frequency
1743 */
1744 unsigned int cpufreq_get(unsigned int cpu)
1745 {
1746 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1747 unsigned int ret_freq = 0;
1748
1749 if (policy) {
1750 down_read(&policy->rwsem);
1751 if (cpufreq_driver->get)
1752 ret_freq = __cpufreq_get(policy);
1753 up_read(&policy->rwsem);
1754
1755 cpufreq_cpu_put(policy);
1756 }
1757
1758 return ret_freq;
1759 }
1760 EXPORT_SYMBOL(cpufreq_get);
1761
1762 static struct subsys_interface cpufreq_interface = {
1763 .name = "cpufreq",
1764 .subsys = &cpu_subsys,
1765 .add_dev = cpufreq_add_dev,
1766 .remove_dev = cpufreq_remove_dev,
1767 };
1768
1769 /*
1770 * In case platform wants some specific frequency to be configured
1771 * during suspend..
1772 */
1773 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1774 {
1775 int ret;
1776
1777 if (!policy->suspend_freq) {
1778 pr_debug("%s: suspend_freq not defined\n", __func__);
1779 return 0;
1780 }
1781
1782 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1783 policy->suspend_freq);
1784
1785 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1786 CPUFREQ_RELATION_H);
1787 if (ret)
1788 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1789 __func__, policy->suspend_freq, ret);
1790
1791 return ret;
1792 }
1793 EXPORT_SYMBOL(cpufreq_generic_suspend);
1794
1795 /**
1796 * cpufreq_suspend() - Suspend CPUFreq governors
1797 *
1798 * Called during system wide Suspend/Hibernate cycles for suspending governors
1799 * as some platforms can't change frequency after this point in suspend cycle.
1800 * Because some of the devices (like: i2c, regulators, etc) they use for
1801 * changing frequency are suspended quickly after this point.
1802 */
1803 void cpufreq_suspend(void)
1804 {
1805 struct cpufreq_policy *policy;
1806
1807 if (!cpufreq_driver)
1808 return;
1809
1810 if (!has_target() && !cpufreq_driver->suspend)
1811 goto suspend;
1812
1813 pr_debug("%s: Suspending Governors\n", __func__);
1814
1815 for_each_active_policy(policy) {
1816 if (has_target()) {
1817 down_write(&policy->rwsem);
1818 cpufreq_stop_governor(policy);
1819 up_write(&policy->rwsem);
1820 }
1821
1822 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1823 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1824 cpufreq_driver->name);
1825 }
1826
1827 suspend:
1828 cpufreq_suspended = true;
1829 }
1830
1831 /**
1832 * cpufreq_resume() - Resume CPUFreq governors
1833 *
1834 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1835 * are suspended with cpufreq_suspend().
1836 */
1837 void cpufreq_resume(void)
1838 {
1839 struct cpufreq_policy *policy;
1840 int ret;
1841
1842 if (!cpufreq_driver)
1843 return;
1844
1845 if (unlikely(!cpufreq_suspended))
1846 return;
1847
1848 cpufreq_suspended = false;
1849
1850 if (!has_target() && !cpufreq_driver->resume)
1851 return;
1852
1853 pr_debug("%s: Resuming Governors\n", __func__);
1854
1855 for_each_active_policy(policy) {
1856 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1857 pr_err("%s: Failed to resume driver: %p\n", __func__,
1858 policy);
1859 } else if (has_target()) {
1860 down_write(&policy->rwsem);
1861 ret = cpufreq_start_governor(policy);
1862 up_write(&policy->rwsem);
1863
1864 if (ret)
1865 pr_err("%s: Failed to start governor for policy: %p\n",
1866 __func__, policy);
1867 }
1868 }
1869 }
1870
1871 /**
1872 * cpufreq_get_current_driver - return current driver's name
1873 *
1874 * Return the name string of the currently loaded cpufreq driver
1875 * or NULL, if none.
1876 */
1877 const char *cpufreq_get_current_driver(void)
1878 {
1879 if (cpufreq_driver)
1880 return cpufreq_driver->name;
1881
1882 return NULL;
1883 }
1884 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1885
1886 /**
1887 * cpufreq_get_driver_data - return current driver data
1888 *
1889 * Return the private data of the currently loaded cpufreq
1890 * driver, or NULL if no cpufreq driver is loaded.
1891 */
1892 void *cpufreq_get_driver_data(void)
1893 {
1894 if (cpufreq_driver)
1895 return cpufreq_driver->driver_data;
1896
1897 return NULL;
1898 }
1899 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1900
1901 /*********************************************************************
1902 * NOTIFIER LISTS INTERFACE *
1903 *********************************************************************/
1904
1905 /**
1906 * cpufreq_register_notifier - register a driver with cpufreq
1907 * @nb: notifier function to register
1908 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1909 *
1910 * Add a driver to one of two lists: either a list of drivers that
1911 * are notified about clock rate changes (once before and once after
1912 * the transition), or a list of drivers that are notified about
1913 * changes in cpufreq policy.
1914 *
1915 * This function may sleep, and has the same return conditions as
1916 * blocking_notifier_chain_register.
1917 */
1918 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1919 {
1920 int ret;
1921
1922 if (cpufreq_disabled())
1923 return -EINVAL;
1924
1925 switch (list) {
1926 case CPUFREQ_TRANSITION_NOTIFIER:
1927 mutex_lock(&cpufreq_fast_switch_lock);
1928
1929 if (cpufreq_fast_switch_count > 0) {
1930 mutex_unlock(&cpufreq_fast_switch_lock);
1931 return -EBUSY;
1932 }
1933 ret = srcu_notifier_chain_register(
1934 &cpufreq_transition_notifier_list, nb);
1935 if (!ret)
1936 cpufreq_fast_switch_count--;
1937
1938 mutex_unlock(&cpufreq_fast_switch_lock);
1939 break;
1940 case CPUFREQ_POLICY_NOTIFIER:
1941 ret = blocking_notifier_chain_register(
1942 &cpufreq_policy_notifier_list, nb);
1943 break;
1944 default:
1945 ret = -EINVAL;
1946 }
1947
1948 return ret;
1949 }
1950 EXPORT_SYMBOL(cpufreq_register_notifier);
1951
1952 /**
1953 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1954 * @nb: notifier block to be unregistered
1955 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1956 *
1957 * Remove a driver from the CPU frequency notifier list.
1958 *
1959 * This function may sleep, and has the same return conditions as
1960 * blocking_notifier_chain_unregister.
1961 */
1962 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1963 {
1964 int ret;
1965
1966 if (cpufreq_disabled())
1967 return -EINVAL;
1968
1969 switch (list) {
1970 case CPUFREQ_TRANSITION_NOTIFIER:
1971 mutex_lock(&cpufreq_fast_switch_lock);
1972
1973 ret = srcu_notifier_chain_unregister(
1974 &cpufreq_transition_notifier_list, nb);
1975 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1976 cpufreq_fast_switch_count++;
1977
1978 mutex_unlock(&cpufreq_fast_switch_lock);
1979 break;
1980 case CPUFREQ_POLICY_NOTIFIER:
1981 ret = blocking_notifier_chain_unregister(
1982 &cpufreq_policy_notifier_list, nb);
1983 break;
1984 default:
1985 ret = -EINVAL;
1986 }
1987
1988 return ret;
1989 }
1990 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1991
1992
1993 /*********************************************************************
1994 * GOVERNORS *
1995 *********************************************************************/
1996
1997 /**
1998 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1999 * @policy: cpufreq policy to switch the frequency for.
2000 * @target_freq: New frequency to set (may be approximate).
2001 *
2002 * Carry out a fast frequency switch without sleeping.
2003 *
2004 * The driver's ->fast_switch() callback invoked by this function must be
2005 * suitable for being called from within RCU-sched read-side critical sections
2006 * and it is expected to select the minimum available frequency greater than or
2007 * equal to @target_freq (CPUFREQ_RELATION_L).
2008 *
2009 * This function must not be called if policy->fast_switch_enabled is unset.
2010 *
2011 * Governors calling this function must guarantee that it will never be invoked
2012 * twice in parallel for the same policy and that it will never be called in
2013 * parallel with either ->target() or ->target_index() for the same policy.
2014 *
2015 * Returns the actual frequency set for the CPU.
2016 *
2017 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2018 * error condition, the hardware configuration must be preserved.
2019 */
2020 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2021 unsigned int target_freq)
2022 {
2023 target_freq = clamp_val(target_freq, policy->min, policy->max);
2024
2025 return cpufreq_driver->fast_switch(policy, target_freq);
2026 }
2027 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2028
2029 /* Must set freqs->new to intermediate frequency */
2030 static int __target_intermediate(struct cpufreq_policy *policy,
2031 struct cpufreq_freqs *freqs, int index)
2032 {
2033 int ret;
2034
2035 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2036
2037 /* We don't need to switch to intermediate freq */
2038 if (!freqs->new)
2039 return 0;
2040
2041 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2042 __func__, policy->cpu, freqs->old, freqs->new);
2043
2044 cpufreq_freq_transition_begin(policy, freqs);
2045 ret = cpufreq_driver->target_intermediate(policy, index);
2046 cpufreq_freq_transition_end(policy, freqs, ret);
2047
2048 if (ret)
2049 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2050 __func__, ret);
2051
2052 return ret;
2053 }
2054
2055 static int __target_index(struct cpufreq_policy *policy, int index)
2056 {
2057 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2058 unsigned int intermediate_freq = 0;
2059 unsigned int newfreq = policy->freq_table[index].frequency;
2060 int retval = -EINVAL;
2061 bool notify;
2062
2063 if (newfreq == policy->cur)
2064 return 0;
2065
2066 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2067 if (notify) {
2068 /* Handle switching to intermediate frequency */
2069 if (cpufreq_driver->get_intermediate) {
2070 retval = __target_intermediate(policy, &freqs, index);
2071 if (retval)
2072 return retval;
2073
2074 intermediate_freq = freqs.new;
2075 /* Set old freq to intermediate */
2076 if (intermediate_freq)
2077 freqs.old = freqs.new;
2078 }
2079
2080 freqs.new = newfreq;
2081 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2082 __func__, policy->cpu, freqs.old, freqs.new);
2083
2084 cpufreq_freq_transition_begin(policy, &freqs);
2085 }
2086
2087 retval = cpufreq_driver->target_index(policy, index);
2088 if (retval)
2089 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2090 retval);
2091
2092 if (notify) {
2093 cpufreq_freq_transition_end(policy, &freqs, retval);
2094
2095 /*
2096 * Failed after setting to intermediate freq? Driver should have
2097 * reverted back to initial frequency and so should we. Check
2098 * here for intermediate_freq instead of get_intermediate, in
2099 * case we haven't switched to intermediate freq at all.
2100 */
2101 if (unlikely(retval && intermediate_freq)) {
2102 freqs.old = intermediate_freq;
2103 freqs.new = policy->restore_freq;
2104 cpufreq_freq_transition_begin(policy, &freqs);
2105 cpufreq_freq_transition_end(policy, &freqs, 0);
2106 }
2107 }
2108
2109 return retval;
2110 }
2111
2112 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2113 unsigned int target_freq,
2114 unsigned int relation)
2115 {
2116 unsigned int old_target_freq = target_freq;
2117 int index;
2118
2119 if (cpufreq_disabled())
2120 return -ENODEV;
2121
2122 /* Make sure that target_freq is within supported range */
2123 target_freq = clamp_val(target_freq, policy->min, policy->max);
2124
2125 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2126 policy->cpu, target_freq, relation, old_target_freq);
2127
2128 /*
2129 * This might look like a redundant call as we are checking it again
2130 * after finding index. But it is left intentionally for cases where
2131 * exactly same freq is called again and so we can save on few function
2132 * calls.
2133 */
2134 if (target_freq == policy->cur)
2135 return 0;
2136
2137 /* Save last value to restore later on errors */
2138 policy->restore_freq = policy->cur;
2139
2140 if (cpufreq_driver->target)
2141 return cpufreq_driver->target(policy, target_freq, relation);
2142
2143 if (!cpufreq_driver->target_index)
2144 return -EINVAL;
2145
2146 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2147
2148 return __target_index(policy, index);
2149 }
2150 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2151
2152 int cpufreq_driver_target(struct cpufreq_policy *policy,
2153 unsigned int target_freq,
2154 unsigned int relation)
2155 {
2156 int ret;
2157
2158 down_write(&policy->rwsem);
2159
2160 ret = __cpufreq_driver_target(policy, target_freq, relation);
2161
2162 up_write(&policy->rwsem);
2163
2164 return ret;
2165 }
2166 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2167
2168 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2169 {
2170 return NULL;
2171 }
2172
2173 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2174 {
2175 int ret;
2176
2177 /* Don't start any governor operations if we are entering suspend */
2178 if (cpufreq_suspended)
2179 return 0;
2180 /*
2181 * Governor might not be initiated here if ACPI _PPC changed
2182 * notification happened, so check it.
2183 */
2184 if (!policy->governor)
2185 return -EINVAL;
2186
2187 /* Platform doesn't want dynamic frequency switching ? */
2188 if (policy->governor->dynamic_switching &&
2189 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2190 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2191
2192 if (gov) {
2193 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2194 policy->governor->name, gov->name);
2195 policy->governor = gov;
2196 } else {
2197 return -EINVAL;
2198 }
2199 }
2200
2201 if (!try_module_get(policy->governor->owner))
2202 return -EINVAL;
2203
2204 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2205
2206 if (policy->governor->init) {
2207 ret = policy->governor->init(policy);
2208 if (ret) {
2209 module_put(policy->governor->owner);
2210 return ret;
2211 }
2212 }
2213
2214 return 0;
2215 }
2216
2217 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2218 {
2219 if (cpufreq_suspended || !policy->governor)
2220 return;
2221
2222 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2223
2224 if (policy->governor->exit)
2225 policy->governor->exit(policy);
2226
2227 module_put(policy->governor->owner);
2228 }
2229
2230 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2231 {
2232 int ret;
2233
2234 if (cpufreq_suspended)
2235 return 0;
2236
2237 if (!policy->governor)
2238 return -EINVAL;
2239
2240 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2241
2242 if (cpufreq_driver->get)
2243 cpufreq_verify_current_freq(policy, false);
2244
2245 if (policy->governor->start) {
2246 ret = policy->governor->start(policy);
2247 if (ret)
2248 return ret;
2249 }
2250
2251 if (policy->governor->limits)
2252 policy->governor->limits(policy);
2253
2254 return 0;
2255 }
2256
2257 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2258 {
2259 if (cpufreq_suspended || !policy->governor)
2260 return;
2261
2262 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2263
2264 if (policy->governor->stop)
2265 policy->governor->stop(policy);
2266 }
2267
2268 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2269 {
2270 if (cpufreq_suspended || !policy->governor)
2271 return;
2272
2273 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2274
2275 if (policy->governor->limits)
2276 policy->governor->limits(policy);
2277 }
2278
2279 int cpufreq_register_governor(struct cpufreq_governor *governor)
2280 {
2281 int err;
2282
2283 if (!governor)
2284 return -EINVAL;
2285
2286 if (cpufreq_disabled())
2287 return -ENODEV;
2288
2289 mutex_lock(&cpufreq_governor_mutex);
2290
2291 err = -EBUSY;
2292 if (!find_governor(governor->name)) {
2293 err = 0;
2294 list_add(&governor->governor_list, &cpufreq_governor_list);
2295 }
2296
2297 mutex_unlock(&cpufreq_governor_mutex);
2298 return err;
2299 }
2300 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2301
2302 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2303 {
2304 struct cpufreq_policy *policy;
2305 unsigned long flags;
2306
2307 if (!governor)
2308 return;
2309
2310 if (cpufreq_disabled())
2311 return;
2312
2313 /* clear last_governor for all inactive policies */
2314 read_lock_irqsave(&cpufreq_driver_lock, flags);
2315 for_each_inactive_policy(policy) {
2316 if (!strcmp(policy->last_governor, governor->name)) {
2317 policy->governor = NULL;
2318 strcpy(policy->last_governor, "\0");
2319 }
2320 }
2321 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2322
2323 mutex_lock(&cpufreq_governor_mutex);
2324 list_del(&governor->governor_list);
2325 mutex_unlock(&cpufreq_governor_mutex);
2326 }
2327 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2328
2329
2330 /*********************************************************************
2331 * POLICY INTERFACE *
2332 *********************************************************************/
2333
2334 /**
2335 * cpufreq_get_policy - get the current cpufreq_policy
2336 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2337 * is written
2338 *
2339 * Reads the current cpufreq policy.
2340 */
2341 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2342 {
2343 struct cpufreq_policy *cpu_policy;
2344 if (!policy)
2345 return -EINVAL;
2346
2347 cpu_policy = cpufreq_cpu_get(cpu);
2348 if (!cpu_policy)
2349 return -EINVAL;
2350
2351 memcpy(policy, cpu_policy, sizeof(*policy));
2352
2353 cpufreq_cpu_put(cpu_policy);
2354 return 0;
2355 }
2356 EXPORT_SYMBOL(cpufreq_get_policy);
2357
2358 /**
2359 * cpufreq_set_policy - Modify cpufreq policy parameters.
2360 * @policy: Policy object to modify.
2361 * @new_policy: New policy data.
2362 *
2363 * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the
2364 * min and max parameters of @new_policy to @policy and either invoke the
2365 * driver's ->setpolicy() callback (if present) or carry out a governor update
2366 * for @policy. That is, run the current governor's ->limits() callback (if the
2367 * governor field in @new_policy points to the same object as the one in
2368 * @policy) or replace the governor for @policy with the new one stored in
2369 * @new_policy.
2370 *
2371 * The cpuinfo part of @policy is not updated by this function.
2372 */
2373 int cpufreq_set_policy(struct cpufreq_policy *policy,
2374 struct cpufreq_policy *new_policy)
2375 {
2376 struct cpufreq_governor *old_gov;
2377 struct device *cpu_dev = get_cpu_device(policy->cpu);
2378 int ret;
2379
2380 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2381 new_policy->cpu, new_policy->min, new_policy->max);
2382
2383 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2384
2385 /*
2386 * PM QoS framework collects all the requests from users and provide us
2387 * the final aggregated value here.
2388 */
2389 new_policy->min = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MIN_FREQUENCY);
2390 new_policy->max = dev_pm_qos_read_value(cpu_dev, DEV_PM_QOS_MAX_FREQUENCY);
2391
2392 /* verify the cpu speed can be set within this limit */
2393 ret = cpufreq_driver->verify(new_policy);
2394 if (ret)
2395 return ret;
2396
2397 policy->min = new_policy->min;
2398 policy->max = new_policy->max;
2399 trace_cpu_frequency_limits(policy);
2400
2401 policy->cached_target_freq = UINT_MAX;
2402
2403 pr_debug("new min and max freqs are %u - %u kHz\n",
2404 policy->min, policy->max);
2405
2406 if (cpufreq_driver->setpolicy) {
2407 policy->policy = new_policy->policy;
2408 pr_debug("setting range\n");
2409 return cpufreq_driver->setpolicy(policy);
2410 }
2411
2412 if (new_policy->governor == policy->governor) {
2413 pr_debug("governor limits update\n");
2414 cpufreq_governor_limits(policy);
2415 return 0;
2416 }
2417
2418 pr_debug("governor switch\n");
2419
2420 /* save old, working values */
2421 old_gov = policy->governor;
2422 /* end old governor */
2423 if (old_gov) {
2424 cpufreq_stop_governor(policy);
2425 cpufreq_exit_governor(policy);
2426 }
2427
2428 /* start new governor */
2429 policy->governor = new_policy->governor;
2430 ret = cpufreq_init_governor(policy);
2431 if (!ret) {
2432 ret = cpufreq_start_governor(policy);
2433 if (!ret) {
2434 pr_debug("governor change\n");
2435 sched_cpufreq_governor_change(policy, old_gov);
2436 return 0;
2437 }
2438 cpufreq_exit_governor(policy);
2439 }
2440
2441 /* new governor failed, so re-start old one */
2442 pr_debug("starting governor %s failed\n", policy->governor->name);
2443 if (old_gov) {
2444 policy->governor = old_gov;
2445 if (cpufreq_init_governor(policy))
2446 policy->governor = NULL;
2447 else
2448 cpufreq_start_governor(policy);
2449 }
2450
2451 return ret;
2452 }
2453
2454 /**
2455 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2456 * @cpu: CPU to re-evaluate the policy for.
2457 *
2458 * Update the current frequency for the cpufreq policy of @cpu and use
2459 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2460 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2461 * for the policy in question, among other things.
2462 */
2463 void cpufreq_update_policy(unsigned int cpu)
2464 {
2465 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2466
2467 if (!policy)
2468 return;
2469
2470 /*
2471 * BIOS might change freq behind our back
2472 * -> ask driver for current freq and notify governors about a change
2473 */
2474 if (cpufreq_driver->get && has_target() &&
2475 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2476 goto unlock;
2477
2478 refresh_frequency_limits(policy);
2479
2480 unlock:
2481 cpufreq_cpu_release(policy);
2482 }
2483 EXPORT_SYMBOL(cpufreq_update_policy);
2484
2485 /**
2486 * cpufreq_update_limits - Update policy limits for a given CPU.
2487 * @cpu: CPU to update the policy limits for.
2488 *
2489 * Invoke the driver's ->update_limits callback if present or call
2490 * cpufreq_update_policy() for @cpu.
2491 */
2492 void cpufreq_update_limits(unsigned int cpu)
2493 {
2494 if (cpufreq_driver->update_limits)
2495 cpufreq_driver->update_limits(cpu);
2496 else
2497 cpufreq_update_policy(cpu);
2498 }
2499 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2500
2501 /*********************************************************************
2502 * BOOST *
2503 *********************************************************************/
2504 static int cpufreq_boost_set_sw(int state)
2505 {
2506 struct cpufreq_policy *policy;
2507 int ret = -EINVAL;
2508
2509 for_each_active_policy(policy) {
2510 if (!policy->freq_table)
2511 continue;
2512
2513 ret = cpufreq_frequency_table_cpuinfo(policy,
2514 policy->freq_table);
2515 if (ret) {
2516 pr_err("%s: Policy frequency update failed\n",
2517 __func__);
2518 break;
2519 }
2520
2521 ret = dev_pm_qos_update_request(policy->max_freq_req, policy->max);
2522 if (ret < 0)
2523 break;
2524 }
2525
2526 return ret;
2527 }
2528
2529 int cpufreq_boost_trigger_state(int state)
2530 {
2531 unsigned long flags;
2532 int ret = 0;
2533
2534 if (cpufreq_driver->boost_enabled == state)
2535 return 0;
2536
2537 write_lock_irqsave(&cpufreq_driver_lock, flags);
2538 cpufreq_driver->boost_enabled = state;
2539 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2540
2541 ret = cpufreq_driver->set_boost(state);
2542 if (ret) {
2543 write_lock_irqsave(&cpufreq_driver_lock, flags);
2544 cpufreq_driver->boost_enabled = !state;
2545 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2546
2547 pr_err("%s: Cannot %s BOOST\n",
2548 __func__, state ? "enable" : "disable");
2549 }
2550
2551 return ret;
2552 }
2553
2554 static bool cpufreq_boost_supported(void)
2555 {
2556 return cpufreq_driver->set_boost;
2557 }
2558
2559 static int create_boost_sysfs_file(void)
2560 {
2561 int ret;
2562
2563 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2564 if (ret)
2565 pr_err("%s: cannot register global BOOST sysfs file\n",
2566 __func__);
2567
2568 return ret;
2569 }
2570
2571 static void remove_boost_sysfs_file(void)
2572 {
2573 if (cpufreq_boost_supported())
2574 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2575 }
2576
2577 int cpufreq_enable_boost_support(void)
2578 {
2579 if (!cpufreq_driver)
2580 return -EINVAL;
2581
2582 if (cpufreq_boost_supported())
2583 return 0;
2584
2585 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2586
2587 /* This will get removed on driver unregister */
2588 return create_boost_sysfs_file();
2589 }
2590 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2591
2592 int cpufreq_boost_enabled(void)
2593 {
2594 return cpufreq_driver->boost_enabled;
2595 }
2596 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2597
2598 /*********************************************************************
2599 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2600 *********************************************************************/
2601 static enum cpuhp_state hp_online;
2602
2603 static int cpuhp_cpufreq_online(unsigned int cpu)
2604 {
2605 cpufreq_online(cpu);
2606
2607 return 0;
2608 }
2609
2610 static int cpuhp_cpufreq_offline(unsigned int cpu)
2611 {
2612 cpufreq_offline(cpu);
2613
2614 return 0;
2615 }
2616
2617 /**
2618 * cpufreq_register_driver - register a CPU Frequency driver
2619 * @driver_data: A struct cpufreq_driver containing the values#
2620 * submitted by the CPU Frequency driver.
2621 *
2622 * Registers a CPU Frequency driver to this core code. This code
2623 * returns zero on success, -EEXIST when another driver got here first
2624 * (and isn't unregistered in the meantime).
2625 *
2626 */
2627 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2628 {
2629 unsigned long flags;
2630 int ret;
2631
2632 if (cpufreq_disabled())
2633 return -ENODEV;
2634
2635 if (!driver_data || !driver_data->verify || !driver_data->init ||
2636 !(driver_data->setpolicy || driver_data->target_index ||
2637 driver_data->target) ||
2638 (driver_data->setpolicy && (driver_data->target_index ||
2639 driver_data->target)) ||
2640 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2641 (!driver_data->online != !driver_data->offline))
2642 return -EINVAL;
2643
2644 pr_debug("trying to register driver %s\n", driver_data->name);
2645
2646 /* Protect against concurrent CPU online/offline. */
2647 cpus_read_lock();
2648
2649 write_lock_irqsave(&cpufreq_driver_lock, flags);
2650 if (cpufreq_driver) {
2651 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2652 ret = -EEXIST;
2653 goto out;
2654 }
2655 cpufreq_driver = driver_data;
2656 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2657
2658 if (driver_data->setpolicy)
2659 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2660
2661 if (cpufreq_boost_supported()) {
2662 ret = create_boost_sysfs_file();
2663 if (ret)
2664 goto err_null_driver;
2665 }
2666
2667 ret = subsys_interface_register(&cpufreq_interface);
2668 if (ret)
2669 goto err_boost_unreg;
2670
2671 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2672 list_empty(&cpufreq_policy_list)) {
2673 /* if all ->init() calls failed, unregister */
2674 ret = -ENODEV;
2675 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2676 driver_data->name);
2677 goto err_if_unreg;
2678 }
2679
2680 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2681 "cpufreq:online",
2682 cpuhp_cpufreq_online,
2683 cpuhp_cpufreq_offline);
2684 if (ret < 0)
2685 goto err_if_unreg;
2686 hp_online = ret;
2687 ret = 0;
2688
2689 pr_debug("driver %s up and running\n", driver_data->name);
2690 goto out;
2691
2692 err_if_unreg:
2693 subsys_interface_unregister(&cpufreq_interface);
2694 err_boost_unreg:
2695 remove_boost_sysfs_file();
2696 err_null_driver:
2697 write_lock_irqsave(&cpufreq_driver_lock, flags);
2698 cpufreq_driver = NULL;
2699 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2700 out:
2701 cpus_read_unlock();
2702 return ret;
2703 }
2704 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2705
2706 /**
2707 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2708 *
2709 * Unregister the current CPUFreq driver. Only call this if you have
2710 * the right to do so, i.e. if you have succeeded in initialising before!
2711 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2712 * currently not initialised.
2713 */
2714 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2715 {
2716 unsigned long flags;
2717
2718 if (!cpufreq_driver || (driver != cpufreq_driver))
2719 return -EINVAL;
2720
2721 pr_debug("unregistering driver %s\n", driver->name);
2722
2723 /* Protect against concurrent cpu hotplug */
2724 cpus_read_lock();
2725 subsys_interface_unregister(&cpufreq_interface);
2726 remove_boost_sysfs_file();
2727 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2728
2729 write_lock_irqsave(&cpufreq_driver_lock, flags);
2730
2731 cpufreq_driver = NULL;
2732
2733 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2734 cpus_read_unlock();
2735
2736 return 0;
2737 }
2738 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2739
2740 /*
2741 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2742 * or mutexes when secondary CPUs are halted.
2743 */
2744 static struct syscore_ops cpufreq_syscore_ops = {
2745 .shutdown = cpufreq_suspend,
2746 };
2747
2748 struct kobject *cpufreq_global_kobject;
2749 EXPORT_SYMBOL(cpufreq_global_kobject);
2750
2751 static int __init cpufreq_core_init(void)
2752 {
2753 if (cpufreq_disabled())
2754 return -ENODEV;
2755
2756 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2757 BUG_ON(!cpufreq_global_kobject);
2758
2759 register_syscore_ops(&cpufreq_syscore_ops);
2760
2761 return 0;
2762 }
2763 module_param(off, int, 0444);
2764 core_initcall(cpufreq_core_init);