]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge tag 'arm-dt-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-hirsute-kernel.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy) \
46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor) \
51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67 return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78 struct cpufreq_governor *new_gov,
79 unsigned int new_pol);
80
81 /**
82 * Two notifier lists: the "policy" list is involved in the
83 * validation process for a new CPU frequency policy; the
84 * "transition" list for kernel code that needs to handle
85 * changes to devices when the CPU clock speed changes.
86 * The mutex locks both lists.
87 */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94 return off;
95 }
96 void disable_cpufreq(void)
97 {
98 off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102 bool have_governor_per_policy(void)
103 {
104 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108 static struct kobject *cpufreq_global_kobject;
109
110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111 {
112 if (have_governor_per_policy())
113 return &policy->kobj;
114 else
115 return cpufreq_global_kobject;
116 }
117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118
119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120 {
121 struct kernel_cpustat kcpustat;
122 u64 cur_wall_time;
123 u64 idle_time;
124 u64 busy_time;
125
126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128 kcpustat_cpu_fetch(&kcpustat, cpu);
129
130 busy_time = kcpustat.cpustat[CPUTIME_USER];
131 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135 busy_time += kcpustat.cpustat[CPUTIME_NICE];
136
137 idle_time = cur_wall_time - busy_time;
138 if (wall)
139 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140
141 return div_u64(idle_time, NSEC_PER_USEC);
142 }
143
144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145 {
146 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147
148 if (idle_time == -1ULL)
149 return get_cpu_idle_time_jiffy(cpu, wall);
150 else if (!io_busy)
151 idle_time += get_cpu_iowait_time_us(cpu, wall);
152
153 return idle_time;
154 }
155 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156
157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158 unsigned long max_freq)
159 {
160 }
161 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162
163 /*
164 * This is a generic cpufreq init() routine which can be used by cpufreq
165 * drivers of SMP systems. It will do following:
166 * - validate & show freq table passed
167 * - set policies transition latency
168 * - policy->cpus with all possible CPUs
169 */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 struct cpufreq_frequency_table *table,
172 unsigned int transition_latency)
173 {
174 policy->freq_table = table;
175 policy->cpuinfo.transition_latency = transition_latency;
176
177 /*
178 * The driver only supports the SMP configuration where all processors
179 * share the clock and voltage and clock.
180 */
181 cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197 if (!policy || IS_ERR(policy->clk)) {
198 pr_err("%s: No %s associated to cpu: %d\n",
199 __func__, policy ? "clk" : "policy", cpu);
200 return 0;
201 }
202
203 return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209 * @cpu: CPU to find the policy for.
210 *
211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212 * the kobject reference counter of that policy. Return a valid policy on
213 * success or NULL on failure.
214 *
215 * The policy returned by this function has to be released with the help of
216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
217 */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 struct cpufreq_policy *policy = NULL;
221 unsigned long flags;
222
223 if (WARN_ON(cpu >= nr_cpu_ids))
224 return NULL;
225
226 /* get the cpufreq driver */
227 read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229 if (cpufreq_driver) {
230 /* get the CPU */
231 policy = cpufreq_cpu_get_raw(cpu);
232 if (policy)
233 kobject_get(&policy->kobj);
234 }
235
236 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238 return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242 /**
243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
245 */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252 /**
253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255 */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 if (WARN_ON(!policy))
259 return;
260
261 lockdep_assert_held(&policy->rwsem);
262
263 up_write(&policy->rwsem);
264
265 cpufreq_cpu_put(policy);
266 }
267
268 /**
269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270 * @cpu: CPU to find the policy for.
271 *
272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
274 * Return the policy if it is active or release it and return NULL otherwise.
275 *
276 * The policy returned by this function has to be released with the help of
277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278 * counter properly.
279 */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284 if (!policy)
285 return NULL;
286
287 down_write(&policy->rwsem);
288
289 if (policy_is_inactive(policy)) {
290 cpufreq_cpu_release(policy);
291 return NULL;
292 }
293
294 return policy;
295 }
296
297 /*********************************************************************
298 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
299 *********************************************************************/
300
301 /**
302 * adjust_jiffies - adjust the system "loops_per_jiffy"
303 *
304 * This function alters the system "loops_per_jiffy" for the clock
305 * speed change. Note that loops_per_jiffy cannot be updated on SMP
306 * systems as each CPU might be scaled differently. So, use the arch
307 * per-CPU loops_per_jiffy value wherever possible.
308 */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 static unsigned long l_p_j_ref;
313 static unsigned int l_p_j_ref_freq;
314
315 if (ci->flags & CPUFREQ_CONST_LOOPS)
316 return;
317
318 if (!l_p_j_ref_freq) {
319 l_p_j_ref = loops_per_jiffy;
320 l_p_j_ref_freq = ci->old;
321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 l_p_j_ref, l_p_j_ref_freq);
323 }
324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 ci->new);
327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 loops_per_jiffy, ci->new);
329 }
330 #endif
331 }
332
333 /**
334 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335 * @policy: cpufreq policy to enable fast frequency switching for.
336 * @freqs: contain details of the frequency update.
337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338 *
339 * This function calls the transition notifiers and the "adjust_jiffies"
340 * function. It is called twice on all CPU frequency changes that have
341 * external effects.
342 */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 struct cpufreq_freqs *freqs,
345 unsigned int state)
346 {
347 int cpu;
348
349 BUG_ON(irqs_disabled());
350
351 if (cpufreq_disabled())
352 return;
353
354 freqs->policy = policy;
355 freqs->flags = cpufreq_driver->flags;
356 pr_debug("notification %u of frequency transition to %u kHz\n",
357 state, freqs->new);
358
359 switch (state) {
360 case CPUFREQ_PRECHANGE:
361 /*
362 * Detect if the driver reported a value as "old frequency"
363 * which is not equal to what the cpufreq core thinks is
364 * "old frequency".
365 */
366 if (policy->cur && policy->cur != freqs->old) {
367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 freqs->old, policy->cur);
369 freqs->old = policy->cur;
370 }
371
372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 CPUFREQ_PRECHANGE, freqs);
374
375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 break;
377
378 case CPUFREQ_POSTCHANGE:
379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 cpumask_pr_args(policy->cpus));
382
383 for_each_cpu(cpu, policy->cpus)
384 trace_cpu_frequency(freqs->new, cpu);
385
386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 CPUFREQ_POSTCHANGE, freqs);
388
389 cpufreq_stats_record_transition(policy, freqs->new);
390 policy->cur = freqs->new;
391 }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 if (!transition_failed)
400 return;
401
402 swap(freqs->old, freqs->new);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 struct cpufreq_freqs *freqs)
409 {
410
411 /*
412 * Catch double invocations of _begin() which lead to self-deadlock.
413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 * doesn't invoke _begin() on their behalf, and hence the chances of
415 * double invocations are very low. Moreover, there are scenarios
416 * where these checks can emit false-positive warnings in these
417 * drivers; so we avoid that by skipping them altogether.
418 */
419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 && current == policy->transition_task);
421
422 wait:
423 wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425 spin_lock(&policy->transition_lock);
426
427 if (unlikely(policy->transition_ongoing)) {
428 spin_unlock(&policy->transition_lock);
429 goto wait;
430 }
431
432 policy->transition_ongoing = true;
433 policy->transition_task = current;
434
435 spin_unlock(&policy->transition_lock);
436
437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 if (WARN_ON(!policy->transition_ongoing))
445 return;
446
447 cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449 policy->transition_ongoing = false;
450 policy->transition_task = NULL;
451
452 wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455
456 /*
457 * Fast frequency switching status count. Positive means "enabled", negative
458 * means "disabled" and 0 means "not decided yet".
459 */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462
463 static void cpufreq_list_transition_notifiers(void)
464 {
465 struct notifier_block *nb;
466
467 pr_info("Registered transition notifiers:\n");
468
469 mutex_lock(&cpufreq_transition_notifier_list.mutex);
470
471 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472 pr_info("%pS\n", nb->notifier_call);
473
474 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476
477 /**
478 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479 * @policy: cpufreq policy to enable fast frequency switching for.
480 *
481 * Try to enable fast frequency switching for @policy.
482 *
483 * The attempt will fail if there is at least one transition notifier registered
484 * at this point, as fast frequency switching is quite fundamentally at odds
485 * with transition notifiers. Thus if successful, it will make registration of
486 * transition notifiers fail going forward.
487 */
488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490 lockdep_assert_held(&policy->rwsem);
491
492 if (!policy->fast_switch_possible)
493 return;
494
495 mutex_lock(&cpufreq_fast_switch_lock);
496 if (cpufreq_fast_switch_count >= 0) {
497 cpufreq_fast_switch_count++;
498 policy->fast_switch_enabled = true;
499 } else {
500 pr_warn("CPU%u: Fast frequency switching not enabled\n",
501 policy->cpu);
502 cpufreq_list_transition_notifiers();
503 }
504 mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507
508 /**
509 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510 * @policy: cpufreq policy to disable fast frequency switching for.
511 */
512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514 mutex_lock(&cpufreq_fast_switch_lock);
515 if (policy->fast_switch_enabled) {
516 policy->fast_switch_enabled = false;
517 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518 cpufreq_fast_switch_count--;
519 }
520 mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523
524 /**
525 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526 * one.
527 * @target_freq: target frequency to resolve.
528 *
529 * The target to driver frequency mapping is cached in the policy.
530 *
531 * Return: Lowest driver-supported frequency greater than or equal to the
532 * given target_freq, subject to policy (min/max) and driver limitations.
533 */
534 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
535 unsigned int target_freq)
536 {
537 target_freq = clamp_val(target_freq, policy->min, policy->max);
538 policy->cached_target_freq = target_freq;
539
540 if (cpufreq_driver->target_index) {
541 int idx;
542
543 idx = cpufreq_frequency_table_target(policy, target_freq,
544 CPUFREQ_RELATION_L);
545 policy->cached_resolved_idx = idx;
546 return policy->freq_table[idx].frequency;
547 }
548
549 if (cpufreq_driver->resolve_freq)
550 return cpufreq_driver->resolve_freq(policy, target_freq);
551
552 return target_freq;
553 }
554 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
555
556 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
557 {
558 unsigned int latency;
559
560 if (policy->transition_delay_us)
561 return policy->transition_delay_us;
562
563 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
564 if (latency) {
565 /*
566 * For platforms that can change the frequency very fast (< 10
567 * us), the above formula gives a decent transition delay. But
568 * for platforms where transition_latency is in milliseconds, it
569 * ends up giving unrealistic values.
570 *
571 * Cap the default transition delay to 10 ms, which seems to be
572 * a reasonable amount of time after which we should reevaluate
573 * the frequency.
574 */
575 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
576 }
577
578 return LATENCY_MULTIPLIER;
579 }
580 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
581
582 /*********************************************************************
583 * SYSFS INTERFACE *
584 *********************************************************************/
585 static ssize_t show_boost(struct kobject *kobj,
586 struct kobj_attribute *attr, char *buf)
587 {
588 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
589 }
590
591 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
592 const char *buf, size_t count)
593 {
594 int ret, enable;
595
596 ret = sscanf(buf, "%d", &enable);
597 if (ret != 1 || enable < 0 || enable > 1)
598 return -EINVAL;
599
600 if (cpufreq_boost_trigger_state(enable)) {
601 pr_err("%s: Cannot %s BOOST!\n",
602 __func__, enable ? "enable" : "disable");
603 return -EINVAL;
604 }
605
606 pr_debug("%s: cpufreq BOOST %s\n",
607 __func__, enable ? "enabled" : "disabled");
608
609 return count;
610 }
611 define_one_global_rw(boost);
612
613 static struct cpufreq_governor *find_governor(const char *str_governor)
614 {
615 struct cpufreq_governor *t;
616
617 for_each_governor(t)
618 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
619 return t;
620
621 return NULL;
622 }
623
624 static unsigned int cpufreq_parse_policy(char *str_governor)
625 {
626 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
627 return CPUFREQ_POLICY_PERFORMANCE;
628
629 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
630 return CPUFREQ_POLICY_POWERSAVE;
631
632 return CPUFREQ_POLICY_UNKNOWN;
633 }
634
635 /**
636 * cpufreq_parse_governor - parse a governor string only for has_target()
637 * @str_governor: Governor name.
638 */
639 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
640 {
641 struct cpufreq_governor *t;
642
643 mutex_lock(&cpufreq_governor_mutex);
644
645 t = find_governor(str_governor);
646 if (!t) {
647 int ret;
648
649 mutex_unlock(&cpufreq_governor_mutex);
650
651 ret = request_module("cpufreq_%s", str_governor);
652 if (ret)
653 return NULL;
654
655 mutex_lock(&cpufreq_governor_mutex);
656
657 t = find_governor(str_governor);
658 }
659 if (t && !try_module_get(t->owner))
660 t = NULL;
661
662 mutex_unlock(&cpufreq_governor_mutex);
663
664 return t;
665 }
666
667 /**
668 * cpufreq_per_cpu_attr_read() / show_##file_name() -
669 * print out cpufreq information
670 *
671 * Write out information from cpufreq_driver->policy[cpu]; object must be
672 * "unsigned int".
673 */
674
675 #define show_one(file_name, object) \
676 static ssize_t show_##file_name \
677 (struct cpufreq_policy *policy, char *buf) \
678 { \
679 return sprintf(buf, "%u\n", policy->object); \
680 }
681
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690 return 0;
691 }
692
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695 ssize_t ret;
696 unsigned int freq;
697
698 freq = arch_freq_get_on_cpu(policy->cpu);
699 if (freq)
700 ret = sprintf(buf, "%u\n", freq);
701 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702 cpufreq_driver->get)
703 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704 else
705 ret = sprintf(buf, "%u\n", policy->cur);
706 return ret;
707 }
708
709 /**
710 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711 */
712 #define store_one(file_name, object) \
713 static ssize_t store_##file_name \
714 (struct cpufreq_policy *policy, const char *buf, size_t count) \
715 { \
716 unsigned long val; \
717 int ret; \
718 \
719 ret = sscanf(buf, "%lu", &val); \
720 if (ret != 1) \
721 return -EINVAL; \
722 \
723 ret = freq_qos_update_request(policy->object##_freq_req, val);\
724 return ret >= 0 ? count : ret; \
725 }
726
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729
730 /**
731 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732 */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734 char *buf)
735 {
736 unsigned int cur_freq = __cpufreq_get(policy);
737
738 if (cur_freq)
739 return sprintf(buf, "%u\n", cur_freq);
740
741 return sprintf(buf, "<unknown>\n");
742 }
743
744 /**
745 * show_scaling_governor - show the current policy for the specified CPU
746 */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750 return sprintf(buf, "powersave\n");
751 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752 return sprintf(buf, "performance\n");
753 else if (policy->governor)
754 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755 policy->governor->name);
756 return -EINVAL;
757 }
758
759 /**
760 * store_scaling_governor - store policy for the specified CPU
761 */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763 const char *buf, size_t count)
764 {
765 char str_governor[16];
766 int ret;
767
768 ret = sscanf(buf, "%15s", str_governor);
769 if (ret != 1)
770 return -EINVAL;
771
772 if (cpufreq_driver->setpolicy) {
773 unsigned int new_pol;
774
775 new_pol = cpufreq_parse_policy(str_governor);
776 if (!new_pol)
777 return -EINVAL;
778
779 ret = cpufreq_set_policy(policy, NULL, new_pol);
780 } else {
781 struct cpufreq_governor *new_gov;
782
783 new_gov = cpufreq_parse_governor(str_governor);
784 if (!new_gov)
785 return -EINVAL;
786
787 ret = cpufreq_set_policy(policy, new_gov,
788 CPUFREQ_POLICY_UNKNOWN);
789
790 module_put(new_gov->owner);
791 }
792
793 return ret ? ret : count;
794 }
795
796 /**
797 * show_scaling_driver - show the cpufreq driver currently loaded
798 */
799 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
800 {
801 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
802 }
803
804 /**
805 * show_scaling_available_governors - show the available CPUfreq governors
806 */
807 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
808 char *buf)
809 {
810 ssize_t i = 0;
811 struct cpufreq_governor *t;
812
813 if (!has_target()) {
814 i += sprintf(buf, "performance powersave");
815 goto out;
816 }
817
818 for_each_governor(t) {
819 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
820 - (CPUFREQ_NAME_LEN + 2)))
821 goto out;
822 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
823 }
824 out:
825 i += sprintf(&buf[i], "\n");
826 return i;
827 }
828
829 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
830 {
831 ssize_t i = 0;
832 unsigned int cpu;
833
834 for_each_cpu(cpu, mask) {
835 if (i)
836 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
837 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
838 if (i >= (PAGE_SIZE - 5))
839 break;
840 }
841 i += sprintf(&buf[i], "\n");
842 return i;
843 }
844 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
845
846 /**
847 * show_related_cpus - show the CPUs affected by each transition even if
848 * hw coordination is in use
849 */
850 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
851 {
852 return cpufreq_show_cpus(policy->related_cpus, buf);
853 }
854
855 /**
856 * show_affected_cpus - show the CPUs affected by each transition
857 */
858 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
859 {
860 return cpufreq_show_cpus(policy->cpus, buf);
861 }
862
863 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
864 const char *buf, size_t count)
865 {
866 unsigned int freq = 0;
867 unsigned int ret;
868
869 if (!policy->governor || !policy->governor->store_setspeed)
870 return -EINVAL;
871
872 ret = sscanf(buf, "%u", &freq);
873 if (ret != 1)
874 return -EINVAL;
875
876 policy->governor->store_setspeed(policy, freq);
877
878 return count;
879 }
880
881 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
882 {
883 if (!policy->governor || !policy->governor->show_setspeed)
884 return sprintf(buf, "<unsupported>\n");
885
886 return policy->governor->show_setspeed(policy, buf);
887 }
888
889 /**
890 * show_bios_limit - show the current cpufreq HW/BIOS limitation
891 */
892 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
893 {
894 unsigned int limit;
895 int ret;
896 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
897 if (!ret)
898 return sprintf(buf, "%u\n", limit);
899 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
900 }
901
902 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
903 cpufreq_freq_attr_ro(cpuinfo_min_freq);
904 cpufreq_freq_attr_ro(cpuinfo_max_freq);
905 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
906 cpufreq_freq_attr_ro(scaling_available_governors);
907 cpufreq_freq_attr_ro(scaling_driver);
908 cpufreq_freq_attr_ro(scaling_cur_freq);
909 cpufreq_freq_attr_ro(bios_limit);
910 cpufreq_freq_attr_ro(related_cpus);
911 cpufreq_freq_attr_ro(affected_cpus);
912 cpufreq_freq_attr_rw(scaling_min_freq);
913 cpufreq_freq_attr_rw(scaling_max_freq);
914 cpufreq_freq_attr_rw(scaling_governor);
915 cpufreq_freq_attr_rw(scaling_setspeed);
916
917 static struct attribute *default_attrs[] = {
918 &cpuinfo_min_freq.attr,
919 &cpuinfo_max_freq.attr,
920 &cpuinfo_transition_latency.attr,
921 &scaling_min_freq.attr,
922 &scaling_max_freq.attr,
923 &affected_cpus.attr,
924 &related_cpus.attr,
925 &scaling_governor.attr,
926 &scaling_driver.attr,
927 &scaling_available_governors.attr,
928 &scaling_setspeed.attr,
929 NULL
930 };
931
932 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
933 #define to_attr(a) container_of(a, struct freq_attr, attr)
934
935 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
936 {
937 struct cpufreq_policy *policy = to_policy(kobj);
938 struct freq_attr *fattr = to_attr(attr);
939 ssize_t ret;
940
941 if (!fattr->show)
942 return -EIO;
943
944 down_read(&policy->rwsem);
945 ret = fattr->show(policy, buf);
946 up_read(&policy->rwsem);
947
948 return ret;
949 }
950
951 static ssize_t store(struct kobject *kobj, struct attribute *attr,
952 const char *buf, size_t count)
953 {
954 struct cpufreq_policy *policy = to_policy(kobj);
955 struct freq_attr *fattr = to_attr(attr);
956 ssize_t ret = -EINVAL;
957
958 if (!fattr->store)
959 return -EIO;
960
961 /*
962 * cpus_read_trylock() is used here to work around a circular lock
963 * dependency problem with respect to the cpufreq_register_driver().
964 */
965 if (!cpus_read_trylock())
966 return -EBUSY;
967
968 if (cpu_online(policy->cpu)) {
969 down_write(&policy->rwsem);
970 ret = fattr->store(policy, buf, count);
971 up_write(&policy->rwsem);
972 }
973
974 cpus_read_unlock();
975
976 return ret;
977 }
978
979 static void cpufreq_sysfs_release(struct kobject *kobj)
980 {
981 struct cpufreq_policy *policy = to_policy(kobj);
982 pr_debug("last reference is dropped\n");
983 complete(&policy->kobj_unregister);
984 }
985
986 static const struct sysfs_ops sysfs_ops = {
987 .show = show,
988 .store = store,
989 };
990
991 static struct kobj_type ktype_cpufreq = {
992 .sysfs_ops = &sysfs_ops,
993 .default_attrs = default_attrs,
994 .release = cpufreq_sysfs_release,
995 };
996
997 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
998 {
999 struct device *dev = get_cpu_device(cpu);
1000
1001 if (unlikely(!dev))
1002 return;
1003
1004 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1005 return;
1006
1007 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1008 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1009 dev_err(dev, "cpufreq symlink creation failed\n");
1010 }
1011
1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1013 struct device *dev)
1014 {
1015 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1016 sysfs_remove_link(&dev->kobj, "cpufreq");
1017 }
1018
1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1020 {
1021 struct freq_attr **drv_attr;
1022 int ret = 0;
1023
1024 /* set up files for this cpu device */
1025 drv_attr = cpufreq_driver->attr;
1026 while (drv_attr && *drv_attr) {
1027 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1028 if (ret)
1029 return ret;
1030 drv_attr++;
1031 }
1032 if (cpufreq_driver->get) {
1033 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1034 if (ret)
1035 return ret;
1036 }
1037
1038 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1039 if (ret)
1040 return ret;
1041
1042 if (cpufreq_driver->bios_limit) {
1043 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1044 if (ret)
1045 return ret;
1046 }
1047
1048 return 0;
1049 }
1050
1051 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1052 {
1053 return NULL;
1054 }
1055
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058 struct cpufreq_governor *def_gov = cpufreq_default_governor();
1059 struct cpufreq_governor *gov = NULL;
1060 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061
1062 if (has_target()) {
1063 /* Update policy governor to the one used before hotplug. */
1064 gov = find_governor(policy->last_governor);
1065 if (gov) {
1066 pr_debug("Restoring governor %s for cpu %d\n",
1067 policy->governor->name, policy->cpu);
1068 } else if (def_gov) {
1069 gov = def_gov;
1070 } else {
1071 return -ENODATA;
1072 }
1073 } else {
1074 /* Use the default policy if there is no last_policy. */
1075 if (policy->last_policy) {
1076 pol = policy->last_policy;
1077 } else if (def_gov) {
1078 pol = cpufreq_parse_policy(def_gov->name);
1079 /*
1080 * In case the default governor is neiter "performance"
1081 * nor "powersave", fall back to the initial policy
1082 * value set by the driver.
1083 */
1084 if (pol == CPUFREQ_POLICY_UNKNOWN)
1085 pol = policy->policy;
1086 }
1087 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1088 pol != CPUFREQ_POLICY_POWERSAVE)
1089 return -ENODATA;
1090 }
1091
1092 return cpufreq_set_policy(policy, gov, pol);
1093 }
1094
1095 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1096 {
1097 int ret = 0;
1098
1099 /* Has this CPU been taken care of already? */
1100 if (cpumask_test_cpu(cpu, policy->cpus))
1101 return 0;
1102
1103 down_write(&policy->rwsem);
1104 if (has_target())
1105 cpufreq_stop_governor(policy);
1106
1107 cpumask_set_cpu(cpu, policy->cpus);
1108
1109 if (has_target()) {
1110 ret = cpufreq_start_governor(policy);
1111 if (ret)
1112 pr_err("%s: Failed to start governor\n", __func__);
1113 }
1114 up_write(&policy->rwsem);
1115 return ret;
1116 }
1117
1118 void refresh_frequency_limits(struct cpufreq_policy *policy)
1119 {
1120 if (!policy_is_inactive(policy)) {
1121 pr_debug("updating policy for CPU %u\n", policy->cpu);
1122
1123 cpufreq_set_policy(policy, policy->governor, policy->policy);
1124 }
1125 }
1126 EXPORT_SYMBOL(refresh_frequency_limits);
1127
1128 static void handle_update(struct work_struct *work)
1129 {
1130 struct cpufreq_policy *policy =
1131 container_of(work, struct cpufreq_policy, update);
1132
1133 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1134 down_write(&policy->rwsem);
1135 refresh_frequency_limits(policy);
1136 up_write(&policy->rwsem);
1137 }
1138
1139 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1140 void *data)
1141 {
1142 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1143
1144 schedule_work(&policy->update);
1145 return 0;
1146 }
1147
1148 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1149 void *data)
1150 {
1151 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1152
1153 schedule_work(&policy->update);
1154 return 0;
1155 }
1156
1157 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1158 {
1159 struct kobject *kobj;
1160 struct completion *cmp;
1161
1162 down_write(&policy->rwsem);
1163 cpufreq_stats_free_table(policy);
1164 kobj = &policy->kobj;
1165 cmp = &policy->kobj_unregister;
1166 up_write(&policy->rwsem);
1167 kobject_put(kobj);
1168
1169 /*
1170 * We need to make sure that the underlying kobj is
1171 * actually not referenced anymore by anybody before we
1172 * proceed with unloading.
1173 */
1174 pr_debug("waiting for dropping of refcount\n");
1175 wait_for_completion(cmp);
1176 pr_debug("wait complete\n");
1177 }
1178
1179 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1180 {
1181 struct cpufreq_policy *policy;
1182 struct device *dev = get_cpu_device(cpu);
1183 int ret;
1184
1185 if (!dev)
1186 return NULL;
1187
1188 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1189 if (!policy)
1190 return NULL;
1191
1192 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1193 goto err_free_policy;
1194
1195 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1196 goto err_free_cpumask;
1197
1198 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1199 goto err_free_rcpumask;
1200
1201 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1202 cpufreq_global_kobject, "policy%u", cpu);
1203 if (ret) {
1204 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1205 /*
1206 * The entire policy object will be freed below, but the extra
1207 * memory allocated for the kobject name needs to be freed by
1208 * releasing the kobject.
1209 */
1210 kobject_put(&policy->kobj);
1211 goto err_free_real_cpus;
1212 }
1213
1214 freq_constraints_init(&policy->constraints);
1215
1216 policy->nb_min.notifier_call = cpufreq_notifier_min;
1217 policy->nb_max.notifier_call = cpufreq_notifier_max;
1218
1219 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1220 &policy->nb_min);
1221 if (ret) {
1222 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1223 ret, cpumask_pr_args(policy->cpus));
1224 goto err_kobj_remove;
1225 }
1226
1227 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1228 &policy->nb_max);
1229 if (ret) {
1230 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1231 ret, cpumask_pr_args(policy->cpus));
1232 goto err_min_qos_notifier;
1233 }
1234
1235 INIT_LIST_HEAD(&policy->policy_list);
1236 init_rwsem(&policy->rwsem);
1237 spin_lock_init(&policy->transition_lock);
1238 init_waitqueue_head(&policy->transition_wait);
1239 init_completion(&policy->kobj_unregister);
1240 INIT_WORK(&policy->update, handle_update);
1241
1242 policy->cpu = cpu;
1243 return policy;
1244
1245 err_min_qos_notifier:
1246 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1247 &policy->nb_min);
1248 err_kobj_remove:
1249 cpufreq_policy_put_kobj(policy);
1250 err_free_real_cpus:
1251 free_cpumask_var(policy->real_cpus);
1252 err_free_rcpumask:
1253 free_cpumask_var(policy->related_cpus);
1254 err_free_cpumask:
1255 free_cpumask_var(policy->cpus);
1256 err_free_policy:
1257 kfree(policy);
1258
1259 return NULL;
1260 }
1261
1262 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1263 {
1264 unsigned long flags;
1265 int cpu;
1266
1267 /* Remove policy from list */
1268 write_lock_irqsave(&cpufreq_driver_lock, flags);
1269 list_del(&policy->policy_list);
1270
1271 for_each_cpu(cpu, policy->related_cpus)
1272 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1273 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1274
1275 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1276 &policy->nb_max);
1277 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1278 &policy->nb_min);
1279
1280 /* Cancel any pending policy->update work before freeing the policy. */
1281 cancel_work_sync(&policy->update);
1282
1283 if (policy->max_freq_req) {
1284 /*
1285 * CPUFREQ_CREATE_POLICY notification is sent only after
1286 * successfully adding max_freq_req request.
1287 */
1288 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1289 CPUFREQ_REMOVE_POLICY, policy);
1290 freq_qos_remove_request(policy->max_freq_req);
1291 }
1292
1293 freq_qos_remove_request(policy->min_freq_req);
1294 kfree(policy->min_freq_req);
1295
1296 cpufreq_policy_put_kobj(policy);
1297 free_cpumask_var(policy->real_cpus);
1298 free_cpumask_var(policy->related_cpus);
1299 free_cpumask_var(policy->cpus);
1300 kfree(policy);
1301 }
1302
1303 static int cpufreq_online(unsigned int cpu)
1304 {
1305 struct cpufreq_policy *policy;
1306 bool new_policy;
1307 unsigned long flags;
1308 unsigned int j;
1309 int ret;
1310
1311 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1312
1313 /* Check if this CPU already has a policy to manage it */
1314 policy = per_cpu(cpufreq_cpu_data, cpu);
1315 if (policy) {
1316 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1317 if (!policy_is_inactive(policy))
1318 return cpufreq_add_policy_cpu(policy, cpu);
1319
1320 /* This is the only online CPU for the policy. Start over. */
1321 new_policy = false;
1322 down_write(&policy->rwsem);
1323 policy->cpu = cpu;
1324 policy->governor = NULL;
1325 up_write(&policy->rwsem);
1326 } else {
1327 new_policy = true;
1328 policy = cpufreq_policy_alloc(cpu);
1329 if (!policy)
1330 return -ENOMEM;
1331 }
1332
1333 if (!new_policy && cpufreq_driver->online) {
1334 ret = cpufreq_driver->online(policy);
1335 if (ret) {
1336 pr_debug("%s: %d: initialization failed\n", __func__,
1337 __LINE__);
1338 goto out_exit_policy;
1339 }
1340
1341 /* Recover policy->cpus using related_cpus */
1342 cpumask_copy(policy->cpus, policy->related_cpus);
1343 } else {
1344 cpumask_copy(policy->cpus, cpumask_of(cpu));
1345
1346 /*
1347 * Call driver. From then on the cpufreq must be able
1348 * to accept all calls to ->verify and ->setpolicy for this CPU.
1349 */
1350 ret = cpufreq_driver->init(policy);
1351 if (ret) {
1352 pr_debug("%s: %d: initialization failed\n", __func__,
1353 __LINE__);
1354 goto out_free_policy;
1355 }
1356
1357 ret = cpufreq_table_validate_and_sort(policy);
1358 if (ret)
1359 goto out_exit_policy;
1360
1361 /* related_cpus should at least include policy->cpus. */
1362 cpumask_copy(policy->related_cpus, policy->cpus);
1363 }
1364
1365 down_write(&policy->rwsem);
1366 /*
1367 * affected cpus must always be the one, which are online. We aren't
1368 * managing offline cpus here.
1369 */
1370 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1371
1372 if (new_policy) {
1373 for_each_cpu(j, policy->related_cpus) {
1374 per_cpu(cpufreq_cpu_data, j) = policy;
1375 add_cpu_dev_symlink(policy, j);
1376 }
1377
1378 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1379 GFP_KERNEL);
1380 if (!policy->min_freq_req)
1381 goto out_destroy_policy;
1382
1383 ret = freq_qos_add_request(&policy->constraints,
1384 policy->min_freq_req, FREQ_QOS_MIN,
1385 policy->min);
1386 if (ret < 0) {
1387 /*
1388 * So we don't call freq_qos_remove_request() for an
1389 * uninitialized request.
1390 */
1391 kfree(policy->min_freq_req);
1392 policy->min_freq_req = NULL;
1393 goto out_destroy_policy;
1394 }
1395
1396 /*
1397 * This must be initialized right here to avoid calling
1398 * freq_qos_remove_request() on uninitialized request in case
1399 * of errors.
1400 */
1401 policy->max_freq_req = policy->min_freq_req + 1;
1402
1403 ret = freq_qos_add_request(&policy->constraints,
1404 policy->max_freq_req, FREQ_QOS_MAX,
1405 policy->max);
1406 if (ret < 0) {
1407 policy->max_freq_req = NULL;
1408 goto out_destroy_policy;
1409 }
1410
1411 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1412 CPUFREQ_CREATE_POLICY, policy);
1413 }
1414
1415 if (cpufreq_driver->get && has_target()) {
1416 policy->cur = cpufreq_driver->get(policy->cpu);
1417 if (!policy->cur) {
1418 pr_err("%s: ->get() failed\n", __func__);
1419 goto out_destroy_policy;
1420 }
1421 }
1422
1423 /*
1424 * Sometimes boot loaders set CPU frequency to a value outside of
1425 * frequency table present with cpufreq core. In such cases CPU might be
1426 * unstable if it has to run on that frequency for long duration of time
1427 * and so its better to set it to a frequency which is specified in
1428 * freq-table. This also makes cpufreq stats inconsistent as
1429 * cpufreq-stats would fail to register because current frequency of CPU
1430 * isn't found in freq-table.
1431 *
1432 * Because we don't want this change to effect boot process badly, we go
1433 * for the next freq which is >= policy->cur ('cur' must be set by now,
1434 * otherwise we will end up setting freq to lowest of the table as 'cur'
1435 * is initialized to zero).
1436 *
1437 * We are passing target-freq as "policy->cur - 1" otherwise
1438 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1439 * equal to target-freq.
1440 */
1441 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1442 && has_target()) {
1443 /* Are we running at unknown frequency ? */
1444 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1445 if (ret == -EINVAL) {
1446 /* Warn user and fix it */
1447 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1448 __func__, policy->cpu, policy->cur);
1449 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1450 CPUFREQ_RELATION_L);
1451
1452 /*
1453 * Reaching here after boot in a few seconds may not
1454 * mean that system will remain stable at "unknown"
1455 * frequency for longer duration. Hence, a BUG_ON().
1456 */
1457 BUG_ON(ret);
1458 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1459 __func__, policy->cpu, policy->cur);
1460 }
1461 }
1462
1463 if (new_policy) {
1464 ret = cpufreq_add_dev_interface(policy);
1465 if (ret)
1466 goto out_destroy_policy;
1467
1468 cpufreq_stats_create_table(policy);
1469
1470 write_lock_irqsave(&cpufreq_driver_lock, flags);
1471 list_add(&policy->policy_list, &cpufreq_policy_list);
1472 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1473 }
1474
1475 ret = cpufreq_init_policy(policy);
1476 if (ret) {
1477 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1478 __func__, cpu, ret);
1479 goto out_destroy_policy;
1480 }
1481
1482 up_write(&policy->rwsem);
1483
1484 kobject_uevent(&policy->kobj, KOBJ_ADD);
1485
1486 /* Callback for handling stuff after policy is ready */
1487 if (cpufreq_driver->ready)
1488 cpufreq_driver->ready(policy);
1489
1490 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1491 policy->cdev = of_cpufreq_cooling_register(policy);
1492
1493 pr_debug("initialization complete\n");
1494
1495 return 0;
1496
1497 out_destroy_policy:
1498 for_each_cpu(j, policy->real_cpus)
1499 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1500
1501 up_write(&policy->rwsem);
1502
1503 out_exit_policy:
1504 if (cpufreq_driver->exit)
1505 cpufreq_driver->exit(policy);
1506
1507 out_free_policy:
1508 cpufreq_policy_free(policy);
1509 return ret;
1510 }
1511
1512 /**
1513 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1514 * @dev: CPU device.
1515 * @sif: Subsystem interface structure pointer (not used)
1516 */
1517 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1518 {
1519 struct cpufreq_policy *policy;
1520 unsigned cpu = dev->id;
1521 int ret;
1522
1523 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1524
1525 if (cpu_online(cpu)) {
1526 ret = cpufreq_online(cpu);
1527 if (ret)
1528 return ret;
1529 }
1530
1531 /* Create sysfs link on CPU registration */
1532 policy = per_cpu(cpufreq_cpu_data, cpu);
1533 if (policy)
1534 add_cpu_dev_symlink(policy, cpu);
1535
1536 return 0;
1537 }
1538
1539 static int cpufreq_offline(unsigned int cpu)
1540 {
1541 struct cpufreq_policy *policy;
1542 int ret;
1543
1544 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1545
1546 policy = cpufreq_cpu_get_raw(cpu);
1547 if (!policy) {
1548 pr_debug("%s: No cpu_data found\n", __func__);
1549 return 0;
1550 }
1551
1552 down_write(&policy->rwsem);
1553 if (has_target())
1554 cpufreq_stop_governor(policy);
1555
1556 cpumask_clear_cpu(cpu, policy->cpus);
1557
1558 if (policy_is_inactive(policy)) {
1559 if (has_target())
1560 strncpy(policy->last_governor, policy->governor->name,
1561 CPUFREQ_NAME_LEN);
1562 else
1563 policy->last_policy = policy->policy;
1564 } else if (cpu == policy->cpu) {
1565 /* Nominate new CPU */
1566 policy->cpu = cpumask_any(policy->cpus);
1567 }
1568
1569 /* Start governor again for active policy */
1570 if (!policy_is_inactive(policy)) {
1571 if (has_target()) {
1572 ret = cpufreq_start_governor(policy);
1573 if (ret)
1574 pr_err("%s: Failed to start governor\n", __func__);
1575 }
1576
1577 goto unlock;
1578 }
1579
1580 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1581 cpufreq_cooling_unregister(policy->cdev);
1582 policy->cdev = NULL;
1583 }
1584
1585 if (cpufreq_driver->stop_cpu)
1586 cpufreq_driver->stop_cpu(policy);
1587
1588 if (has_target())
1589 cpufreq_exit_governor(policy);
1590
1591 /*
1592 * Perform the ->offline() during light-weight tear-down, as
1593 * that allows fast recovery when the CPU comes back.
1594 */
1595 if (cpufreq_driver->offline) {
1596 cpufreq_driver->offline(policy);
1597 } else if (cpufreq_driver->exit) {
1598 cpufreq_driver->exit(policy);
1599 policy->freq_table = NULL;
1600 }
1601
1602 unlock:
1603 up_write(&policy->rwsem);
1604 return 0;
1605 }
1606
1607 /**
1608 * cpufreq_remove_dev - remove a CPU device
1609 *
1610 * Removes the cpufreq interface for a CPU device.
1611 */
1612 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1613 {
1614 unsigned int cpu = dev->id;
1615 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1616
1617 if (!policy)
1618 return;
1619
1620 if (cpu_online(cpu))
1621 cpufreq_offline(cpu);
1622
1623 cpumask_clear_cpu(cpu, policy->real_cpus);
1624 remove_cpu_dev_symlink(policy, dev);
1625
1626 if (cpumask_empty(policy->real_cpus)) {
1627 /* We did light-weight exit earlier, do full tear down now */
1628 if (cpufreq_driver->offline)
1629 cpufreq_driver->exit(policy);
1630
1631 cpufreq_policy_free(policy);
1632 }
1633 }
1634
1635 /**
1636 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1637 * in deep trouble.
1638 * @policy: policy managing CPUs
1639 * @new_freq: CPU frequency the CPU actually runs at
1640 *
1641 * We adjust to current frequency first, and need to clean up later.
1642 * So either call to cpufreq_update_policy() or schedule handle_update()).
1643 */
1644 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1645 unsigned int new_freq)
1646 {
1647 struct cpufreq_freqs freqs;
1648
1649 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1650 policy->cur, new_freq);
1651
1652 freqs.old = policy->cur;
1653 freqs.new = new_freq;
1654
1655 cpufreq_freq_transition_begin(policy, &freqs);
1656 cpufreq_freq_transition_end(policy, &freqs, 0);
1657 }
1658
1659 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1660 {
1661 unsigned int new_freq;
1662
1663 new_freq = cpufreq_driver->get(policy->cpu);
1664 if (!new_freq)
1665 return 0;
1666
1667 /*
1668 * If fast frequency switching is used with the given policy, the check
1669 * against policy->cur is pointless, so skip it in that case.
1670 */
1671 if (policy->fast_switch_enabled || !has_target())
1672 return new_freq;
1673
1674 if (policy->cur != new_freq) {
1675 cpufreq_out_of_sync(policy, new_freq);
1676 if (update)
1677 schedule_work(&policy->update);
1678 }
1679
1680 return new_freq;
1681 }
1682
1683 /**
1684 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1685 * @cpu: CPU number
1686 *
1687 * This is the last known freq, without actually getting it from the driver.
1688 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1689 */
1690 unsigned int cpufreq_quick_get(unsigned int cpu)
1691 {
1692 struct cpufreq_policy *policy;
1693 unsigned int ret_freq = 0;
1694 unsigned long flags;
1695
1696 read_lock_irqsave(&cpufreq_driver_lock, flags);
1697
1698 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1699 ret_freq = cpufreq_driver->get(cpu);
1700 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1701 return ret_freq;
1702 }
1703
1704 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1705
1706 policy = cpufreq_cpu_get(cpu);
1707 if (policy) {
1708 ret_freq = policy->cur;
1709 cpufreq_cpu_put(policy);
1710 }
1711
1712 return ret_freq;
1713 }
1714 EXPORT_SYMBOL(cpufreq_quick_get);
1715
1716 /**
1717 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1718 * @cpu: CPU number
1719 *
1720 * Just return the max possible frequency for a given CPU.
1721 */
1722 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1723 {
1724 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1725 unsigned int ret_freq = 0;
1726
1727 if (policy) {
1728 ret_freq = policy->max;
1729 cpufreq_cpu_put(policy);
1730 }
1731
1732 return ret_freq;
1733 }
1734 EXPORT_SYMBOL(cpufreq_quick_get_max);
1735
1736 /**
1737 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1738 * @cpu: CPU number
1739 *
1740 * The default return value is the max_freq field of cpuinfo.
1741 */
1742 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1743 {
1744 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1745 unsigned int ret_freq = 0;
1746
1747 if (policy) {
1748 ret_freq = policy->cpuinfo.max_freq;
1749 cpufreq_cpu_put(policy);
1750 }
1751
1752 return ret_freq;
1753 }
1754 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1755
1756 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1757 {
1758 if (unlikely(policy_is_inactive(policy)))
1759 return 0;
1760
1761 return cpufreq_verify_current_freq(policy, true);
1762 }
1763
1764 /**
1765 * cpufreq_get - get the current CPU frequency (in kHz)
1766 * @cpu: CPU number
1767 *
1768 * Get the CPU current (static) CPU frequency
1769 */
1770 unsigned int cpufreq_get(unsigned int cpu)
1771 {
1772 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1773 unsigned int ret_freq = 0;
1774
1775 if (policy) {
1776 down_read(&policy->rwsem);
1777 if (cpufreq_driver->get)
1778 ret_freq = __cpufreq_get(policy);
1779 up_read(&policy->rwsem);
1780
1781 cpufreq_cpu_put(policy);
1782 }
1783
1784 return ret_freq;
1785 }
1786 EXPORT_SYMBOL(cpufreq_get);
1787
1788 static struct subsys_interface cpufreq_interface = {
1789 .name = "cpufreq",
1790 .subsys = &cpu_subsys,
1791 .add_dev = cpufreq_add_dev,
1792 .remove_dev = cpufreq_remove_dev,
1793 };
1794
1795 /*
1796 * In case platform wants some specific frequency to be configured
1797 * during suspend..
1798 */
1799 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1800 {
1801 int ret;
1802
1803 if (!policy->suspend_freq) {
1804 pr_debug("%s: suspend_freq not defined\n", __func__);
1805 return 0;
1806 }
1807
1808 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1809 policy->suspend_freq);
1810
1811 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1812 CPUFREQ_RELATION_H);
1813 if (ret)
1814 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1815 __func__, policy->suspend_freq, ret);
1816
1817 return ret;
1818 }
1819 EXPORT_SYMBOL(cpufreq_generic_suspend);
1820
1821 /**
1822 * cpufreq_suspend() - Suspend CPUFreq governors
1823 *
1824 * Called during system wide Suspend/Hibernate cycles for suspending governors
1825 * as some platforms can't change frequency after this point in suspend cycle.
1826 * Because some of the devices (like: i2c, regulators, etc) they use for
1827 * changing frequency are suspended quickly after this point.
1828 */
1829 void cpufreq_suspend(void)
1830 {
1831 struct cpufreq_policy *policy;
1832
1833 if (!cpufreq_driver)
1834 return;
1835
1836 if (!has_target() && !cpufreq_driver->suspend)
1837 goto suspend;
1838
1839 pr_debug("%s: Suspending Governors\n", __func__);
1840
1841 for_each_active_policy(policy) {
1842 if (has_target()) {
1843 down_write(&policy->rwsem);
1844 cpufreq_stop_governor(policy);
1845 up_write(&policy->rwsem);
1846 }
1847
1848 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1849 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1850 cpufreq_driver->name);
1851 }
1852
1853 suspend:
1854 cpufreq_suspended = true;
1855 }
1856
1857 /**
1858 * cpufreq_resume() - Resume CPUFreq governors
1859 *
1860 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1861 * are suspended with cpufreq_suspend().
1862 */
1863 void cpufreq_resume(void)
1864 {
1865 struct cpufreq_policy *policy;
1866 int ret;
1867
1868 if (!cpufreq_driver)
1869 return;
1870
1871 if (unlikely(!cpufreq_suspended))
1872 return;
1873
1874 cpufreq_suspended = false;
1875
1876 if (!has_target() && !cpufreq_driver->resume)
1877 return;
1878
1879 pr_debug("%s: Resuming Governors\n", __func__);
1880
1881 for_each_active_policy(policy) {
1882 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1883 pr_err("%s: Failed to resume driver: %p\n", __func__,
1884 policy);
1885 } else if (has_target()) {
1886 down_write(&policy->rwsem);
1887 ret = cpufreq_start_governor(policy);
1888 up_write(&policy->rwsem);
1889
1890 if (ret)
1891 pr_err("%s: Failed to start governor for policy: %p\n",
1892 __func__, policy);
1893 }
1894 }
1895 }
1896
1897 /**
1898 * cpufreq_get_current_driver - return current driver's name
1899 *
1900 * Return the name string of the currently loaded cpufreq driver
1901 * or NULL, if none.
1902 */
1903 const char *cpufreq_get_current_driver(void)
1904 {
1905 if (cpufreq_driver)
1906 return cpufreq_driver->name;
1907
1908 return NULL;
1909 }
1910 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1911
1912 /**
1913 * cpufreq_get_driver_data - return current driver data
1914 *
1915 * Return the private data of the currently loaded cpufreq
1916 * driver, or NULL if no cpufreq driver is loaded.
1917 */
1918 void *cpufreq_get_driver_data(void)
1919 {
1920 if (cpufreq_driver)
1921 return cpufreq_driver->driver_data;
1922
1923 return NULL;
1924 }
1925 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1926
1927 /*********************************************************************
1928 * NOTIFIER LISTS INTERFACE *
1929 *********************************************************************/
1930
1931 /**
1932 * cpufreq_register_notifier - register a driver with cpufreq
1933 * @nb: notifier function to register
1934 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1935 *
1936 * Add a driver to one of two lists: either a list of drivers that
1937 * are notified about clock rate changes (once before and once after
1938 * the transition), or a list of drivers that are notified about
1939 * changes in cpufreq policy.
1940 *
1941 * This function may sleep, and has the same return conditions as
1942 * blocking_notifier_chain_register.
1943 */
1944 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1945 {
1946 int ret;
1947
1948 if (cpufreq_disabled())
1949 return -EINVAL;
1950
1951 switch (list) {
1952 case CPUFREQ_TRANSITION_NOTIFIER:
1953 mutex_lock(&cpufreq_fast_switch_lock);
1954
1955 if (cpufreq_fast_switch_count > 0) {
1956 mutex_unlock(&cpufreq_fast_switch_lock);
1957 return -EBUSY;
1958 }
1959 ret = srcu_notifier_chain_register(
1960 &cpufreq_transition_notifier_list, nb);
1961 if (!ret)
1962 cpufreq_fast_switch_count--;
1963
1964 mutex_unlock(&cpufreq_fast_switch_lock);
1965 break;
1966 case CPUFREQ_POLICY_NOTIFIER:
1967 ret = blocking_notifier_chain_register(
1968 &cpufreq_policy_notifier_list, nb);
1969 break;
1970 default:
1971 ret = -EINVAL;
1972 }
1973
1974 return ret;
1975 }
1976 EXPORT_SYMBOL(cpufreq_register_notifier);
1977
1978 /**
1979 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1980 * @nb: notifier block to be unregistered
1981 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1982 *
1983 * Remove a driver from the CPU frequency notifier list.
1984 *
1985 * This function may sleep, and has the same return conditions as
1986 * blocking_notifier_chain_unregister.
1987 */
1988 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1989 {
1990 int ret;
1991
1992 if (cpufreq_disabled())
1993 return -EINVAL;
1994
1995 switch (list) {
1996 case CPUFREQ_TRANSITION_NOTIFIER:
1997 mutex_lock(&cpufreq_fast_switch_lock);
1998
1999 ret = srcu_notifier_chain_unregister(
2000 &cpufreq_transition_notifier_list, nb);
2001 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2002 cpufreq_fast_switch_count++;
2003
2004 mutex_unlock(&cpufreq_fast_switch_lock);
2005 break;
2006 case CPUFREQ_POLICY_NOTIFIER:
2007 ret = blocking_notifier_chain_unregister(
2008 &cpufreq_policy_notifier_list, nb);
2009 break;
2010 default:
2011 ret = -EINVAL;
2012 }
2013
2014 return ret;
2015 }
2016 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2017
2018
2019 /*********************************************************************
2020 * GOVERNORS *
2021 *********************************************************************/
2022
2023 /**
2024 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2025 * @policy: cpufreq policy to switch the frequency for.
2026 * @target_freq: New frequency to set (may be approximate).
2027 *
2028 * Carry out a fast frequency switch without sleeping.
2029 *
2030 * The driver's ->fast_switch() callback invoked by this function must be
2031 * suitable for being called from within RCU-sched read-side critical sections
2032 * and it is expected to select the minimum available frequency greater than or
2033 * equal to @target_freq (CPUFREQ_RELATION_L).
2034 *
2035 * This function must not be called if policy->fast_switch_enabled is unset.
2036 *
2037 * Governors calling this function must guarantee that it will never be invoked
2038 * twice in parallel for the same policy and that it will never be called in
2039 * parallel with either ->target() or ->target_index() for the same policy.
2040 *
2041 * Returns the actual frequency set for the CPU.
2042 *
2043 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2044 * error condition, the hardware configuration must be preserved.
2045 */
2046 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2047 unsigned int target_freq)
2048 {
2049 target_freq = clamp_val(target_freq, policy->min, policy->max);
2050
2051 return cpufreq_driver->fast_switch(policy, target_freq);
2052 }
2053 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2054
2055 /* Must set freqs->new to intermediate frequency */
2056 static int __target_intermediate(struct cpufreq_policy *policy,
2057 struct cpufreq_freqs *freqs, int index)
2058 {
2059 int ret;
2060
2061 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2062
2063 /* We don't need to switch to intermediate freq */
2064 if (!freqs->new)
2065 return 0;
2066
2067 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2068 __func__, policy->cpu, freqs->old, freqs->new);
2069
2070 cpufreq_freq_transition_begin(policy, freqs);
2071 ret = cpufreq_driver->target_intermediate(policy, index);
2072 cpufreq_freq_transition_end(policy, freqs, ret);
2073
2074 if (ret)
2075 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2076 __func__, ret);
2077
2078 return ret;
2079 }
2080
2081 static int __target_index(struct cpufreq_policy *policy, int index)
2082 {
2083 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2084 unsigned int intermediate_freq = 0;
2085 unsigned int newfreq = policy->freq_table[index].frequency;
2086 int retval = -EINVAL;
2087 bool notify;
2088
2089 if (newfreq == policy->cur)
2090 return 0;
2091
2092 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2093 if (notify) {
2094 /* Handle switching to intermediate frequency */
2095 if (cpufreq_driver->get_intermediate) {
2096 retval = __target_intermediate(policy, &freqs, index);
2097 if (retval)
2098 return retval;
2099
2100 intermediate_freq = freqs.new;
2101 /* Set old freq to intermediate */
2102 if (intermediate_freq)
2103 freqs.old = freqs.new;
2104 }
2105
2106 freqs.new = newfreq;
2107 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2108 __func__, policy->cpu, freqs.old, freqs.new);
2109
2110 cpufreq_freq_transition_begin(policy, &freqs);
2111 }
2112
2113 retval = cpufreq_driver->target_index(policy, index);
2114 if (retval)
2115 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2116 retval);
2117
2118 if (notify) {
2119 cpufreq_freq_transition_end(policy, &freqs, retval);
2120
2121 /*
2122 * Failed after setting to intermediate freq? Driver should have
2123 * reverted back to initial frequency and so should we. Check
2124 * here for intermediate_freq instead of get_intermediate, in
2125 * case we haven't switched to intermediate freq at all.
2126 */
2127 if (unlikely(retval && intermediate_freq)) {
2128 freqs.old = intermediate_freq;
2129 freqs.new = policy->restore_freq;
2130 cpufreq_freq_transition_begin(policy, &freqs);
2131 cpufreq_freq_transition_end(policy, &freqs, 0);
2132 }
2133 }
2134
2135 return retval;
2136 }
2137
2138 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2139 unsigned int target_freq,
2140 unsigned int relation)
2141 {
2142 unsigned int old_target_freq = target_freq;
2143 int index;
2144
2145 if (cpufreq_disabled())
2146 return -ENODEV;
2147
2148 /* Make sure that target_freq is within supported range */
2149 target_freq = clamp_val(target_freq, policy->min, policy->max);
2150
2151 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2152 policy->cpu, target_freq, relation, old_target_freq);
2153
2154 /*
2155 * This might look like a redundant call as we are checking it again
2156 * after finding index. But it is left intentionally for cases where
2157 * exactly same freq is called again and so we can save on few function
2158 * calls.
2159 */
2160 if (target_freq == policy->cur)
2161 return 0;
2162
2163 /* Save last value to restore later on errors */
2164 policy->restore_freq = policy->cur;
2165
2166 if (cpufreq_driver->target)
2167 return cpufreq_driver->target(policy, target_freq, relation);
2168
2169 if (!cpufreq_driver->target_index)
2170 return -EINVAL;
2171
2172 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2173
2174 return __target_index(policy, index);
2175 }
2176 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2177
2178 int cpufreq_driver_target(struct cpufreq_policy *policy,
2179 unsigned int target_freq,
2180 unsigned int relation)
2181 {
2182 int ret;
2183
2184 down_write(&policy->rwsem);
2185
2186 ret = __cpufreq_driver_target(policy, target_freq, relation);
2187
2188 up_write(&policy->rwsem);
2189
2190 return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2193
2194 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2195 {
2196 return NULL;
2197 }
2198
2199 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2200 {
2201 int ret;
2202
2203 /* Don't start any governor operations if we are entering suspend */
2204 if (cpufreq_suspended)
2205 return 0;
2206 /*
2207 * Governor might not be initiated here if ACPI _PPC changed
2208 * notification happened, so check it.
2209 */
2210 if (!policy->governor)
2211 return -EINVAL;
2212
2213 /* Platform doesn't want dynamic frequency switching ? */
2214 if (policy->governor->dynamic_switching &&
2215 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2216 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2217
2218 if (gov) {
2219 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2220 policy->governor->name, gov->name);
2221 policy->governor = gov;
2222 } else {
2223 return -EINVAL;
2224 }
2225 }
2226
2227 if (!try_module_get(policy->governor->owner))
2228 return -EINVAL;
2229
2230 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2231
2232 if (policy->governor->init) {
2233 ret = policy->governor->init(policy);
2234 if (ret) {
2235 module_put(policy->governor->owner);
2236 return ret;
2237 }
2238 }
2239
2240 return 0;
2241 }
2242
2243 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2244 {
2245 if (cpufreq_suspended || !policy->governor)
2246 return;
2247
2248 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2249
2250 if (policy->governor->exit)
2251 policy->governor->exit(policy);
2252
2253 module_put(policy->governor->owner);
2254 }
2255
2256 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2257 {
2258 int ret;
2259
2260 if (cpufreq_suspended)
2261 return 0;
2262
2263 if (!policy->governor)
2264 return -EINVAL;
2265
2266 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2267
2268 if (cpufreq_driver->get)
2269 cpufreq_verify_current_freq(policy, false);
2270
2271 if (policy->governor->start) {
2272 ret = policy->governor->start(policy);
2273 if (ret)
2274 return ret;
2275 }
2276
2277 if (policy->governor->limits)
2278 policy->governor->limits(policy);
2279
2280 return 0;
2281 }
2282
2283 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2284 {
2285 if (cpufreq_suspended || !policy->governor)
2286 return;
2287
2288 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2289
2290 if (policy->governor->stop)
2291 policy->governor->stop(policy);
2292 }
2293
2294 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2295 {
2296 if (cpufreq_suspended || !policy->governor)
2297 return;
2298
2299 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2300
2301 if (policy->governor->limits)
2302 policy->governor->limits(policy);
2303 }
2304
2305 int cpufreq_register_governor(struct cpufreq_governor *governor)
2306 {
2307 int err;
2308
2309 if (!governor)
2310 return -EINVAL;
2311
2312 if (cpufreq_disabled())
2313 return -ENODEV;
2314
2315 mutex_lock(&cpufreq_governor_mutex);
2316
2317 err = -EBUSY;
2318 if (!find_governor(governor->name)) {
2319 err = 0;
2320 list_add(&governor->governor_list, &cpufreq_governor_list);
2321 }
2322
2323 mutex_unlock(&cpufreq_governor_mutex);
2324 return err;
2325 }
2326 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2327
2328 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2329 {
2330 struct cpufreq_policy *policy;
2331 unsigned long flags;
2332
2333 if (!governor)
2334 return;
2335
2336 if (cpufreq_disabled())
2337 return;
2338
2339 /* clear last_governor for all inactive policies */
2340 read_lock_irqsave(&cpufreq_driver_lock, flags);
2341 for_each_inactive_policy(policy) {
2342 if (!strcmp(policy->last_governor, governor->name)) {
2343 policy->governor = NULL;
2344 strcpy(policy->last_governor, "\0");
2345 }
2346 }
2347 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2348
2349 mutex_lock(&cpufreq_governor_mutex);
2350 list_del(&governor->governor_list);
2351 mutex_unlock(&cpufreq_governor_mutex);
2352 }
2353 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2354
2355
2356 /*********************************************************************
2357 * POLICY INTERFACE *
2358 *********************************************************************/
2359
2360 /**
2361 * cpufreq_get_policy - get the current cpufreq_policy
2362 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2363 * is written
2364 *
2365 * Reads the current cpufreq policy.
2366 */
2367 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2368 {
2369 struct cpufreq_policy *cpu_policy;
2370 if (!policy)
2371 return -EINVAL;
2372
2373 cpu_policy = cpufreq_cpu_get(cpu);
2374 if (!cpu_policy)
2375 return -EINVAL;
2376
2377 memcpy(policy, cpu_policy, sizeof(*policy));
2378
2379 cpufreq_cpu_put(cpu_policy);
2380 return 0;
2381 }
2382 EXPORT_SYMBOL(cpufreq_get_policy);
2383
2384 /**
2385 * cpufreq_set_policy - Modify cpufreq policy parameters.
2386 * @policy: Policy object to modify.
2387 * @new_gov: Policy governor pointer.
2388 * @new_pol: Policy value (for drivers with built-in governors).
2389 *
2390 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2391 * limits to be set for the policy, update @policy with the verified limits
2392 * values and either invoke the driver's ->setpolicy() callback (if present) or
2393 * carry out a governor update for @policy. That is, run the current governor's
2394 * ->limits() callback (if @new_gov points to the same object as the one in
2395 * @policy) or replace the governor for @policy with @new_gov.
2396 *
2397 * The cpuinfo part of @policy is not updated by this function.
2398 */
2399 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2400 struct cpufreq_governor *new_gov,
2401 unsigned int new_pol)
2402 {
2403 struct cpufreq_policy_data new_data;
2404 struct cpufreq_governor *old_gov;
2405 int ret;
2406
2407 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2408 new_data.freq_table = policy->freq_table;
2409 new_data.cpu = policy->cpu;
2410 /*
2411 * PM QoS framework collects all the requests from users and provide us
2412 * the final aggregated value here.
2413 */
2414 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2415 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2416
2417 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2418 new_data.cpu, new_data.min, new_data.max);
2419
2420 /*
2421 * Verify that the CPU speed can be set within these limits and make sure
2422 * that min <= max.
2423 */
2424 ret = cpufreq_driver->verify(&new_data);
2425 if (ret)
2426 return ret;
2427
2428 policy->min = new_data.min;
2429 policy->max = new_data.max;
2430 trace_cpu_frequency_limits(policy);
2431
2432 policy->cached_target_freq = UINT_MAX;
2433
2434 pr_debug("new min and max freqs are %u - %u kHz\n",
2435 policy->min, policy->max);
2436
2437 if (cpufreq_driver->setpolicy) {
2438 policy->policy = new_pol;
2439 pr_debug("setting range\n");
2440 return cpufreq_driver->setpolicy(policy);
2441 }
2442
2443 if (new_gov == policy->governor) {
2444 pr_debug("governor limits update\n");
2445 cpufreq_governor_limits(policy);
2446 return 0;
2447 }
2448
2449 pr_debug("governor switch\n");
2450
2451 /* save old, working values */
2452 old_gov = policy->governor;
2453 /* end old governor */
2454 if (old_gov) {
2455 cpufreq_stop_governor(policy);
2456 cpufreq_exit_governor(policy);
2457 }
2458
2459 /* start new governor */
2460 policy->governor = new_gov;
2461 ret = cpufreq_init_governor(policy);
2462 if (!ret) {
2463 ret = cpufreq_start_governor(policy);
2464 if (!ret) {
2465 pr_debug("governor change\n");
2466 sched_cpufreq_governor_change(policy, old_gov);
2467 return 0;
2468 }
2469 cpufreq_exit_governor(policy);
2470 }
2471
2472 /* new governor failed, so re-start old one */
2473 pr_debug("starting governor %s failed\n", policy->governor->name);
2474 if (old_gov) {
2475 policy->governor = old_gov;
2476 if (cpufreq_init_governor(policy))
2477 policy->governor = NULL;
2478 else
2479 cpufreq_start_governor(policy);
2480 }
2481
2482 return ret;
2483 }
2484
2485 /**
2486 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2487 * @cpu: CPU to re-evaluate the policy for.
2488 *
2489 * Update the current frequency for the cpufreq policy of @cpu and use
2490 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2491 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2492 * for the policy in question, among other things.
2493 */
2494 void cpufreq_update_policy(unsigned int cpu)
2495 {
2496 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2497
2498 if (!policy)
2499 return;
2500
2501 /*
2502 * BIOS might change freq behind our back
2503 * -> ask driver for current freq and notify governors about a change
2504 */
2505 if (cpufreq_driver->get && has_target() &&
2506 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2507 goto unlock;
2508
2509 refresh_frequency_limits(policy);
2510
2511 unlock:
2512 cpufreq_cpu_release(policy);
2513 }
2514 EXPORT_SYMBOL(cpufreq_update_policy);
2515
2516 /**
2517 * cpufreq_update_limits - Update policy limits for a given CPU.
2518 * @cpu: CPU to update the policy limits for.
2519 *
2520 * Invoke the driver's ->update_limits callback if present or call
2521 * cpufreq_update_policy() for @cpu.
2522 */
2523 void cpufreq_update_limits(unsigned int cpu)
2524 {
2525 if (cpufreq_driver->update_limits)
2526 cpufreq_driver->update_limits(cpu);
2527 else
2528 cpufreq_update_policy(cpu);
2529 }
2530 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2531
2532 /*********************************************************************
2533 * BOOST *
2534 *********************************************************************/
2535 static int cpufreq_boost_set_sw(int state)
2536 {
2537 struct cpufreq_policy *policy;
2538
2539 for_each_active_policy(policy) {
2540 int ret;
2541
2542 if (!policy->freq_table)
2543 return -ENXIO;
2544
2545 ret = cpufreq_frequency_table_cpuinfo(policy,
2546 policy->freq_table);
2547 if (ret) {
2548 pr_err("%s: Policy frequency update failed\n",
2549 __func__);
2550 return ret;
2551 }
2552
2553 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2554 if (ret < 0)
2555 return ret;
2556 }
2557
2558 return 0;
2559 }
2560
2561 int cpufreq_boost_trigger_state(int state)
2562 {
2563 unsigned long flags;
2564 int ret = 0;
2565
2566 if (cpufreq_driver->boost_enabled == state)
2567 return 0;
2568
2569 write_lock_irqsave(&cpufreq_driver_lock, flags);
2570 cpufreq_driver->boost_enabled = state;
2571 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2572
2573 ret = cpufreq_driver->set_boost(state);
2574 if (ret) {
2575 write_lock_irqsave(&cpufreq_driver_lock, flags);
2576 cpufreq_driver->boost_enabled = !state;
2577 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578
2579 pr_err("%s: Cannot %s BOOST\n",
2580 __func__, state ? "enable" : "disable");
2581 }
2582
2583 return ret;
2584 }
2585
2586 static bool cpufreq_boost_supported(void)
2587 {
2588 return cpufreq_driver->set_boost;
2589 }
2590
2591 static int create_boost_sysfs_file(void)
2592 {
2593 int ret;
2594
2595 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2596 if (ret)
2597 pr_err("%s: cannot register global BOOST sysfs file\n",
2598 __func__);
2599
2600 return ret;
2601 }
2602
2603 static void remove_boost_sysfs_file(void)
2604 {
2605 if (cpufreq_boost_supported())
2606 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2607 }
2608
2609 int cpufreq_enable_boost_support(void)
2610 {
2611 if (!cpufreq_driver)
2612 return -EINVAL;
2613
2614 if (cpufreq_boost_supported())
2615 return 0;
2616
2617 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2618
2619 /* This will get removed on driver unregister */
2620 return create_boost_sysfs_file();
2621 }
2622 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2623
2624 int cpufreq_boost_enabled(void)
2625 {
2626 return cpufreq_driver->boost_enabled;
2627 }
2628 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2629
2630 /*********************************************************************
2631 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2632 *********************************************************************/
2633 static enum cpuhp_state hp_online;
2634
2635 static int cpuhp_cpufreq_online(unsigned int cpu)
2636 {
2637 cpufreq_online(cpu);
2638
2639 return 0;
2640 }
2641
2642 static int cpuhp_cpufreq_offline(unsigned int cpu)
2643 {
2644 cpufreq_offline(cpu);
2645
2646 return 0;
2647 }
2648
2649 /**
2650 * cpufreq_register_driver - register a CPU Frequency driver
2651 * @driver_data: A struct cpufreq_driver containing the values#
2652 * submitted by the CPU Frequency driver.
2653 *
2654 * Registers a CPU Frequency driver to this core code. This code
2655 * returns zero on success, -EEXIST when another driver got here first
2656 * (and isn't unregistered in the meantime).
2657 *
2658 */
2659 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2660 {
2661 unsigned long flags;
2662 int ret;
2663
2664 if (cpufreq_disabled())
2665 return -ENODEV;
2666
2667 /*
2668 * The cpufreq core depends heavily on the availability of device
2669 * structure, make sure they are available before proceeding further.
2670 */
2671 if (!get_cpu_device(0))
2672 return -EPROBE_DEFER;
2673
2674 if (!driver_data || !driver_data->verify || !driver_data->init ||
2675 !(driver_data->setpolicy || driver_data->target_index ||
2676 driver_data->target) ||
2677 (driver_data->setpolicy && (driver_data->target_index ||
2678 driver_data->target)) ||
2679 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2680 (!driver_data->online != !driver_data->offline))
2681 return -EINVAL;
2682
2683 pr_debug("trying to register driver %s\n", driver_data->name);
2684
2685 /* Protect against concurrent CPU online/offline. */
2686 cpus_read_lock();
2687
2688 write_lock_irqsave(&cpufreq_driver_lock, flags);
2689 if (cpufreq_driver) {
2690 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2691 ret = -EEXIST;
2692 goto out;
2693 }
2694 cpufreq_driver = driver_data;
2695 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2696
2697 if (driver_data->setpolicy)
2698 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2699
2700 if (cpufreq_boost_supported()) {
2701 ret = create_boost_sysfs_file();
2702 if (ret)
2703 goto err_null_driver;
2704 }
2705
2706 ret = subsys_interface_register(&cpufreq_interface);
2707 if (ret)
2708 goto err_boost_unreg;
2709
2710 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2711 list_empty(&cpufreq_policy_list)) {
2712 /* if all ->init() calls failed, unregister */
2713 ret = -ENODEV;
2714 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2715 driver_data->name);
2716 goto err_if_unreg;
2717 }
2718
2719 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2720 "cpufreq:online",
2721 cpuhp_cpufreq_online,
2722 cpuhp_cpufreq_offline);
2723 if (ret < 0)
2724 goto err_if_unreg;
2725 hp_online = ret;
2726 ret = 0;
2727
2728 pr_debug("driver %s up and running\n", driver_data->name);
2729 goto out;
2730
2731 err_if_unreg:
2732 subsys_interface_unregister(&cpufreq_interface);
2733 err_boost_unreg:
2734 remove_boost_sysfs_file();
2735 err_null_driver:
2736 write_lock_irqsave(&cpufreq_driver_lock, flags);
2737 cpufreq_driver = NULL;
2738 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2739 out:
2740 cpus_read_unlock();
2741 return ret;
2742 }
2743 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2744
2745 /**
2746 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2747 *
2748 * Unregister the current CPUFreq driver. Only call this if you have
2749 * the right to do so, i.e. if you have succeeded in initialising before!
2750 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2751 * currently not initialised.
2752 */
2753 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2754 {
2755 unsigned long flags;
2756
2757 if (!cpufreq_driver || (driver != cpufreq_driver))
2758 return -EINVAL;
2759
2760 pr_debug("unregistering driver %s\n", driver->name);
2761
2762 /* Protect against concurrent cpu hotplug */
2763 cpus_read_lock();
2764 subsys_interface_unregister(&cpufreq_interface);
2765 remove_boost_sysfs_file();
2766 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2767
2768 write_lock_irqsave(&cpufreq_driver_lock, flags);
2769
2770 cpufreq_driver = NULL;
2771
2772 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2773 cpus_read_unlock();
2774
2775 return 0;
2776 }
2777 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2778
2779 static int __init cpufreq_core_init(void)
2780 {
2781 if (cpufreq_disabled())
2782 return -ENODEV;
2783
2784 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2785 BUG_ON(!cpufreq_global_kobject);
2786
2787 return 0;
2788 }
2789 module_param(off, int, 0444);
2790 core_initcall(cpufreq_core_init);