]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge tag 'block-5.11-2021-02-05' of git://git.kernel.dk/linux-block
[mirror_ubuntu-hirsute-kernel.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy) \
46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor) \
51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 static char default_governor[CPUFREQ_NAME_LEN];
54
55 /*
56 * The "cpufreq driver" - the arch- or hardware-dependent low
57 * level driver of CPUFreq support, and its spinlock. This lock
58 * also protects the cpufreq_cpu_data array.
59 */
60 static struct cpufreq_driver *cpufreq_driver;
61 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
62 static DEFINE_RWLOCK(cpufreq_driver_lock);
63
64 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
65 bool cpufreq_supports_freq_invariance(void)
66 {
67 return static_branch_likely(&cpufreq_freq_invariance);
68 }
69
70 /* Flag to suspend/resume CPUFreq governors */
71 static bool cpufreq_suspended;
72
73 static inline bool has_target(void)
74 {
75 return cpufreq_driver->target_index || cpufreq_driver->target;
76 }
77
78 /* internal prototypes */
79 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
80 static int cpufreq_init_governor(struct cpufreq_policy *policy);
81 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83 static int cpufreq_set_policy(struct cpufreq_policy *policy,
84 struct cpufreq_governor *new_gov,
85 unsigned int new_pol);
86
87 /*
88 * Two notifier lists: the "policy" list is involved in the
89 * validation process for a new CPU frequency policy; the
90 * "transition" list for kernel code that needs to handle
91 * changes to devices when the CPU clock speed changes.
92 * The mutex locks both lists.
93 */
94 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
95 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
96
97 static int off __read_mostly;
98 static int cpufreq_disabled(void)
99 {
100 return off;
101 }
102 void disable_cpufreq(void)
103 {
104 off = 1;
105 }
106 static DEFINE_MUTEX(cpufreq_governor_mutex);
107
108 bool have_governor_per_policy(void)
109 {
110 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
111 }
112 EXPORT_SYMBOL_GPL(have_governor_per_policy);
113
114 static struct kobject *cpufreq_global_kobject;
115
116 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
117 {
118 if (have_governor_per_policy())
119 return &policy->kobj;
120 else
121 return cpufreq_global_kobject;
122 }
123 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
124
125 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
126 {
127 struct kernel_cpustat kcpustat;
128 u64 cur_wall_time;
129 u64 idle_time;
130 u64 busy_time;
131
132 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
133
134 kcpustat_cpu_fetch(&kcpustat, cpu);
135
136 busy_time = kcpustat.cpustat[CPUTIME_USER];
137 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
138 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
139 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
140 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
141 busy_time += kcpustat.cpustat[CPUTIME_NICE];
142
143 idle_time = cur_wall_time - busy_time;
144 if (wall)
145 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
146
147 return div_u64(idle_time, NSEC_PER_USEC);
148 }
149
150 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
151 {
152 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
153
154 if (idle_time == -1ULL)
155 return get_cpu_idle_time_jiffy(cpu, wall);
156 else if (!io_busy)
157 idle_time += get_cpu_iowait_time_us(cpu, wall);
158
159 return idle_time;
160 }
161 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
162
163 /*
164 * This is a generic cpufreq init() routine which can be used by cpufreq
165 * drivers of SMP systems. It will do following:
166 * - validate & show freq table passed
167 * - set policies transition latency
168 * - policy->cpus with all possible CPUs
169 */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 struct cpufreq_frequency_table *table,
172 unsigned int transition_latency)
173 {
174 policy->freq_table = table;
175 policy->cpuinfo.transition_latency = transition_latency;
176
177 /*
178 * The driver only supports the SMP configuration where all processors
179 * share the clock and voltage and clock.
180 */
181 cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197 if (!policy || IS_ERR(policy->clk)) {
198 pr_err("%s: No %s associated to cpu: %d\n",
199 __func__, policy ? "clk" : "policy", cpu);
200 return 0;
201 }
202
203 return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209 * @cpu: CPU to find the policy for.
210 *
211 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212 * the kobject reference counter of that policy. Return a valid policy on
213 * success or NULL on failure.
214 *
215 * The policy returned by this function has to be released with the help of
216 * cpufreq_cpu_put() to balance its kobject reference counter properly.
217 */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 struct cpufreq_policy *policy = NULL;
221 unsigned long flags;
222
223 if (WARN_ON(cpu >= nr_cpu_ids))
224 return NULL;
225
226 /* get the cpufreq driver */
227 read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229 if (cpufreq_driver) {
230 /* get the CPU */
231 policy = cpufreq_cpu_get_raw(cpu);
232 if (policy)
233 kobject_get(&policy->kobj);
234 }
235
236 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238 return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242 /**
243 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244 * @policy: cpufreq policy returned by cpufreq_cpu_get().
245 */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252 /**
253 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255 */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 if (WARN_ON(!policy))
259 return;
260
261 lockdep_assert_held(&policy->rwsem);
262
263 up_write(&policy->rwsem);
264
265 cpufreq_cpu_put(policy);
266 }
267
268 /**
269 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270 * @cpu: CPU to find the policy for.
271 *
272 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273 * if the policy returned by it is not NULL, acquire its rwsem for writing.
274 * Return the policy if it is active or release it and return NULL otherwise.
275 *
276 * The policy returned by this function has to be released with the help of
277 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278 * counter properly.
279 */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284 if (!policy)
285 return NULL;
286
287 down_write(&policy->rwsem);
288
289 if (policy_is_inactive(policy)) {
290 cpufreq_cpu_release(policy);
291 return NULL;
292 }
293
294 return policy;
295 }
296
297 /*********************************************************************
298 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
299 *********************************************************************/
300
301 /**
302 * adjust_jiffies - Adjust the system "loops_per_jiffy".
303 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
304 * @ci: Frequency change information.
305 *
306 * This function alters the system "loops_per_jiffy" for the clock
307 * speed change. Note that loops_per_jiffy cannot be updated on SMP
308 * systems as each CPU might be scaled differently. So, use the arch
309 * per-CPU loops_per_jiffy value wherever possible.
310 */
311 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
312 {
313 #ifndef CONFIG_SMP
314 static unsigned long l_p_j_ref;
315 static unsigned int l_p_j_ref_freq;
316
317 if (ci->flags & CPUFREQ_CONST_LOOPS)
318 return;
319
320 if (!l_p_j_ref_freq) {
321 l_p_j_ref = loops_per_jiffy;
322 l_p_j_ref_freq = ci->old;
323 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
324 l_p_j_ref, l_p_j_ref_freq);
325 }
326 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
327 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
328 ci->new);
329 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
330 loops_per_jiffy, ci->new);
331 }
332 #endif
333 }
334
335 /**
336 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
337 * @policy: cpufreq policy to enable fast frequency switching for.
338 * @freqs: contain details of the frequency update.
339 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
340 *
341 * This function calls the transition notifiers and adjust_jiffies().
342 *
343 * It is called twice on all CPU frequency changes that have external effects.
344 */
345 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
346 struct cpufreq_freqs *freqs,
347 unsigned int state)
348 {
349 int cpu;
350
351 BUG_ON(irqs_disabled());
352
353 if (cpufreq_disabled())
354 return;
355
356 freqs->policy = policy;
357 freqs->flags = cpufreq_driver->flags;
358 pr_debug("notification %u of frequency transition to %u kHz\n",
359 state, freqs->new);
360
361 switch (state) {
362 case CPUFREQ_PRECHANGE:
363 /*
364 * Detect if the driver reported a value as "old frequency"
365 * which is not equal to what the cpufreq core thinks is
366 * "old frequency".
367 */
368 if (policy->cur && policy->cur != freqs->old) {
369 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
370 freqs->old, policy->cur);
371 freqs->old = policy->cur;
372 }
373
374 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
375 CPUFREQ_PRECHANGE, freqs);
376
377 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
378 break;
379
380 case CPUFREQ_POSTCHANGE:
381 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
382 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
383 cpumask_pr_args(policy->cpus));
384
385 for_each_cpu(cpu, policy->cpus)
386 trace_cpu_frequency(freqs->new, cpu);
387
388 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
389 CPUFREQ_POSTCHANGE, freqs);
390
391 cpufreq_stats_record_transition(policy, freqs->new);
392 policy->cur = freqs->new;
393 }
394 }
395
396 /* Do post notifications when there are chances that transition has failed */
397 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
398 struct cpufreq_freqs *freqs, int transition_failed)
399 {
400 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
401 if (!transition_failed)
402 return;
403
404 swap(freqs->old, freqs->new);
405 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
406 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
407 }
408
409 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
410 struct cpufreq_freqs *freqs)
411 {
412
413 /*
414 * Catch double invocations of _begin() which lead to self-deadlock.
415 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
416 * doesn't invoke _begin() on their behalf, and hence the chances of
417 * double invocations are very low. Moreover, there are scenarios
418 * where these checks can emit false-positive warnings in these
419 * drivers; so we avoid that by skipping them altogether.
420 */
421 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
422 && current == policy->transition_task);
423
424 wait:
425 wait_event(policy->transition_wait, !policy->transition_ongoing);
426
427 spin_lock(&policy->transition_lock);
428
429 if (unlikely(policy->transition_ongoing)) {
430 spin_unlock(&policy->transition_lock);
431 goto wait;
432 }
433
434 policy->transition_ongoing = true;
435 policy->transition_task = current;
436
437 spin_unlock(&policy->transition_lock);
438
439 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
440 }
441 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
442
443 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
444 struct cpufreq_freqs *freqs, int transition_failed)
445 {
446 if (WARN_ON(!policy->transition_ongoing))
447 return;
448
449 cpufreq_notify_post_transition(policy, freqs, transition_failed);
450
451 arch_set_freq_scale(policy->related_cpus,
452 policy->cur,
453 policy->cpuinfo.max_freq);
454
455 policy->transition_ongoing = false;
456 policy->transition_task = NULL;
457
458 wake_up(&policy->transition_wait);
459 }
460 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
461
462 /*
463 * Fast frequency switching status count. Positive means "enabled", negative
464 * means "disabled" and 0 means "not decided yet".
465 */
466 static int cpufreq_fast_switch_count;
467 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
468
469 static void cpufreq_list_transition_notifiers(void)
470 {
471 struct notifier_block *nb;
472
473 pr_info("Registered transition notifiers:\n");
474
475 mutex_lock(&cpufreq_transition_notifier_list.mutex);
476
477 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
478 pr_info("%pS\n", nb->notifier_call);
479
480 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
481 }
482
483 /**
484 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
485 * @policy: cpufreq policy to enable fast frequency switching for.
486 *
487 * Try to enable fast frequency switching for @policy.
488 *
489 * The attempt will fail if there is at least one transition notifier registered
490 * at this point, as fast frequency switching is quite fundamentally at odds
491 * with transition notifiers. Thus if successful, it will make registration of
492 * transition notifiers fail going forward.
493 */
494 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
495 {
496 lockdep_assert_held(&policy->rwsem);
497
498 if (!policy->fast_switch_possible)
499 return;
500
501 mutex_lock(&cpufreq_fast_switch_lock);
502 if (cpufreq_fast_switch_count >= 0) {
503 cpufreq_fast_switch_count++;
504 policy->fast_switch_enabled = true;
505 } else {
506 pr_warn("CPU%u: Fast frequency switching not enabled\n",
507 policy->cpu);
508 cpufreq_list_transition_notifiers();
509 }
510 mutex_unlock(&cpufreq_fast_switch_lock);
511 }
512 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
513
514 /**
515 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
516 * @policy: cpufreq policy to disable fast frequency switching for.
517 */
518 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
519 {
520 mutex_lock(&cpufreq_fast_switch_lock);
521 if (policy->fast_switch_enabled) {
522 policy->fast_switch_enabled = false;
523 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
524 cpufreq_fast_switch_count--;
525 }
526 mutex_unlock(&cpufreq_fast_switch_lock);
527 }
528 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
529
530 /**
531 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
532 * one.
533 * @policy: associated policy to interrogate
534 * @target_freq: target frequency to resolve.
535 *
536 * The target to driver frequency mapping is cached in the policy.
537 *
538 * Return: Lowest driver-supported frequency greater than or equal to the
539 * given target_freq, subject to policy (min/max) and driver limitations.
540 */
541 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
542 unsigned int target_freq)
543 {
544 target_freq = clamp_val(target_freq, policy->min, policy->max);
545 policy->cached_target_freq = target_freq;
546
547 if (cpufreq_driver->target_index) {
548 unsigned int idx;
549
550 idx = cpufreq_frequency_table_target(policy, target_freq,
551 CPUFREQ_RELATION_L);
552 policy->cached_resolved_idx = idx;
553 return policy->freq_table[idx].frequency;
554 }
555
556 if (cpufreq_driver->resolve_freq)
557 return cpufreq_driver->resolve_freq(policy, target_freq);
558
559 return target_freq;
560 }
561 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
562
563 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
564 {
565 unsigned int latency;
566
567 if (policy->transition_delay_us)
568 return policy->transition_delay_us;
569
570 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
571 if (latency) {
572 /*
573 * For platforms that can change the frequency very fast (< 10
574 * us), the above formula gives a decent transition delay. But
575 * for platforms where transition_latency is in milliseconds, it
576 * ends up giving unrealistic values.
577 *
578 * Cap the default transition delay to 10 ms, which seems to be
579 * a reasonable amount of time after which we should reevaluate
580 * the frequency.
581 */
582 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
583 }
584
585 return LATENCY_MULTIPLIER;
586 }
587 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
588
589 /*********************************************************************
590 * SYSFS INTERFACE *
591 *********************************************************************/
592 static ssize_t show_boost(struct kobject *kobj,
593 struct kobj_attribute *attr, char *buf)
594 {
595 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
596 }
597
598 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
599 const char *buf, size_t count)
600 {
601 int ret, enable;
602
603 ret = sscanf(buf, "%d", &enable);
604 if (ret != 1 || enable < 0 || enable > 1)
605 return -EINVAL;
606
607 if (cpufreq_boost_trigger_state(enable)) {
608 pr_err("%s: Cannot %s BOOST!\n",
609 __func__, enable ? "enable" : "disable");
610 return -EINVAL;
611 }
612
613 pr_debug("%s: cpufreq BOOST %s\n",
614 __func__, enable ? "enabled" : "disabled");
615
616 return count;
617 }
618 define_one_global_rw(boost);
619
620 static struct cpufreq_governor *find_governor(const char *str_governor)
621 {
622 struct cpufreq_governor *t;
623
624 for_each_governor(t)
625 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
626 return t;
627
628 return NULL;
629 }
630
631 static struct cpufreq_governor *get_governor(const char *str_governor)
632 {
633 struct cpufreq_governor *t;
634
635 mutex_lock(&cpufreq_governor_mutex);
636 t = find_governor(str_governor);
637 if (!t)
638 goto unlock;
639
640 if (!try_module_get(t->owner))
641 t = NULL;
642
643 unlock:
644 mutex_unlock(&cpufreq_governor_mutex);
645
646 return t;
647 }
648
649 static unsigned int cpufreq_parse_policy(char *str_governor)
650 {
651 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
652 return CPUFREQ_POLICY_PERFORMANCE;
653
654 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
655 return CPUFREQ_POLICY_POWERSAVE;
656
657 return CPUFREQ_POLICY_UNKNOWN;
658 }
659
660 /**
661 * cpufreq_parse_governor - parse a governor string only for has_target()
662 * @str_governor: Governor name.
663 */
664 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
665 {
666 struct cpufreq_governor *t;
667
668 t = get_governor(str_governor);
669 if (t)
670 return t;
671
672 if (request_module("cpufreq_%s", str_governor))
673 return NULL;
674
675 return get_governor(str_governor);
676 }
677
678 /*
679 * cpufreq_per_cpu_attr_read() / show_##file_name() -
680 * print out cpufreq information
681 *
682 * Write out information from cpufreq_driver->policy[cpu]; object must be
683 * "unsigned int".
684 */
685
686 #define show_one(file_name, object) \
687 static ssize_t show_##file_name \
688 (struct cpufreq_policy *policy, char *buf) \
689 { \
690 return sprintf(buf, "%u\n", policy->object); \
691 }
692
693 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
694 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
695 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
696 show_one(scaling_min_freq, min);
697 show_one(scaling_max_freq, max);
698
699 __weak unsigned int arch_freq_get_on_cpu(int cpu)
700 {
701 return 0;
702 }
703
704 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
705 {
706 ssize_t ret;
707 unsigned int freq;
708
709 freq = arch_freq_get_on_cpu(policy->cpu);
710 if (freq)
711 ret = sprintf(buf, "%u\n", freq);
712 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
713 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
714 else
715 ret = sprintf(buf, "%u\n", policy->cur);
716 return ret;
717 }
718
719 /*
720 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
721 */
722 #define store_one(file_name, object) \
723 static ssize_t store_##file_name \
724 (struct cpufreq_policy *policy, const char *buf, size_t count) \
725 { \
726 unsigned long val; \
727 int ret; \
728 \
729 ret = sscanf(buf, "%lu", &val); \
730 if (ret != 1) \
731 return -EINVAL; \
732 \
733 ret = freq_qos_update_request(policy->object##_freq_req, val);\
734 return ret >= 0 ? count : ret; \
735 }
736
737 store_one(scaling_min_freq, min);
738 store_one(scaling_max_freq, max);
739
740 /*
741 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
742 */
743 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
744 char *buf)
745 {
746 unsigned int cur_freq = __cpufreq_get(policy);
747
748 if (cur_freq)
749 return sprintf(buf, "%u\n", cur_freq);
750
751 return sprintf(buf, "<unknown>\n");
752 }
753
754 /*
755 * show_scaling_governor - show the current policy for the specified CPU
756 */
757 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
758 {
759 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
760 return sprintf(buf, "powersave\n");
761 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
762 return sprintf(buf, "performance\n");
763 else if (policy->governor)
764 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
765 policy->governor->name);
766 return -EINVAL;
767 }
768
769 /*
770 * store_scaling_governor - store policy for the specified CPU
771 */
772 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
773 const char *buf, size_t count)
774 {
775 char str_governor[16];
776 int ret;
777
778 ret = sscanf(buf, "%15s", str_governor);
779 if (ret != 1)
780 return -EINVAL;
781
782 if (cpufreq_driver->setpolicy) {
783 unsigned int new_pol;
784
785 new_pol = cpufreq_parse_policy(str_governor);
786 if (!new_pol)
787 return -EINVAL;
788
789 ret = cpufreq_set_policy(policy, NULL, new_pol);
790 } else {
791 struct cpufreq_governor *new_gov;
792
793 new_gov = cpufreq_parse_governor(str_governor);
794 if (!new_gov)
795 return -EINVAL;
796
797 ret = cpufreq_set_policy(policy, new_gov,
798 CPUFREQ_POLICY_UNKNOWN);
799
800 module_put(new_gov->owner);
801 }
802
803 return ret ? ret : count;
804 }
805
806 /*
807 * show_scaling_driver - show the cpufreq driver currently loaded
808 */
809 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
810 {
811 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
812 }
813
814 /*
815 * show_scaling_available_governors - show the available CPUfreq governors
816 */
817 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
818 char *buf)
819 {
820 ssize_t i = 0;
821 struct cpufreq_governor *t;
822
823 if (!has_target()) {
824 i += sprintf(buf, "performance powersave");
825 goto out;
826 }
827
828 mutex_lock(&cpufreq_governor_mutex);
829 for_each_governor(t) {
830 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
831 - (CPUFREQ_NAME_LEN + 2)))
832 break;
833 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
834 }
835 mutex_unlock(&cpufreq_governor_mutex);
836 out:
837 i += sprintf(&buf[i], "\n");
838 return i;
839 }
840
841 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
842 {
843 ssize_t i = 0;
844 unsigned int cpu;
845
846 for_each_cpu(cpu, mask) {
847 if (i)
848 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
849 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
850 if (i >= (PAGE_SIZE - 5))
851 break;
852 }
853 i += sprintf(&buf[i], "\n");
854 return i;
855 }
856 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
857
858 /*
859 * show_related_cpus - show the CPUs affected by each transition even if
860 * hw coordination is in use
861 */
862 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
863 {
864 return cpufreq_show_cpus(policy->related_cpus, buf);
865 }
866
867 /*
868 * show_affected_cpus - show the CPUs affected by each transition
869 */
870 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
871 {
872 return cpufreq_show_cpus(policy->cpus, buf);
873 }
874
875 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
876 const char *buf, size_t count)
877 {
878 unsigned int freq = 0;
879 unsigned int ret;
880
881 if (!policy->governor || !policy->governor->store_setspeed)
882 return -EINVAL;
883
884 ret = sscanf(buf, "%u", &freq);
885 if (ret != 1)
886 return -EINVAL;
887
888 policy->governor->store_setspeed(policy, freq);
889
890 return count;
891 }
892
893 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
894 {
895 if (!policy->governor || !policy->governor->show_setspeed)
896 return sprintf(buf, "<unsupported>\n");
897
898 return policy->governor->show_setspeed(policy, buf);
899 }
900
901 /*
902 * show_bios_limit - show the current cpufreq HW/BIOS limitation
903 */
904 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
905 {
906 unsigned int limit;
907 int ret;
908 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
909 if (!ret)
910 return sprintf(buf, "%u\n", limit);
911 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
912 }
913
914 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
915 cpufreq_freq_attr_ro(cpuinfo_min_freq);
916 cpufreq_freq_attr_ro(cpuinfo_max_freq);
917 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
918 cpufreq_freq_attr_ro(scaling_available_governors);
919 cpufreq_freq_attr_ro(scaling_driver);
920 cpufreq_freq_attr_ro(scaling_cur_freq);
921 cpufreq_freq_attr_ro(bios_limit);
922 cpufreq_freq_attr_ro(related_cpus);
923 cpufreq_freq_attr_ro(affected_cpus);
924 cpufreq_freq_attr_rw(scaling_min_freq);
925 cpufreq_freq_attr_rw(scaling_max_freq);
926 cpufreq_freq_attr_rw(scaling_governor);
927 cpufreq_freq_attr_rw(scaling_setspeed);
928
929 static struct attribute *default_attrs[] = {
930 &cpuinfo_min_freq.attr,
931 &cpuinfo_max_freq.attr,
932 &cpuinfo_transition_latency.attr,
933 &scaling_min_freq.attr,
934 &scaling_max_freq.attr,
935 &affected_cpus.attr,
936 &related_cpus.attr,
937 &scaling_governor.attr,
938 &scaling_driver.attr,
939 &scaling_available_governors.attr,
940 &scaling_setspeed.attr,
941 NULL
942 };
943
944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
945 #define to_attr(a) container_of(a, struct freq_attr, attr)
946
947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
948 {
949 struct cpufreq_policy *policy = to_policy(kobj);
950 struct freq_attr *fattr = to_attr(attr);
951 ssize_t ret;
952
953 if (!fattr->show)
954 return -EIO;
955
956 down_read(&policy->rwsem);
957 ret = fattr->show(policy, buf);
958 up_read(&policy->rwsem);
959
960 return ret;
961 }
962
963 static ssize_t store(struct kobject *kobj, struct attribute *attr,
964 const char *buf, size_t count)
965 {
966 struct cpufreq_policy *policy = to_policy(kobj);
967 struct freq_attr *fattr = to_attr(attr);
968 ssize_t ret = -EINVAL;
969
970 if (!fattr->store)
971 return -EIO;
972
973 /*
974 * cpus_read_trylock() is used here to work around a circular lock
975 * dependency problem with respect to the cpufreq_register_driver().
976 */
977 if (!cpus_read_trylock())
978 return -EBUSY;
979
980 if (cpu_online(policy->cpu)) {
981 down_write(&policy->rwsem);
982 ret = fattr->store(policy, buf, count);
983 up_write(&policy->rwsem);
984 }
985
986 cpus_read_unlock();
987
988 return ret;
989 }
990
991 static void cpufreq_sysfs_release(struct kobject *kobj)
992 {
993 struct cpufreq_policy *policy = to_policy(kobj);
994 pr_debug("last reference is dropped\n");
995 complete(&policy->kobj_unregister);
996 }
997
998 static const struct sysfs_ops sysfs_ops = {
999 .show = show,
1000 .store = store,
1001 };
1002
1003 static struct kobj_type ktype_cpufreq = {
1004 .sysfs_ops = &sysfs_ops,
1005 .default_attrs = default_attrs,
1006 .release = cpufreq_sysfs_release,
1007 };
1008
1009 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1010 {
1011 struct device *dev = get_cpu_device(cpu);
1012
1013 if (unlikely(!dev))
1014 return;
1015
1016 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1017 return;
1018
1019 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1020 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1021 dev_err(dev, "cpufreq symlink creation failed\n");
1022 }
1023
1024 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1025 struct device *dev)
1026 {
1027 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1028 sysfs_remove_link(&dev->kobj, "cpufreq");
1029 }
1030
1031 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1032 {
1033 struct freq_attr **drv_attr;
1034 int ret = 0;
1035
1036 /* set up files for this cpu device */
1037 drv_attr = cpufreq_driver->attr;
1038 while (drv_attr && *drv_attr) {
1039 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1040 if (ret)
1041 return ret;
1042 drv_attr++;
1043 }
1044 if (cpufreq_driver->get) {
1045 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1046 if (ret)
1047 return ret;
1048 }
1049
1050 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1051 if (ret)
1052 return ret;
1053
1054 if (cpufreq_driver->bios_limit) {
1055 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1056 if (ret)
1057 return ret;
1058 }
1059
1060 return 0;
1061 }
1062
1063 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1064 {
1065 struct cpufreq_governor *gov = NULL;
1066 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1067 int ret;
1068
1069 if (has_target()) {
1070 /* Update policy governor to the one used before hotplug. */
1071 gov = get_governor(policy->last_governor);
1072 if (gov) {
1073 pr_debug("Restoring governor %s for cpu %d\n",
1074 gov->name, policy->cpu);
1075 } else {
1076 gov = get_governor(default_governor);
1077 }
1078
1079 if (!gov) {
1080 gov = cpufreq_default_governor();
1081 __module_get(gov->owner);
1082 }
1083
1084 } else {
1085
1086 /* Use the default policy if there is no last_policy. */
1087 if (policy->last_policy) {
1088 pol = policy->last_policy;
1089 } else {
1090 pol = cpufreq_parse_policy(default_governor);
1091 /*
1092 * In case the default governor is neither "performance"
1093 * nor "powersave", fall back to the initial policy
1094 * value set by the driver.
1095 */
1096 if (pol == CPUFREQ_POLICY_UNKNOWN)
1097 pol = policy->policy;
1098 }
1099 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1100 pol != CPUFREQ_POLICY_POWERSAVE)
1101 return -ENODATA;
1102 }
1103
1104 ret = cpufreq_set_policy(policy, gov, pol);
1105 if (gov)
1106 module_put(gov->owner);
1107
1108 return ret;
1109 }
1110
1111 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1112 {
1113 int ret = 0;
1114
1115 /* Has this CPU been taken care of already? */
1116 if (cpumask_test_cpu(cpu, policy->cpus))
1117 return 0;
1118
1119 down_write(&policy->rwsem);
1120 if (has_target())
1121 cpufreq_stop_governor(policy);
1122
1123 cpumask_set_cpu(cpu, policy->cpus);
1124
1125 if (has_target()) {
1126 ret = cpufreq_start_governor(policy);
1127 if (ret)
1128 pr_err("%s: Failed to start governor\n", __func__);
1129 }
1130 up_write(&policy->rwsem);
1131 return ret;
1132 }
1133
1134 void refresh_frequency_limits(struct cpufreq_policy *policy)
1135 {
1136 if (!policy_is_inactive(policy)) {
1137 pr_debug("updating policy for CPU %u\n", policy->cpu);
1138
1139 cpufreq_set_policy(policy, policy->governor, policy->policy);
1140 }
1141 }
1142 EXPORT_SYMBOL(refresh_frequency_limits);
1143
1144 static void handle_update(struct work_struct *work)
1145 {
1146 struct cpufreq_policy *policy =
1147 container_of(work, struct cpufreq_policy, update);
1148
1149 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1150 down_write(&policy->rwsem);
1151 refresh_frequency_limits(policy);
1152 up_write(&policy->rwsem);
1153 }
1154
1155 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1156 void *data)
1157 {
1158 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1159
1160 schedule_work(&policy->update);
1161 return 0;
1162 }
1163
1164 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1165 void *data)
1166 {
1167 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1168
1169 schedule_work(&policy->update);
1170 return 0;
1171 }
1172
1173 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1174 {
1175 struct kobject *kobj;
1176 struct completion *cmp;
1177
1178 down_write(&policy->rwsem);
1179 cpufreq_stats_free_table(policy);
1180 kobj = &policy->kobj;
1181 cmp = &policy->kobj_unregister;
1182 up_write(&policy->rwsem);
1183 kobject_put(kobj);
1184
1185 /*
1186 * We need to make sure that the underlying kobj is
1187 * actually not referenced anymore by anybody before we
1188 * proceed with unloading.
1189 */
1190 pr_debug("waiting for dropping of refcount\n");
1191 wait_for_completion(cmp);
1192 pr_debug("wait complete\n");
1193 }
1194
1195 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1196 {
1197 struct cpufreq_policy *policy;
1198 struct device *dev = get_cpu_device(cpu);
1199 int ret;
1200
1201 if (!dev)
1202 return NULL;
1203
1204 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1205 if (!policy)
1206 return NULL;
1207
1208 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1209 goto err_free_policy;
1210
1211 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1212 goto err_free_cpumask;
1213
1214 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1215 goto err_free_rcpumask;
1216
1217 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1218 cpufreq_global_kobject, "policy%u", cpu);
1219 if (ret) {
1220 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1221 /*
1222 * The entire policy object will be freed below, but the extra
1223 * memory allocated for the kobject name needs to be freed by
1224 * releasing the kobject.
1225 */
1226 kobject_put(&policy->kobj);
1227 goto err_free_real_cpus;
1228 }
1229
1230 freq_constraints_init(&policy->constraints);
1231
1232 policy->nb_min.notifier_call = cpufreq_notifier_min;
1233 policy->nb_max.notifier_call = cpufreq_notifier_max;
1234
1235 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1236 &policy->nb_min);
1237 if (ret) {
1238 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1239 ret, cpumask_pr_args(policy->cpus));
1240 goto err_kobj_remove;
1241 }
1242
1243 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1244 &policy->nb_max);
1245 if (ret) {
1246 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1247 ret, cpumask_pr_args(policy->cpus));
1248 goto err_min_qos_notifier;
1249 }
1250
1251 INIT_LIST_HEAD(&policy->policy_list);
1252 init_rwsem(&policy->rwsem);
1253 spin_lock_init(&policy->transition_lock);
1254 init_waitqueue_head(&policy->transition_wait);
1255 init_completion(&policy->kobj_unregister);
1256 INIT_WORK(&policy->update, handle_update);
1257
1258 policy->cpu = cpu;
1259 return policy;
1260
1261 err_min_qos_notifier:
1262 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1263 &policy->nb_min);
1264 err_kobj_remove:
1265 cpufreq_policy_put_kobj(policy);
1266 err_free_real_cpus:
1267 free_cpumask_var(policy->real_cpus);
1268 err_free_rcpumask:
1269 free_cpumask_var(policy->related_cpus);
1270 err_free_cpumask:
1271 free_cpumask_var(policy->cpus);
1272 err_free_policy:
1273 kfree(policy);
1274
1275 return NULL;
1276 }
1277
1278 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1279 {
1280 unsigned long flags;
1281 int cpu;
1282
1283 /* Remove policy from list */
1284 write_lock_irqsave(&cpufreq_driver_lock, flags);
1285 list_del(&policy->policy_list);
1286
1287 for_each_cpu(cpu, policy->related_cpus)
1288 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1289 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1290
1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1292 &policy->nb_max);
1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294 &policy->nb_min);
1295
1296 /* Cancel any pending policy->update work before freeing the policy. */
1297 cancel_work_sync(&policy->update);
1298
1299 if (policy->max_freq_req) {
1300 /*
1301 * CPUFREQ_CREATE_POLICY notification is sent only after
1302 * successfully adding max_freq_req request.
1303 */
1304 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1305 CPUFREQ_REMOVE_POLICY, policy);
1306 freq_qos_remove_request(policy->max_freq_req);
1307 }
1308
1309 freq_qos_remove_request(policy->min_freq_req);
1310 kfree(policy->min_freq_req);
1311
1312 cpufreq_policy_put_kobj(policy);
1313 free_cpumask_var(policy->real_cpus);
1314 free_cpumask_var(policy->related_cpus);
1315 free_cpumask_var(policy->cpus);
1316 kfree(policy);
1317 }
1318
1319 static int cpufreq_online(unsigned int cpu)
1320 {
1321 struct cpufreq_policy *policy;
1322 bool new_policy;
1323 unsigned long flags;
1324 unsigned int j;
1325 int ret;
1326
1327 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1328
1329 /* Check if this CPU already has a policy to manage it */
1330 policy = per_cpu(cpufreq_cpu_data, cpu);
1331 if (policy) {
1332 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1333 if (!policy_is_inactive(policy))
1334 return cpufreq_add_policy_cpu(policy, cpu);
1335
1336 /* This is the only online CPU for the policy. Start over. */
1337 new_policy = false;
1338 down_write(&policy->rwsem);
1339 policy->cpu = cpu;
1340 policy->governor = NULL;
1341 up_write(&policy->rwsem);
1342 } else {
1343 new_policy = true;
1344 policy = cpufreq_policy_alloc(cpu);
1345 if (!policy)
1346 return -ENOMEM;
1347 }
1348
1349 if (!new_policy && cpufreq_driver->online) {
1350 ret = cpufreq_driver->online(policy);
1351 if (ret) {
1352 pr_debug("%s: %d: initialization failed\n", __func__,
1353 __LINE__);
1354 goto out_exit_policy;
1355 }
1356
1357 /* Recover policy->cpus using related_cpus */
1358 cpumask_copy(policy->cpus, policy->related_cpus);
1359 } else {
1360 cpumask_copy(policy->cpus, cpumask_of(cpu));
1361
1362 /*
1363 * Call driver. From then on the cpufreq must be able
1364 * to accept all calls to ->verify and ->setpolicy for this CPU.
1365 */
1366 ret = cpufreq_driver->init(policy);
1367 if (ret) {
1368 pr_debug("%s: %d: initialization failed\n", __func__,
1369 __LINE__);
1370 goto out_free_policy;
1371 }
1372
1373 ret = cpufreq_table_validate_and_sort(policy);
1374 if (ret)
1375 goto out_exit_policy;
1376
1377 /* related_cpus should at least include policy->cpus. */
1378 cpumask_copy(policy->related_cpus, policy->cpus);
1379 }
1380
1381 down_write(&policy->rwsem);
1382 /*
1383 * affected cpus must always be the one, which are online. We aren't
1384 * managing offline cpus here.
1385 */
1386 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1387
1388 if (new_policy) {
1389 for_each_cpu(j, policy->related_cpus) {
1390 per_cpu(cpufreq_cpu_data, j) = policy;
1391 add_cpu_dev_symlink(policy, j);
1392 }
1393
1394 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1395 GFP_KERNEL);
1396 if (!policy->min_freq_req) {
1397 ret = -ENOMEM;
1398 goto out_destroy_policy;
1399 }
1400
1401 ret = freq_qos_add_request(&policy->constraints,
1402 policy->min_freq_req, FREQ_QOS_MIN,
1403 policy->min);
1404 if (ret < 0) {
1405 /*
1406 * So we don't call freq_qos_remove_request() for an
1407 * uninitialized request.
1408 */
1409 kfree(policy->min_freq_req);
1410 policy->min_freq_req = NULL;
1411 goto out_destroy_policy;
1412 }
1413
1414 /*
1415 * This must be initialized right here to avoid calling
1416 * freq_qos_remove_request() on uninitialized request in case
1417 * of errors.
1418 */
1419 policy->max_freq_req = policy->min_freq_req + 1;
1420
1421 ret = freq_qos_add_request(&policy->constraints,
1422 policy->max_freq_req, FREQ_QOS_MAX,
1423 policy->max);
1424 if (ret < 0) {
1425 policy->max_freq_req = NULL;
1426 goto out_destroy_policy;
1427 }
1428
1429 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1430 CPUFREQ_CREATE_POLICY, policy);
1431 }
1432
1433 if (cpufreq_driver->get && has_target()) {
1434 policy->cur = cpufreq_driver->get(policy->cpu);
1435 if (!policy->cur) {
1436 ret = -EIO;
1437 pr_err("%s: ->get() failed\n", __func__);
1438 goto out_destroy_policy;
1439 }
1440 }
1441
1442 /*
1443 * Sometimes boot loaders set CPU frequency to a value outside of
1444 * frequency table present with cpufreq core. In such cases CPU might be
1445 * unstable if it has to run on that frequency for long duration of time
1446 * and so its better to set it to a frequency which is specified in
1447 * freq-table. This also makes cpufreq stats inconsistent as
1448 * cpufreq-stats would fail to register because current frequency of CPU
1449 * isn't found in freq-table.
1450 *
1451 * Because we don't want this change to effect boot process badly, we go
1452 * for the next freq which is >= policy->cur ('cur' must be set by now,
1453 * otherwise we will end up setting freq to lowest of the table as 'cur'
1454 * is initialized to zero).
1455 *
1456 * We are passing target-freq as "policy->cur - 1" otherwise
1457 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1458 * equal to target-freq.
1459 */
1460 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1461 && has_target()) {
1462 unsigned int old_freq = policy->cur;
1463
1464 /* Are we running at unknown frequency ? */
1465 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1466 if (ret == -EINVAL) {
1467 ret = __cpufreq_driver_target(policy, old_freq - 1,
1468 CPUFREQ_RELATION_L);
1469
1470 /*
1471 * Reaching here after boot in a few seconds may not
1472 * mean that system will remain stable at "unknown"
1473 * frequency for longer duration. Hence, a BUG_ON().
1474 */
1475 BUG_ON(ret);
1476 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1477 __func__, policy->cpu, old_freq, policy->cur);
1478 }
1479 }
1480
1481 if (new_policy) {
1482 ret = cpufreq_add_dev_interface(policy);
1483 if (ret)
1484 goto out_destroy_policy;
1485
1486 cpufreq_stats_create_table(policy);
1487
1488 write_lock_irqsave(&cpufreq_driver_lock, flags);
1489 list_add(&policy->policy_list, &cpufreq_policy_list);
1490 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1491 }
1492
1493 ret = cpufreq_init_policy(policy);
1494 if (ret) {
1495 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1496 __func__, cpu, ret);
1497 goto out_destroy_policy;
1498 }
1499
1500 up_write(&policy->rwsem);
1501
1502 kobject_uevent(&policy->kobj, KOBJ_ADD);
1503
1504 /* Callback for handling stuff after policy is ready */
1505 if (cpufreq_driver->ready)
1506 cpufreq_driver->ready(policy);
1507
1508 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1509 policy->cdev = of_cpufreq_cooling_register(policy);
1510
1511 pr_debug("initialization complete\n");
1512
1513 return 0;
1514
1515 out_destroy_policy:
1516 for_each_cpu(j, policy->real_cpus)
1517 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1518
1519 up_write(&policy->rwsem);
1520
1521 out_exit_policy:
1522 if (cpufreq_driver->exit)
1523 cpufreq_driver->exit(policy);
1524
1525 out_free_policy:
1526 cpufreq_policy_free(policy);
1527 return ret;
1528 }
1529
1530 /**
1531 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1532 * @dev: CPU device.
1533 * @sif: Subsystem interface structure pointer (not used)
1534 */
1535 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1536 {
1537 struct cpufreq_policy *policy;
1538 unsigned cpu = dev->id;
1539 int ret;
1540
1541 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1542
1543 if (cpu_online(cpu)) {
1544 ret = cpufreq_online(cpu);
1545 if (ret)
1546 return ret;
1547 }
1548
1549 /* Create sysfs link on CPU registration */
1550 policy = per_cpu(cpufreq_cpu_data, cpu);
1551 if (policy)
1552 add_cpu_dev_symlink(policy, cpu);
1553
1554 return 0;
1555 }
1556
1557 static int cpufreq_offline(unsigned int cpu)
1558 {
1559 struct cpufreq_policy *policy;
1560 int ret;
1561
1562 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1563
1564 policy = cpufreq_cpu_get_raw(cpu);
1565 if (!policy) {
1566 pr_debug("%s: No cpu_data found\n", __func__);
1567 return 0;
1568 }
1569
1570 down_write(&policy->rwsem);
1571 if (has_target())
1572 cpufreq_stop_governor(policy);
1573
1574 cpumask_clear_cpu(cpu, policy->cpus);
1575
1576 if (policy_is_inactive(policy)) {
1577 if (has_target())
1578 strncpy(policy->last_governor, policy->governor->name,
1579 CPUFREQ_NAME_LEN);
1580 else
1581 policy->last_policy = policy->policy;
1582 } else if (cpu == policy->cpu) {
1583 /* Nominate new CPU */
1584 policy->cpu = cpumask_any(policy->cpus);
1585 }
1586
1587 /* Start governor again for active policy */
1588 if (!policy_is_inactive(policy)) {
1589 if (has_target()) {
1590 ret = cpufreq_start_governor(policy);
1591 if (ret)
1592 pr_err("%s: Failed to start governor\n", __func__);
1593 }
1594
1595 goto unlock;
1596 }
1597
1598 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1599 cpufreq_cooling_unregister(policy->cdev);
1600 policy->cdev = NULL;
1601 }
1602
1603 if (cpufreq_driver->stop_cpu)
1604 cpufreq_driver->stop_cpu(policy);
1605
1606 if (has_target())
1607 cpufreq_exit_governor(policy);
1608
1609 /*
1610 * Perform the ->offline() during light-weight tear-down, as
1611 * that allows fast recovery when the CPU comes back.
1612 */
1613 if (cpufreq_driver->offline) {
1614 cpufreq_driver->offline(policy);
1615 } else if (cpufreq_driver->exit) {
1616 cpufreq_driver->exit(policy);
1617 policy->freq_table = NULL;
1618 }
1619
1620 unlock:
1621 up_write(&policy->rwsem);
1622 return 0;
1623 }
1624
1625 /*
1626 * cpufreq_remove_dev - remove a CPU device
1627 *
1628 * Removes the cpufreq interface for a CPU device.
1629 */
1630 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1631 {
1632 unsigned int cpu = dev->id;
1633 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1634
1635 if (!policy)
1636 return;
1637
1638 if (cpu_online(cpu))
1639 cpufreq_offline(cpu);
1640
1641 cpumask_clear_cpu(cpu, policy->real_cpus);
1642 remove_cpu_dev_symlink(policy, dev);
1643
1644 if (cpumask_empty(policy->real_cpus)) {
1645 /* We did light-weight exit earlier, do full tear down now */
1646 if (cpufreq_driver->offline)
1647 cpufreq_driver->exit(policy);
1648
1649 cpufreq_policy_free(policy);
1650 }
1651 }
1652
1653 /**
1654 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1655 * @policy: Policy managing CPUs.
1656 * @new_freq: New CPU frequency.
1657 *
1658 * Adjust to the current frequency first and clean up later by either calling
1659 * cpufreq_update_policy(), or scheduling handle_update().
1660 */
1661 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1662 unsigned int new_freq)
1663 {
1664 struct cpufreq_freqs freqs;
1665
1666 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1667 policy->cur, new_freq);
1668
1669 freqs.old = policy->cur;
1670 freqs.new = new_freq;
1671
1672 cpufreq_freq_transition_begin(policy, &freqs);
1673 cpufreq_freq_transition_end(policy, &freqs, 0);
1674 }
1675
1676 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1677 {
1678 unsigned int new_freq;
1679
1680 new_freq = cpufreq_driver->get(policy->cpu);
1681 if (!new_freq)
1682 return 0;
1683
1684 /*
1685 * If fast frequency switching is used with the given policy, the check
1686 * against policy->cur is pointless, so skip it in that case.
1687 */
1688 if (policy->fast_switch_enabled || !has_target())
1689 return new_freq;
1690
1691 if (policy->cur != new_freq) {
1692 cpufreq_out_of_sync(policy, new_freq);
1693 if (update)
1694 schedule_work(&policy->update);
1695 }
1696
1697 return new_freq;
1698 }
1699
1700 /**
1701 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1702 * @cpu: CPU number
1703 *
1704 * This is the last known freq, without actually getting it from the driver.
1705 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1706 */
1707 unsigned int cpufreq_quick_get(unsigned int cpu)
1708 {
1709 struct cpufreq_policy *policy;
1710 unsigned int ret_freq = 0;
1711 unsigned long flags;
1712
1713 read_lock_irqsave(&cpufreq_driver_lock, flags);
1714
1715 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1716 ret_freq = cpufreq_driver->get(cpu);
1717 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1718 return ret_freq;
1719 }
1720
1721 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1722
1723 policy = cpufreq_cpu_get(cpu);
1724 if (policy) {
1725 ret_freq = policy->cur;
1726 cpufreq_cpu_put(policy);
1727 }
1728
1729 return ret_freq;
1730 }
1731 EXPORT_SYMBOL(cpufreq_quick_get);
1732
1733 /**
1734 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1735 * @cpu: CPU number
1736 *
1737 * Just return the max possible frequency for a given CPU.
1738 */
1739 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1740 {
1741 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1742 unsigned int ret_freq = 0;
1743
1744 if (policy) {
1745 ret_freq = policy->max;
1746 cpufreq_cpu_put(policy);
1747 }
1748
1749 return ret_freq;
1750 }
1751 EXPORT_SYMBOL(cpufreq_quick_get_max);
1752
1753 /**
1754 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1755 * @cpu: CPU number
1756 *
1757 * The default return value is the max_freq field of cpuinfo.
1758 */
1759 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1760 {
1761 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1762 unsigned int ret_freq = 0;
1763
1764 if (policy) {
1765 ret_freq = policy->cpuinfo.max_freq;
1766 cpufreq_cpu_put(policy);
1767 }
1768
1769 return ret_freq;
1770 }
1771 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1772
1773 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1774 {
1775 if (unlikely(policy_is_inactive(policy)))
1776 return 0;
1777
1778 return cpufreq_verify_current_freq(policy, true);
1779 }
1780
1781 /**
1782 * cpufreq_get - get the current CPU frequency (in kHz)
1783 * @cpu: CPU number
1784 *
1785 * Get the CPU current (static) CPU frequency
1786 */
1787 unsigned int cpufreq_get(unsigned int cpu)
1788 {
1789 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1790 unsigned int ret_freq = 0;
1791
1792 if (policy) {
1793 down_read(&policy->rwsem);
1794 if (cpufreq_driver->get)
1795 ret_freq = __cpufreq_get(policy);
1796 up_read(&policy->rwsem);
1797
1798 cpufreq_cpu_put(policy);
1799 }
1800
1801 return ret_freq;
1802 }
1803 EXPORT_SYMBOL(cpufreq_get);
1804
1805 static struct subsys_interface cpufreq_interface = {
1806 .name = "cpufreq",
1807 .subsys = &cpu_subsys,
1808 .add_dev = cpufreq_add_dev,
1809 .remove_dev = cpufreq_remove_dev,
1810 };
1811
1812 /*
1813 * In case platform wants some specific frequency to be configured
1814 * during suspend..
1815 */
1816 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1817 {
1818 int ret;
1819
1820 if (!policy->suspend_freq) {
1821 pr_debug("%s: suspend_freq not defined\n", __func__);
1822 return 0;
1823 }
1824
1825 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1826 policy->suspend_freq);
1827
1828 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1829 CPUFREQ_RELATION_H);
1830 if (ret)
1831 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1832 __func__, policy->suspend_freq, ret);
1833
1834 return ret;
1835 }
1836 EXPORT_SYMBOL(cpufreq_generic_suspend);
1837
1838 /**
1839 * cpufreq_suspend() - Suspend CPUFreq governors.
1840 *
1841 * Called during system wide Suspend/Hibernate cycles for suspending governors
1842 * as some platforms can't change frequency after this point in suspend cycle.
1843 * Because some of the devices (like: i2c, regulators, etc) they use for
1844 * changing frequency are suspended quickly after this point.
1845 */
1846 void cpufreq_suspend(void)
1847 {
1848 struct cpufreq_policy *policy;
1849
1850 if (!cpufreq_driver)
1851 return;
1852
1853 if (!has_target() && !cpufreq_driver->suspend)
1854 goto suspend;
1855
1856 pr_debug("%s: Suspending Governors\n", __func__);
1857
1858 for_each_active_policy(policy) {
1859 if (has_target()) {
1860 down_write(&policy->rwsem);
1861 cpufreq_stop_governor(policy);
1862 up_write(&policy->rwsem);
1863 }
1864
1865 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1866 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1867 cpufreq_driver->name);
1868 }
1869
1870 suspend:
1871 cpufreq_suspended = true;
1872 }
1873
1874 /**
1875 * cpufreq_resume() - Resume CPUFreq governors.
1876 *
1877 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1878 * are suspended with cpufreq_suspend().
1879 */
1880 void cpufreq_resume(void)
1881 {
1882 struct cpufreq_policy *policy;
1883 int ret;
1884
1885 if (!cpufreq_driver)
1886 return;
1887
1888 if (unlikely(!cpufreq_suspended))
1889 return;
1890
1891 cpufreq_suspended = false;
1892
1893 if (!has_target() && !cpufreq_driver->resume)
1894 return;
1895
1896 pr_debug("%s: Resuming Governors\n", __func__);
1897
1898 for_each_active_policy(policy) {
1899 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1900 pr_err("%s: Failed to resume driver: %p\n", __func__,
1901 policy);
1902 } else if (has_target()) {
1903 down_write(&policy->rwsem);
1904 ret = cpufreq_start_governor(policy);
1905 up_write(&policy->rwsem);
1906
1907 if (ret)
1908 pr_err("%s: Failed to start governor for policy: %p\n",
1909 __func__, policy);
1910 }
1911 }
1912 }
1913
1914 /**
1915 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1916 * @flags: Flags to test against the current cpufreq driver's flags.
1917 *
1918 * Assumes that the driver is there, so callers must ensure that this is the
1919 * case.
1920 */
1921 bool cpufreq_driver_test_flags(u16 flags)
1922 {
1923 return !!(cpufreq_driver->flags & flags);
1924 }
1925
1926 /**
1927 * cpufreq_get_current_driver - Return the current driver's name.
1928 *
1929 * Return the name string of the currently registered cpufreq driver or NULL if
1930 * none.
1931 */
1932 const char *cpufreq_get_current_driver(void)
1933 {
1934 if (cpufreq_driver)
1935 return cpufreq_driver->name;
1936
1937 return NULL;
1938 }
1939 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1940
1941 /**
1942 * cpufreq_get_driver_data - Return current driver data.
1943 *
1944 * Return the private data of the currently registered cpufreq driver, or NULL
1945 * if no cpufreq driver has been registered.
1946 */
1947 void *cpufreq_get_driver_data(void)
1948 {
1949 if (cpufreq_driver)
1950 return cpufreq_driver->driver_data;
1951
1952 return NULL;
1953 }
1954 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1955
1956 /*********************************************************************
1957 * NOTIFIER LISTS INTERFACE *
1958 *********************************************************************/
1959
1960 /**
1961 * cpufreq_register_notifier - Register a notifier with cpufreq.
1962 * @nb: notifier function to register.
1963 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1964 *
1965 * Add a notifier to one of two lists: either a list of notifiers that run on
1966 * clock rate changes (once before and once after every transition), or a list
1967 * of notifiers that ron on cpufreq policy changes.
1968 *
1969 * This function may sleep and it has the same return values as
1970 * blocking_notifier_chain_register().
1971 */
1972 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1973 {
1974 int ret;
1975
1976 if (cpufreq_disabled())
1977 return -EINVAL;
1978
1979 switch (list) {
1980 case CPUFREQ_TRANSITION_NOTIFIER:
1981 mutex_lock(&cpufreq_fast_switch_lock);
1982
1983 if (cpufreq_fast_switch_count > 0) {
1984 mutex_unlock(&cpufreq_fast_switch_lock);
1985 return -EBUSY;
1986 }
1987 ret = srcu_notifier_chain_register(
1988 &cpufreq_transition_notifier_list, nb);
1989 if (!ret)
1990 cpufreq_fast_switch_count--;
1991
1992 mutex_unlock(&cpufreq_fast_switch_lock);
1993 break;
1994 case CPUFREQ_POLICY_NOTIFIER:
1995 ret = blocking_notifier_chain_register(
1996 &cpufreq_policy_notifier_list, nb);
1997 break;
1998 default:
1999 ret = -EINVAL;
2000 }
2001
2002 return ret;
2003 }
2004 EXPORT_SYMBOL(cpufreq_register_notifier);
2005
2006 /**
2007 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2008 * @nb: notifier block to be unregistered.
2009 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2010 *
2011 * Remove a notifier from one of the cpufreq notifier lists.
2012 *
2013 * This function may sleep and it has the same return values as
2014 * blocking_notifier_chain_unregister().
2015 */
2016 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2017 {
2018 int ret;
2019
2020 if (cpufreq_disabled())
2021 return -EINVAL;
2022
2023 switch (list) {
2024 case CPUFREQ_TRANSITION_NOTIFIER:
2025 mutex_lock(&cpufreq_fast_switch_lock);
2026
2027 ret = srcu_notifier_chain_unregister(
2028 &cpufreq_transition_notifier_list, nb);
2029 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2030 cpufreq_fast_switch_count++;
2031
2032 mutex_unlock(&cpufreq_fast_switch_lock);
2033 break;
2034 case CPUFREQ_POLICY_NOTIFIER:
2035 ret = blocking_notifier_chain_unregister(
2036 &cpufreq_policy_notifier_list, nb);
2037 break;
2038 default:
2039 ret = -EINVAL;
2040 }
2041
2042 return ret;
2043 }
2044 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2045
2046
2047 /*********************************************************************
2048 * GOVERNORS *
2049 *********************************************************************/
2050
2051 /**
2052 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2053 * @policy: cpufreq policy to switch the frequency for.
2054 * @target_freq: New frequency to set (may be approximate).
2055 *
2056 * Carry out a fast frequency switch without sleeping.
2057 *
2058 * The driver's ->fast_switch() callback invoked by this function must be
2059 * suitable for being called from within RCU-sched read-side critical sections
2060 * and it is expected to select the minimum available frequency greater than or
2061 * equal to @target_freq (CPUFREQ_RELATION_L).
2062 *
2063 * This function must not be called if policy->fast_switch_enabled is unset.
2064 *
2065 * Governors calling this function must guarantee that it will never be invoked
2066 * twice in parallel for the same policy and that it will never be called in
2067 * parallel with either ->target() or ->target_index() for the same policy.
2068 *
2069 * Returns the actual frequency set for the CPU.
2070 *
2071 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2072 * error condition, the hardware configuration must be preserved.
2073 */
2074 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2075 unsigned int target_freq)
2076 {
2077 unsigned int freq;
2078 int cpu;
2079
2080 target_freq = clamp_val(target_freq, policy->min, policy->max);
2081 freq = cpufreq_driver->fast_switch(policy, target_freq);
2082
2083 if (!freq)
2084 return 0;
2085
2086 policy->cur = freq;
2087 arch_set_freq_scale(policy->related_cpus, freq,
2088 policy->cpuinfo.max_freq);
2089 cpufreq_stats_record_transition(policy, freq);
2090
2091 if (trace_cpu_frequency_enabled()) {
2092 for_each_cpu(cpu, policy->cpus)
2093 trace_cpu_frequency(freq, cpu);
2094 }
2095
2096 return freq;
2097 }
2098 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2099
2100 /**
2101 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2102 * @cpu: Target CPU.
2103 * @min_perf: Minimum (required) performance level (units of @capacity).
2104 * @target_perf: Terget (desired) performance level (units of @capacity).
2105 * @capacity: Capacity of the target CPU.
2106 *
2107 * Carry out a fast performance level switch of @cpu without sleeping.
2108 *
2109 * The driver's ->adjust_perf() callback invoked by this function must be
2110 * suitable for being called from within RCU-sched read-side critical sections
2111 * and it is expected to select a suitable performance level equal to or above
2112 * @min_perf and preferably equal to or below @target_perf.
2113 *
2114 * This function must not be called if policy->fast_switch_enabled is unset.
2115 *
2116 * Governors calling this function must guarantee that it will never be invoked
2117 * twice in parallel for the same CPU and that it will never be called in
2118 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2119 * the same CPU.
2120 */
2121 void cpufreq_driver_adjust_perf(unsigned int cpu,
2122 unsigned long min_perf,
2123 unsigned long target_perf,
2124 unsigned long capacity)
2125 {
2126 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2127 }
2128
2129 /**
2130 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2131 *
2132 * Return 'true' if the ->adjust_perf callback is present for the
2133 * current driver or 'false' otherwise.
2134 */
2135 bool cpufreq_driver_has_adjust_perf(void)
2136 {
2137 return !!cpufreq_driver->adjust_perf;
2138 }
2139
2140 /* Must set freqs->new to intermediate frequency */
2141 static int __target_intermediate(struct cpufreq_policy *policy,
2142 struct cpufreq_freqs *freqs, int index)
2143 {
2144 int ret;
2145
2146 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2147
2148 /* We don't need to switch to intermediate freq */
2149 if (!freqs->new)
2150 return 0;
2151
2152 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2153 __func__, policy->cpu, freqs->old, freqs->new);
2154
2155 cpufreq_freq_transition_begin(policy, freqs);
2156 ret = cpufreq_driver->target_intermediate(policy, index);
2157 cpufreq_freq_transition_end(policy, freqs, ret);
2158
2159 if (ret)
2160 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2161 __func__, ret);
2162
2163 return ret;
2164 }
2165
2166 static int __target_index(struct cpufreq_policy *policy, int index)
2167 {
2168 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2169 unsigned int restore_freq, intermediate_freq = 0;
2170 unsigned int newfreq = policy->freq_table[index].frequency;
2171 int retval = -EINVAL;
2172 bool notify;
2173
2174 if (newfreq == policy->cur)
2175 return 0;
2176
2177 /* Save last value to restore later on errors */
2178 restore_freq = policy->cur;
2179
2180 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2181 if (notify) {
2182 /* Handle switching to intermediate frequency */
2183 if (cpufreq_driver->get_intermediate) {
2184 retval = __target_intermediate(policy, &freqs, index);
2185 if (retval)
2186 return retval;
2187
2188 intermediate_freq = freqs.new;
2189 /* Set old freq to intermediate */
2190 if (intermediate_freq)
2191 freqs.old = freqs.new;
2192 }
2193
2194 freqs.new = newfreq;
2195 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2196 __func__, policy->cpu, freqs.old, freqs.new);
2197
2198 cpufreq_freq_transition_begin(policy, &freqs);
2199 }
2200
2201 retval = cpufreq_driver->target_index(policy, index);
2202 if (retval)
2203 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2204 retval);
2205
2206 if (notify) {
2207 cpufreq_freq_transition_end(policy, &freqs, retval);
2208
2209 /*
2210 * Failed after setting to intermediate freq? Driver should have
2211 * reverted back to initial frequency and so should we. Check
2212 * here for intermediate_freq instead of get_intermediate, in
2213 * case we haven't switched to intermediate freq at all.
2214 */
2215 if (unlikely(retval && intermediate_freq)) {
2216 freqs.old = intermediate_freq;
2217 freqs.new = restore_freq;
2218 cpufreq_freq_transition_begin(policy, &freqs);
2219 cpufreq_freq_transition_end(policy, &freqs, 0);
2220 }
2221 }
2222
2223 return retval;
2224 }
2225
2226 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2227 unsigned int target_freq,
2228 unsigned int relation)
2229 {
2230 unsigned int old_target_freq = target_freq;
2231 int index;
2232
2233 if (cpufreq_disabled())
2234 return -ENODEV;
2235
2236 /* Make sure that target_freq is within supported range */
2237 target_freq = clamp_val(target_freq, policy->min, policy->max);
2238
2239 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2240 policy->cpu, target_freq, relation, old_target_freq);
2241
2242 /*
2243 * This might look like a redundant call as we are checking it again
2244 * after finding index. But it is left intentionally for cases where
2245 * exactly same freq is called again and so we can save on few function
2246 * calls.
2247 */
2248 if (target_freq == policy->cur &&
2249 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2250 return 0;
2251
2252 if (cpufreq_driver->target)
2253 return cpufreq_driver->target(policy, target_freq, relation);
2254
2255 if (!cpufreq_driver->target_index)
2256 return -EINVAL;
2257
2258 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2259
2260 return __target_index(policy, index);
2261 }
2262 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2263
2264 int cpufreq_driver_target(struct cpufreq_policy *policy,
2265 unsigned int target_freq,
2266 unsigned int relation)
2267 {
2268 int ret;
2269
2270 down_write(&policy->rwsem);
2271
2272 ret = __cpufreq_driver_target(policy, target_freq, relation);
2273
2274 up_write(&policy->rwsem);
2275
2276 return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2279
2280 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2281 {
2282 return NULL;
2283 }
2284
2285 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2286 {
2287 int ret;
2288
2289 /* Don't start any governor operations if we are entering suspend */
2290 if (cpufreq_suspended)
2291 return 0;
2292 /*
2293 * Governor might not be initiated here if ACPI _PPC changed
2294 * notification happened, so check it.
2295 */
2296 if (!policy->governor)
2297 return -EINVAL;
2298
2299 /* Platform doesn't want dynamic frequency switching ? */
2300 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2301 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2302 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2303
2304 if (gov) {
2305 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2306 policy->governor->name, gov->name);
2307 policy->governor = gov;
2308 } else {
2309 return -EINVAL;
2310 }
2311 }
2312
2313 if (!try_module_get(policy->governor->owner))
2314 return -EINVAL;
2315
2316 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2317
2318 if (policy->governor->init) {
2319 ret = policy->governor->init(policy);
2320 if (ret) {
2321 module_put(policy->governor->owner);
2322 return ret;
2323 }
2324 }
2325
2326 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2327
2328 return 0;
2329 }
2330
2331 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2332 {
2333 if (cpufreq_suspended || !policy->governor)
2334 return;
2335
2336 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2337
2338 if (policy->governor->exit)
2339 policy->governor->exit(policy);
2340
2341 module_put(policy->governor->owner);
2342 }
2343
2344 int cpufreq_start_governor(struct cpufreq_policy *policy)
2345 {
2346 int ret;
2347
2348 if (cpufreq_suspended)
2349 return 0;
2350
2351 if (!policy->governor)
2352 return -EINVAL;
2353
2354 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2355
2356 if (cpufreq_driver->get)
2357 cpufreq_verify_current_freq(policy, false);
2358
2359 if (policy->governor->start) {
2360 ret = policy->governor->start(policy);
2361 if (ret)
2362 return ret;
2363 }
2364
2365 if (policy->governor->limits)
2366 policy->governor->limits(policy);
2367
2368 return 0;
2369 }
2370
2371 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2372 {
2373 if (cpufreq_suspended || !policy->governor)
2374 return;
2375
2376 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2377
2378 if (policy->governor->stop)
2379 policy->governor->stop(policy);
2380 }
2381
2382 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2383 {
2384 if (cpufreq_suspended || !policy->governor)
2385 return;
2386
2387 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2388
2389 if (policy->governor->limits)
2390 policy->governor->limits(policy);
2391 }
2392
2393 int cpufreq_register_governor(struct cpufreq_governor *governor)
2394 {
2395 int err;
2396
2397 if (!governor)
2398 return -EINVAL;
2399
2400 if (cpufreq_disabled())
2401 return -ENODEV;
2402
2403 mutex_lock(&cpufreq_governor_mutex);
2404
2405 err = -EBUSY;
2406 if (!find_governor(governor->name)) {
2407 err = 0;
2408 list_add(&governor->governor_list, &cpufreq_governor_list);
2409 }
2410
2411 mutex_unlock(&cpufreq_governor_mutex);
2412 return err;
2413 }
2414 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2415
2416 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2417 {
2418 struct cpufreq_policy *policy;
2419 unsigned long flags;
2420
2421 if (!governor)
2422 return;
2423
2424 if (cpufreq_disabled())
2425 return;
2426
2427 /* clear last_governor for all inactive policies */
2428 read_lock_irqsave(&cpufreq_driver_lock, flags);
2429 for_each_inactive_policy(policy) {
2430 if (!strcmp(policy->last_governor, governor->name)) {
2431 policy->governor = NULL;
2432 strcpy(policy->last_governor, "\0");
2433 }
2434 }
2435 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2436
2437 mutex_lock(&cpufreq_governor_mutex);
2438 list_del(&governor->governor_list);
2439 mutex_unlock(&cpufreq_governor_mutex);
2440 }
2441 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2442
2443
2444 /*********************************************************************
2445 * POLICY INTERFACE *
2446 *********************************************************************/
2447
2448 /**
2449 * cpufreq_get_policy - get the current cpufreq_policy
2450 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2451 * is written
2452 * @cpu: CPU to find the policy for
2453 *
2454 * Reads the current cpufreq policy.
2455 */
2456 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2457 {
2458 struct cpufreq_policy *cpu_policy;
2459 if (!policy)
2460 return -EINVAL;
2461
2462 cpu_policy = cpufreq_cpu_get(cpu);
2463 if (!cpu_policy)
2464 return -EINVAL;
2465
2466 memcpy(policy, cpu_policy, sizeof(*policy));
2467
2468 cpufreq_cpu_put(cpu_policy);
2469 return 0;
2470 }
2471 EXPORT_SYMBOL(cpufreq_get_policy);
2472
2473 /**
2474 * cpufreq_set_policy - Modify cpufreq policy parameters.
2475 * @policy: Policy object to modify.
2476 * @new_gov: Policy governor pointer.
2477 * @new_pol: Policy value (for drivers with built-in governors).
2478 *
2479 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2480 * limits to be set for the policy, update @policy with the verified limits
2481 * values and either invoke the driver's ->setpolicy() callback (if present) or
2482 * carry out a governor update for @policy. That is, run the current governor's
2483 * ->limits() callback (if @new_gov points to the same object as the one in
2484 * @policy) or replace the governor for @policy with @new_gov.
2485 *
2486 * The cpuinfo part of @policy is not updated by this function.
2487 */
2488 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2489 struct cpufreq_governor *new_gov,
2490 unsigned int new_pol)
2491 {
2492 struct cpufreq_policy_data new_data;
2493 struct cpufreq_governor *old_gov;
2494 int ret;
2495
2496 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2497 new_data.freq_table = policy->freq_table;
2498 new_data.cpu = policy->cpu;
2499 /*
2500 * PM QoS framework collects all the requests from users and provide us
2501 * the final aggregated value here.
2502 */
2503 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2504 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2505
2506 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2507 new_data.cpu, new_data.min, new_data.max);
2508
2509 /*
2510 * Verify that the CPU speed can be set within these limits and make sure
2511 * that min <= max.
2512 */
2513 ret = cpufreq_driver->verify(&new_data);
2514 if (ret)
2515 return ret;
2516
2517 policy->min = new_data.min;
2518 policy->max = new_data.max;
2519 trace_cpu_frequency_limits(policy);
2520
2521 policy->cached_target_freq = UINT_MAX;
2522
2523 pr_debug("new min and max freqs are %u - %u kHz\n",
2524 policy->min, policy->max);
2525
2526 if (cpufreq_driver->setpolicy) {
2527 policy->policy = new_pol;
2528 pr_debug("setting range\n");
2529 return cpufreq_driver->setpolicy(policy);
2530 }
2531
2532 if (new_gov == policy->governor) {
2533 pr_debug("governor limits update\n");
2534 cpufreq_governor_limits(policy);
2535 return 0;
2536 }
2537
2538 pr_debug("governor switch\n");
2539
2540 /* save old, working values */
2541 old_gov = policy->governor;
2542 /* end old governor */
2543 if (old_gov) {
2544 cpufreq_stop_governor(policy);
2545 cpufreq_exit_governor(policy);
2546 }
2547
2548 /* start new governor */
2549 policy->governor = new_gov;
2550 ret = cpufreq_init_governor(policy);
2551 if (!ret) {
2552 ret = cpufreq_start_governor(policy);
2553 if (!ret) {
2554 pr_debug("governor change\n");
2555 sched_cpufreq_governor_change(policy, old_gov);
2556 return 0;
2557 }
2558 cpufreq_exit_governor(policy);
2559 }
2560
2561 /* new governor failed, so re-start old one */
2562 pr_debug("starting governor %s failed\n", policy->governor->name);
2563 if (old_gov) {
2564 policy->governor = old_gov;
2565 if (cpufreq_init_governor(policy))
2566 policy->governor = NULL;
2567 else
2568 cpufreq_start_governor(policy);
2569 }
2570
2571 return ret;
2572 }
2573
2574 /**
2575 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2576 * @cpu: CPU to re-evaluate the policy for.
2577 *
2578 * Update the current frequency for the cpufreq policy of @cpu and use
2579 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2580 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2581 * for the policy in question, among other things.
2582 */
2583 void cpufreq_update_policy(unsigned int cpu)
2584 {
2585 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2586
2587 if (!policy)
2588 return;
2589
2590 /*
2591 * BIOS might change freq behind our back
2592 * -> ask driver for current freq and notify governors about a change
2593 */
2594 if (cpufreq_driver->get && has_target() &&
2595 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2596 goto unlock;
2597
2598 refresh_frequency_limits(policy);
2599
2600 unlock:
2601 cpufreq_cpu_release(policy);
2602 }
2603 EXPORT_SYMBOL(cpufreq_update_policy);
2604
2605 /**
2606 * cpufreq_update_limits - Update policy limits for a given CPU.
2607 * @cpu: CPU to update the policy limits for.
2608 *
2609 * Invoke the driver's ->update_limits callback if present or call
2610 * cpufreq_update_policy() for @cpu.
2611 */
2612 void cpufreq_update_limits(unsigned int cpu)
2613 {
2614 if (cpufreq_driver->update_limits)
2615 cpufreq_driver->update_limits(cpu);
2616 else
2617 cpufreq_update_policy(cpu);
2618 }
2619 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2620
2621 /*********************************************************************
2622 * BOOST *
2623 *********************************************************************/
2624 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2625 {
2626 int ret;
2627
2628 if (!policy->freq_table)
2629 return -ENXIO;
2630
2631 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2632 if (ret) {
2633 pr_err("%s: Policy frequency update failed\n", __func__);
2634 return ret;
2635 }
2636
2637 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2638 if (ret < 0)
2639 return ret;
2640
2641 return 0;
2642 }
2643
2644 int cpufreq_boost_trigger_state(int state)
2645 {
2646 struct cpufreq_policy *policy;
2647 unsigned long flags;
2648 int ret = 0;
2649
2650 if (cpufreq_driver->boost_enabled == state)
2651 return 0;
2652
2653 write_lock_irqsave(&cpufreq_driver_lock, flags);
2654 cpufreq_driver->boost_enabled = state;
2655 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2656
2657 get_online_cpus();
2658 for_each_active_policy(policy) {
2659 ret = cpufreq_driver->set_boost(policy, state);
2660 if (ret)
2661 goto err_reset_state;
2662 }
2663 put_online_cpus();
2664
2665 return 0;
2666
2667 err_reset_state:
2668 put_online_cpus();
2669
2670 write_lock_irqsave(&cpufreq_driver_lock, flags);
2671 cpufreq_driver->boost_enabled = !state;
2672 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2673
2674 pr_err("%s: Cannot %s BOOST\n",
2675 __func__, state ? "enable" : "disable");
2676
2677 return ret;
2678 }
2679
2680 static bool cpufreq_boost_supported(void)
2681 {
2682 return cpufreq_driver->set_boost;
2683 }
2684
2685 static int create_boost_sysfs_file(void)
2686 {
2687 int ret;
2688
2689 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2690 if (ret)
2691 pr_err("%s: cannot register global BOOST sysfs file\n",
2692 __func__);
2693
2694 return ret;
2695 }
2696
2697 static void remove_boost_sysfs_file(void)
2698 {
2699 if (cpufreq_boost_supported())
2700 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2701 }
2702
2703 int cpufreq_enable_boost_support(void)
2704 {
2705 if (!cpufreq_driver)
2706 return -EINVAL;
2707
2708 if (cpufreq_boost_supported())
2709 return 0;
2710
2711 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2712
2713 /* This will get removed on driver unregister */
2714 return create_boost_sysfs_file();
2715 }
2716 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2717
2718 int cpufreq_boost_enabled(void)
2719 {
2720 return cpufreq_driver->boost_enabled;
2721 }
2722 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2723
2724 /*********************************************************************
2725 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2726 *********************************************************************/
2727 static enum cpuhp_state hp_online;
2728
2729 static int cpuhp_cpufreq_online(unsigned int cpu)
2730 {
2731 cpufreq_online(cpu);
2732
2733 return 0;
2734 }
2735
2736 static int cpuhp_cpufreq_offline(unsigned int cpu)
2737 {
2738 cpufreq_offline(cpu);
2739
2740 return 0;
2741 }
2742
2743 /**
2744 * cpufreq_register_driver - register a CPU Frequency driver
2745 * @driver_data: A struct cpufreq_driver containing the values#
2746 * submitted by the CPU Frequency driver.
2747 *
2748 * Registers a CPU Frequency driver to this core code. This code
2749 * returns zero on success, -EEXIST when another driver got here first
2750 * (and isn't unregistered in the meantime).
2751 *
2752 */
2753 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2754 {
2755 unsigned long flags;
2756 int ret;
2757
2758 if (cpufreq_disabled())
2759 return -ENODEV;
2760
2761 /*
2762 * The cpufreq core depends heavily on the availability of device
2763 * structure, make sure they are available before proceeding further.
2764 */
2765 if (!get_cpu_device(0))
2766 return -EPROBE_DEFER;
2767
2768 if (!driver_data || !driver_data->verify || !driver_data->init ||
2769 !(driver_data->setpolicy || driver_data->target_index ||
2770 driver_data->target) ||
2771 (driver_data->setpolicy && (driver_data->target_index ||
2772 driver_data->target)) ||
2773 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2774 (!driver_data->online != !driver_data->offline))
2775 return -EINVAL;
2776
2777 pr_debug("trying to register driver %s\n", driver_data->name);
2778
2779 /* Protect against concurrent CPU online/offline. */
2780 cpus_read_lock();
2781
2782 write_lock_irqsave(&cpufreq_driver_lock, flags);
2783 if (cpufreq_driver) {
2784 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2785 ret = -EEXIST;
2786 goto out;
2787 }
2788 cpufreq_driver = driver_data;
2789 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790
2791 /*
2792 * Mark support for the scheduler's frequency invariance engine for
2793 * drivers that implement target(), target_index() or fast_switch().
2794 */
2795 if (!cpufreq_driver->setpolicy) {
2796 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2797 pr_debug("supports frequency invariance");
2798 }
2799
2800 if (driver_data->setpolicy)
2801 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2802
2803 if (cpufreq_boost_supported()) {
2804 ret = create_boost_sysfs_file();
2805 if (ret)
2806 goto err_null_driver;
2807 }
2808
2809 ret = subsys_interface_register(&cpufreq_interface);
2810 if (ret)
2811 goto err_boost_unreg;
2812
2813 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2814 list_empty(&cpufreq_policy_list)) {
2815 /* if all ->init() calls failed, unregister */
2816 ret = -ENODEV;
2817 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2818 driver_data->name);
2819 goto err_if_unreg;
2820 }
2821
2822 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2823 "cpufreq:online",
2824 cpuhp_cpufreq_online,
2825 cpuhp_cpufreq_offline);
2826 if (ret < 0)
2827 goto err_if_unreg;
2828 hp_online = ret;
2829 ret = 0;
2830
2831 pr_debug("driver %s up and running\n", driver_data->name);
2832 goto out;
2833
2834 err_if_unreg:
2835 subsys_interface_unregister(&cpufreq_interface);
2836 err_boost_unreg:
2837 remove_boost_sysfs_file();
2838 err_null_driver:
2839 write_lock_irqsave(&cpufreq_driver_lock, flags);
2840 cpufreq_driver = NULL;
2841 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2842 out:
2843 cpus_read_unlock();
2844 return ret;
2845 }
2846 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2847
2848 /*
2849 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2850 *
2851 * Unregister the current CPUFreq driver. Only call this if you have
2852 * the right to do so, i.e. if you have succeeded in initialising before!
2853 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2854 * currently not initialised.
2855 */
2856 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2857 {
2858 unsigned long flags;
2859
2860 if (!cpufreq_driver || (driver != cpufreq_driver))
2861 return -EINVAL;
2862
2863 pr_debug("unregistering driver %s\n", driver->name);
2864
2865 /* Protect against concurrent cpu hotplug */
2866 cpus_read_lock();
2867 subsys_interface_unregister(&cpufreq_interface);
2868 remove_boost_sysfs_file();
2869 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2870 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2871
2872 write_lock_irqsave(&cpufreq_driver_lock, flags);
2873
2874 cpufreq_driver = NULL;
2875
2876 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2877 cpus_read_unlock();
2878
2879 return 0;
2880 }
2881 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2882
2883 static int __init cpufreq_core_init(void)
2884 {
2885 struct cpufreq_governor *gov = cpufreq_default_governor();
2886
2887 if (cpufreq_disabled())
2888 return -ENODEV;
2889
2890 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2891 BUG_ON(!cpufreq_global_kobject);
2892
2893 if (!strlen(default_governor))
2894 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2895
2896 return 0;
2897 }
2898 module_param(off, int, 0444);
2899 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2900 core_initcall(cpufreq_core_init);