]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge branch 'for_linus_urgent' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 /**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44
45 /* This one keeps track of the previously set governor of a removed CPU */
46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47
48 /* Flag to suspend/resume CPUFreq governors */
49 static bool cpufreq_suspended;
50
51 static inline bool has_target(void)
52 {
53 return cpufreq_driver->target_index || cpufreq_driver->target;
54 }
55
56 /*
57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58 * sections
59 */
60 static DECLARE_RWSEM(cpufreq_rwsem);
61
62 /* internal prototypes */
63 static int __cpufreq_governor(struct cpufreq_policy *policy,
64 unsigned int event);
65 static unsigned int __cpufreq_get(unsigned int cpu);
66 static void handle_update(struct work_struct *work);
67
68 /**
69 * Two notifier lists: the "policy" list is involved in the
70 * validation process for a new CPU frequency policy; the
71 * "transition" list for kernel code that needs to handle
72 * changes to devices when the CPU clock speed changes.
73 * The mutex locks both lists.
74 */
75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76 static struct srcu_notifier_head cpufreq_transition_notifier_list;
77
78 static bool init_cpufreq_transition_notifier_list_called;
79 static int __init init_cpufreq_transition_notifier_list(void)
80 {
81 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 init_cpufreq_transition_notifier_list_called = true;
83 return 0;
84 }
85 pure_initcall(init_cpufreq_transition_notifier_list);
86
87 static int off __read_mostly;
88 static int cpufreq_disabled(void)
89 {
90 return off;
91 }
92 void disable_cpufreq(void)
93 {
94 off = 1;
95 }
96 static LIST_HEAD(cpufreq_governor_list);
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99 bool have_governor_per_policy(void)
100 {
101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 if (have_governor_per_policy())
108 return &policy->kobj;
109 else
110 return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 u64 idle_time;
117 u64 cur_wall_time;
118 u64 busy_time;
119
120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121
122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129 idle_time = cur_wall_time - busy_time;
130 if (wall)
131 *wall = cputime_to_usecs(cur_wall_time);
132
133 return cputime_to_usecs(idle_time);
134 }
135
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140 if (idle_time == -1ULL)
141 return get_cpu_idle_time_jiffy(cpu, wall);
142 else if (!io_busy)
143 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145 return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149 /*
150 * This is a generic cpufreq init() routine which can be used by cpufreq
151 * drivers of SMP systems. It will do following:
152 * - validate & show freq table passed
153 * - set policies transition latency
154 * - policy->cpus with all possible CPUs
155 */
156 int cpufreq_generic_init(struct cpufreq_policy *policy,
157 struct cpufreq_frequency_table *table,
158 unsigned int transition_latency)
159 {
160 int ret;
161
162 ret = cpufreq_table_validate_and_show(policy, table);
163 if (ret) {
164 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 return ret;
166 }
167
168 policy->cpuinfo.transition_latency = transition_latency;
169
170 /*
171 * The driver only supports the SMP configuartion where all processors
172 * share the clock and voltage and clock.
173 */
174 cpumask_setall(policy->cpus);
175
176 return 0;
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180 unsigned int cpufreq_generic_get(unsigned int cpu)
181 {
182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184 if (!policy || IS_ERR(policy->clk)) {
185 pr_err("%s: No %s associated to cpu: %d\n",
186 __func__, policy ? "clk" : "policy", cpu);
187 return 0;
188 }
189
190 return clk_get_rate(policy->clk) / 1000;
191 }
192 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193
194 /* Only for cpufreq core internal use */
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 return per_cpu(cpufreq_cpu_data, cpu);
198 }
199
200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201 {
202 struct cpufreq_policy *policy = NULL;
203 unsigned long flags;
204
205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 return NULL;
207
208 if (!down_read_trylock(&cpufreq_rwsem))
209 return NULL;
210
211 /* get the cpufreq driver */
212 read_lock_irqsave(&cpufreq_driver_lock, flags);
213
214 if (cpufreq_driver) {
215 /* get the CPU */
216 policy = per_cpu(cpufreq_cpu_data, cpu);
217 if (policy)
218 kobject_get(&policy->kobj);
219 }
220
221 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222
223 if (!policy)
224 up_read(&cpufreq_rwsem);
225
226 return policy;
227 }
228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229
230 void cpufreq_cpu_put(struct cpufreq_policy *policy)
231 {
232 if (cpufreq_disabled())
233 return;
234
235 kobject_put(&policy->kobj);
236 up_read(&cpufreq_rwsem);
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239
240 /*********************************************************************
241 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
242 *********************************************************************/
243
244 /**
245 * adjust_jiffies - adjust the system "loops_per_jiffy"
246 *
247 * This function alters the system "loops_per_jiffy" for the clock
248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
249 * systems as each CPU might be scaled differently. So, use the arch
250 * per-CPU loops_per_jiffy value wherever possible.
251 */
252 #ifndef CONFIG_SMP
253 static unsigned long l_p_j_ref;
254 static unsigned int l_p_j_ref_freq;
255
256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257 {
258 if (ci->flags & CPUFREQ_CONST_LOOPS)
259 return;
260
261 if (!l_p_j_ref_freq) {
262 l_p_j_ref = loops_per_jiffy;
263 l_p_j_ref_freq = ci->old;
264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 l_p_j_ref, l_p_j_ref_freq);
266 }
267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 ci->new);
270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 loops_per_jiffy, ci->new);
272 }
273 }
274 #else
275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276 {
277 return;
278 }
279 #endif
280
281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 struct cpufreq_freqs *freqs, unsigned int state)
283 {
284 BUG_ON(irqs_disabled());
285
286 if (cpufreq_disabled())
287 return;
288
289 freqs->flags = cpufreq_driver->flags;
290 pr_debug("notification %u of frequency transition to %u kHz\n",
291 state, freqs->new);
292
293 switch (state) {
294
295 case CPUFREQ_PRECHANGE:
296 /* detect if the driver reported a value as "old frequency"
297 * which is not equal to what the cpufreq core thinks is
298 * "old frequency".
299 */
300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 if ((policy) && (policy->cpu == freqs->cpu) &&
302 (policy->cur) && (policy->cur != freqs->old)) {
303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 freqs->old, policy->cur);
305 freqs->old = policy->cur;
306 }
307 }
308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 CPUFREQ_PRECHANGE, freqs);
310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 break;
312
313 case CPUFREQ_POSTCHANGE:
314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 pr_debug("FREQ: %lu - CPU: %lu\n",
316 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 trace_cpu_frequency(freqs->new, freqs->cpu);
318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 CPUFREQ_POSTCHANGE, freqs);
320 if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 policy->cur = freqs->new;
322 break;
323 }
324 }
325
326 /**
327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328 * on frequency transition.
329 *
330 * This function calls the transition notifiers and the "adjust_jiffies"
331 * function. It is called twice on all CPU frequency changes that have
332 * external effects.
333 */
334 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 struct cpufreq_freqs *freqs, unsigned int state)
336 {
337 for_each_cpu(freqs->cpu, policy->cpus)
338 __cpufreq_notify_transition(policy, freqs, state);
339 }
340
341 /* Do post notifications when there are chances that transition has failed */
342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs, int transition_failed)
344 {
345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 if (!transition_failed)
347 return;
348
349 swap(freqs->old, freqs->new);
350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352 }
353
354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 struct cpufreq_freqs *freqs)
356 {
357
358 /*
359 * Catch double invocations of _begin() which lead to self-deadlock.
360 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
361 * doesn't invoke _begin() on their behalf, and hence the chances of
362 * double invocations are very low. Moreover, there are scenarios
363 * where these checks can emit false-positive warnings in these
364 * drivers; so we avoid that by skipping them altogether.
365 */
366 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
367 && current == policy->transition_task);
368
369 wait:
370 wait_event(policy->transition_wait, !policy->transition_ongoing);
371
372 spin_lock(&policy->transition_lock);
373
374 if (unlikely(policy->transition_ongoing)) {
375 spin_unlock(&policy->transition_lock);
376 goto wait;
377 }
378
379 policy->transition_ongoing = true;
380 policy->transition_task = current;
381
382 spin_unlock(&policy->transition_lock);
383
384 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
385 }
386 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
387
388 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
389 struct cpufreq_freqs *freqs, int transition_failed)
390 {
391 if (unlikely(WARN_ON(!policy->transition_ongoing)))
392 return;
393
394 cpufreq_notify_post_transition(policy, freqs, transition_failed);
395
396 policy->transition_ongoing = false;
397 policy->transition_task = NULL;
398
399 wake_up(&policy->transition_wait);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
402
403
404 /*********************************************************************
405 * SYSFS INTERFACE *
406 *********************************************************************/
407 static ssize_t show_boost(struct kobject *kobj,
408 struct attribute *attr, char *buf)
409 {
410 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
411 }
412
413 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
414 const char *buf, size_t count)
415 {
416 int ret, enable;
417
418 ret = sscanf(buf, "%d", &enable);
419 if (ret != 1 || enable < 0 || enable > 1)
420 return -EINVAL;
421
422 if (cpufreq_boost_trigger_state(enable)) {
423 pr_err("%s: Cannot %s BOOST!\n",
424 __func__, enable ? "enable" : "disable");
425 return -EINVAL;
426 }
427
428 pr_debug("%s: cpufreq BOOST %s\n",
429 __func__, enable ? "enabled" : "disabled");
430
431 return count;
432 }
433 define_one_global_rw(boost);
434
435 static struct cpufreq_governor *__find_governor(const char *str_governor)
436 {
437 struct cpufreq_governor *t;
438
439 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
440 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
441 return t;
442
443 return NULL;
444 }
445
446 /**
447 * cpufreq_parse_governor - parse a governor string
448 */
449 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
450 struct cpufreq_governor **governor)
451 {
452 int err = -EINVAL;
453
454 if (!cpufreq_driver)
455 goto out;
456
457 if (cpufreq_driver->setpolicy) {
458 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
459 *policy = CPUFREQ_POLICY_PERFORMANCE;
460 err = 0;
461 } else if (!strnicmp(str_governor, "powersave",
462 CPUFREQ_NAME_LEN)) {
463 *policy = CPUFREQ_POLICY_POWERSAVE;
464 err = 0;
465 }
466 } else if (has_target()) {
467 struct cpufreq_governor *t;
468
469 mutex_lock(&cpufreq_governor_mutex);
470
471 t = __find_governor(str_governor);
472
473 if (t == NULL) {
474 int ret;
475
476 mutex_unlock(&cpufreq_governor_mutex);
477 ret = request_module("cpufreq_%s", str_governor);
478 mutex_lock(&cpufreq_governor_mutex);
479
480 if (ret == 0)
481 t = __find_governor(str_governor);
482 }
483
484 if (t != NULL) {
485 *governor = t;
486 err = 0;
487 }
488
489 mutex_unlock(&cpufreq_governor_mutex);
490 }
491 out:
492 return err;
493 }
494
495 /**
496 * cpufreq_per_cpu_attr_read() / show_##file_name() -
497 * print out cpufreq information
498 *
499 * Write out information from cpufreq_driver->policy[cpu]; object must be
500 * "unsigned int".
501 */
502
503 #define show_one(file_name, object) \
504 static ssize_t show_##file_name \
505 (struct cpufreq_policy *policy, char *buf) \
506 { \
507 return sprintf(buf, "%u\n", policy->object); \
508 }
509
510 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
511 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
512 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
513 show_one(scaling_min_freq, min);
514 show_one(scaling_max_freq, max);
515 show_one(scaling_cur_freq, cur);
516
517 static int cpufreq_set_policy(struct cpufreq_policy *policy,
518 struct cpufreq_policy *new_policy);
519
520 /**
521 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
522 */
523 #define store_one(file_name, object) \
524 static ssize_t store_##file_name \
525 (struct cpufreq_policy *policy, const char *buf, size_t count) \
526 { \
527 int ret; \
528 struct cpufreq_policy new_policy; \
529 \
530 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
531 if (ret) \
532 return -EINVAL; \
533 \
534 ret = sscanf(buf, "%u", &new_policy.object); \
535 if (ret != 1) \
536 return -EINVAL; \
537 \
538 ret = cpufreq_set_policy(policy, &new_policy); \
539 policy->user_policy.object = policy->object; \
540 \
541 return ret ? ret : count; \
542 }
543
544 store_one(scaling_min_freq, min);
545 store_one(scaling_max_freq, max);
546
547 /**
548 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
549 */
550 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
551 char *buf)
552 {
553 unsigned int cur_freq = __cpufreq_get(policy->cpu);
554 if (!cur_freq)
555 return sprintf(buf, "<unknown>");
556 return sprintf(buf, "%u\n", cur_freq);
557 }
558
559 /**
560 * show_scaling_governor - show the current policy for the specified CPU
561 */
562 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
563 {
564 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
565 return sprintf(buf, "powersave\n");
566 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
567 return sprintf(buf, "performance\n");
568 else if (policy->governor)
569 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
570 policy->governor->name);
571 return -EINVAL;
572 }
573
574 /**
575 * store_scaling_governor - store policy for the specified CPU
576 */
577 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
578 const char *buf, size_t count)
579 {
580 int ret;
581 char str_governor[16];
582 struct cpufreq_policy new_policy;
583
584 ret = cpufreq_get_policy(&new_policy, policy->cpu);
585 if (ret)
586 return ret;
587
588 ret = sscanf(buf, "%15s", str_governor);
589 if (ret != 1)
590 return -EINVAL;
591
592 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
593 &new_policy.governor))
594 return -EINVAL;
595
596 ret = cpufreq_set_policy(policy, &new_policy);
597
598 policy->user_policy.policy = policy->policy;
599 policy->user_policy.governor = policy->governor;
600
601 if (ret)
602 return ret;
603 else
604 return count;
605 }
606
607 /**
608 * show_scaling_driver - show the cpufreq driver currently loaded
609 */
610 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
611 {
612 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
613 }
614
615 /**
616 * show_scaling_available_governors - show the available CPUfreq governors
617 */
618 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
619 char *buf)
620 {
621 ssize_t i = 0;
622 struct cpufreq_governor *t;
623
624 if (!has_target()) {
625 i += sprintf(buf, "performance powersave");
626 goto out;
627 }
628
629 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
630 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
631 - (CPUFREQ_NAME_LEN + 2)))
632 goto out;
633 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
634 }
635 out:
636 i += sprintf(&buf[i], "\n");
637 return i;
638 }
639
640 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
641 {
642 ssize_t i = 0;
643 unsigned int cpu;
644
645 for_each_cpu(cpu, mask) {
646 if (i)
647 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
648 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
649 if (i >= (PAGE_SIZE - 5))
650 break;
651 }
652 i += sprintf(&buf[i], "\n");
653 return i;
654 }
655 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
656
657 /**
658 * show_related_cpus - show the CPUs affected by each transition even if
659 * hw coordination is in use
660 */
661 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
662 {
663 return cpufreq_show_cpus(policy->related_cpus, buf);
664 }
665
666 /**
667 * show_affected_cpus - show the CPUs affected by each transition
668 */
669 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
670 {
671 return cpufreq_show_cpus(policy->cpus, buf);
672 }
673
674 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
675 const char *buf, size_t count)
676 {
677 unsigned int freq = 0;
678 unsigned int ret;
679
680 if (!policy->governor || !policy->governor->store_setspeed)
681 return -EINVAL;
682
683 ret = sscanf(buf, "%u", &freq);
684 if (ret != 1)
685 return -EINVAL;
686
687 policy->governor->store_setspeed(policy, freq);
688
689 return count;
690 }
691
692 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
693 {
694 if (!policy->governor || !policy->governor->show_setspeed)
695 return sprintf(buf, "<unsupported>\n");
696
697 return policy->governor->show_setspeed(policy, buf);
698 }
699
700 /**
701 * show_bios_limit - show the current cpufreq HW/BIOS limitation
702 */
703 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
704 {
705 unsigned int limit;
706 int ret;
707 if (cpufreq_driver->bios_limit) {
708 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
709 if (!ret)
710 return sprintf(buf, "%u\n", limit);
711 }
712 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
713 }
714
715 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
716 cpufreq_freq_attr_ro(cpuinfo_min_freq);
717 cpufreq_freq_attr_ro(cpuinfo_max_freq);
718 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
719 cpufreq_freq_attr_ro(scaling_available_governors);
720 cpufreq_freq_attr_ro(scaling_driver);
721 cpufreq_freq_attr_ro(scaling_cur_freq);
722 cpufreq_freq_attr_ro(bios_limit);
723 cpufreq_freq_attr_ro(related_cpus);
724 cpufreq_freq_attr_ro(affected_cpus);
725 cpufreq_freq_attr_rw(scaling_min_freq);
726 cpufreq_freq_attr_rw(scaling_max_freq);
727 cpufreq_freq_attr_rw(scaling_governor);
728 cpufreq_freq_attr_rw(scaling_setspeed);
729
730 static struct attribute *default_attrs[] = {
731 &cpuinfo_min_freq.attr,
732 &cpuinfo_max_freq.attr,
733 &cpuinfo_transition_latency.attr,
734 &scaling_min_freq.attr,
735 &scaling_max_freq.attr,
736 &affected_cpus.attr,
737 &related_cpus.attr,
738 &scaling_governor.attr,
739 &scaling_driver.attr,
740 &scaling_available_governors.attr,
741 &scaling_setspeed.attr,
742 NULL
743 };
744
745 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
746 #define to_attr(a) container_of(a, struct freq_attr, attr)
747
748 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
749 {
750 struct cpufreq_policy *policy = to_policy(kobj);
751 struct freq_attr *fattr = to_attr(attr);
752 ssize_t ret;
753
754 if (!down_read_trylock(&cpufreq_rwsem))
755 return -EINVAL;
756
757 down_read(&policy->rwsem);
758
759 if (fattr->show)
760 ret = fattr->show(policy, buf);
761 else
762 ret = -EIO;
763
764 up_read(&policy->rwsem);
765 up_read(&cpufreq_rwsem);
766
767 return ret;
768 }
769
770 static ssize_t store(struct kobject *kobj, struct attribute *attr,
771 const char *buf, size_t count)
772 {
773 struct cpufreq_policy *policy = to_policy(kobj);
774 struct freq_attr *fattr = to_attr(attr);
775 ssize_t ret = -EINVAL;
776
777 get_online_cpus();
778
779 if (!cpu_online(policy->cpu))
780 goto unlock;
781
782 if (!down_read_trylock(&cpufreq_rwsem))
783 goto unlock;
784
785 down_write(&policy->rwsem);
786
787 if (fattr->store)
788 ret = fattr->store(policy, buf, count);
789 else
790 ret = -EIO;
791
792 up_write(&policy->rwsem);
793
794 up_read(&cpufreq_rwsem);
795 unlock:
796 put_online_cpus();
797
798 return ret;
799 }
800
801 static void cpufreq_sysfs_release(struct kobject *kobj)
802 {
803 struct cpufreq_policy *policy = to_policy(kobj);
804 pr_debug("last reference is dropped\n");
805 complete(&policy->kobj_unregister);
806 }
807
808 static const struct sysfs_ops sysfs_ops = {
809 .show = show,
810 .store = store,
811 };
812
813 static struct kobj_type ktype_cpufreq = {
814 .sysfs_ops = &sysfs_ops,
815 .default_attrs = default_attrs,
816 .release = cpufreq_sysfs_release,
817 };
818
819 struct kobject *cpufreq_global_kobject;
820 EXPORT_SYMBOL(cpufreq_global_kobject);
821
822 static int cpufreq_global_kobject_usage;
823
824 int cpufreq_get_global_kobject(void)
825 {
826 if (!cpufreq_global_kobject_usage++)
827 return kobject_add(cpufreq_global_kobject,
828 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
829
830 return 0;
831 }
832 EXPORT_SYMBOL(cpufreq_get_global_kobject);
833
834 void cpufreq_put_global_kobject(void)
835 {
836 if (!--cpufreq_global_kobject_usage)
837 kobject_del(cpufreq_global_kobject);
838 }
839 EXPORT_SYMBOL(cpufreq_put_global_kobject);
840
841 int cpufreq_sysfs_create_file(const struct attribute *attr)
842 {
843 int ret = cpufreq_get_global_kobject();
844
845 if (!ret) {
846 ret = sysfs_create_file(cpufreq_global_kobject, attr);
847 if (ret)
848 cpufreq_put_global_kobject();
849 }
850
851 return ret;
852 }
853 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
854
855 void cpufreq_sysfs_remove_file(const struct attribute *attr)
856 {
857 sysfs_remove_file(cpufreq_global_kobject, attr);
858 cpufreq_put_global_kobject();
859 }
860 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
861
862 /* symlink affected CPUs */
863 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
864 {
865 unsigned int j;
866 int ret = 0;
867
868 for_each_cpu(j, policy->cpus) {
869 struct device *cpu_dev;
870
871 if (j == policy->cpu)
872 continue;
873
874 pr_debug("Adding link for CPU: %u\n", j);
875 cpu_dev = get_cpu_device(j);
876 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
877 "cpufreq");
878 if (ret)
879 break;
880 }
881 return ret;
882 }
883
884 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
885 struct device *dev)
886 {
887 struct freq_attr **drv_attr;
888 int ret = 0;
889
890 /* prepare interface data */
891 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
892 &dev->kobj, "cpufreq");
893 if (ret)
894 return ret;
895
896 /* set up files for this cpu device */
897 drv_attr = cpufreq_driver->attr;
898 while ((drv_attr) && (*drv_attr)) {
899 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
900 if (ret)
901 goto err_out_kobj_put;
902 drv_attr++;
903 }
904 if (cpufreq_driver->get) {
905 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
906 if (ret)
907 goto err_out_kobj_put;
908 }
909 if (has_target()) {
910 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
911 if (ret)
912 goto err_out_kobj_put;
913 }
914 if (cpufreq_driver->bios_limit) {
915 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
916 if (ret)
917 goto err_out_kobj_put;
918 }
919
920 ret = cpufreq_add_dev_symlink(policy);
921 if (ret)
922 goto err_out_kobj_put;
923
924 return ret;
925
926 err_out_kobj_put:
927 kobject_put(&policy->kobj);
928 wait_for_completion(&policy->kobj_unregister);
929 return ret;
930 }
931
932 static void cpufreq_init_policy(struct cpufreq_policy *policy)
933 {
934 struct cpufreq_governor *gov = NULL;
935 struct cpufreq_policy new_policy;
936 int ret = 0;
937
938 memcpy(&new_policy, policy, sizeof(*policy));
939
940 /* Update governor of new_policy to the governor used before hotplug */
941 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
942 if (gov)
943 pr_debug("Restoring governor %s for cpu %d\n",
944 policy->governor->name, policy->cpu);
945 else
946 gov = CPUFREQ_DEFAULT_GOVERNOR;
947
948 new_policy.governor = gov;
949
950 /* Use the default policy if its valid. */
951 if (cpufreq_driver->setpolicy)
952 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
953
954 /* set default policy */
955 ret = cpufreq_set_policy(policy, &new_policy);
956 if (ret) {
957 pr_debug("setting policy failed\n");
958 if (cpufreq_driver->exit)
959 cpufreq_driver->exit(policy);
960 }
961 }
962
963 #ifdef CONFIG_HOTPLUG_CPU
964 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
965 unsigned int cpu, struct device *dev)
966 {
967 int ret = 0;
968 unsigned long flags;
969
970 if (has_target()) {
971 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
972 if (ret) {
973 pr_err("%s: Failed to stop governor\n", __func__);
974 return ret;
975 }
976 }
977
978 down_write(&policy->rwsem);
979
980 write_lock_irqsave(&cpufreq_driver_lock, flags);
981
982 cpumask_set_cpu(cpu, policy->cpus);
983 per_cpu(cpufreq_cpu_data, cpu) = policy;
984 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
985
986 up_write(&policy->rwsem);
987
988 if (has_target()) {
989 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
990 if (!ret)
991 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
992
993 if (ret) {
994 pr_err("%s: Failed to start governor\n", __func__);
995 return ret;
996 }
997 }
998
999 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
1000 }
1001 #endif
1002
1003 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
1004 {
1005 struct cpufreq_policy *policy;
1006 unsigned long flags;
1007
1008 read_lock_irqsave(&cpufreq_driver_lock, flags);
1009
1010 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
1011
1012 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1013
1014 policy->governor = NULL;
1015
1016 return policy;
1017 }
1018
1019 static struct cpufreq_policy *cpufreq_policy_alloc(void)
1020 {
1021 struct cpufreq_policy *policy;
1022
1023 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1024 if (!policy)
1025 return NULL;
1026
1027 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1028 goto err_free_policy;
1029
1030 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1031 goto err_free_cpumask;
1032
1033 INIT_LIST_HEAD(&policy->policy_list);
1034 init_rwsem(&policy->rwsem);
1035 spin_lock_init(&policy->transition_lock);
1036 init_waitqueue_head(&policy->transition_wait);
1037
1038 return policy;
1039
1040 err_free_cpumask:
1041 free_cpumask_var(policy->cpus);
1042 err_free_policy:
1043 kfree(policy);
1044
1045 return NULL;
1046 }
1047
1048 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1049 {
1050 struct kobject *kobj;
1051 struct completion *cmp;
1052
1053 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1054 CPUFREQ_REMOVE_POLICY, policy);
1055
1056 down_read(&policy->rwsem);
1057 kobj = &policy->kobj;
1058 cmp = &policy->kobj_unregister;
1059 up_read(&policy->rwsem);
1060 kobject_put(kobj);
1061
1062 /*
1063 * We need to make sure that the underlying kobj is
1064 * actually not referenced anymore by anybody before we
1065 * proceed with unloading.
1066 */
1067 pr_debug("waiting for dropping of refcount\n");
1068 wait_for_completion(cmp);
1069 pr_debug("wait complete\n");
1070 }
1071
1072 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1073 {
1074 free_cpumask_var(policy->related_cpus);
1075 free_cpumask_var(policy->cpus);
1076 kfree(policy);
1077 }
1078
1079 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu,
1080 struct device *cpu_dev)
1081 {
1082 int ret;
1083
1084 if (WARN_ON(cpu == policy->cpu))
1085 return 0;
1086
1087 /* Move kobject to the new policy->cpu */
1088 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1089 if (ret) {
1090 pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1091 return ret;
1092 }
1093
1094 down_write(&policy->rwsem);
1095
1096 policy->last_cpu = policy->cpu;
1097 policy->cpu = cpu;
1098
1099 up_write(&policy->rwsem);
1100
1101 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1102 CPUFREQ_UPDATE_POLICY_CPU, policy);
1103
1104 return 0;
1105 }
1106
1107 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1108 {
1109 unsigned int j, cpu = dev->id;
1110 int ret = -ENOMEM;
1111 struct cpufreq_policy *policy;
1112 unsigned long flags;
1113 bool recover_policy = cpufreq_suspended;
1114 #ifdef CONFIG_HOTPLUG_CPU
1115 struct cpufreq_policy *tpolicy;
1116 #endif
1117
1118 if (cpu_is_offline(cpu))
1119 return 0;
1120
1121 pr_debug("adding CPU %u\n", cpu);
1122
1123 #ifdef CONFIG_SMP
1124 /* check whether a different CPU already registered this
1125 * CPU because it is in the same boat. */
1126 policy = cpufreq_cpu_get(cpu);
1127 if (unlikely(policy)) {
1128 cpufreq_cpu_put(policy);
1129 return 0;
1130 }
1131 #endif
1132
1133 if (!down_read_trylock(&cpufreq_rwsem))
1134 return 0;
1135
1136 #ifdef CONFIG_HOTPLUG_CPU
1137 /* Check if this cpu was hot-unplugged earlier and has siblings */
1138 read_lock_irqsave(&cpufreq_driver_lock, flags);
1139 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1140 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1141 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1142 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1143 up_read(&cpufreq_rwsem);
1144 return ret;
1145 }
1146 }
1147 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1148 #endif
1149
1150 /*
1151 * Restore the saved policy when doing light-weight init and fall back
1152 * to the full init if that fails.
1153 */
1154 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1155 if (!policy) {
1156 recover_policy = false;
1157 policy = cpufreq_policy_alloc();
1158 if (!policy)
1159 goto nomem_out;
1160 }
1161
1162 /*
1163 * In the resume path, since we restore a saved policy, the assignment
1164 * to policy->cpu is like an update of the existing policy, rather than
1165 * the creation of a brand new one. So we need to perform this update
1166 * by invoking update_policy_cpu().
1167 */
1168 if (recover_policy && cpu != policy->cpu)
1169 WARN_ON(update_policy_cpu(policy, cpu, dev));
1170 else
1171 policy->cpu = cpu;
1172
1173 cpumask_copy(policy->cpus, cpumask_of(cpu));
1174
1175 init_completion(&policy->kobj_unregister);
1176 INIT_WORK(&policy->update, handle_update);
1177
1178 /* call driver. From then on the cpufreq must be able
1179 * to accept all calls to ->verify and ->setpolicy for this CPU
1180 */
1181 ret = cpufreq_driver->init(policy);
1182 if (ret) {
1183 pr_debug("initialization failed\n");
1184 goto err_set_policy_cpu;
1185 }
1186
1187 /* related cpus should atleast have policy->cpus */
1188 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1189
1190 /*
1191 * affected cpus must always be the one, which are online. We aren't
1192 * managing offline cpus here.
1193 */
1194 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1195
1196 if (!recover_policy) {
1197 policy->user_policy.min = policy->min;
1198 policy->user_policy.max = policy->max;
1199 }
1200
1201 down_write(&policy->rwsem);
1202 write_lock_irqsave(&cpufreq_driver_lock, flags);
1203 for_each_cpu(j, policy->cpus)
1204 per_cpu(cpufreq_cpu_data, j) = policy;
1205 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1206
1207 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1208 policy->cur = cpufreq_driver->get(policy->cpu);
1209 if (!policy->cur) {
1210 pr_err("%s: ->get() failed\n", __func__);
1211 goto err_get_freq;
1212 }
1213 }
1214
1215 /*
1216 * Sometimes boot loaders set CPU frequency to a value outside of
1217 * frequency table present with cpufreq core. In such cases CPU might be
1218 * unstable if it has to run on that frequency for long duration of time
1219 * and so its better to set it to a frequency which is specified in
1220 * freq-table. This also makes cpufreq stats inconsistent as
1221 * cpufreq-stats would fail to register because current frequency of CPU
1222 * isn't found in freq-table.
1223 *
1224 * Because we don't want this change to effect boot process badly, we go
1225 * for the next freq which is >= policy->cur ('cur' must be set by now,
1226 * otherwise we will end up setting freq to lowest of the table as 'cur'
1227 * is initialized to zero).
1228 *
1229 * We are passing target-freq as "policy->cur - 1" otherwise
1230 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1231 * equal to target-freq.
1232 */
1233 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1234 && has_target()) {
1235 /* Are we running at unknown frequency ? */
1236 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1237 if (ret == -EINVAL) {
1238 /* Warn user and fix it */
1239 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1240 __func__, policy->cpu, policy->cur);
1241 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1242 CPUFREQ_RELATION_L);
1243
1244 /*
1245 * Reaching here after boot in a few seconds may not
1246 * mean that system will remain stable at "unknown"
1247 * frequency for longer duration. Hence, a BUG_ON().
1248 */
1249 BUG_ON(ret);
1250 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1251 __func__, policy->cpu, policy->cur);
1252 }
1253 }
1254
1255 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1256 CPUFREQ_START, policy);
1257
1258 if (!recover_policy) {
1259 ret = cpufreq_add_dev_interface(policy, dev);
1260 if (ret)
1261 goto err_out_unregister;
1262 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1263 CPUFREQ_CREATE_POLICY, policy);
1264 }
1265
1266 write_lock_irqsave(&cpufreq_driver_lock, flags);
1267 list_add(&policy->policy_list, &cpufreq_policy_list);
1268 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1269
1270 cpufreq_init_policy(policy);
1271
1272 if (!recover_policy) {
1273 policy->user_policy.policy = policy->policy;
1274 policy->user_policy.governor = policy->governor;
1275 }
1276 up_write(&policy->rwsem);
1277
1278 kobject_uevent(&policy->kobj, KOBJ_ADD);
1279 up_read(&cpufreq_rwsem);
1280
1281 pr_debug("initialization complete\n");
1282
1283 return 0;
1284
1285 err_out_unregister:
1286 err_get_freq:
1287 write_lock_irqsave(&cpufreq_driver_lock, flags);
1288 for_each_cpu(j, policy->cpus)
1289 per_cpu(cpufreq_cpu_data, j) = NULL;
1290 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1291
1292 if (cpufreq_driver->exit)
1293 cpufreq_driver->exit(policy);
1294 err_set_policy_cpu:
1295 if (recover_policy) {
1296 /* Do not leave stale fallback data behind. */
1297 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1298 cpufreq_policy_put_kobj(policy);
1299 }
1300 cpufreq_policy_free(policy);
1301
1302 nomem_out:
1303 up_read(&cpufreq_rwsem);
1304
1305 return ret;
1306 }
1307
1308 /**
1309 * cpufreq_add_dev - add a CPU device
1310 *
1311 * Adds the cpufreq interface for a CPU device.
1312 *
1313 * The Oracle says: try running cpufreq registration/unregistration concurrently
1314 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1315 * mess up, but more thorough testing is needed. - Mathieu
1316 */
1317 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1318 {
1319 return __cpufreq_add_dev(dev, sif);
1320 }
1321
1322 static int __cpufreq_remove_dev_prepare(struct device *dev,
1323 struct subsys_interface *sif)
1324 {
1325 unsigned int cpu = dev->id, cpus;
1326 int ret;
1327 unsigned long flags;
1328 struct cpufreq_policy *policy;
1329
1330 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1331
1332 write_lock_irqsave(&cpufreq_driver_lock, flags);
1333
1334 policy = per_cpu(cpufreq_cpu_data, cpu);
1335
1336 /* Save the policy somewhere when doing a light-weight tear-down */
1337 if (cpufreq_suspended)
1338 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1339
1340 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1341
1342 if (!policy) {
1343 pr_debug("%s: No cpu_data found\n", __func__);
1344 return -EINVAL;
1345 }
1346
1347 if (has_target()) {
1348 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1349 if (ret) {
1350 pr_err("%s: Failed to stop governor\n", __func__);
1351 return ret;
1352 }
1353 }
1354
1355 if (!cpufreq_driver->setpolicy)
1356 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1357 policy->governor->name, CPUFREQ_NAME_LEN);
1358
1359 down_read(&policy->rwsem);
1360 cpus = cpumask_weight(policy->cpus);
1361 up_read(&policy->rwsem);
1362
1363 if (cpu != policy->cpu) {
1364 sysfs_remove_link(&dev->kobj, "cpufreq");
1365 } else if (cpus > 1) {
1366 /* Nominate new CPU */
1367 int new_cpu = cpumask_any_but(policy->cpus, cpu);
1368 struct device *cpu_dev = get_cpu_device(new_cpu);
1369
1370 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1371 ret = update_policy_cpu(policy, new_cpu, cpu_dev);
1372 if (ret) {
1373 if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1374 "cpufreq"))
1375 pr_err("%s: Failed to restore kobj link to cpu:%d\n",
1376 __func__, cpu_dev->id);
1377 return ret;
1378 }
1379
1380 if (!cpufreq_suspended)
1381 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1382 __func__, new_cpu, cpu);
1383 } else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1384 cpufreq_driver->stop_cpu(policy);
1385 }
1386
1387 return 0;
1388 }
1389
1390 static int __cpufreq_remove_dev_finish(struct device *dev,
1391 struct subsys_interface *sif)
1392 {
1393 unsigned int cpu = dev->id, cpus;
1394 int ret;
1395 unsigned long flags;
1396 struct cpufreq_policy *policy;
1397
1398 read_lock_irqsave(&cpufreq_driver_lock, flags);
1399 policy = per_cpu(cpufreq_cpu_data, cpu);
1400 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1401
1402 if (!policy) {
1403 pr_debug("%s: No cpu_data found\n", __func__);
1404 return -EINVAL;
1405 }
1406
1407 down_write(&policy->rwsem);
1408 cpus = cpumask_weight(policy->cpus);
1409
1410 if (cpus > 1)
1411 cpumask_clear_cpu(cpu, policy->cpus);
1412 up_write(&policy->rwsem);
1413
1414 /* If cpu is last user of policy, free policy */
1415 if (cpus == 1) {
1416 if (has_target()) {
1417 ret = __cpufreq_governor(policy,
1418 CPUFREQ_GOV_POLICY_EXIT);
1419 if (ret) {
1420 pr_err("%s: Failed to exit governor\n",
1421 __func__);
1422 return ret;
1423 }
1424 }
1425
1426 if (!cpufreq_suspended)
1427 cpufreq_policy_put_kobj(policy);
1428
1429 /*
1430 * Perform the ->exit() even during light-weight tear-down,
1431 * since this is a core component, and is essential for the
1432 * subsequent light-weight ->init() to succeed.
1433 */
1434 if (cpufreq_driver->exit)
1435 cpufreq_driver->exit(policy);
1436
1437 /* Remove policy from list of active policies */
1438 write_lock_irqsave(&cpufreq_driver_lock, flags);
1439 list_del(&policy->policy_list);
1440 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1441
1442 if (!cpufreq_suspended)
1443 cpufreq_policy_free(policy);
1444 } else if (has_target()) {
1445 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1446 if (!ret)
1447 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1448
1449 if (ret) {
1450 pr_err("%s: Failed to start governor\n", __func__);
1451 return ret;
1452 }
1453 }
1454
1455 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1456 return 0;
1457 }
1458
1459 /**
1460 * cpufreq_remove_dev - remove a CPU device
1461 *
1462 * Removes the cpufreq interface for a CPU device.
1463 */
1464 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1465 {
1466 unsigned int cpu = dev->id;
1467 int ret;
1468
1469 if (cpu_is_offline(cpu))
1470 return 0;
1471
1472 ret = __cpufreq_remove_dev_prepare(dev, sif);
1473
1474 if (!ret)
1475 ret = __cpufreq_remove_dev_finish(dev, sif);
1476
1477 return ret;
1478 }
1479
1480 static void handle_update(struct work_struct *work)
1481 {
1482 struct cpufreq_policy *policy =
1483 container_of(work, struct cpufreq_policy, update);
1484 unsigned int cpu = policy->cpu;
1485 pr_debug("handle_update for cpu %u called\n", cpu);
1486 cpufreq_update_policy(cpu);
1487 }
1488
1489 /**
1490 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1491 * in deep trouble.
1492 * @cpu: cpu number
1493 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1494 * @new_freq: CPU frequency the CPU actually runs at
1495 *
1496 * We adjust to current frequency first, and need to clean up later.
1497 * So either call to cpufreq_update_policy() or schedule handle_update()).
1498 */
1499 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1500 unsigned int new_freq)
1501 {
1502 struct cpufreq_policy *policy;
1503 struct cpufreq_freqs freqs;
1504 unsigned long flags;
1505
1506 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1507 old_freq, new_freq);
1508
1509 freqs.old = old_freq;
1510 freqs.new = new_freq;
1511
1512 read_lock_irqsave(&cpufreq_driver_lock, flags);
1513 policy = per_cpu(cpufreq_cpu_data, cpu);
1514 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1515
1516 cpufreq_freq_transition_begin(policy, &freqs);
1517 cpufreq_freq_transition_end(policy, &freqs, 0);
1518 }
1519
1520 /**
1521 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1522 * @cpu: CPU number
1523 *
1524 * This is the last known freq, without actually getting it from the driver.
1525 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1526 */
1527 unsigned int cpufreq_quick_get(unsigned int cpu)
1528 {
1529 struct cpufreq_policy *policy;
1530 unsigned int ret_freq = 0;
1531
1532 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1533 return cpufreq_driver->get(cpu);
1534
1535 policy = cpufreq_cpu_get(cpu);
1536 if (policy) {
1537 ret_freq = policy->cur;
1538 cpufreq_cpu_put(policy);
1539 }
1540
1541 return ret_freq;
1542 }
1543 EXPORT_SYMBOL(cpufreq_quick_get);
1544
1545 /**
1546 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1547 * @cpu: CPU number
1548 *
1549 * Just return the max possible frequency for a given CPU.
1550 */
1551 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1552 {
1553 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1554 unsigned int ret_freq = 0;
1555
1556 if (policy) {
1557 ret_freq = policy->max;
1558 cpufreq_cpu_put(policy);
1559 }
1560
1561 return ret_freq;
1562 }
1563 EXPORT_SYMBOL(cpufreq_quick_get_max);
1564
1565 static unsigned int __cpufreq_get(unsigned int cpu)
1566 {
1567 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1568 unsigned int ret_freq = 0;
1569
1570 if (!cpufreq_driver->get)
1571 return ret_freq;
1572
1573 ret_freq = cpufreq_driver->get(cpu);
1574
1575 if (ret_freq && policy->cur &&
1576 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1577 /* verify no discrepancy between actual and
1578 saved value exists */
1579 if (unlikely(ret_freq != policy->cur)) {
1580 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1581 schedule_work(&policy->update);
1582 }
1583 }
1584
1585 return ret_freq;
1586 }
1587
1588 /**
1589 * cpufreq_get - get the current CPU frequency (in kHz)
1590 * @cpu: CPU number
1591 *
1592 * Get the CPU current (static) CPU frequency
1593 */
1594 unsigned int cpufreq_get(unsigned int cpu)
1595 {
1596 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1597 unsigned int ret_freq = 0;
1598
1599 if (policy) {
1600 down_read(&policy->rwsem);
1601 ret_freq = __cpufreq_get(cpu);
1602 up_read(&policy->rwsem);
1603
1604 cpufreq_cpu_put(policy);
1605 }
1606
1607 return ret_freq;
1608 }
1609 EXPORT_SYMBOL(cpufreq_get);
1610
1611 static struct subsys_interface cpufreq_interface = {
1612 .name = "cpufreq",
1613 .subsys = &cpu_subsys,
1614 .add_dev = cpufreq_add_dev,
1615 .remove_dev = cpufreq_remove_dev,
1616 };
1617
1618 /*
1619 * In case platform wants some specific frequency to be configured
1620 * during suspend..
1621 */
1622 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1623 {
1624 int ret;
1625
1626 if (!policy->suspend_freq) {
1627 pr_err("%s: suspend_freq can't be zero\n", __func__);
1628 return -EINVAL;
1629 }
1630
1631 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1632 policy->suspend_freq);
1633
1634 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1635 CPUFREQ_RELATION_H);
1636 if (ret)
1637 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1638 __func__, policy->suspend_freq, ret);
1639
1640 return ret;
1641 }
1642 EXPORT_SYMBOL(cpufreq_generic_suspend);
1643
1644 /**
1645 * cpufreq_suspend() - Suspend CPUFreq governors
1646 *
1647 * Called during system wide Suspend/Hibernate cycles for suspending governors
1648 * as some platforms can't change frequency after this point in suspend cycle.
1649 * Because some of the devices (like: i2c, regulators, etc) they use for
1650 * changing frequency are suspended quickly after this point.
1651 */
1652 void cpufreq_suspend(void)
1653 {
1654 struct cpufreq_policy *policy;
1655
1656 if (!cpufreq_driver)
1657 return;
1658
1659 if (!has_target())
1660 return;
1661
1662 pr_debug("%s: Suspending Governors\n", __func__);
1663
1664 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1665 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1666 pr_err("%s: Failed to stop governor for policy: %p\n",
1667 __func__, policy);
1668 else if (cpufreq_driver->suspend
1669 && cpufreq_driver->suspend(policy))
1670 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1671 policy);
1672 }
1673
1674 cpufreq_suspended = true;
1675 }
1676
1677 /**
1678 * cpufreq_resume() - Resume CPUFreq governors
1679 *
1680 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1681 * are suspended with cpufreq_suspend().
1682 */
1683 void cpufreq_resume(void)
1684 {
1685 struct cpufreq_policy *policy;
1686
1687 if (!cpufreq_driver)
1688 return;
1689
1690 if (!has_target())
1691 return;
1692
1693 pr_debug("%s: Resuming Governors\n", __func__);
1694
1695 cpufreq_suspended = false;
1696
1697 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1698 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1699 pr_err("%s: Failed to resume driver: %p\n", __func__,
1700 policy);
1701 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1702 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1703 pr_err("%s: Failed to start governor for policy: %p\n",
1704 __func__, policy);
1705
1706 /*
1707 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1708 * policy in list. It will verify that the current freq is in
1709 * sync with what we believe it to be.
1710 */
1711 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1712 schedule_work(&policy->update);
1713 }
1714 }
1715
1716 /**
1717 * cpufreq_get_current_driver - return current driver's name
1718 *
1719 * Return the name string of the currently loaded cpufreq driver
1720 * or NULL, if none.
1721 */
1722 const char *cpufreq_get_current_driver(void)
1723 {
1724 if (cpufreq_driver)
1725 return cpufreq_driver->name;
1726
1727 return NULL;
1728 }
1729 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1730
1731 /*********************************************************************
1732 * NOTIFIER LISTS INTERFACE *
1733 *********************************************************************/
1734
1735 /**
1736 * cpufreq_register_notifier - register a driver with cpufreq
1737 * @nb: notifier function to register
1738 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1739 *
1740 * Add a driver to one of two lists: either a list of drivers that
1741 * are notified about clock rate changes (once before and once after
1742 * the transition), or a list of drivers that are notified about
1743 * changes in cpufreq policy.
1744 *
1745 * This function may sleep, and has the same return conditions as
1746 * blocking_notifier_chain_register.
1747 */
1748 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1749 {
1750 int ret;
1751
1752 if (cpufreq_disabled())
1753 return -EINVAL;
1754
1755 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1756
1757 switch (list) {
1758 case CPUFREQ_TRANSITION_NOTIFIER:
1759 ret = srcu_notifier_chain_register(
1760 &cpufreq_transition_notifier_list, nb);
1761 break;
1762 case CPUFREQ_POLICY_NOTIFIER:
1763 ret = blocking_notifier_chain_register(
1764 &cpufreq_policy_notifier_list, nb);
1765 break;
1766 default:
1767 ret = -EINVAL;
1768 }
1769
1770 return ret;
1771 }
1772 EXPORT_SYMBOL(cpufreq_register_notifier);
1773
1774 /**
1775 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1776 * @nb: notifier block to be unregistered
1777 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1778 *
1779 * Remove a driver from the CPU frequency notifier list.
1780 *
1781 * This function may sleep, and has the same return conditions as
1782 * blocking_notifier_chain_unregister.
1783 */
1784 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1785 {
1786 int ret;
1787
1788 if (cpufreq_disabled())
1789 return -EINVAL;
1790
1791 switch (list) {
1792 case CPUFREQ_TRANSITION_NOTIFIER:
1793 ret = srcu_notifier_chain_unregister(
1794 &cpufreq_transition_notifier_list, nb);
1795 break;
1796 case CPUFREQ_POLICY_NOTIFIER:
1797 ret = blocking_notifier_chain_unregister(
1798 &cpufreq_policy_notifier_list, nb);
1799 break;
1800 default:
1801 ret = -EINVAL;
1802 }
1803
1804 return ret;
1805 }
1806 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1807
1808
1809 /*********************************************************************
1810 * GOVERNORS *
1811 *********************************************************************/
1812
1813 /* Must set freqs->new to intermediate frequency */
1814 static int __target_intermediate(struct cpufreq_policy *policy,
1815 struct cpufreq_freqs *freqs, int index)
1816 {
1817 int ret;
1818
1819 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1820
1821 /* We don't need to switch to intermediate freq */
1822 if (!freqs->new)
1823 return 0;
1824
1825 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1826 __func__, policy->cpu, freqs->old, freqs->new);
1827
1828 cpufreq_freq_transition_begin(policy, freqs);
1829 ret = cpufreq_driver->target_intermediate(policy, index);
1830 cpufreq_freq_transition_end(policy, freqs, ret);
1831
1832 if (ret)
1833 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1834 __func__, ret);
1835
1836 return ret;
1837 }
1838
1839 static int __target_index(struct cpufreq_policy *policy,
1840 struct cpufreq_frequency_table *freq_table, int index)
1841 {
1842 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1843 unsigned int intermediate_freq = 0;
1844 int retval = -EINVAL;
1845 bool notify;
1846
1847 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1848 if (notify) {
1849 /* Handle switching to intermediate frequency */
1850 if (cpufreq_driver->get_intermediate) {
1851 retval = __target_intermediate(policy, &freqs, index);
1852 if (retval)
1853 return retval;
1854
1855 intermediate_freq = freqs.new;
1856 /* Set old freq to intermediate */
1857 if (intermediate_freq)
1858 freqs.old = freqs.new;
1859 }
1860
1861 freqs.new = freq_table[index].frequency;
1862 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1863 __func__, policy->cpu, freqs.old, freqs.new);
1864
1865 cpufreq_freq_transition_begin(policy, &freqs);
1866 }
1867
1868 retval = cpufreq_driver->target_index(policy, index);
1869 if (retval)
1870 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1871 retval);
1872
1873 if (notify) {
1874 cpufreq_freq_transition_end(policy, &freqs, retval);
1875
1876 /*
1877 * Failed after setting to intermediate freq? Driver should have
1878 * reverted back to initial frequency and so should we. Check
1879 * here for intermediate_freq instead of get_intermediate, in
1880 * case we have't switched to intermediate freq at all.
1881 */
1882 if (unlikely(retval && intermediate_freq)) {
1883 freqs.old = intermediate_freq;
1884 freqs.new = policy->restore_freq;
1885 cpufreq_freq_transition_begin(policy, &freqs);
1886 cpufreq_freq_transition_end(policy, &freqs, 0);
1887 }
1888 }
1889
1890 return retval;
1891 }
1892
1893 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1894 unsigned int target_freq,
1895 unsigned int relation)
1896 {
1897 unsigned int old_target_freq = target_freq;
1898 int retval = -EINVAL;
1899
1900 if (cpufreq_disabled())
1901 return -ENODEV;
1902
1903 /* Make sure that target_freq is within supported range */
1904 if (target_freq > policy->max)
1905 target_freq = policy->max;
1906 if (target_freq < policy->min)
1907 target_freq = policy->min;
1908
1909 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1910 policy->cpu, target_freq, relation, old_target_freq);
1911
1912 /*
1913 * This might look like a redundant call as we are checking it again
1914 * after finding index. But it is left intentionally for cases where
1915 * exactly same freq is called again and so we can save on few function
1916 * calls.
1917 */
1918 if (target_freq == policy->cur)
1919 return 0;
1920
1921 /* Save last value to restore later on errors */
1922 policy->restore_freq = policy->cur;
1923
1924 if (cpufreq_driver->target)
1925 retval = cpufreq_driver->target(policy, target_freq, relation);
1926 else if (cpufreq_driver->target_index) {
1927 struct cpufreq_frequency_table *freq_table;
1928 int index;
1929
1930 freq_table = cpufreq_frequency_get_table(policy->cpu);
1931 if (unlikely(!freq_table)) {
1932 pr_err("%s: Unable to find freq_table\n", __func__);
1933 goto out;
1934 }
1935
1936 retval = cpufreq_frequency_table_target(policy, freq_table,
1937 target_freq, relation, &index);
1938 if (unlikely(retval)) {
1939 pr_err("%s: Unable to find matching freq\n", __func__);
1940 goto out;
1941 }
1942
1943 if (freq_table[index].frequency == policy->cur) {
1944 retval = 0;
1945 goto out;
1946 }
1947
1948 retval = __target_index(policy, freq_table, index);
1949 }
1950
1951 out:
1952 return retval;
1953 }
1954 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1955
1956 int cpufreq_driver_target(struct cpufreq_policy *policy,
1957 unsigned int target_freq,
1958 unsigned int relation)
1959 {
1960 int ret = -EINVAL;
1961
1962 down_write(&policy->rwsem);
1963
1964 ret = __cpufreq_driver_target(policy, target_freq, relation);
1965
1966 up_write(&policy->rwsem);
1967
1968 return ret;
1969 }
1970 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1971
1972 /*
1973 * when "event" is CPUFREQ_GOV_LIMITS
1974 */
1975
1976 static int __cpufreq_governor(struct cpufreq_policy *policy,
1977 unsigned int event)
1978 {
1979 int ret;
1980
1981 /* Only must be defined when default governor is known to have latency
1982 restrictions, like e.g. conservative or ondemand.
1983 That this is the case is already ensured in Kconfig
1984 */
1985 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1986 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1987 #else
1988 struct cpufreq_governor *gov = NULL;
1989 #endif
1990
1991 /* Don't start any governor operations if we are entering suspend */
1992 if (cpufreq_suspended)
1993 return 0;
1994
1995 if (policy->governor->max_transition_latency &&
1996 policy->cpuinfo.transition_latency >
1997 policy->governor->max_transition_latency) {
1998 if (!gov)
1999 return -EINVAL;
2000 else {
2001 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2002 policy->governor->name, gov->name);
2003 policy->governor = gov;
2004 }
2005 }
2006
2007 if (event == CPUFREQ_GOV_POLICY_INIT)
2008 if (!try_module_get(policy->governor->owner))
2009 return -EINVAL;
2010
2011 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
2012 policy->cpu, event);
2013
2014 mutex_lock(&cpufreq_governor_lock);
2015 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
2016 || (!policy->governor_enabled
2017 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
2018 mutex_unlock(&cpufreq_governor_lock);
2019 return -EBUSY;
2020 }
2021
2022 if (event == CPUFREQ_GOV_STOP)
2023 policy->governor_enabled = false;
2024 else if (event == CPUFREQ_GOV_START)
2025 policy->governor_enabled = true;
2026
2027 mutex_unlock(&cpufreq_governor_lock);
2028
2029 ret = policy->governor->governor(policy, event);
2030
2031 if (!ret) {
2032 if (event == CPUFREQ_GOV_POLICY_INIT)
2033 policy->governor->initialized++;
2034 else if (event == CPUFREQ_GOV_POLICY_EXIT)
2035 policy->governor->initialized--;
2036 } else {
2037 /* Restore original values */
2038 mutex_lock(&cpufreq_governor_lock);
2039 if (event == CPUFREQ_GOV_STOP)
2040 policy->governor_enabled = true;
2041 else if (event == CPUFREQ_GOV_START)
2042 policy->governor_enabled = false;
2043 mutex_unlock(&cpufreq_governor_lock);
2044 }
2045
2046 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2047 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2048 module_put(policy->governor->owner);
2049
2050 return ret;
2051 }
2052
2053 int cpufreq_register_governor(struct cpufreq_governor *governor)
2054 {
2055 int err;
2056
2057 if (!governor)
2058 return -EINVAL;
2059
2060 if (cpufreq_disabled())
2061 return -ENODEV;
2062
2063 mutex_lock(&cpufreq_governor_mutex);
2064
2065 governor->initialized = 0;
2066 err = -EBUSY;
2067 if (__find_governor(governor->name) == NULL) {
2068 err = 0;
2069 list_add(&governor->governor_list, &cpufreq_governor_list);
2070 }
2071
2072 mutex_unlock(&cpufreq_governor_mutex);
2073 return err;
2074 }
2075 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2076
2077 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2078 {
2079 int cpu;
2080
2081 if (!governor)
2082 return;
2083
2084 if (cpufreq_disabled())
2085 return;
2086
2087 for_each_present_cpu(cpu) {
2088 if (cpu_online(cpu))
2089 continue;
2090 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2091 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2092 }
2093
2094 mutex_lock(&cpufreq_governor_mutex);
2095 list_del(&governor->governor_list);
2096 mutex_unlock(&cpufreq_governor_mutex);
2097 return;
2098 }
2099 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2100
2101
2102 /*********************************************************************
2103 * POLICY INTERFACE *
2104 *********************************************************************/
2105
2106 /**
2107 * cpufreq_get_policy - get the current cpufreq_policy
2108 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2109 * is written
2110 *
2111 * Reads the current cpufreq policy.
2112 */
2113 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2114 {
2115 struct cpufreq_policy *cpu_policy;
2116 if (!policy)
2117 return -EINVAL;
2118
2119 cpu_policy = cpufreq_cpu_get(cpu);
2120 if (!cpu_policy)
2121 return -EINVAL;
2122
2123 memcpy(policy, cpu_policy, sizeof(*policy));
2124
2125 cpufreq_cpu_put(cpu_policy);
2126 return 0;
2127 }
2128 EXPORT_SYMBOL(cpufreq_get_policy);
2129
2130 /*
2131 * policy : current policy.
2132 * new_policy: policy to be set.
2133 */
2134 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2135 struct cpufreq_policy *new_policy)
2136 {
2137 struct cpufreq_governor *old_gov;
2138 int ret;
2139
2140 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2141 new_policy->cpu, new_policy->min, new_policy->max);
2142
2143 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2144
2145 if (new_policy->min > policy->max || new_policy->max < policy->min)
2146 return -EINVAL;
2147
2148 /* verify the cpu speed can be set within this limit */
2149 ret = cpufreq_driver->verify(new_policy);
2150 if (ret)
2151 return ret;
2152
2153 /* adjust if necessary - all reasons */
2154 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2155 CPUFREQ_ADJUST, new_policy);
2156
2157 /* adjust if necessary - hardware incompatibility*/
2158 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2159 CPUFREQ_INCOMPATIBLE, new_policy);
2160
2161 /*
2162 * verify the cpu speed can be set within this limit, which might be
2163 * different to the first one
2164 */
2165 ret = cpufreq_driver->verify(new_policy);
2166 if (ret)
2167 return ret;
2168
2169 /* notification of the new policy */
2170 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2171 CPUFREQ_NOTIFY, new_policy);
2172
2173 policy->min = new_policy->min;
2174 policy->max = new_policy->max;
2175
2176 pr_debug("new min and max freqs are %u - %u kHz\n",
2177 policy->min, policy->max);
2178
2179 if (cpufreq_driver->setpolicy) {
2180 policy->policy = new_policy->policy;
2181 pr_debug("setting range\n");
2182 return cpufreq_driver->setpolicy(new_policy);
2183 }
2184
2185 if (new_policy->governor == policy->governor)
2186 goto out;
2187
2188 pr_debug("governor switch\n");
2189
2190 /* save old, working values */
2191 old_gov = policy->governor;
2192 /* end old governor */
2193 if (old_gov) {
2194 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2195 up_write(&policy->rwsem);
2196 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2197 down_write(&policy->rwsem);
2198 }
2199
2200 /* start new governor */
2201 policy->governor = new_policy->governor;
2202 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2203 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2204 goto out;
2205
2206 up_write(&policy->rwsem);
2207 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2208 down_write(&policy->rwsem);
2209 }
2210
2211 /* new governor failed, so re-start old one */
2212 pr_debug("starting governor %s failed\n", policy->governor->name);
2213 if (old_gov) {
2214 policy->governor = old_gov;
2215 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2216 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2217 }
2218
2219 return -EINVAL;
2220
2221 out:
2222 pr_debug("governor: change or update limits\n");
2223 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2224 }
2225
2226 /**
2227 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2228 * @cpu: CPU which shall be re-evaluated
2229 *
2230 * Useful for policy notifiers which have different necessities
2231 * at different times.
2232 */
2233 int cpufreq_update_policy(unsigned int cpu)
2234 {
2235 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2236 struct cpufreq_policy new_policy;
2237 int ret;
2238
2239 if (!policy)
2240 return -ENODEV;
2241
2242 down_write(&policy->rwsem);
2243
2244 pr_debug("updating policy for CPU %u\n", cpu);
2245 memcpy(&new_policy, policy, sizeof(*policy));
2246 new_policy.min = policy->user_policy.min;
2247 new_policy.max = policy->user_policy.max;
2248 new_policy.policy = policy->user_policy.policy;
2249 new_policy.governor = policy->user_policy.governor;
2250
2251 /*
2252 * BIOS might change freq behind our back
2253 * -> ask driver for current freq and notify governors about a change
2254 */
2255 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2256 new_policy.cur = cpufreq_driver->get(cpu);
2257 if (WARN_ON(!new_policy.cur)) {
2258 ret = -EIO;
2259 goto unlock;
2260 }
2261
2262 if (!policy->cur) {
2263 pr_debug("Driver did not initialize current freq\n");
2264 policy->cur = new_policy.cur;
2265 } else {
2266 if (policy->cur != new_policy.cur && has_target())
2267 cpufreq_out_of_sync(cpu, policy->cur,
2268 new_policy.cur);
2269 }
2270 }
2271
2272 ret = cpufreq_set_policy(policy, &new_policy);
2273
2274 unlock:
2275 up_write(&policy->rwsem);
2276
2277 cpufreq_cpu_put(policy);
2278 return ret;
2279 }
2280 EXPORT_SYMBOL(cpufreq_update_policy);
2281
2282 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2283 unsigned long action, void *hcpu)
2284 {
2285 unsigned int cpu = (unsigned long)hcpu;
2286 struct device *dev;
2287
2288 dev = get_cpu_device(cpu);
2289 if (dev) {
2290 switch (action & ~CPU_TASKS_FROZEN) {
2291 case CPU_ONLINE:
2292 __cpufreq_add_dev(dev, NULL);
2293 break;
2294
2295 case CPU_DOWN_PREPARE:
2296 __cpufreq_remove_dev_prepare(dev, NULL);
2297 break;
2298
2299 case CPU_POST_DEAD:
2300 __cpufreq_remove_dev_finish(dev, NULL);
2301 break;
2302
2303 case CPU_DOWN_FAILED:
2304 __cpufreq_add_dev(dev, NULL);
2305 break;
2306 }
2307 }
2308 return NOTIFY_OK;
2309 }
2310
2311 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2312 .notifier_call = cpufreq_cpu_callback,
2313 };
2314
2315 /*********************************************************************
2316 * BOOST *
2317 *********************************************************************/
2318 static int cpufreq_boost_set_sw(int state)
2319 {
2320 struct cpufreq_frequency_table *freq_table;
2321 struct cpufreq_policy *policy;
2322 int ret = -EINVAL;
2323
2324 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2325 freq_table = cpufreq_frequency_get_table(policy->cpu);
2326 if (freq_table) {
2327 ret = cpufreq_frequency_table_cpuinfo(policy,
2328 freq_table);
2329 if (ret) {
2330 pr_err("%s: Policy frequency update failed\n",
2331 __func__);
2332 break;
2333 }
2334 policy->user_policy.max = policy->max;
2335 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2336 }
2337 }
2338
2339 return ret;
2340 }
2341
2342 int cpufreq_boost_trigger_state(int state)
2343 {
2344 unsigned long flags;
2345 int ret = 0;
2346
2347 if (cpufreq_driver->boost_enabled == state)
2348 return 0;
2349
2350 write_lock_irqsave(&cpufreq_driver_lock, flags);
2351 cpufreq_driver->boost_enabled = state;
2352 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2353
2354 ret = cpufreq_driver->set_boost(state);
2355 if (ret) {
2356 write_lock_irqsave(&cpufreq_driver_lock, flags);
2357 cpufreq_driver->boost_enabled = !state;
2358 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2359
2360 pr_err("%s: Cannot %s BOOST\n",
2361 __func__, state ? "enable" : "disable");
2362 }
2363
2364 return ret;
2365 }
2366
2367 int cpufreq_boost_supported(void)
2368 {
2369 if (likely(cpufreq_driver))
2370 return cpufreq_driver->boost_supported;
2371
2372 return 0;
2373 }
2374 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2375
2376 int cpufreq_boost_enabled(void)
2377 {
2378 return cpufreq_driver->boost_enabled;
2379 }
2380 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2381
2382 /*********************************************************************
2383 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2384 *********************************************************************/
2385
2386 /**
2387 * cpufreq_register_driver - register a CPU Frequency driver
2388 * @driver_data: A struct cpufreq_driver containing the values#
2389 * submitted by the CPU Frequency driver.
2390 *
2391 * Registers a CPU Frequency driver to this core code. This code
2392 * returns zero on success, -EBUSY when another driver got here first
2393 * (and isn't unregistered in the meantime).
2394 *
2395 */
2396 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2397 {
2398 unsigned long flags;
2399 int ret;
2400
2401 if (cpufreq_disabled())
2402 return -ENODEV;
2403
2404 if (!driver_data || !driver_data->verify || !driver_data->init ||
2405 !(driver_data->setpolicy || driver_data->target_index ||
2406 driver_data->target) ||
2407 (driver_data->setpolicy && (driver_data->target_index ||
2408 driver_data->target)) ||
2409 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2410 return -EINVAL;
2411
2412 pr_debug("trying to register driver %s\n", driver_data->name);
2413
2414 if (driver_data->setpolicy)
2415 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2416
2417 write_lock_irqsave(&cpufreq_driver_lock, flags);
2418 if (cpufreq_driver) {
2419 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2420 return -EEXIST;
2421 }
2422 cpufreq_driver = driver_data;
2423 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2424
2425 if (cpufreq_boost_supported()) {
2426 /*
2427 * Check if driver provides function to enable boost -
2428 * if not, use cpufreq_boost_set_sw as default
2429 */
2430 if (!cpufreq_driver->set_boost)
2431 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2432
2433 ret = cpufreq_sysfs_create_file(&boost.attr);
2434 if (ret) {
2435 pr_err("%s: cannot register global BOOST sysfs file\n",
2436 __func__);
2437 goto err_null_driver;
2438 }
2439 }
2440
2441 ret = subsys_interface_register(&cpufreq_interface);
2442 if (ret)
2443 goto err_boost_unreg;
2444
2445 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2446 int i;
2447 ret = -ENODEV;
2448
2449 /* check for at least one working CPU */
2450 for (i = 0; i < nr_cpu_ids; i++)
2451 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2452 ret = 0;
2453 break;
2454 }
2455
2456 /* if all ->init() calls failed, unregister */
2457 if (ret) {
2458 pr_debug("no CPU initialized for driver %s\n",
2459 driver_data->name);
2460 goto err_if_unreg;
2461 }
2462 }
2463
2464 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2465 pr_debug("driver %s up and running\n", driver_data->name);
2466
2467 return 0;
2468 err_if_unreg:
2469 subsys_interface_unregister(&cpufreq_interface);
2470 err_boost_unreg:
2471 if (cpufreq_boost_supported())
2472 cpufreq_sysfs_remove_file(&boost.attr);
2473 err_null_driver:
2474 write_lock_irqsave(&cpufreq_driver_lock, flags);
2475 cpufreq_driver = NULL;
2476 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2477 return ret;
2478 }
2479 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2480
2481 /**
2482 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2483 *
2484 * Unregister the current CPUFreq driver. Only call this if you have
2485 * the right to do so, i.e. if you have succeeded in initialising before!
2486 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2487 * currently not initialised.
2488 */
2489 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2490 {
2491 unsigned long flags;
2492
2493 if (!cpufreq_driver || (driver != cpufreq_driver))
2494 return -EINVAL;
2495
2496 pr_debug("unregistering driver %s\n", driver->name);
2497
2498 subsys_interface_unregister(&cpufreq_interface);
2499 if (cpufreq_boost_supported())
2500 cpufreq_sysfs_remove_file(&boost.attr);
2501
2502 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2503
2504 down_write(&cpufreq_rwsem);
2505 write_lock_irqsave(&cpufreq_driver_lock, flags);
2506
2507 cpufreq_driver = NULL;
2508
2509 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2510 up_write(&cpufreq_rwsem);
2511
2512 return 0;
2513 }
2514 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2515
2516 static int __init cpufreq_core_init(void)
2517 {
2518 if (cpufreq_disabled())
2519 return -ENODEV;
2520
2521 cpufreq_global_kobject = kobject_create();
2522 BUG_ON(!cpufreq_global_kobject);
2523
2524 return 0;
2525 }
2526 core_initcall(cpufreq_core_init);