]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge commit 'v2.6.31-rc8' into next
[mirror_ubuntu-jammy-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(struct cpufreq_governor *, cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu) \
69 int lock_policy_rwsem_##mode \
70 (int cpu) \
71 { \
72 int policy_cpu = per_cpu(policy_cpu, cpu); \
73 BUG_ON(policy_cpu == -1); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
75 if (unlikely(!cpu_online(cpu))) { \
76 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 return -1; \
78 } \
79 \
80 return 0; \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89 void unlock_policy_rwsem_read(int cpu)
90 {
91 int policy_cpu = per_cpu(policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97 void unlock_policy_rwsem_write(int cpu)
98 {
99 int policy_cpu = per_cpu(policy_cpu, cpu);
100 BUG_ON(policy_cpu == -1);
101 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy,
108 unsigned int event);
109 static unsigned int __cpufreq_get(unsigned int cpu);
110 static void handle_update(struct work_struct *work);
111
112 /**
113 * Two notifier lists: the "policy" list is involved in the
114 * validation process for a new CPU frequency policy; the
115 * "transition" list for kernel code that needs to handle
116 * changes to devices when the CPU clock speed changes.
117 * The mutex locks both lists.
118 */
119 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
120 static struct srcu_notifier_head cpufreq_transition_notifier_list;
121
122 static bool init_cpufreq_transition_notifier_list_called;
123 static int __init init_cpufreq_transition_notifier_list(void)
124 {
125 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
126 init_cpufreq_transition_notifier_list_called = true;
127 return 0;
128 }
129 pure_initcall(init_cpufreq_transition_notifier_list);
130
131 static LIST_HEAD(cpufreq_governor_list);
132 static DEFINE_MUTEX(cpufreq_governor_mutex);
133
134 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
135 {
136 struct cpufreq_policy *data;
137 unsigned long flags;
138
139 if (cpu >= nr_cpu_ids)
140 goto err_out;
141
142 /* get the cpufreq driver */
143 spin_lock_irqsave(&cpufreq_driver_lock, flags);
144
145 if (!cpufreq_driver)
146 goto err_out_unlock;
147
148 if (!try_module_get(cpufreq_driver->owner))
149 goto err_out_unlock;
150
151
152 /* get the CPU */
153 data = per_cpu(cpufreq_cpu_data, cpu);
154
155 if (!data)
156 goto err_out_put_module;
157
158 if (!kobject_get(&data->kobj))
159 goto err_out_put_module;
160
161 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
162 return data;
163
164 err_out_put_module:
165 module_put(cpufreq_driver->owner);
166 err_out_unlock:
167 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
168 err_out:
169 return NULL;
170 }
171 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
172
173
174 void cpufreq_cpu_put(struct cpufreq_policy *data)
175 {
176 kobject_put(&data->kobj);
177 module_put(cpufreq_driver->owner);
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
180
181
182 /*********************************************************************
183 * UNIFIED DEBUG HELPERS *
184 *********************************************************************/
185 #ifdef CONFIG_CPU_FREQ_DEBUG
186
187 /* what part(s) of the CPUfreq subsystem are debugged? */
188 static unsigned int debug;
189
190 /* is the debug output ratelimit'ed using printk_ratelimit? User can
191 * set or modify this value.
192 */
193 static unsigned int debug_ratelimit = 1;
194
195 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
196 * loading of a cpufreq driver, temporarily disabled when a new policy
197 * is set, and disabled upon cpufreq driver removal
198 */
199 static unsigned int disable_ratelimit = 1;
200 static DEFINE_SPINLOCK(disable_ratelimit_lock);
201
202 static void cpufreq_debug_enable_ratelimit(void)
203 {
204 unsigned long flags;
205
206 spin_lock_irqsave(&disable_ratelimit_lock, flags);
207 if (disable_ratelimit)
208 disable_ratelimit--;
209 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
210 }
211
212 static void cpufreq_debug_disable_ratelimit(void)
213 {
214 unsigned long flags;
215
216 spin_lock_irqsave(&disable_ratelimit_lock, flags);
217 disable_ratelimit++;
218 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
219 }
220
221 void cpufreq_debug_printk(unsigned int type, const char *prefix,
222 const char *fmt, ...)
223 {
224 char s[256];
225 va_list args;
226 unsigned int len;
227 unsigned long flags;
228
229 WARN_ON(!prefix);
230 if (type & debug) {
231 spin_lock_irqsave(&disable_ratelimit_lock, flags);
232 if (!disable_ratelimit && debug_ratelimit
233 && !printk_ratelimit()) {
234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235 return;
236 }
237 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
238
239 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
240
241 va_start(args, fmt);
242 len += vsnprintf(&s[len], (256 - len), fmt, args);
243 va_end(args);
244
245 printk(s);
246
247 WARN_ON(len < 5);
248 }
249 }
250 EXPORT_SYMBOL(cpufreq_debug_printk);
251
252
253 module_param(debug, uint, 0644);
254 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
255 " 2 to debug drivers, and 4 to debug governors.");
256
257 module_param(debug_ratelimit, uint, 0644);
258 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
259 " set to 0 to disable ratelimiting.");
260
261 #else /* !CONFIG_CPU_FREQ_DEBUG */
262
263 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
264 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
265
266 #endif /* CONFIG_CPU_FREQ_DEBUG */
267
268
269 /*********************************************************************
270 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
271 *********************************************************************/
272
273 /**
274 * adjust_jiffies - adjust the system "loops_per_jiffy"
275 *
276 * This function alters the system "loops_per_jiffy" for the clock
277 * speed change. Note that loops_per_jiffy cannot be updated on SMP
278 * systems as each CPU might be scaled differently. So, use the arch
279 * per-CPU loops_per_jiffy value wherever possible.
280 */
281 #ifndef CONFIG_SMP
282 static unsigned long l_p_j_ref;
283 static unsigned int l_p_j_ref_freq;
284
285 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
286 {
287 if (ci->flags & CPUFREQ_CONST_LOOPS)
288 return;
289
290 if (!l_p_j_ref_freq) {
291 l_p_j_ref = loops_per_jiffy;
292 l_p_j_ref_freq = ci->old;
293 dprintk("saving %lu as reference value for loops_per_jiffy; "
294 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
295 }
296 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
297 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
298 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
299 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
300 ci->new);
301 dprintk("scaling loops_per_jiffy to %lu "
302 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
303 }
304 }
305 #else
306 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
307 {
308 return;
309 }
310 #endif
311
312
313 /**
314 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
315 * on frequency transition.
316 *
317 * This function calls the transition notifiers and the "adjust_jiffies"
318 * function. It is called twice on all CPU frequency changes that have
319 * external effects.
320 */
321 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
322 {
323 struct cpufreq_policy *policy;
324
325 BUG_ON(irqs_disabled());
326
327 freqs->flags = cpufreq_driver->flags;
328 dprintk("notification %u of frequency transition to %u kHz\n",
329 state, freqs->new);
330
331 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
332 switch (state) {
333
334 case CPUFREQ_PRECHANGE:
335 /* detect if the driver reported a value as "old frequency"
336 * which is not equal to what the cpufreq core thinks is
337 * "old frequency".
338 */
339 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
340 if ((policy) && (policy->cpu == freqs->cpu) &&
341 (policy->cur) && (policy->cur != freqs->old)) {
342 dprintk("Warning: CPU frequency is"
343 " %u, cpufreq assumed %u kHz.\n",
344 freqs->old, policy->cur);
345 freqs->old = policy->cur;
346 }
347 }
348 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349 CPUFREQ_PRECHANGE, freqs);
350 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
351 break;
352
353 case CPUFREQ_POSTCHANGE:
354 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
355 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
356 CPUFREQ_POSTCHANGE, freqs);
357 if (likely(policy) && likely(policy->cpu == freqs->cpu))
358 policy->cur = freqs->new;
359 break;
360 }
361 }
362 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
363
364
365
366 /*********************************************************************
367 * SYSFS INTERFACE *
368 *********************************************************************/
369
370 static struct cpufreq_governor *__find_governor(const char *str_governor)
371 {
372 struct cpufreq_governor *t;
373
374 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
375 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
376 return t;
377
378 return NULL;
379 }
380
381 /**
382 * cpufreq_parse_governor - parse a governor string
383 */
384 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
385 struct cpufreq_governor **governor)
386 {
387 int err = -EINVAL;
388
389 if (!cpufreq_driver)
390 goto out;
391
392 if (cpufreq_driver->setpolicy) {
393 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
394 *policy = CPUFREQ_POLICY_PERFORMANCE;
395 err = 0;
396 } else if (!strnicmp(str_governor, "powersave",
397 CPUFREQ_NAME_LEN)) {
398 *policy = CPUFREQ_POLICY_POWERSAVE;
399 err = 0;
400 }
401 } else if (cpufreq_driver->target) {
402 struct cpufreq_governor *t;
403
404 mutex_lock(&cpufreq_governor_mutex);
405
406 t = __find_governor(str_governor);
407
408 if (t == NULL) {
409 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
410 str_governor);
411
412 if (name) {
413 int ret;
414
415 mutex_unlock(&cpufreq_governor_mutex);
416 ret = request_module("%s", name);
417 mutex_lock(&cpufreq_governor_mutex);
418
419 if (ret == 0)
420 t = __find_governor(str_governor);
421 }
422
423 kfree(name);
424 }
425
426 if (t != NULL) {
427 *governor = t;
428 err = 0;
429 }
430
431 mutex_unlock(&cpufreq_governor_mutex);
432 }
433 out:
434 return err;
435 }
436
437
438 /**
439 * cpufreq_per_cpu_attr_read() / show_##file_name() -
440 * print out cpufreq information
441 *
442 * Write out information from cpufreq_driver->policy[cpu]; object must be
443 * "unsigned int".
444 */
445
446 #define show_one(file_name, object) \
447 static ssize_t show_##file_name \
448 (struct cpufreq_policy *policy, char *buf) \
449 { \
450 return sprintf(buf, "%u\n", policy->object); \
451 }
452
453 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
454 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
455 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461 struct cpufreq_policy *policy);
462
463 /**
464 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465 */
466 #define store_one(file_name, object) \
467 static ssize_t store_##file_name \
468 (struct cpufreq_policy *policy, const char *buf, size_t count) \
469 { \
470 unsigned int ret = -EINVAL; \
471 struct cpufreq_policy new_policy; \
472 \
473 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
474 if (ret) \
475 return -EINVAL; \
476 \
477 ret = sscanf(buf, "%u", &new_policy.object); \
478 if (ret != 1) \
479 return -EINVAL; \
480 \
481 ret = __cpufreq_set_policy(policy, &new_policy); \
482 policy->user_policy.object = policy->object; \
483 \
484 return ret ? ret : count; \
485 }
486
487 store_one(scaling_min_freq, min);
488 store_one(scaling_max_freq, max);
489
490 /**
491 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492 */
493 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
494 char *buf)
495 {
496 unsigned int cur_freq = __cpufreq_get(policy->cpu);
497 if (!cur_freq)
498 return sprintf(buf, "<unknown>");
499 return sprintf(buf, "%u\n", cur_freq);
500 }
501
502
503 /**
504 * show_scaling_governor - show the current policy for the specified CPU
505 */
506 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
507 {
508 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
509 return sprintf(buf, "powersave\n");
510 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
511 return sprintf(buf, "performance\n");
512 else if (policy->governor)
513 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
514 policy->governor->name);
515 return -EINVAL;
516 }
517
518
519 /**
520 * store_scaling_governor - store policy for the specified CPU
521 */
522 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
523 const char *buf, size_t count)
524 {
525 unsigned int ret = -EINVAL;
526 char str_governor[16];
527 struct cpufreq_policy new_policy;
528
529 ret = cpufreq_get_policy(&new_policy, policy->cpu);
530 if (ret)
531 return ret;
532
533 ret = sscanf(buf, "%15s", str_governor);
534 if (ret != 1)
535 return -EINVAL;
536
537 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538 &new_policy.governor))
539 return -EINVAL;
540
541 /* Do not use cpufreq_set_policy here or the user_policy.max
542 will be wrongly overridden */
543 ret = __cpufreq_set_policy(policy, &new_policy);
544
545 policy->user_policy.policy = policy->policy;
546 policy->user_policy.governor = policy->governor;
547
548 if (ret)
549 return ret;
550 else
551 return count;
552 }
553
554 /**
555 * show_scaling_driver - show the cpufreq driver currently loaded
556 */
557 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
558 {
559 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560 }
561
562 /**
563 * show_scaling_available_governors - show the available CPUfreq governors
564 */
565 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
566 char *buf)
567 {
568 ssize_t i = 0;
569 struct cpufreq_governor *t;
570
571 if (!cpufreq_driver->target) {
572 i += sprintf(buf, "performance powersave");
573 goto out;
574 }
575
576 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
578 - (CPUFREQ_NAME_LEN + 2)))
579 goto out;
580 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
581 }
582 out:
583 i += sprintf(&buf[i], "\n");
584 return i;
585 }
586
587 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
588 {
589 ssize_t i = 0;
590 unsigned int cpu;
591
592 for_each_cpu(cpu, mask) {
593 if (i)
594 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
596 if (i >= (PAGE_SIZE - 5))
597 break;
598 }
599 i += sprintf(&buf[i], "\n");
600 return i;
601 }
602
603 /**
604 * show_related_cpus - show the CPUs affected by each transition even if
605 * hw coordination is in use
606 */
607 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
608 {
609 if (cpumask_empty(policy->related_cpus))
610 return show_cpus(policy->cpus, buf);
611 return show_cpus(policy->related_cpus, buf);
612 }
613
614 /**
615 * show_affected_cpus - show the CPUs affected by each transition
616 */
617 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
618 {
619 return show_cpus(policy->cpus, buf);
620 }
621
622 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
623 const char *buf, size_t count)
624 {
625 unsigned int freq = 0;
626 unsigned int ret;
627
628 if (!policy->governor || !policy->governor->store_setspeed)
629 return -EINVAL;
630
631 ret = sscanf(buf, "%u", &freq);
632 if (ret != 1)
633 return -EINVAL;
634
635 policy->governor->store_setspeed(policy, freq);
636
637 return count;
638 }
639
640 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
641 {
642 if (!policy->governor || !policy->governor->show_setspeed)
643 return sprintf(buf, "<unsupported>\n");
644
645 return policy->governor->show_setspeed(policy, buf);
646 }
647
648 #define define_one_ro(_name) \
649 static struct freq_attr _name = \
650 __ATTR(_name, 0444, show_##_name, NULL)
651
652 #define define_one_ro0400(_name) \
653 static struct freq_attr _name = \
654 __ATTR(_name, 0400, show_##_name, NULL)
655
656 #define define_one_rw(_name) \
657 static struct freq_attr _name = \
658 __ATTR(_name, 0644, show_##_name, store_##_name)
659
660 define_one_ro0400(cpuinfo_cur_freq);
661 define_one_ro(cpuinfo_min_freq);
662 define_one_ro(cpuinfo_max_freq);
663 define_one_ro(cpuinfo_transition_latency);
664 define_one_ro(scaling_available_governors);
665 define_one_ro(scaling_driver);
666 define_one_ro(scaling_cur_freq);
667 define_one_ro(related_cpus);
668 define_one_ro(affected_cpus);
669 define_one_rw(scaling_min_freq);
670 define_one_rw(scaling_max_freq);
671 define_one_rw(scaling_governor);
672 define_one_rw(scaling_setspeed);
673
674 static struct attribute *default_attrs[] = {
675 &cpuinfo_min_freq.attr,
676 &cpuinfo_max_freq.attr,
677 &cpuinfo_transition_latency.attr,
678 &scaling_min_freq.attr,
679 &scaling_max_freq.attr,
680 &affected_cpus.attr,
681 &related_cpus.attr,
682 &scaling_governor.attr,
683 &scaling_driver.attr,
684 &scaling_available_governors.attr,
685 &scaling_setspeed.attr,
686 NULL
687 };
688
689 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
690 #define to_attr(a) container_of(a, struct freq_attr, attr)
691
692 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
693 {
694 struct cpufreq_policy *policy = to_policy(kobj);
695 struct freq_attr *fattr = to_attr(attr);
696 ssize_t ret = -EINVAL;
697 policy = cpufreq_cpu_get(policy->cpu);
698 if (!policy)
699 goto no_policy;
700
701 if (lock_policy_rwsem_read(policy->cpu) < 0)
702 goto fail;
703
704 if (fattr->show)
705 ret = fattr->show(policy, buf);
706 else
707 ret = -EIO;
708
709 unlock_policy_rwsem_read(policy->cpu);
710 fail:
711 cpufreq_cpu_put(policy);
712 no_policy:
713 return ret;
714 }
715
716 static ssize_t store(struct kobject *kobj, struct attribute *attr,
717 const char *buf, size_t count)
718 {
719 struct cpufreq_policy *policy = to_policy(kobj);
720 struct freq_attr *fattr = to_attr(attr);
721 ssize_t ret = -EINVAL;
722 policy = cpufreq_cpu_get(policy->cpu);
723 if (!policy)
724 goto no_policy;
725
726 if (lock_policy_rwsem_write(policy->cpu) < 0)
727 goto fail;
728
729 if (fattr->store)
730 ret = fattr->store(policy, buf, count);
731 else
732 ret = -EIO;
733
734 unlock_policy_rwsem_write(policy->cpu);
735 fail:
736 cpufreq_cpu_put(policy);
737 no_policy:
738 return ret;
739 }
740
741 static void cpufreq_sysfs_release(struct kobject *kobj)
742 {
743 struct cpufreq_policy *policy = to_policy(kobj);
744 dprintk("last reference is dropped\n");
745 complete(&policy->kobj_unregister);
746 }
747
748 static struct sysfs_ops sysfs_ops = {
749 .show = show,
750 .store = store,
751 };
752
753 static struct kobj_type ktype_cpufreq = {
754 .sysfs_ops = &sysfs_ops,
755 .default_attrs = default_attrs,
756 .release = cpufreq_sysfs_release,
757 };
758
759
760 /**
761 * cpufreq_add_dev - add a CPU device
762 *
763 * Adds the cpufreq interface for a CPU device.
764 *
765 * The Oracle says: try running cpufreq registration/unregistration concurrently
766 * with with cpu hotplugging and all hell will break loose. Tried to clean this
767 * mess up, but more thorough testing is needed. - Mathieu
768 */
769 static int cpufreq_add_dev(struct sys_device *sys_dev)
770 {
771 unsigned int cpu = sys_dev->id;
772 int ret = 0;
773 struct cpufreq_policy new_policy;
774 struct cpufreq_policy *policy;
775 struct freq_attr **drv_attr;
776 struct sys_device *cpu_sys_dev;
777 unsigned long flags;
778 unsigned int j;
779
780 if (cpu_is_offline(cpu))
781 return 0;
782
783 cpufreq_debug_disable_ratelimit();
784 dprintk("adding CPU %u\n", cpu);
785
786 #ifdef CONFIG_SMP
787 /* check whether a different CPU already registered this
788 * CPU because it is in the same boat. */
789 policy = cpufreq_cpu_get(cpu);
790 if (unlikely(policy)) {
791 cpufreq_cpu_put(policy);
792 cpufreq_debug_enable_ratelimit();
793 return 0;
794 }
795 #endif
796
797 if (!try_module_get(cpufreq_driver->owner)) {
798 ret = -EINVAL;
799 goto module_out;
800 }
801
802 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
803 if (!policy) {
804 ret = -ENOMEM;
805 goto nomem_out;
806 }
807 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) {
808 ret = -ENOMEM;
809 goto err_free_policy;
810 }
811 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) {
812 ret = -ENOMEM;
813 goto err_free_cpumask;
814 }
815
816 policy->cpu = cpu;
817 cpumask_copy(policy->cpus, cpumask_of(cpu));
818
819 /* Initially set CPU itself as the policy_cpu */
820 per_cpu(policy_cpu, cpu) = cpu;
821 ret = (lock_policy_rwsem_write(cpu) < 0);
822 WARN_ON(ret);
823
824 init_completion(&policy->kobj_unregister);
825 INIT_WORK(&policy->update, handle_update);
826
827 /* Set governor before ->init, so that driver could check it */
828 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
829 /* call driver. From then on the cpufreq must be able
830 * to accept all calls to ->verify and ->setpolicy for this CPU
831 */
832 ret = cpufreq_driver->init(policy);
833 if (ret) {
834 dprintk("initialization failed\n");
835 goto err_unlock_policy;
836 }
837 policy->user_policy.min = policy->min;
838 policy->user_policy.max = policy->max;
839
840 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
841 CPUFREQ_START, policy);
842
843 #ifdef CONFIG_SMP
844
845 #ifdef CONFIG_HOTPLUG_CPU
846 if (per_cpu(cpufreq_cpu_governor, cpu)) {
847 policy->governor = per_cpu(cpufreq_cpu_governor, cpu);
848 dprintk("Restoring governor %s for cpu %d\n",
849 policy->governor->name, cpu);
850 }
851 #endif
852
853 for_each_cpu(j, policy->cpus) {
854 struct cpufreq_policy *managed_policy;
855
856 if (cpu == j)
857 continue;
858
859 /* Check for existing affected CPUs.
860 * They may not be aware of it due to CPU Hotplug.
861 * cpufreq_cpu_put is called when the device is removed
862 * in __cpufreq_remove_dev()
863 */
864 managed_policy = cpufreq_cpu_get(j);
865 if (unlikely(managed_policy)) {
866
867 /* Set proper policy_cpu */
868 unlock_policy_rwsem_write(cpu);
869 per_cpu(policy_cpu, cpu) = managed_policy->cpu;
870
871 if (lock_policy_rwsem_write(cpu) < 0) {
872 /* Should not go through policy unlock path */
873 if (cpufreq_driver->exit)
874 cpufreq_driver->exit(policy);
875 ret = -EBUSY;
876 cpufreq_cpu_put(managed_policy);
877 goto err_free_cpumask;
878 }
879
880 spin_lock_irqsave(&cpufreq_driver_lock, flags);
881 cpumask_copy(managed_policy->cpus, policy->cpus);
882 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
883 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
884
885 dprintk("CPU already managed, adding link\n");
886 ret = sysfs_create_link(&sys_dev->kobj,
887 &managed_policy->kobj,
888 "cpufreq");
889 if (ret)
890 cpufreq_cpu_put(managed_policy);
891 /*
892 * Success. We only needed to be added to the mask.
893 * Call driver->exit() because only the cpu parent of
894 * the kobj needed to call init().
895 */
896 goto out_driver_exit; /* call driver->exit() */
897 }
898 }
899 #endif
900 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
901
902 /* prepare interface data */
903 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &sys_dev->kobj,
904 "cpufreq");
905 if (ret)
906 goto out_driver_exit;
907
908 /* set up files for this cpu device */
909 drv_attr = cpufreq_driver->attr;
910 while ((drv_attr) && (*drv_attr)) {
911 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
912 if (ret)
913 goto err_out_kobj_put;
914 drv_attr++;
915 }
916 if (cpufreq_driver->get) {
917 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
918 if (ret)
919 goto err_out_kobj_put;
920 }
921 if (cpufreq_driver->target) {
922 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
923 if (ret)
924 goto err_out_kobj_put;
925 }
926
927 spin_lock_irqsave(&cpufreq_driver_lock, flags);
928 for_each_cpu(j, policy->cpus) {
929 if (!cpu_online(j))
930 continue;
931 per_cpu(cpufreq_cpu_data, j) = policy;
932 per_cpu(policy_cpu, j) = policy->cpu;
933 }
934 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
935
936 /* symlink affected CPUs */
937 for_each_cpu(j, policy->cpus) {
938 struct cpufreq_policy *managed_policy;
939
940 if (j == cpu)
941 continue;
942 if (!cpu_online(j))
943 continue;
944
945 dprintk("CPU %u already managed, adding link\n", j);
946 managed_policy = cpufreq_cpu_get(cpu);
947 cpu_sys_dev = get_cpu_sysdev(j);
948 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
949 "cpufreq");
950 if (ret) {
951 cpufreq_cpu_put(managed_policy);
952 goto err_out_unregister;
953 }
954 }
955
956 policy->governor = NULL; /* to assure that the starting sequence is
957 * run in cpufreq_set_policy */
958
959 /* set default policy */
960 ret = __cpufreq_set_policy(policy, &new_policy);
961 policy->user_policy.policy = policy->policy;
962 policy->user_policy.governor = policy->governor;
963
964 if (ret) {
965 dprintk("setting policy failed\n");
966 goto err_out_unregister;
967 }
968
969 unlock_policy_rwsem_write(cpu);
970
971 kobject_uevent(&policy->kobj, KOBJ_ADD);
972 module_put(cpufreq_driver->owner);
973 dprintk("initialization complete\n");
974 cpufreq_debug_enable_ratelimit();
975
976 return 0;
977
978
979 err_out_unregister:
980 spin_lock_irqsave(&cpufreq_driver_lock, flags);
981 for_each_cpu(j, policy->cpus)
982 per_cpu(cpufreq_cpu_data, j) = NULL;
983 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
984
985 err_out_kobj_put:
986 kobject_put(&policy->kobj);
987 wait_for_completion(&policy->kobj_unregister);
988
989 out_driver_exit:
990 if (cpufreq_driver->exit)
991 cpufreq_driver->exit(policy);
992
993 err_unlock_policy:
994 unlock_policy_rwsem_write(cpu);
995 err_free_cpumask:
996 free_cpumask_var(policy->cpus);
997 err_free_policy:
998 kfree(policy);
999 nomem_out:
1000 module_put(cpufreq_driver->owner);
1001 module_out:
1002 cpufreq_debug_enable_ratelimit();
1003 return ret;
1004 }
1005
1006
1007 /**
1008 * __cpufreq_remove_dev - remove a CPU device
1009 *
1010 * Removes the cpufreq interface for a CPU device.
1011 * Caller should already have policy_rwsem in write mode for this CPU.
1012 * This routine frees the rwsem before returning.
1013 */
1014 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1015 {
1016 unsigned int cpu = sys_dev->id;
1017 unsigned long flags;
1018 struct cpufreq_policy *data;
1019 #ifdef CONFIG_SMP
1020 struct sys_device *cpu_sys_dev;
1021 unsigned int j;
1022 #endif
1023
1024 cpufreq_debug_disable_ratelimit();
1025 dprintk("unregistering CPU %u\n", cpu);
1026
1027 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1028 data = per_cpu(cpufreq_cpu_data, cpu);
1029
1030 if (!data) {
1031 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1032 cpufreq_debug_enable_ratelimit();
1033 unlock_policy_rwsem_write(cpu);
1034 return -EINVAL;
1035 }
1036 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1037
1038
1039 #ifdef CONFIG_SMP
1040 /* if this isn't the CPU which is the parent of the kobj, we
1041 * only need to unlink, put and exit
1042 */
1043 if (unlikely(cpu != data->cpu)) {
1044 dprintk("removing link\n");
1045 cpumask_clear_cpu(cpu, data->cpus);
1046 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1047 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1048 cpufreq_cpu_put(data);
1049 cpufreq_debug_enable_ratelimit();
1050 unlock_policy_rwsem_write(cpu);
1051 return 0;
1052 }
1053 #endif
1054
1055 #ifdef CONFIG_SMP
1056
1057 #ifdef CONFIG_HOTPLUG_CPU
1058 per_cpu(cpufreq_cpu_governor, cpu) = data->governor;
1059 #endif
1060
1061 /* if we have other CPUs still registered, we need to unlink them,
1062 * or else wait_for_completion below will lock up. Clean the
1063 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1064 * the sysfs links afterwards.
1065 */
1066 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1067 for_each_cpu(j, data->cpus) {
1068 if (j == cpu)
1069 continue;
1070 per_cpu(cpufreq_cpu_data, j) = NULL;
1071 }
1072 }
1073
1074 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1075
1076 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1077 for_each_cpu(j, data->cpus) {
1078 if (j == cpu)
1079 continue;
1080 dprintk("removing link for cpu %u\n", j);
1081 #ifdef CONFIG_HOTPLUG_CPU
1082 per_cpu(cpufreq_cpu_governor, j) = data->governor;
1083 #endif
1084 cpu_sys_dev = get_cpu_sysdev(j);
1085 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1086 cpufreq_cpu_put(data);
1087 }
1088 }
1089 #else
1090 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1091 #endif
1092
1093 if (cpufreq_driver->target)
1094 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1095
1096 kobject_put(&data->kobj);
1097
1098 /* we need to make sure that the underlying kobj is actually
1099 * not referenced anymore by anybody before we proceed with
1100 * unloading.
1101 */
1102 dprintk("waiting for dropping of refcount\n");
1103 wait_for_completion(&data->kobj_unregister);
1104 dprintk("wait complete\n");
1105
1106 if (cpufreq_driver->exit)
1107 cpufreq_driver->exit(data);
1108
1109 unlock_policy_rwsem_write(cpu);
1110
1111 free_cpumask_var(data->related_cpus);
1112 free_cpumask_var(data->cpus);
1113 kfree(data);
1114 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1115
1116 cpufreq_debug_enable_ratelimit();
1117 return 0;
1118 }
1119
1120
1121 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1122 {
1123 unsigned int cpu = sys_dev->id;
1124 int retval;
1125
1126 if (cpu_is_offline(cpu))
1127 return 0;
1128
1129 if (unlikely(lock_policy_rwsem_write(cpu)))
1130 BUG();
1131
1132 retval = __cpufreq_remove_dev(sys_dev);
1133 return retval;
1134 }
1135
1136
1137 static void handle_update(struct work_struct *work)
1138 {
1139 struct cpufreq_policy *policy =
1140 container_of(work, struct cpufreq_policy, update);
1141 unsigned int cpu = policy->cpu;
1142 dprintk("handle_update for cpu %u called\n", cpu);
1143 cpufreq_update_policy(cpu);
1144 }
1145
1146 /**
1147 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1148 * @cpu: cpu number
1149 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1150 * @new_freq: CPU frequency the CPU actually runs at
1151 *
1152 * We adjust to current frequency first, and need to clean up later.
1153 * So either call to cpufreq_update_policy() or schedule handle_update()).
1154 */
1155 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1156 unsigned int new_freq)
1157 {
1158 struct cpufreq_freqs freqs;
1159
1160 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1161 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1162
1163 freqs.cpu = cpu;
1164 freqs.old = old_freq;
1165 freqs.new = new_freq;
1166 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1167 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1168 }
1169
1170
1171 /**
1172 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1173 * @cpu: CPU number
1174 *
1175 * This is the last known freq, without actually getting it from the driver.
1176 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1177 */
1178 unsigned int cpufreq_quick_get(unsigned int cpu)
1179 {
1180 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1181 unsigned int ret_freq = 0;
1182
1183 if (policy) {
1184 ret_freq = policy->cur;
1185 cpufreq_cpu_put(policy);
1186 }
1187
1188 return ret_freq;
1189 }
1190 EXPORT_SYMBOL(cpufreq_quick_get);
1191
1192
1193 static unsigned int __cpufreq_get(unsigned int cpu)
1194 {
1195 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1196 unsigned int ret_freq = 0;
1197
1198 if (!cpufreq_driver->get)
1199 return ret_freq;
1200
1201 ret_freq = cpufreq_driver->get(cpu);
1202
1203 if (ret_freq && policy->cur &&
1204 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1205 /* verify no discrepancy between actual and
1206 saved value exists */
1207 if (unlikely(ret_freq != policy->cur)) {
1208 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1209 schedule_work(&policy->update);
1210 }
1211 }
1212
1213 return ret_freq;
1214 }
1215
1216 /**
1217 * cpufreq_get - get the current CPU frequency (in kHz)
1218 * @cpu: CPU number
1219 *
1220 * Get the CPU current (static) CPU frequency
1221 */
1222 unsigned int cpufreq_get(unsigned int cpu)
1223 {
1224 unsigned int ret_freq = 0;
1225 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1226
1227 if (!policy)
1228 goto out;
1229
1230 if (unlikely(lock_policy_rwsem_read(cpu)))
1231 goto out_policy;
1232
1233 ret_freq = __cpufreq_get(cpu);
1234
1235 unlock_policy_rwsem_read(cpu);
1236
1237 out_policy:
1238 cpufreq_cpu_put(policy);
1239 out:
1240 return ret_freq;
1241 }
1242 EXPORT_SYMBOL(cpufreq_get);
1243
1244
1245 /**
1246 * cpufreq_suspend - let the low level driver prepare for suspend
1247 */
1248
1249 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1250 {
1251 int ret = 0;
1252
1253 #ifdef __powerpc__
1254 int cpu = sysdev->id;
1255 unsigned int cur_freq = 0;
1256 struct cpufreq_policy *cpu_policy;
1257
1258 dprintk("suspending cpu %u\n", cpu);
1259
1260 /*
1261 * This whole bogosity is here because Powerbooks are made of fail.
1262 * No sane platform should need any of the code below to be run.
1263 * (it's entirely the wrong thing to do, as driver->get may
1264 * reenable interrupts on some architectures).
1265 */
1266
1267 if (!cpu_online(cpu))
1268 return 0;
1269
1270 /* we may be lax here as interrupts are off. Nonetheless
1271 * we need to grab the correct cpu policy, as to check
1272 * whether we really run on this CPU.
1273 */
1274
1275 cpu_policy = cpufreq_cpu_get(cpu);
1276 if (!cpu_policy)
1277 return -EINVAL;
1278
1279 /* only handle each CPU group once */
1280 if (unlikely(cpu_policy->cpu != cpu))
1281 goto out;
1282
1283 if (cpufreq_driver->suspend) {
1284 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1285 if (ret) {
1286 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1287 "step on CPU %u\n", cpu_policy->cpu);
1288 goto out;
1289 }
1290 }
1291
1292 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1293 goto out;
1294
1295 if (cpufreq_driver->get)
1296 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1297
1298 if (!cur_freq || !cpu_policy->cur) {
1299 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1300 "frequency is what timing core thinks it is.\n");
1301 goto out;
1302 }
1303
1304 if (unlikely(cur_freq != cpu_policy->cur)) {
1305 struct cpufreq_freqs freqs;
1306
1307 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1308 dprintk("Warning: CPU frequency is %u, "
1309 "cpufreq assumed %u kHz.\n",
1310 cur_freq, cpu_policy->cur);
1311
1312 freqs.cpu = cpu;
1313 freqs.old = cpu_policy->cur;
1314 freqs.new = cur_freq;
1315
1316 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1317 CPUFREQ_SUSPENDCHANGE, &freqs);
1318 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1319
1320 cpu_policy->cur = cur_freq;
1321 }
1322
1323 out:
1324 cpufreq_cpu_put(cpu_policy);
1325 #endif /* __powerpc__ */
1326 return ret;
1327 }
1328
1329 /**
1330 * cpufreq_resume - restore proper CPU frequency handling after resume
1331 *
1332 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1333 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1334 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1335 * restored.
1336 */
1337 static int cpufreq_resume(struct sys_device *sysdev)
1338 {
1339 int ret = 0;
1340
1341 #ifdef __powerpc__
1342 int cpu = sysdev->id;
1343 struct cpufreq_policy *cpu_policy;
1344
1345 dprintk("resuming cpu %u\n", cpu);
1346
1347 /* As with the ->suspend method, all the code below is
1348 * only necessary because Powerbooks suck.
1349 * See commit 42d4dc3f4e1e for jokes. */
1350
1351 if (!cpu_online(cpu))
1352 return 0;
1353
1354 /* we may be lax here as interrupts are off. Nonetheless
1355 * we need to grab the correct cpu policy, as to check
1356 * whether we really run on this CPU.
1357 */
1358
1359 cpu_policy = cpufreq_cpu_get(cpu);
1360 if (!cpu_policy)
1361 return -EINVAL;
1362
1363 /* only handle each CPU group once */
1364 if (unlikely(cpu_policy->cpu != cpu))
1365 goto fail;
1366
1367 if (cpufreq_driver->resume) {
1368 ret = cpufreq_driver->resume(cpu_policy);
1369 if (ret) {
1370 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1371 "step on CPU %u\n", cpu_policy->cpu);
1372 goto fail;
1373 }
1374 }
1375
1376 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1377 unsigned int cur_freq = 0;
1378
1379 if (cpufreq_driver->get)
1380 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1381
1382 if (!cur_freq || !cpu_policy->cur) {
1383 printk(KERN_ERR "cpufreq: resume failed to assert "
1384 "current frequency is what timing core "
1385 "thinks it is.\n");
1386 goto out;
1387 }
1388
1389 if (unlikely(cur_freq != cpu_policy->cur)) {
1390 struct cpufreq_freqs freqs;
1391
1392 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1393 dprintk("Warning: CPU frequency "
1394 "is %u, cpufreq assumed %u kHz.\n",
1395 cur_freq, cpu_policy->cur);
1396
1397 freqs.cpu = cpu;
1398 freqs.old = cpu_policy->cur;
1399 freqs.new = cur_freq;
1400
1401 srcu_notifier_call_chain(
1402 &cpufreq_transition_notifier_list,
1403 CPUFREQ_RESUMECHANGE, &freqs);
1404 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1405
1406 cpu_policy->cur = cur_freq;
1407 }
1408 }
1409
1410 out:
1411 schedule_work(&cpu_policy->update);
1412 fail:
1413 cpufreq_cpu_put(cpu_policy);
1414 #endif /* __powerpc__ */
1415 return ret;
1416 }
1417
1418 static struct sysdev_driver cpufreq_sysdev_driver = {
1419 .add = cpufreq_add_dev,
1420 .remove = cpufreq_remove_dev,
1421 .suspend = cpufreq_suspend,
1422 .resume = cpufreq_resume,
1423 };
1424
1425
1426 /*********************************************************************
1427 * NOTIFIER LISTS INTERFACE *
1428 *********************************************************************/
1429
1430 /**
1431 * cpufreq_register_notifier - register a driver with cpufreq
1432 * @nb: notifier function to register
1433 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1434 *
1435 * Add a driver to one of two lists: either a list of drivers that
1436 * are notified about clock rate changes (once before and once after
1437 * the transition), or a list of drivers that are notified about
1438 * changes in cpufreq policy.
1439 *
1440 * This function may sleep, and has the same return conditions as
1441 * blocking_notifier_chain_register.
1442 */
1443 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1444 {
1445 int ret;
1446
1447 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1448
1449 switch (list) {
1450 case CPUFREQ_TRANSITION_NOTIFIER:
1451 ret = srcu_notifier_chain_register(
1452 &cpufreq_transition_notifier_list, nb);
1453 break;
1454 case CPUFREQ_POLICY_NOTIFIER:
1455 ret = blocking_notifier_chain_register(
1456 &cpufreq_policy_notifier_list, nb);
1457 break;
1458 default:
1459 ret = -EINVAL;
1460 }
1461
1462 return ret;
1463 }
1464 EXPORT_SYMBOL(cpufreq_register_notifier);
1465
1466
1467 /**
1468 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1469 * @nb: notifier block to be unregistered
1470 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1471 *
1472 * Remove a driver from the CPU frequency notifier list.
1473 *
1474 * This function may sleep, and has the same return conditions as
1475 * blocking_notifier_chain_unregister.
1476 */
1477 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1478 {
1479 int ret;
1480
1481 switch (list) {
1482 case CPUFREQ_TRANSITION_NOTIFIER:
1483 ret = srcu_notifier_chain_unregister(
1484 &cpufreq_transition_notifier_list, nb);
1485 break;
1486 case CPUFREQ_POLICY_NOTIFIER:
1487 ret = blocking_notifier_chain_unregister(
1488 &cpufreq_policy_notifier_list, nb);
1489 break;
1490 default:
1491 ret = -EINVAL;
1492 }
1493
1494 return ret;
1495 }
1496 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1497
1498
1499 /*********************************************************************
1500 * GOVERNORS *
1501 *********************************************************************/
1502
1503
1504 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1505 unsigned int target_freq,
1506 unsigned int relation)
1507 {
1508 int retval = -EINVAL;
1509
1510 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1511 target_freq, relation);
1512 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1513 retval = cpufreq_driver->target(policy, target_freq, relation);
1514
1515 return retval;
1516 }
1517 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1518
1519 int cpufreq_driver_target(struct cpufreq_policy *policy,
1520 unsigned int target_freq,
1521 unsigned int relation)
1522 {
1523 int ret = -EINVAL;
1524
1525 policy = cpufreq_cpu_get(policy->cpu);
1526 if (!policy)
1527 goto no_policy;
1528
1529 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1530 goto fail;
1531
1532 ret = __cpufreq_driver_target(policy, target_freq, relation);
1533
1534 unlock_policy_rwsem_write(policy->cpu);
1535
1536 fail:
1537 cpufreq_cpu_put(policy);
1538 no_policy:
1539 return ret;
1540 }
1541 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1542
1543 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1544 {
1545 int ret = 0;
1546
1547 policy = cpufreq_cpu_get(policy->cpu);
1548 if (!policy)
1549 return -EINVAL;
1550
1551 if (cpu_online(cpu) && cpufreq_driver->getavg)
1552 ret = cpufreq_driver->getavg(policy, cpu);
1553
1554 cpufreq_cpu_put(policy);
1555 return ret;
1556 }
1557 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1558
1559 /*
1560 * when "event" is CPUFREQ_GOV_LIMITS
1561 */
1562
1563 static int __cpufreq_governor(struct cpufreq_policy *policy,
1564 unsigned int event)
1565 {
1566 int ret;
1567
1568 /* Only must be defined when default governor is known to have latency
1569 restrictions, like e.g. conservative or ondemand.
1570 That this is the case is already ensured in Kconfig
1571 */
1572 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1573 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1574 #else
1575 struct cpufreq_governor *gov = NULL;
1576 #endif
1577
1578 if (policy->governor->max_transition_latency &&
1579 policy->cpuinfo.transition_latency >
1580 policy->governor->max_transition_latency) {
1581 if (!gov)
1582 return -EINVAL;
1583 else {
1584 printk(KERN_WARNING "%s governor failed, too long"
1585 " transition latency of HW, fallback"
1586 " to %s governor\n",
1587 policy->governor->name,
1588 gov->name);
1589 policy->governor = gov;
1590 }
1591 }
1592
1593 if (!try_module_get(policy->governor->owner))
1594 return -EINVAL;
1595
1596 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1597 policy->cpu, event);
1598 ret = policy->governor->governor(policy, event);
1599
1600 /* we keep one module reference alive for
1601 each CPU governed by this CPU */
1602 if ((event != CPUFREQ_GOV_START) || ret)
1603 module_put(policy->governor->owner);
1604 if ((event == CPUFREQ_GOV_STOP) && !ret)
1605 module_put(policy->governor->owner);
1606
1607 return ret;
1608 }
1609
1610
1611 int cpufreq_register_governor(struct cpufreq_governor *governor)
1612 {
1613 int err;
1614
1615 if (!governor)
1616 return -EINVAL;
1617
1618 mutex_lock(&cpufreq_governor_mutex);
1619
1620 err = -EBUSY;
1621 if (__find_governor(governor->name) == NULL) {
1622 err = 0;
1623 list_add(&governor->governor_list, &cpufreq_governor_list);
1624 }
1625
1626 mutex_unlock(&cpufreq_governor_mutex);
1627 return err;
1628 }
1629 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1630
1631
1632 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1633 {
1634 if (!governor)
1635 return;
1636
1637 mutex_lock(&cpufreq_governor_mutex);
1638 list_del(&governor->governor_list);
1639 mutex_unlock(&cpufreq_governor_mutex);
1640 return;
1641 }
1642 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1643
1644
1645
1646 /*********************************************************************
1647 * POLICY INTERFACE *
1648 *********************************************************************/
1649
1650 /**
1651 * cpufreq_get_policy - get the current cpufreq_policy
1652 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1653 * is written
1654 *
1655 * Reads the current cpufreq policy.
1656 */
1657 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1658 {
1659 struct cpufreq_policy *cpu_policy;
1660 if (!policy)
1661 return -EINVAL;
1662
1663 cpu_policy = cpufreq_cpu_get(cpu);
1664 if (!cpu_policy)
1665 return -EINVAL;
1666
1667 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1668
1669 cpufreq_cpu_put(cpu_policy);
1670 return 0;
1671 }
1672 EXPORT_SYMBOL(cpufreq_get_policy);
1673
1674
1675 /*
1676 * data : current policy.
1677 * policy : policy to be set.
1678 */
1679 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1680 struct cpufreq_policy *policy)
1681 {
1682 int ret = 0;
1683
1684 cpufreq_debug_disable_ratelimit();
1685 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1686 policy->min, policy->max);
1687
1688 memcpy(&policy->cpuinfo, &data->cpuinfo,
1689 sizeof(struct cpufreq_cpuinfo));
1690
1691 if (policy->min > data->max || policy->max < data->min) {
1692 ret = -EINVAL;
1693 goto error_out;
1694 }
1695
1696 /* verify the cpu speed can be set within this limit */
1697 ret = cpufreq_driver->verify(policy);
1698 if (ret)
1699 goto error_out;
1700
1701 /* adjust if necessary - all reasons */
1702 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1703 CPUFREQ_ADJUST, policy);
1704
1705 /* adjust if necessary - hardware incompatibility*/
1706 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1707 CPUFREQ_INCOMPATIBLE, policy);
1708
1709 /* verify the cpu speed can be set within this limit,
1710 which might be different to the first one */
1711 ret = cpufreq_driver->verify(policy);
1712 if (ret)
1713 goto error_out;
1714
1715 /* notification of the new policy */
1716 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1717 CPUFREQ_NOTIFY, policy);
1718
1719 data->min = policy->min;
1720 data->max = policy->max;
1721
1722 dprintk("new min and max freqs are %u - %u kHz\n",
1723 data->min, data->max);
1724
1725 if (cpufreq_driver->setpolicy) {
1726 data->policy = policy->policy;
1727 dprintk("setting range\n");
1728 ret = cpufreq_driver->setpolicy(policy);
1729 } else {
1730 if (policy->governor != data->governor) {
1731 /* save old, working values */
1732 struct cpufreq_governor *old_gov = data->governor;
1733
1734 dprintk("governor switch\n");
1735
1736 /* end old governor */
1737 if (data->governor)
1738 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1739
1740 /* start new governor */
1741 data->governor = policy->governor;
1742 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1743 /* new governor failed, so re-start old one */
1744 dprintk("starting governor %s failed\n",
1745 data->governor->name);
1746 if (old_gov) {
1747 data->governor = old_gov;
1748 __cpufreq_governor(data,
1749 CPUFREQ_GOV_START);
1750 }
1751 ret = -EINVAL;
1752 goto error_out;
1753 }
1754 /* might be a policy change, too, so fall through */
1755 }
1756 dprintk("governor: change or update limits\n");
1757 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1758 }
1759
1760 error_out:
1761 cpufreq_debug_enable_ratelimit();
1762 return ret;
1763 }
1764
1765 /**
1766 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1767 * @cpu: CPU which shall be re-evaluated
1768 *
1769 * Usefull for policy notifiers which have different necessities
1770 * at different times.
1771 */
1772 int cpufreq_update_policy(unsigned int cpu)
1773 {
1774 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1775 struct cpufreq_policy policy;
1776 int ret;
1777
1778 if (!data) {
1779 ret = -ENODEV;
1780 goto no_policy;
1781 }
1782
1783 if (unlikely(lock_policy_rwsem_write(cpu))) {
1784 ret = -EINVAL;
1785 goto fail;
1786 }
1787
1788 dprintk("updating policy for CPU %u\n", cpu);
1789 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1790 policy.min = data->user_policy.min;
1791 policy.max = data->user_policy.max;
1792 policy.policy = data->user_policy.policy;
1793 policy.governor = data->user_policy.governor;
1794
1795 /* BIOS might change freq behind our back
1796 -> ask driver for current freq and notify governors about a change */
1797 if (cpufreq_driver->get) {
1798 policy.cur = cpufreq_driver->get(cpu);
1799 if (!data->cur) {
1800 dprintk("Driver did not initialize current freq");
1801 data->cur = policy.cur;
1802 } else {
1803 if (data->cur != policy.cur)
1804 cpufreq_out_of_sync(cpu, data->cur,
1805 policy.cur);
1806 }
1807 }
1808
1809 ret = __cpufreq_set_policy(data, &policy);
1810
1811 unlock_policy_rwsem_write(cpu);
1812
1813 fail:
1814 cpufreq_cpu_put(data);
1815 no_policy:
1816 return ret;
1817 }
1818 EXPORT_SYMBOL(cpufreq_update_policy);
1819
1820 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1821 unsigned long action, void *hcpu)
1822 {
1823 unsigned int cpu = (unsigned long)hcpu;
1824 struct sys_device *sys_dev;
1825
1826 sys_dev = get_cpu_sysdev(cpu);
1827 if (sys_dev) {
1828 switch (action) {
1829 case CPU_ONLINE:
1830 case CPU_ONLINE_FROZEN:
1831 cpufreq_add_dev(sys_dev);
1832 break;
1833 case CPU_DOWN_PREPARE:
1834 case CPU_DOWN_PREPARE_FROZEN:
1835 if (unlikely(lock_policy_rwsem_write(cpu)))
1836 BUG();
1837
1838 __cpufreq_remove_dev(sys_dev);
1839 break;
1840 case CPU_DOWN_FAILED:
1841 case CPU_DOWN_FAILED_FROZEN:
1842 cpufreq_add_dev(sys_dev);
1843 break;
1844 }
1845 }
1846 return NOTIFY_OK;
1847 }
1848
1849 static struct notifier_block __refdata cpufreq_cpu_notifier =
1850 {
1851 .notifier_call = cpufreq_cpu_callback,
1852 };
1853
1854 /*********************************************************************
1855 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1856 *********************************************************************/
1857
1858 /**
1859 * cpufreq_register_driver - register a CPU Frequency driver
1860 * @driver_data: A struct cpufreq_driver containing the values#
1861 * submitted by the CPU Frequency driver.
1862 *
1863 * Registers a CPU Frequency driver to this core code. This code
1864 * returns zero on success, -EBUSY when another driver got here first
1865 * (and isn't unregistered in the meantime).
1866 *
1867 */
1868 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1869 {
1870 unsigned long flags;
1871 int ret;
1872
1873 if (!driver_data || !driver_data->verify || !driver_data->init ||
1874 ((!driver_data->setpolicy) && (!driver_data->target)))
1875 return -EINVAL;
1876
1877 dprintk("trying to register driver %s\n", driver_data->name);
1878
1879 if (driver_data->setpolicy)
1880 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1881
1882 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1883 if (cpufreq_driver) {
1884 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1885 return -EBUSY;
1886 }
1887 cpufreq_driver = driver_data;
1888 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1889
1890 ret = sysdev_driver_register(&cpu_sysdev_class,
1891 &cpufreq_sysdev_driver);
1892
1893 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1894 int i;
1895 ret = -ENODEV;
1896
1897 /* check for at least one working CPU */
1898 for (i = 0; i < nr_cpu_ids; i++)
1899 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1900 ret = 0;
1901 break;
1902 }
1903
1904 /* if all ->init() calls failed, unregister */
1905 if (ret) {
1906 dprintk("no CPU initialized for driver %s\n",
1907 driver_data->name);
1908 sysdev_driver_unregister(&cpu_sysdev_class,
1909 &cpufreq_sysdev_driver);
1910
1911 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1912 cpufreq_driver = NULL;
1913 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1914 }
1915 }
1916
1917 if (!ret) {
1918 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1919 dprintk("driver %s up and running\n", driver_data->name);
1920 cpufreq_debug_enable_ratelimit();
1921 }
1922
1923 return ret;
1924 }
1925 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1926
1927
1928 /**
1929 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1930 *
1931 * Unregister the current CPUFreq driver. Only call this if you have
1932 * the right to do so, i.e. if you have succeeded in initialising before!
1933 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1934 * currently not initialised.
1935 */
1936 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1937 {
1938 unsigned long flags;
1939
1940 cpufreq_debug_disable_ratelimit();
1941
1942 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1943 cpufreq_debug_enable_ratelimit();
1944 return -EINVAL;
1945 }
1946
1947 dprintk("unregistering driver %s\n", driver->name);
1948
1949 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1950 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1951
1952 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1953 cpufreq_driver = NULL;
1954 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1955
1956 return 0;
1957 }
1958 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1959
1960 static int __init cpufreq_core_init(void)
1961 {
1962 int cpu;
1963
1964 for_each_possible_cpu(cpu) {
1965 per_cpu(policy_cpu, cpu) = -1;
1966 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1967 }
1968 return 0;
1969 }
1970
1971 core_initcall(cpufreq_core_init);