]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jlbec...
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 * - Lock should not be held across
65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66 */
67 static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
69
70 #define lock_policy_rwsem(mode, cpu) \
71 int lock_policy_rwsem_##mode \
72 (int cpu) \
73 { \
74 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
75 BUG_ON(policy_cpu == -1); \
76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 if (unlikely(!cpu_online(cpu))) { \
78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
79 return -1; \
80 } \
81 \
82 return 0; \
83 }
84
85 lock_policy_rwsem(read, cpu);
86 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
87
88 lock_policy_rwsem(write, cpu);
89 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
90
91 void unlock_policy_rwsem_read(int cpu)
92 {
93 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
94 BUG_ON(policy_cpu == -1);
95 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
96 }
97 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
98
99 void unlock_policy_rwsem_write(int cpu)
100 {
101 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
102 BUG_ON(policy_cpu == -1);
103 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
104 }
105 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
106
107
108 /* internal prototypes */
109 static int __cpufreq_governor(struct cpufreq_policy *policy,
110 unsigned int event);
111 static unsigned int __cpufreq_get(unsigned int cpu);
112 static void handle_update(struct work_struct *work);
113
114 /**
115 * Two notifier lists: the "policy" list is involved in the
116 * validation process for a new CPU frequency policy; the
117 * "transition" list for kernel code that needs to handle
118 * changes to devices when the CPU clock speed changes.
119 * The mutex locks both lists.
120 */
121 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
122 static struct srcu_notifier_head cpufreq_transition_notifier_list;
123
124 static bool init_cpufreq_transition_notifier_list_called;
125 static int __init init_cpufreq_transition_notifier_list(void)
126 {
127 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
128 init_cpufreq_transition_notifier_list_called = true;
129 return 0;
130 }
131 pure_initcall(init_cpufreq_transition_notifier_list);
132
133 static LIST_HEAD(cpufreq_governor_list);
134 static DEFINE_MUTEX(cpufreq_governor_mutex);
135
136 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
137 {
138 struct cpufreq_policy *data;
139 unsigned long flags;
140
141 if (cpu >= nr_cpu_ids)
142 goto err_out;
143
144 /* get the cpufreq driver */
145 spin_lock_irqsave(&cpufreq_driver_lock, flags);
146
147 if (!cpufreq_driver)
148 goto err_out_unlock;
149
150 if (!try_module_get(cpufreq_driver->owner))
151 goto err_out_unlock;
152
153
154 /* get the CPU */
155 data = per_cpu(cpufreq_cpu_data, cpu);
156
157 if (!data)
158 goto err_out_put_module;
159
160 if (!kobject_get(&data->kobj))
161 goto err_out_put_module;
162
163 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
164 return data;
165
166 err_out_put_module:
167 module_put(cpufreq_driver->owner);
168 err_out_unlock:
169 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
170 err_out:
171 return NULL;
172 }
173 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
174
175
176 void cpufreq_cpu_put(struct cpufreq_policy *data)
177 {
178 kobject_put(&data->kobj);
179 module_put(cpufreq_driver->owner);
180 }
181 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
182
183
184 /*********************************************************************
185 * UNIFIED DEBUG HELPERS *
186 *********************************************************************/
187 #ifdef CONFIG_CPU_FREQ_DEBUG
188
189 /* what part(s) of the CPUfreq subsystem are debugged? */
190 static unsigned int debug;
191
192 /* is the debug output ratelimit'ed using printk_ratelimit? User can
193 * set or modify this value.
194 */
195 static unsigned int debug_ratelimit = 1;
196
197 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
198 * loading of a cpufreq driver, temporarily disabled when a new policy
199 * is set, and disabled upon cpufreq driver removal
200 */
201 static unsigned int disable_ratelimit = 1;
202 static DEFINE_SPINLOCK(disable_ratelimit_lock);
203
204 static void cpufreq_debug_enable_ratelimit(void)
205 {
206 unsigned long flags;
207
208 spin_lock_irqsave(&disable_ratelimit_lock, flags);
209 if (disable_ratelimit)
210 disable_ratelimit--;
211 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
212 }
213
214 static void cpufreq_debug_disable_ratelimit(void)
215 {
216 unsigned long flags;
217
218 spin_lock_irqsave(&disable_ratelimit_lock, flags);
219 disable_ratelimit++;
220 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
221 }
222
223 void cpufreq_debug_printk(unsigned int type, const char *prefix,
224 const char *fmt, ...)
225 {
226 char s[256];
227 va_list args;
228 unsigned int len;
229 unsigned long flags;
230
231 WARN_ON(!prefix);
232 if (type & debug) {
233 spin_lock_irqsave(&disable_ratelimit_lock, flags);
234 if (!disable_ratelimit && debug_ratelimit
235 && !printk_ratelimit()) {
236 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
237 return;
238 }
239 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
240
241 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
242
243 va_start(args, fmt);
244 len += vsnprintf(&s[len], (256 - len), fmt, args);
245 va_end(args);
246
247 printk(s);
248
249 WARN_ON(len < 5);
250 }
251 }
252 EXPORT_SYMBOL(cpufreq_debug_printk);
253
254
255 module_param(debug, uint, 0644);
256 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
257 " 2 to debug drivers, and 4 to debug governors.");
258
259 module_param(debug_ratelimit, uint, 0644);
260 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
261 " set to 0 to disable ratelimiting.");
262
263 #else /* !CONFIG_CPU_FREQ_DEBUG */
264
265 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
266 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
267
268 #endif /* CONFIG_CPU_FREQ_DEBUG */
269
270
271 /*********************************************************************
272 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
273 *********************************************************************/
274
275 /**
276 * adjust_jiffies - adjust the system "loops_per_jiffy"
277 *
278 * This function alters the system "loops_per_jiffy" for the clock
279 * speed change. Note that loops_per_jiffy cannot be updated on SMP
280 * systems as each CPU might be scaled differently. So, use the arch
281 * per-CPU loops_per_jiffy value wherever possible.
282 */
283 #ifndef CONFIG_SMP
284 static unsigned long l_p_j_ref;
285 static unsigned int l_p_j_ref_freq;
286
287 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
288 {
289 if (ci->flags & CPUFREQ_CONST_LOOPS)
290 return;
291
292 if (!l_p_j_ref_freq) {
293 l_p_j_ref = loops_per_jiffy;
294 l_p_j_ref_freq = ci->old;
295 dprintk("saving %lu as reference value for loops_per_jiffy; "
296 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
297 }
298 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
299 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
300 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
301 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
302 ci->new);
303 dprintk("scaling loops_per_jiffy to %lu "
304 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
305 }
306 }
307 #else
308 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 return;
311 }
312 #endif
313
314
315 /**
316 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
317 * on frequency transition.
318 *
319 * This function calls the transition notifiers and the "adjust_jiffies"
320 * function. It is called twice on all CPU frequency changes that have
321 * external effects.
322 */
323 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
324 {
325 struct cpufreq_policy *policy;
326
327 BUG_ON(irqs_disabled());
328
329 freqs->flags = cpufreq_driver->flags;
330 dprintk("notification %u of frequency transition to %u kHz\n",
331 state, freqs->new);
332
333 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
334 switch (state) {
335
336 case CPUFREQ_PRECHANGE:
337 /* detect if the driver reported a value as "old frequency"
338 * which is not equal to what the cpufreq core thinks is
339 * "old frequency".
340 */
341 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
342 if ((policy) && (policy->cpu == freqs->cpu) &&
343 (policy->cur) && (policy->cur != freqs->old)) {
344 dprintk("Warning: CPU frequency is"
345 " %u, cpufreq assumed %u kHz.\n",
346 freqs->old, policy->cur);
347 freqs->old = policy->cur;
348 }
349 }
350 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
351 CPUFREQ_PRECHANGE, freqs);
352 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
353 break;
354
355 case CPUFREQ_POSTCHANGE:
356 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
357 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
358 CPUFREQ_POSTCHANGE, freqs);
359 if (likely(policy) && likely(policy->cpu == freqs->cpu))
360 policy->cur = freqs->new;
361 break;
362 }
363 }
364 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
365
366
367
368 /*********************************************************************
369 * SYSFS INTERFACE *
370 *********************************************************************/
371
372 static struct cpufreq_governor *__find_governor(const char *str_governor)
373 {
374 struct cpufreq_governor *t;
375
376 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
377 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
378 return t;
379
380 return NULL;
381 }
382
383 /**
384 * cpufreq_parse_governor - parse a governor string
385 */
386 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
387 struct cpufreq_governor **governor)
388 {
389 int err = -EINVAL;
390
391 if (!cpufreq_driver)
392 goto out;
393
394 if (cpufreq_driver->setpolicy) {
395 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
396 *policy = CPUFREQ_POLICY_PERFORMANCE;
397 err = 0;
398 } else if (!strnicmp(str_governor, "powersave",
399 CPUFREQ_NAME_LEN)) {
400 *policy = CPUFREQ_POLICY_POWERSAVE;
401 err = 0;
402 }
403 } else if (cpufreq_driver->target) {
404 struct cpufreq_governor *t;
405
406 mutex_lock(&cpufreq_governor_mutex);
407
408 t = __find_governor(str_governor);
409
410 if (t == NULL) {
411 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
412 str_governor);
413
414 if (name) {
415 int ret;
416
417 mutex_unlock(&cpufreq_governor_mutex);
418 ret = request_module("%s", name);
419 mutex_lock(&cpufreq_governor_mutex);
420
421 if (ret == 0)
422 t = __find_governor(str_governor);
423 }
424
425 kfree(name);
426 }
427
428 if (t != NULL) {
429 *governor = t;
430 err = 0;
431 }
432
433 mutex_unlock(&cpufreq_governor_mutex);
434 }
435 out:
436 return err;
437 }
438
439
440 /**
441 * cpufreq_per_cpu_attr_read() / show_##file_name() -
442 * print out cpufreq information
443 *
444 * Write out information from cpufreq_driver->policy[cpu]; object must be
445 * "unsigned int".
446 */
447
448 #define show_one(file_name, object) \
449 static ssize_t show_##file_name \
450 (struct cpufreq_policy *policy, char *buf) \
451 { \
452 return sprintf(buf, "%u\n", policy->object); \
453 }
454
455 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
456 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
457 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
458 show_one(scaling_min_freq, min);
459 show_one(scaling_max_freq, max);
460 show_one(scaling_cur_freq, cur);
461
462 static int __cpufreq_set_policy(struct cpufreq_policy *data,
463 struct cpufreq_policy *policy);
464
465 /**
466 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
467 */
468 #define store_one(file_name, object) \
469 static ssize_t store_##file_name \
470 (struct cpufreq_policy *policy, const char *buf, size_t count) \
471 { \
472 unsigned int ret = -EINVAL; \
473 struct cpufreq_policy new_policy; \
474 \
475 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
476 if (ret) \
477 return -EINVAL; \
478 \
479 ret = sscanf(buf, "%u", &new_policy.object); \
480 if (ret != 1) \
481 return -EINVAL; \
482 \
483 ret = __cpufreq_set_policy(policy, &new_policy); \
484 policy->user_policy.object = policy->object; \
485 \
486 return ret ? ret : count; \
487 }
488
489 store_one(scaling_min_freq, min);
490 store_one(scaling_max_freq, max);
491
492 /**
493 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
494 */
495 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
496 char *buf)
497 {
498 unsigned int cur_freq = __cpufreq_get(policy->cpu);
499 if (!cur_freq)
500 return sprintf(buf, "<unknown>");
501 return sprintf(buf, "%u\n", cur_freq);
502 }
503
504
505 /**
506 * show_scaling_governor - show the current policy for the specified CPU
507 */
508 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
509 {
510 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
511 return sprintf(buf, "powersave\n");
512 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
513 return sprintf(buf, "performance\n");
514 else if (policy->governor)
515 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
516 policy->governor->name);
517 return -EINVAL;
518 }
519
520
521 /**
522 * store_scaling_governor - store policy for the specified CPU
523 */
524 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
525 const char *buf, size_t count)
526 {
527 unsigned int ret = -EINVAL;
528 char str_governor[16];
529 struct cpufreq_policy new_policy;
530
531 ret = cpufreq_get_policy(&new_policy, policy->cpu);
532 if (ret)
533 return ret;
534
535 ret = sscanf(buf, "%15s", str_governor);
536 if (ret != 1)
537 return -EINVAL;
538
539 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
540 &new_policy.governor))
541 return -EINVAL;
542
543 /* Do not use cpufreq_set_policy here or the user_policy.max
544 will be wrongly overridden */
545 ret = __cpufreq_set_policy(policy, &new_policy);
546
547 policy->user_policy.policy = policy->policy;
548 policy->user_policy.governor = policy->governor;
549
550 if (ret)
551 return ret;
552 else
553 return count;
554 }
555
556 /**
557 * show_scaling_driver - show the cpufreq driver currently loaded
558 */
559 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
560 {
561 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
562 }
563
564 /**
565 * show_scaling_available_governors - show the available CPUfreq governors
566 */
567 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
568 char *buf)
569 {
570 ssize_t i = 0;
571 struct cpufreq_governor *t;
572
573 if (!cpufreq_driver->target) {
574 i += sprintf(buf, "performance powersave");
575 goto out;
576 }
577
578 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
579 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
580 - (CPUFREQ_NAME_LEN + 2)))
581 goto out;
582 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
583 }
584 out:
585 i += sprintf(&buf[i], "\n");
586 return i;
587 }
588
589 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
590 {
591 ssize_t i = 0;
592 unsigned int cpu;
593
594 for_each_cpu(cpu, mask) {
595 if (i)
596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
597 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
598 if (i >= (PAGE_SIZE - 5))
599 break;
600 }
601 i += sprintf(&buf[i], "\n");
602 return i;
603 }
604
605 /**
606 * show_related_cpus - show the CPUs affected by each transition even if
607 * hw coordination is in use
608 */
609 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
610 {
611 if (cpumask_empty(policy->related_cpus))
612 return show_cpus(policy->cpus, buf);
613 return show_cpus(policy->related_cpus, buf);
614 }
615
616 /**
617 * show_affected_cpus - show the CPUs affected by each transition
618 */
619 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
620 {
621 return show_cpus(policy->cpus, buf);
622 }
623
624 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
625 const char *buf, size_t count)
626 {
627 unsigned int freq = 0;
628 unsigned int ret;
629
630 if (!policy->governor || !policy->governor->store_setspeed)
631 return -EINVAL;
632
633 ret = sscanf(buf, "%u", &freq);
634 if (ret != 1)
635 return -EINVAL;
636
637 policy->governor->store_setspeed(policy, freq);
638
639 return count;
640 }
641
642 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
643 {
644 if (!policy->governor || !policy->governor->show_setspeed)
645 return sprintf(buf, "<unsupported>\n");
646
647 return policy->governor->show_setspeed(policy, buf);
648 }
649
650 /**
651 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
652 */
653 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
654 {
655 unsigned int limit;
656 int ret;
657 if (cpufreq_driver->bios_limit) {
658 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
659 if (!ret)
660 return sprintf(buf, "%u\n", limit);
661 }
662 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
663 }
664
665 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
666 cpufreq_freq_attr_ro(cpuinfo_min_freq);
667 cpufreq_freq_attr_ro(cpuinfo_max_freq);
668 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
669 cpufreq_freq_attr_ro(scaling_available_governors);
670 cpufreq_freq_attr_ro(scaling_driver);
671 cpufreq_freq_attr_ro(scaling_cur_freq);
672 cpufreq_freq_attr_ro(bios_limit);
673 cpufreq_freq_attr_ro(related_cpus);
674 cpufreq_freq_attr_ro(affected_cpus);
675 cpufreq_freq_attr_rw(scaling_min_freq);
676 cpufreq_freq_attr_rw(scaling_max_freq);
677 cpufreq_freq_attr_rw(scaling_governor);
678 cpufreq_freq_attr_rw(scaling_setspeed);
679
680 static struct attribute *default_attrs[] = {
681 &cpuinfo_min_freq.attr,
682 &cpuinfo_max_freq.attr,
683 &cpuinfo_transition_latency.attr,
684 &scaling_min_freq.attr,
685 &scaling_max_freq.attr,
686 &affected_cpus.attr,
687 &related_cpus.attr,
688 &scaling_governor.attr,
689 &scaling_driver.attr,
690 &scaling_available_governors.attr,
691 &scaling_setspeed.attr,
692 NULL
693 };
694
695 struct kobject *cpufreq_global_kobject;
696 EXPORT_SYMBOL(cpufreq_global_kobject);
697
698 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
699 #define to_attr(a) container_of(a, struct freq_attr, attr)
700
701 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
702 {
703 struct cpufreq_policy *policy = to_policy(kobj);
704 struct freq_attr *fattr = to_attr(attr);
705 ssize_t ret = -EINVAL;
706 policy = cpufreq_cpu_get(policy->cpu);
707 if (!policy)
708 goto no_policy;
709
710 if (lock_policy_rwsem_read(policy->cpu) < 0)
711 goto fail;
712
713 if (fattr->show)
714 ret = fattr->show(policy, buf);
715 else
716 ret = -EIO;
717
718 unlock_policy_rwsem_read(policy->cpu);
719 fail:
720 cpufreq_cpu_put(policy);
721 no_policy:
722 return ret;
723 }
724
725 static ssize_t store(struct kobject *kobj, struct attribute *attr,
726 const char *buf, size_t count)
727 {
728 struct cpufreq_policy *policy = to_policy(kobj);
729 struct freq_attr *fattr = to_attr(attr);
730 ssize_t ret = -EINVAL;
731 policy = cpufreq_cpu_get(policy->cpu);
732 if (!policy)
733 goto no_policy;
734
735 if (lock_policy_rwsem_write(policy->cpu) < 0)
736 goto fail;
737
738 if (fattr->store)
739 ret = fattr->store(policy, buf, count);
740 else
741 ret = -EIO;
742
743 unlock_policy_rwsem_write(policy->cpu);
744 fail:
745 cpufreq_cpu_put(policy);
746 no_policy:
747 return ret;
748 }
749
750 static void cpufreq_sysfs_release(struct kobject *kobj)
751 {
752 struct cpufreq_policy *policy = to_policy(kobj);
753 dprintk("last reference is dropped\n");
754 complete(&policy->kobj_unregister);
755 }
756
757 static const struct sysfs_ops sysfs_ops = {
758 .show = show,
759 .store = store,
760 };
761
762 static struct kobj_type ktype_cpufreq = {
763 .sysfs_ops = &sysfs_ops,
764 .default_attrs = default_attrs,
765 .release = cpufreq_sysfs_release,
766 };
767
768 /*
769 * Returns:
770 * Negative: Failure
771 * 0: Success
772 * Positive: When we have a managed CPU and the sysfs got symlinked
773 */
774 static int cpufreq_add_dev_policy(unsigned int cpu,
775 struct cpufreq_policy *policy,
776 struct sys_device *sys_dev)
777 {
778 int ret = 0;
779 #ifdef CONFIG_SMP
780 unsigned long flags;
781 unsigned int j;
782 #ifdef CONFIG_HOTPLUG_CPU
783 struct cpufreq_governor *gov;
784
785 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
786 if (gov) {
787 policy->governor = gov;
788 dprintk("Restoring governor %s for cpu %d\n",
789 policy->governor->name, cpu);
790 }
791 #endif
792
793 for_each_cpu(j, policy->cpus) {
794 struct cpufreq_policy *managed_policy;
795
796 if (cpu == j)
797 continue;
798
799 /* Check for existing affected CPUs.
800 * They may not be aware of it due to CPU Hotplug.
801 * cpufreq_cpu_put is called when the device is removed
802 * in __cpufreq_remove_dev()
803 */
804 managed_policy = cpufreq_cpu_get(j);
805 if (unlikely(managed_policy)) {
806
807 /* Set proper policy_cpu */
808 unlock_policy_rwsem_write(cpu);
809 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
810
811 if (lock_policy_rwsem_write(cpu) < 0) {
812 /* Should not go through policy unlock path */
813 if (cpufreq_driver->exit)
814 cpufreq_driver->exit(policy);
815 cpufreq_cpu_put(managed_policy);
816 return -EBUSY;
817 }
818
819 spin_lock_irqsave(&cpufreq_driver_lock, flags);
820 cpumask_copy(managed_policy->cpus, policy->cpus);
821 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
822 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
823
824 dprintk("CPU already managed, adding link\n");
825 ret = sysfs_create_link(&sys_dev->kobj,
826 &managed_policy->kobj,
827 "cpufreq");
828 if (ret)
829 cpufreq_cpu_put(managed_policy);
830 /*
831 * Success. We only needed to be added to the mask.
832 * Call driver->exit() because only the cpu parent of
833 * the kobj needed to call init().
834 */
835 if (cpufreq_driver->exit)
836 cpufreq_driver->exit(policy);
837
838 if (!ret)
839 return 1;
840 else
841 return ret;
842 }
843 }
844 #endif
845 return ret;
846 }
847
848
849 /* symlink affected CPUs */
850 static int cpufreq_add_dev_symlink(unsigned int cpu,
851 struct cpufreq_policy *policy)
852 {
853 unsigned int j;
854 int ret = 0;
855
856 for_each_cpu(j, policy->cpus) {
857 struct cpufreq_policy *managed_policy;
858 struct sys_device *cpu_sys_dev;
859
860 if (j == cpu)
861 continue;
862 if (!cpu_online(j))
863 continue;
864
865 dprintk("CPU %u already managed, adding link\n", j);
866 managed_policy = cpufreq_cpu_get(cpu);
867 cpu_sys_dev = get_cpu_sysdev(j);
868 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
869 "cpufreq");
870 if (ret) {
871 cpufreq_cpu_put(managed_policy);
872 return ret;
873 }
874 }
875 return ret;
876 }
877
878 static int cpufreq_add_dev_interface(unsigned int cpu,
879 struct cpufreq_policy *policy,
880 struct sys_device *sys_dev)
881 {
882 struct cpufreq_policy new_policy;
883 struct freq_attr **drv_attr;
884 unsigned long flags;
885 int ret = 0;
886 unsigned int j;
887
888 /* prepare interface data */
889 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
890 &sys_dev->kobj, "cpufreq");
891 if (ret)
892 return ret;
893
894 /* set up files for this cpu device */
895 drv_attr = cpufreq_driver->attr;
896 while ((drv_attr) && (*drv_attr)) {
897 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
898 if (ret)
899 goto err_out_kobj_put;
900 drv_attr++;
901 }
902 if (cpufreq_driver->get) {
903 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
904 if (ret)
905 goto err_out_kobj_put;
906 }
907 if (cpufreq_driver->target) {
908 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
909 if (ret)
910 goto err_out_kobj_put;
911 }
912 if (cpufreq_driver->bios_limit) {
913 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
914 if (ret)
915 goto err_out_kobj_put;
916 }
917
918 spin_lock_irqsave(&cpufreq_driver_lock, flags);
919 for_each_cpu(j, policy->cpus) {
920 if (!cpu_online(j))
921 continue;
922 per_cpu(cpufreq_cpu_data, j) = policy;
923 per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
924 }
925 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
926
927 ret = cpufreq_add_dev_symlink(cpu, policy);
928 if (ret)
929 goto err_out_kobj_put;
930
931 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
932 /* assure that the starting sequence is run in __cpufreq_set_policy */
933 policy->governor = NULL;
934
935 /* set default policy */
936 ret = __cpufreq_set_policy(policy, &new_policy);
937 policy->user_policy.policy = policy->policy;
938 policy->user_policy.governor = policy->governor;
939
940 if (ret) {
941 dprintk("setting policy failed\n");
942 if (cpufreq_driver->exit)
943 cpufreq_driver->exit(policy);
944 }
945 return ret;
946
947 err_out_kobj_put:
948 kobject_put(&policy->kobj);
949 wait_for_completion(&policy->kobj_unregister);
950 return ret;
951 }
952
953
954 /**
955 * cpufreq_add_dev - add a CPU device
956 *
957 * Adds the cpufreq interface for a CPU device.
958 *
959 * The Oracle says: try running cpufreq registration/unregistration concurrently
960 * with with cpu hotplugging and all hell will break loose. Tried to clean this
961 * mess up, but more thorough testing is needed. - Mathieu
962 */
963 static int cpufreq_add_dev(struct sys_device *sys_dev)
964 {
965 unsigned int cpu = sys_dev->id;
966 int ret = 0, found = 0;
967 struct cpufreq_policy *policy;
968 unsigned long flags;
969 unsigned int j;
970 #ifdef CONFIG_HOTPLUG_CPU
971 int sibling;
972 #endif
973
974 if (cpu_is_offline(cpu))
975 return 0;
976
977 cpufreq_debug_disable_ratelimit();
978 dprintk("adding CPU %u\n", cpu);
979
980 #ifdef CONFIG_SMP
981 /* check whether a different CPU already registered this
982 * CPU because it is in the same boat. */
983 policy = cpufreq_cpu_get(cpu);
984 if (unlikely(policy)) {
985 cpufreq_cpu_put(policy);
986 cpufreq_debug_enable_ratelimit();
987 return 0;
988 }
989 #endif
990
991 if (!try_module_get(cpufreq_driver->owner)) {
992 ret = -EINVAL;
993 goto module_out;
994 }
995
996 ret = -ENOMEM;
997 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
998 if (!policy)
999 goto nomem_out;
1000
1001 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1002 goto err_free_policy;
1003
1004 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1005 goto err_free_cpumask;
1006
1007 policy->cpu = cpu;
1008 cpumask_copy(policy->cpus, cpumask_of(cpu));
1009
1010 /* Initially set CPU itself as the policy_cpu */
1011 per_cpu(cpufreq_policy_cpu, cpu) = cpu;
1012 ret = (lock_policy_rwsem_write(cpu) < 0);
1013 WARN_ON(ret);
1014
1015 init_completion(&policy->kobj_unregister);
1016 INIT_WORK(&policy->update, handle_update);
1017
1018 /* Set governor before ->init, so that driver could check it */
1019 #ifdef CONFIG_HOTPLUG_CPU
1020 for_each_online_cpu(sibling) {
1021 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
1022 if (cp && cp->governor &&
1023 (cpumask_test_cpu(cpu, cp->related_cpus))) {
1024 policy->governor = cp->governor;
1025 found = 1;
1026 break;
1027 }
1028 }
1029 #endif
1030 if (!found)
1031 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1032 /* call driver. From then on the cpufreq must be able
1033 * to accept all calls to ->verify and ->setpolicy for this CPU
1034 */
1035 ret = cpufreq_driver->init(policy);
1036 if (ret) {
1037 dprintk("initialization failed\n");
1038 goto err_unlock_policy;
1039 }
1040 policy->user_policy.min = policy->min;
1041 policy->user_policy.max = policy->max;
1042
1043 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1044 CPUFREQ_START, policy);
1045
1046 ret = cpufreq_add_dev_policy(cpu, policy, sys_dev);
1047 if (ret) {
1048 if (ret > 0)
1049 /* This is a managed cpu, symlink created,
1050 exit with 0 */
1051 ret = 0;
1052 goto err_unlock_policy;
1053 }
1054
1055 ret = cpufreq_add_dev_interface(cpu, policy, sys_dev);
1056 if (ret)
1057 goto err_out_unregister;
1058
1059 unlock_policy_rwsem_write(cpu);
1060
1061 kobject_uevent(&policy->kobj, KOBJ_ADD);
1062 module_put(cpufreq_driver->owner);
1063 dprintk("initialization complete\n");
1064 cpufreq_debug_enable_ratelimit();
1065
1066 return 0;
1067
1068
1069 err_out_unregister:
1070 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1071 for_each_cpu(j, policy->cpus)
1072 per_cpu(cpufreq_cpu_data, j) = NULL;
1073 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1074
1075 kobject_put(&policy->kobj);
1076 wait_for_completion(&policy->kobj_unregister);
1077
1078 err_unlock_policy:
1079 unlock_policy_rwsem_write(cpu);
1080 err_free_cpumask:
1081 free_cpumask_var(policy->cpus);
1082 err_free_policy:
1083 kfree(policy);
1084 nomem_out:
1085 module_put(cpufreq_driver->owner);
1086 module_out:
1087 cpufreq_debug_enable_ratelimit();
1088 return ret;
1089 }
1090
1091
1092 /**
1093 * __cpufreq_remove_dev - remove a CPU device
1094 *
1095 * Removes the cpufreq interface for a CPU device.
1096 * Caller should already have policy_rwsem in write mode for this CPU.
1097 * This routine frees the rwsem before returning.
1098 */
1099 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1100 {
1101 unsigned int cpu = sys_dev->id;
1102 unsigned long flags;
1103 struct cpufreq_policy *data;
1104 struct kobject *kobj;
1105 struct completion *cmp;
1106 #ifdef CONFIG_SMP
1107 struct sys_device *cpu_sys_dev;
1108 unsigned int j;
1109 #endif
1110
1111 cpufreq_debug_disable_ratelimit();
1112 dprintk("unregistering CPU %u\n", cpu);
1113
1114 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1115 data = per_cpu(cpufreq_cpu_data, cpu);
1116
1117 if (!data) {
1118 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1119 cpufreq_debug_enable_ratelimit();
1120 unlock_policy_rwsem_write(cpu);
1121 return -EINVAL;
1122 }
1123 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1124
1125
1126 #ifdef CONFIG_SMP
1127 /* if this isn't the CPU which is the parent of the kobj, we
1128 * only need to unlink, put and exit
1129 */
1130 if (unlikely(cpu != data->cpu)) {
1131 dprintk("removing link\n");
1132 cpumask_clear_cpu(cpu, data->cpus);
1133 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1134 kobj = &sys_dev->kobj;
1135 cpufreq_cpu_put(data);
1136 cpufreq_debug_enable_ratelimit();
1137 unlock_policy_rwsem_write(cpu);
1138 sysfs_remove_link(kobj, "cpufreq");
1139 return 0;
1140 }
1141 #endif
1142
1143 #ifdef CONFIG_SMP
1144
1145 #ifdef CONFIG_HOTPLUG_CPU
1146 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1147 CPUFREQ_NAME_LEN);
1148 #endif
1149
1150 /* if we have other CPUs still registered, we need to unlink them,
1151 * or else wait_for_completion below will lock up. Clean the
1152 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1153 * the sysfs links afterwards.
1154 */
1155 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1156 for_each_cpu(j, data->cpus) {
1157 if (j == cpu)
1158 continue;
1159 per_cpu(cpufreq_cpu_data, j) = NULL;
1160 }
1161 }
1162
1163 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1164
1165 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1166 for_each_cpu(j, data->cpus) {
1167 if (j == cpu)
1168 continue;
1169 dprintk("removing link for cpu %u\n", j);
1170 #ifdef CONFIG_HOTPLUG_CPU
1171 strncpy(per_cpu(cpufreq_cpu_governor, j),
1172 data->governor->name, CPUFREQ_NAME_LEN);
1173 #endif
1174 cpu_sys_dev = get_cpu_sysdev(j);
1175 kobj = &cpu_sys_dev->kobj;
1176 unlock_policy_rwsem_write(cpu);
1177 sysfs_remove_link(kobj, "cpufreq");
1178 lock_policy_rwsem_write(cpu);
1179 cpufreq_cpu_put(data);
1180 }
1181 }
1182 #else
1183 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1184 #endif
1185
1186 if (cpufreq_driver->target)
1187 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1188
1189 kobj = &data->kobj;
1190 cmp = &data->kobj_unregister;
1191 unlock_policy_rwsem_write(cpu);
1192 kobject_put(kobj);
1193
1194 /* we need to make sure that the underlying kobj is actually
1195 * not referenced anymore by anybody before we proceed with
1196 * unloading.
1197 */
1198 dprintk("waiting for dropping of refcount\n");
1199 wait_for_completion(cmp);
1200 dprintk("wait complete\n");
1201
1202 lock_policy_rwsem_write(cpu);
1203 if (cpufreq_driver->exit)
1204 cpufreq_driver->exit(data);
1205 unlock_policy_rwsem_write(cpu);
1206
1207 free_cpumask_var(data->related_cpus);
1208 free_cpumask_var(data->cpus);
1209 kfree(data);
1210 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1211
1212 cpufreq_debug_enable_ratelimit();
1213 return 0;
1214 }
1215
1216
1217 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1218 {
1219 unsigned int cpu = sys_dev->id;
1220 int retval;
1221
1222 if (cpu_is_offline(cpu))
1223 return 0;
1224
1225 if (unlikely(lock_policy_rwsem_write(cpu)))
1226 BUG();
1227
1228 retval = __cpufreq_remove_dev(sys_dev);
1229 return retval;
1230 }
1231
1232
1233 static void handle_update(struct work_struct *work)
1234 {
1235 struct cpufreq_policy *policy =
1236 container_of(work, struct cpufreq_policy, update);
1237 unsigned int cpu = policy->cpu;
1238 dprintk("handle_update for cpu %u called\n", cpu);
1239 cpufreq_update_policy(cpu);
1240 }
1241
1242 /**
1243 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1244 * @cpu: cpu number
1245 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1246 * @new_freq: CPU frequency the CPU actually runs at
1247 *
1248 * We adjust to current frequency first, and need to clean up later.
1249 * So either call to cpufreq_update_policy() or schedule handle_update()).
1250 */
1251 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1252 unsigned int new_freq)
1253 {
1254 struct cpufreq_freqs freqs;
1255
1256 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1257 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1258
1259 freqs.cpu = cpu;
1260 freqs.old = old_freq;
1261 freqs.new = new_freq;
1262 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1263 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1264 }
1265
1266
1267 /**
1268 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1269 * @cpu: CPU number
1270 *
1271 * This is the last known freq, without actually getting it from the driver.
1272 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1273 */
1274 unsigned int cpufreq_quick_get(unsigned int cpu)
1275 {
1276 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1277 unsigned int ret_freq = 0;
1278
1279 if (policy) {
1280 ret_freq = policy->cur;
1281 cpufreq_cpu_put(policy);
1282 }
1283
1284 return ret_freq;
1285 }
1286 EXPORT_SYMBOL(cpufreq_quick_get);
1287
1288
1289 static unsigned int __cpufreq_get(unsigned int cpu)
1290 {
1291 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1292 unsigned int ret_freq = 0;
1293
1294 if (!cpufreq_driver->get)
1295 return ret_freq;
1296
1297 ret_freq = cpufreq_driver->get(cpu);
1298
1299 if (ret_freq && policy->cur &&
1300 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1301 /* verify no discrepancy between actual and
1302 saved value exists */
1303 if (unlikely(ret_freq != policy->cur)) {
1304 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1305 schedule_work(&policy->update);
1306 }
1307 }
1308
1309 return ret_freq;
1310 }
1311
1312 /**
1313 * cpufreq_get - get the current CPU frequency (in kHz)
1314 * @cpu: CPU number
1315 *
1316 * Get the CPU current (static) CPU frequency
1317 */
1318 unsigned int cpufreq_get(unsigned int cpu)
1319 {
1320 unsigned int ret_freq = 0;
1321 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1322
1323 if (!policy)
1324 goto out;
1325
1326 if (unlikely(lock_policy_rwsem_read(cpu)))
1327 goto out_policy;
1328
1329 ret_freq = __cpufreq_get(cpu);
1330
1331 unlock_policy_rwsem_read(cpu);
1332
1333 out_policy:
1334 cpufreq_cpu_put(policy);
1335 out:
1336 return ret_freq;
1337 }
1338 EXPORT_SYMBOL(cpufreq_get);
1339
1340
1341 /**
1342 * cpufreq_suspend - let the low level driver prepare for suspend
1343 */
1344
1345 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1346 {
1347 int ret = 0;
1348
1349 int cpu = sysdev->id;
1350 struct cpufreq_policy *cpu_policy;
1351
1352 dprintk("suspending cpu %u\n", cpu);
1353
1354 if (!cpu_online(cpu))
1355 return 0;
1356
1357 /* we may be lax here as interrupts are off. Nonetheless
1358 * we need to grab the correct cpu policy, as to check
1359 * whether we really run on this CPU.
1360 */
1361
1362 cpu_policy = cpufreq_cpu_get(cpu);
1363 if (!cpu_policy)
1364 return -EINVAL;
1365
1366 /* only handle each CPU group once */
1367 if (unlikely(cpu_policy->cpu != cpu))
1368 goto out;
1369
1370 if (cpufreq_driver->suspend) {
1371 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1372 if (ret)
1373 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1374 "step on CPU %u\n", cpu_policy->cpu);
1375 }
1376
1377 out:
1378 cpufreq_cpu_put(cpu_policy);
1379 return ret;
1380 }
1381
1382 /**
1383 * cpufreq_resume - restore proper CPU frequency handling after resume
1384 *
1385 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1386 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1387 * restored. It will verify that the current freq is in sync with
1388 * what we believe it to be. This is a bit later than when it
1389 * should be, but nonethteless it's better than calling
1390 * cpufreq_driver->get() here which might re-enable interrupts...
1391 */
1392 static int cpufreq_resume(struct sys_device *sysdev)
1393 {
1394 int ret = 0;
1395
1396 int cpu = sysdev->id;
1397 struct cpufreq_policy *cpu_policy;
1398
1399 dprintk("resuming cpu %u\n", cpu);
1400
1401 if (!cpu_online(cpu))
1402 return 0;
1403
1404 /* we may be lax here as interrupts are off. Nonetheless
1405 * we need to grab the correct cpu policy, as to check
1406 * whether we really run on this CPU.
1407 */
1408
1409 cpu_policy = cpufreq_cpu_get(cpu);
1410 if (!cpu_policy)
1411 return -EINVAL;
1412
1413 /* only handle each CPU group once */
1414 if (unlikely(cpu_policy->cpu != cpu))
1415 goto fail;
1416
1417 if (cpufreq_driver->resume) {
1418 ret = cpufreq_driver->resume(cpu_policy);
1419 if (ret) {
1420 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1421 "step on CPU %u\n", cpu_policy->cpu);
1422 goto fail;
1423 }
1424 }
1425
1426 schedule_work(&cpu_policy->update);
1427
1428 fail:
1429 cpufreq_cpu_put(cpu_policy);
1430 return ret;
1431 }
1432
1433 static struct sysdev_driver cpufreq_sysdev_driver = {
1434 .add = cpufreq_add_dev,
1435 .remove = cpufreq_remove_dev,
1436 .suspend = cpufreq_suspend,
1437 .resume = cpufreq_resume,
1438 };
1439
1440
1441 /*********************************************************************
1442 * NOTIFIER LISTS INTERFACE *
1443 *********************************************************************/
1444
1445 /**
1446 * cpufreq_register_notifier - register a driver with cpufreq
1447 * @nb: notifier function to register
1448 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1449 *
1450 * Add a driver to one of two lists: either a list of drivers that
1451 * are notified about clock rate changes (once before and once after
1452 * the transition), or a list of drivers that are notified about
1453 * changes in cpufreq policy.
1454 *
1455 * This function may sleep, and has the same return conditions as
1456 * blocking_notifier_chain_register.
1457 */
1458 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1459 {
1460 int ret;
1461
1462 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1463
1464 switch (list) {
1465 case CPUFREQ_TRANSITION_NOTIFIER:
1466 ret = srcu_notifier_chain_register(
1467 &cpufreq_transition_notifier_list, nb);
1468 break;
1469 case CPUFREQ_POLICY_NOTIFIER:
1470 ret = blocking_notifier_chain_register(
1471 &cpufreq_policy_notifier_list, nb);
1472 break;
1473 default:
1474 ret = -EINVAL;
1475 }
1476
1477 return ret;
1478 }
1479 EXPORT_SYMBOL(cpufreq_register_notifier);
1480
1481
1482 /**
1483 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1484 * @nb: notifier block to be unregistered
1485 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1486 *
1487 * Remove a driver from the CPU frequency notifier list.
1488 *
1489 * This function may sleep, and has the same return conditions as
1490 * blocking_notifier_chain_unregister.
1491 */
1492 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1493 {
1494 int ret;
1495
1496 switch (list) {
1497 case CPUFREQ_TRANSITION_NOTIFIER:
1498 ret = srcu_notifier_chain_unregister(
1499 &cpufreq_transition_notifier_list, nb);
1500 break;
1501 case CPUFREQ_POLICY_NOTIFIER:
1502 ret = blocking_notifier_chain_unregister(
1503 &cpufreq_policy_notifier_list, nb);
1504 break;
1505 default:
1506 ret = -EINVAL;
1507 }
1508
1509 return ret;
1510 }
1511 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1512
1513
1514 /*********************************************************************
1515 * GOVERNORS *
1516 *********************************************************************/
1517
1518
1519 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1520 unsigned int target_freq,
1521 unsigned int relation)
1522 {
1523 int retval = -EINVAL;
1524
1525 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1526 target_freq, relation);
1527 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1528 retval = cpufreq_driver->target(policy, target_freq, relation);
1529
1530 return retval;
1531 }
1532 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1533
1534 int cpufreq_driver_target(struct cpufreq_policy *policy,
1535 unsigned int target_freq,
1536 unsigned int relation)
1537 {
1538 int ret = -EINVAL;
1539
1540 policy = cpufreq_cpu_get(policy->cpu);
1541 if (!policy)
1542 goto no_policy;
1543
1544 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1545 goto fail;
1546
1547 ret = __cpufreq_driver_target(policy, target_freq, relation);
1548
1549 unlock_policy_rwsem_write(policy->cpu);
1550
1551 fail:
1552 cpufreq_cpu_put(policy);
1553 no_policy:
1554 return ret;
1555 }
1556 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1557
1558 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1559 {
1560 int ret = 0;
1561
1562 policy = cpufreq_cpu_get(policy->cpu);
1563 if (!policy)
1564 return -EINVAL;
1565
1566 if (cpu_online(cpu) && cpufreq_driver->getavg)
1567 ret = cpufreq_driver->getavg(policy, cpu);
1568
1569 cpufreq_cpu_put(policy);
1570 return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1573
1574 /*
1575 * when "event" is CPUFREQ_GOV_LIMITS
1576 */
1577
1578 static int __cpufreq_governor(struct cpufreq_policy *policy,
1579 unsigned int event)
1580 {
1581 int ret;
1582
1583 /* Only must be defined when default governor is known to have latency
1584 restrictions, like e.g. conservative or ondemand.
1585 That this is the case is already ensured in Kconfig
1586 */
1587 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1588 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1589 #else
1590 struct cpufreq_governor *gov = NULL;
1591 #endif
1592
1593 if (policy->governor->max_transition_latency &&
1594 policy->cpuinfo.transition_latency >
1595 policy->governor->max_transition_latency) {
1596 if (!gov)
1597 return -EINVAL;
1598 else {
1599 printk(KERN_WARNING "%s governor failed, too long"
1600 " transition latency of HW, fallback"
1601 " to %s governor\n",
1602 policy->governor->name,
1603 gov->name);
1604 policy->governor = gov;
1605 }
1606 }
1607
1608 if (!try_module_get(policy->governor->owner))
1609 return -EINVAL;
1610
1611 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1612 policy->cpu, event);
1613 ret = policy->governor->governor(policy, event);
1614
1615 /* we keep one module reference alive for
1616 each CPU governed by this CPU */
1617 if ((event != CPUFREQ_GOV_START) || ret)
1618 module_put(policy->governor->owner);
1619 if ((event == CPUFREQ_GOV_STOP) && !ret)
1620 module_put(policy->governor->owner);
1621
1622 return ret;
1623 }
1624
1625
1626 int cpufreq_register_governor(struct cpufreq_governor *governor)
1627 {
1628 int err;
1629
1630 if (!governor)
1631 return -EINVAL;
1632
1633 mutex_lock(&cpufreq_governor_mutex);
1634
1635 err = -EBUSY;
1636 if (__find_governor(governor->name) == NULL) {
1637 err = 0;
1638 list_add(&governor->governor_list, &cpufreq_governor_list);
1639 }
1640
1641 mutex_unlock(&cpufreq_governor_mutex);
1642 return err;
1643 }
1644 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1645
1646
1647 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1648 {
1649 #ifdef CONFIG_HOTPLUG_CPU
1650 int cpu;
1651 #endif
1652
1653 if (!governor)
1654 return;
1655
1656 #ifdef CONFIG_HOTPLUG_CPU
1657 for_each_present_cpu(cpu) {
1658 if (cpu_online(cpu))
1659 continue;
1660 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1661 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1662 }
1663 #endif
1664
1665 mutex_lock(&cpufreq_governor_mutex);
1666 list_del(&governor->governor_list);
1667 mutex_unlock(&cpufreq_governor_mutex);
1668 return;
1669 }
1670 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1671
1672
1673
1674 /*********************************************************************
1675 * POLICY INTERFACE *
1676 *********************************************************************/
1677
1678 /**
1679 * cpufreq_get_policy - get the current cpufreq_policy
1680 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1681 * is written
1682 *
1683 * Reads the current cpufreq policy.
1684 */
1685 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1686 {
1687 struct cpufreq_policy *cpu_policy;
1688 if (!policy)
1689 return -EINVAL;
1690
1691 cpu_policy = cpufreq_cpu_get(cpu);
1692 if (!cpu_policy)
1693 return -EINVAL;
1694
1695 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1696
1697 cpufreq_cpu_put(cpu_policy);
1698 return 0;
1699 }
1700 EXPORT_SYMBOL(cpufreq_get_policy);
1701
1702
1703 /*
1704 * data : current policy.
1705 * policy : policy to be set.
1706 */
1707 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1708 struct cpufreq_policy *policy)
1709 {
1710 int ret = 0;
1711
1712 cpufreq_debug_disable_ratelimit();
1713 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1714 policy->min, policy->max);
1715
1716 memcpy(&policy->cpuinfo, &data->cpuinfo,
1717 sizeof(struct cpufreq_cpuinfo));
1718
1719 if (policy->min > data->max || policy->max < data->min) {
1720 ret = -EINVAL;
1721 goto error_out;
1722 }
1723
1724 /* verify the cpu speed can be set within this limit */
1725 ret = cpufreq_driver->verify(policy);
1726 if (ret)
1727 goto error_out;
1728
1729 /* adjust if necessary - all reasons */
1730 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1731 CPUFREQ_ADJUST, policy);
1732
1733 /* adjust if necessary - hardware incompatibility*/
1734 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1735 CPUFREQ_INCOMPATIBLE, policy);
1736
1737 /* verify the cpu speed can be set within this limit,
1738 which might be different to the first one */
1739 ret = cpufreq_driver->verify(policy);
1740 if (ret)
1741 goto error_out;
1742
1743 /* notification of the new policy */
1744 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1745 CPUFREQ_NOTIFY, policy);
1746
1747 data->min = policy->min;
1748 data->max = policy->max;
1749
1750 dprintk("new min and max freqs are %u - %u kHz\n",
1751 data->min, data->max);
1752
1753 if (cpufreq_driver->setpolicy) {
1754 data->policy = policy->policy;
1755 dprintk("setting range\n");
1756 ret = cpufreq_driver->setpolicy(policy);
1757 } else {
1758 if (policy->governor != data->governor) {
1759 /* save old, working values */
1760 struct cpufreq_governor *old_gov = data->governor;
1761
1762 dprintk("governor switch\n");
1763
1764 /* end old governor */
1765 if (data->governor) {
1766 /*
1767 * Need to release the rwsem around governor
1768 * stop due to lock dependency between
1769 * cancel_delayed_work_sync and the read lock
1770 * taken in the delayed work handler.
1771 */
1772 unlock_policy_rwsem_write(data->cpu);
1773 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1774 lock_policy_rwsem_write(data->cpu);
1775 }
1776
1777 /* start new governor */
1778 data->governor = policy->governor;
1779 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1780 /* new governor failed, so re-start old one */
1781 dprintk("starting governor %s failed\n",
1782 data->governor->name);
1783 if (old_gov) {
1784 data->governor = old_gov;
1785 __cpufreq_governor(data,
1786 CPUFREQ_GOV_START);
1787 }
1788 ret = -EINVAL;
1789 goto error_out;
1790 }
1791 /* might be a policy change, too, so fall through */
1792 }
1793 dprintk("governor: change or update limits\n");
1794 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1795 }
1796
1797 error_out:
1798 cpufreq_debug_enable_ratelimit();
1799 return ret;
1800 }
1801
1802 /**
1803 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1804 * @cpu: CPU which shall be re-evaluated
1805 *
1806 * Usefull for policy notifiers which have different necessities
1807 * at different times.
1808 */
1809 int cpufreq_update_policy(unsigned int cpu)
1810 {
1811 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1812 struct cpufreq_policy policy;
1813 int ret;
1814
1815 if (!data) {
1816 ret = -ENODEV;
1817 goto no_policy;
1818 }
1819
1820 if (unlikely(lock_policy_rwsem_write(cpu))) {
1821 ret = -EINVAL;
1822 goto fail;
1823 }
1824
1825 dprintk("updating policy for CPU %u\n", cpu);
1826 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1827 policy.min = data->user_policy.min;
1828 policy.max = data->user_policy.max;
1829 policy.policy = data->user_policy.policy;
1830 policy.governor = data->user_policy.governor;
1831
1832 /* BIOS might change freq behind our back
1833 -> ask driver for current freq and notify governors about a change */
1834 if (cpufreq_driver->get) {
1835 policy.cur = cpufreq_driver->get(cpu);
1836 if (!data->cur) {
1837 dprintk("Driver did not initialize current freq");
1838 data->cur = policy.cur;
1839 } else {
1840 if (data->cur != policy.cur)
1841 cpufreq_out_of_sync(cpu, data->cur,
1842 policy.cur);
1843 }
1844 }
1845
1846 ret = __cpufreq_set_policy(data, &policy);
1847
1848 unlock_policy_rwsem_write(cpu);
1849
1850 fail:
1851 cpufreq_cpu_put(data);
1852 no_policy:
1853 return ret;
1854 }
1855 EXPORT_SYMBOL(cpufreq_update_policy);
1856
1857 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1858 unsigned long action, void *hcpu)
1859 {
1860 unsigned int cpu = (unsigned long)hcpu;
1861 struct sys_device *sys_dev;
1862
1863 sys_dev = get_cpu_sysdev(cpu);
1864 if (sys_dev) {
1865 switch (action) {
1866 case CPU_ONLINE:
1867 case CPU_ONLINE_FROZEN:
1868 cpufreq_add_dev(sys_dev);
1869 break;
1870 case CPU_DOWN_PREPARE:
1871 case CPU_DOWN_PREPARE_FROZEN:
1872 if (unlikely(lock_policy_rwsem_write(cpu)))
1873 BUG();
1874
1875 __cpufreq_remove_dev(sys_dev);
1876 break;
1877 case CPU_DOWN_FAILED:
1878 case CPU_DOWN_FAILED_FROZEN:
1879 cpufreq_add_dev(sys_dev);
1880 break;
1881 }
1882 }
1883 return NOTIFY_OK;
1884 }
1885
1886 static struct notifier_block __refdata cpufreq_cpu_notifier =
1887 {
1888 .notifier_call = cpufreq_cpu_callback,
1889 };
1890
1891 /*********************************************************************
1892 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1893 *********************************************************************/
1894
1895 /**
1896 * cpufreq_register_driver - register a CPU Frequency driver
1897 * @driver_data: A struct cpufreq_driver containing the values#
1898 * submitted by the CPU Frequency driver.
1899 *
1900 * Registers a CPU Frequency driver to this core code. This code
1901 * returns zero on success, -EBUSY when another driver got here first
1902 * (and isn't unregistered in the meantime).
1903 *
1904 */
1905 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1906 {
1907 unsigned long flags;
1908 int ret;
1909
1910 if (!driver_data || !driver_data->verify || !driver_data->init ||
1911 ((!driver_data->setpolicy) && (!driver_data->target)))
1912 return -EINVAL;
1913
1914 dprintk("trying to register driver %s\n", driver_data->name);
1915
1916 if (driver_data->setpolicy)
1917 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1918
1919 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1920 if (cpufreq_driver) {
1921 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1922 return -EBUSY;
1923 }
1924 cpufreq_driver = driver_data;
1925 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1926
1927 ret = sysdev_driver_register(&cpu_sysdev_class,
1928 &cpufreq_sysdev_driver);
1929
1930 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1931 int i;
1932 ret = -ENODEV;
1933
1934 /* check for at least one working CPU */
1935 for (i = 0; i < nr_cpu_ids; i++)
1936 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1937 ret = 0;
1938 break;
1939 }
1940
1941 /* if all ->init() calls failed, unregister */
1942 if (ret) {
1943 dprintk("no CPU initialized for driver %s\n",
1944 driver_data->name);
1945 sysdev_driver_unregister(&cpu_sysdev_class,
1946 &cpufreq_sysdev_driver);
1947
1948 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1949 cpufreq_driver = NULL;
1950 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1951 }
1952 }
1953
1954 if (!ret) {
1955 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1956 dprintk("driver %s up and running\n", driver_data->name);
1957 cpufreq_debug_enable_ratelimit();
1958 }
1959
1960 return ret;
1961 }
1962 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1963
1964
1965 /**
1966 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1967 *
1968 * Unregister the current CPUFreq driver. Only call this if you have
1969 * the right to do so, i.e. if you have succeeded in initialising before!
1970 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1971 * currently not initialised.
1972 */
1973 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1974 {
1975 unsigned long flags;
1976
1977 cpufreq_debug_disable_ratelimit();
1978
1979 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1980 cpufreq_debug_enable_ratelimit();
1981 return -EINVAL;
1982 }
1983
1984 dprintk("unregistering driver %s\n", driver->name);
1985
1986 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1987 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1988
1989 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1990 cpufreq_driver = NULL;
1991 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1992
1993 return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1996
1997 static int __init cpufreq_core_init(void)
1998 {
1999 int cpu;
2000
2001 for_each_possible_cpu(cpu) {
2002 per_cpu(cpufreq_policy_cpu, cpu) = -1;
2003 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
2004 }
2005
2006 cpufreq_global_kobject = kobject_create_and_add("cpufreq",
2007 &cpu_sysdev_class.kset.kobj);
2008 BUG_ON(!cpufreq_global_kobject);
2009
2010 return 0;
2011 }
2012 core_initcall(cpufreq_core_init);