]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 /**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 static DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44
45 #ifdef CONFIG_HOTPLUG_CPU
46 /* This one keeps track of the previously set governor of a removed CPU */
47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
48 #endif
49
50 /*
51 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
52 * all cpufreq/hotplug/workqueue/etc related lock issues.
53 *
54 * The rules for this semaphore:
55 * - Any routine that wants to read from the policy structure will
56 * do a down_read on this semaphore.
57 * - Any routine that will write to the policy structure and/or may take away
58 * the policy altogether (eg. CPU hotplug), will hold this lock in write
59 * mode before doing so.
60 *
61 * Additional rules:
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 * - Lock should not be held across
65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66 */
67 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
68
69 #define lock_policy_rwsem(mode, cpu) \
70 static int lock_policy_rwsem_##mode(int cpu) \
71 { \
72 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \
73 BUG_ON(!policy); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \
75 \
76 return 0; \
77 }
78
79 lock_policy_rwsem(read, cpu);
80 lock_policy_rwsem(write, cpu);
81
82 #define unlock_policy_rwsem(mode, cpu) \
83 static void unlock_policy_rwsem_##mode(int cpu) \
84 { \
85 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \
86 BUG_ON(!policy); \
87 up_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \
88 }
89
90 unlock_policy_rwsem(read, cpu);
91 unlock_policy_rwsem(write, cpu);
92
93 /*
94 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
95 * sections
96 */
97 static DECLARE_RWSEM(cpufreq_rwsem);
98
99 /* internal prototypes */
100 static int __cpufreq_governor(struct cpufreq_policy *policy,
101 unsigned int event);
102 static unsigned int __cpufreq_get(unsigned int cpu);
103 static void handle_update(struct work_struct *work);
104
105 /**
106 * Two notifier lists: the "policy" list is involved in the
107 * validation process for a new CPU frequency policy; the
108 * "transition" list for kernel code that needs to handle
109 * changes to devices when the CPU clock speed changes.
110 * The mutex locks both lists.
111 */
112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
113 static struct srcu_notifier_head cpufreq_transition_notifier_list;
114
115 static bool init_cpufreq_transition_notifier_list_called;
116 static int __init init_cpufreq_transition_notifier_list(void)
117 {
118 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
119 init_cpufreq_transition_notifier_list_called = true;
120 return 0;
121 }
122 pure_initcall(init_cpufreq_transition_notifier_list);
123
124 static int off __read_mostly;
125 static int cpufreq_disabled(void)
126 {
127 return off;
128 }
129 void disable_cpufreq(void)
130 {
131 off = 1;
132 }
133 static LIST_HEAD(cpufreq_governor_list);
134 static DEFINE_MUTEX(cpufreq_governor_mutex);
135
136 bool have_governor_per_policy(void)
137 {
138 return cpufreq_driver->have_governor_per_policy;
139 }
140 EXPORT_SYMBOL_GPL(have_governor_per_policy);
141
142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
143 {
144 if (have_governor_per_policy())
145 return &policy->kobj;
146 else
147 return cpufreq_global_kobject;
148 }
149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
150
151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
152 {
153 u64 idle_time;
154 u64 cur_wall_time;
155 u64 busy_time;
156
157 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
158
159 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
160 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
161 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
162 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
163 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
164 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
165
166 idle_time = cur_wall_time - busy_time;
167 if (wall)
168 *wall = cputime_to_usecs(cur_wall_time);
169
170 return cputime_to_usecs(idle_time);
171 }
172
173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
174 {
175 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
176
177 if (idle_time == -1ULL)
178 return get_cpu_idle_time_jiffy(cpu, wall);
179 else if (!io_busy)
180 idle_time += get_cpu_iowait_time_us(cpu, wall);
181
182 return idle_time;
183 }
184 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
185
186 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
187 {
188 struct cpufreq_policy *policy = NULL;
189 unsigned long flags;
190
191 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
192 return NULL;
193
194 if (!down_read_trylock(&cpufreq_rwsem))
195 return NULL;
196
197 /* get the cpufreq driver */
198 read_lock_irqsave(&cpufreq_driver_lock, flags);
199
200 if (cpufreq_driver) {
201 /* get the CPU */
202 policy = per_cpu(cpufreq_cpu_data, cpu);
203 if (policy)
204 kobject_get(&policy->kobj);
205 }
206
207 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
208
209 if (!policy)
210 up_read(&cpufreq_rwsem);
211
212 return policy;
213 }
214 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
215
216 void cpufreq_cpu_put(struct cpufreq_policy *policy)
217 {
218 if (cpufreq_disabled())
219 return;
220
221 kobject_put(&policy->kobj);
222 up_read(&cpufreq_rwsem);
223 }
224 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
225
226 /*********************************************************************
227 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
228 *********************************************************************/
229
230 /**
231 * adjust_jiffies - adjust the system "loops_per_jiffy"
232 *
233 * This function alters the system "loops_per_jiffy" for the clock
234 * speed change. Note that loops_per_jiffy cannot be updated on SMP
235 * systems as each CPU might be scaled differently. So, use the arch
236 * per-CPU loops_per_jiffy value wherever possible.
237 */
238 #ifndef CONFIG_SMP
239 static unsigned long l_p_j_ref;
240 static unsigned int l_p_j_ref_freq;
241
242 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
243 {
244 if (ci->flags & CPUFREQ_CONST_LOOPS)
245 return;
246
247 if (!l_p_j_ref_freq) {
248 l_p_j_ref = loops_per_jiffy;
249 l_p_j_ref_freq = ci->old;
250 pr_debug("saving %lu as reference value for loops_per_jiffy; "
251 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
252 }
253 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) ||
254 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
255 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
256 ci->new);
257 pr_debug("scaling loops_per_jiffy to %lu "
258 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
259 }
260 }
261 #else
262 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
263 {
264 return;
265 }
266 #endif
267
268 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
269 struct cpufreq_freqs *freqs, unsigned int state)
270 {
271 BUG_ON(irqs_disabled());
272
273 if (cpufreq_disabled())
274 return;
275
276 freqs->flags = cpufreq_driver->flags;
277 pr_debug("notification %u of frequency transition to %u kHz\n",
278 state, freqs->new);
279
280 switch (state) {
281
282 case CPUFREQ_PRECHANGE:
283 if (WARN(policy->transition_ongoing ==
284 cpumask_weight(policy->cpus),
285 "In middle of another frequency transition\n"))
286 return;
287
288 policy->transition_ongoing++;
289
290 /* detect if the driver reported a value as "old frequency"
291 * which is not equal to what the cpufreq core thinks is
292 * "old frequency".
293 */
294 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
295 if ((policy) && (policy->cpu == freqs->cpu) &&
296 (policy->cur) && (policy->cur != freqs->old)) {
297 pr_debug("Warning: CPU frequency is"
298 " %u, cpufreq assumed %u kHz.\n",
299 freqs->old, policy->cur);
300 freqs->old = policy->cur;
301 }
302 }
303 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
304 CPUFREQ_PRECHANGE, freqs);
305 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
306 break;
307
308 case CPUFREQ_POSTCHANGE:
309 if (WARN(!policy->transition_ongoing,
310 "No frequency transition in progress\n"))
311 return;
312
313 policy->transition_ongoing--;
314
315 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
316 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
317 (unsigned long)freqs->cpu);
318 trace_cpu_frequency(freqs->new, freqs->cpu);
319 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
320 CPUFREQ_POSTCHANGE, freqs);
321 if (likely(policy) && likely(policy->cpu == freqs->cpu))
322 policy->cur = freqs->new;
323 break;
324 }
325 }
326
327 /**
328 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
329 * on frequency transition.
330 *
331 * This function calls the transition notifiers and the "adjust_jiffies"
332 * function. It is called twice on all CPU frequency changes that have
333 * external effects.
334 */
335 void cpufreq_notify_transition(struct cpufreq_policy *policy,
336 struct cpufreq_freqs *freqs, unsigned int state)
337 {
338 for_each_cpu(freqs->cpu, policy->cpus)
339 __cpufreq_notify_transition(policy, freqs, state);
340 }
341 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
342
343
344 /*********************************************************************
345 * SYSFS INTERFACE *
346 *********************************************************************/
347
348 static struct cpufreq_governor *__find_governor(const char *str_governor)
349 {
350 struct cpufreq_governor *t;
351
352 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
353 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
354 return t;
355
356 return NULL;
357 }
358
359 /**
360 * cpufreq_parse_governor - parse a governor string
361 */
362 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
363 struct cpufreq_governor **governor)
364 {
365 int err = -EINVAL;
366
367 if (!cpufreq_driver)
368 goto out;
369
370 if (cpufreq_driver->setpolicy) {
371 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
372 *policy = CPUFREQ_POLICY_PERFORMANCE;
373 err = 0;
374 } else if (!strnicmp(str_governor, "powersave",
375 CPUFREQ_NAME_LEN)) {
376 *policy = CPUFREQ_POLICY_POWERSAVE;
377 err = 0;
378 }
379 } else if (cpufreq_driver->target) {
380 struct cpufreq_governor *t;
381
382 mutex_lock(&cpufreq_governor_mutex);
383
384 t = __find_governor(str_governor);
385
386 if (t == NULL) {
387 int ret;
388
389 mutex_unlock(&cpufreq_governor_mutex);
390 ret = request_module("cpufreq_%s", str_governor);
391 mutex_lock(&cpufreq_governor_mutex);
392
393 if (ret == 0)
394 t = __find_governor(str_governor);
395 }
396
397 if (t != NULL) {
398 *governor = t;
399 err = 0;
400 }
401
402 mutex_unlock(&cpufreq_governor_mutex);
403 }
404 out:
405 return err;
406 }
407
408 /**
409 * cpufreq_per_cpu_attr_read() / show_##file_name() -
410 * print out cpufreq information
411 *
412 * Write out information from cpufreq_driver->policy[cpu]; object must be
413 * "unsigned int".
414 */
415
416 #define show_one(file_name, object) \
417 static ssize_t show_##file_name \
418 (struct cpufreq_policy *policy, char *buf) \
419 { \
420 return sprintf(buf, "%u\n", policy->object); \
421 }
422
423 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
424 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
425 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
426 show_one(scaling_min_freq, min);
427 show_one(scaling_max_freq, max);
428 show_one(scaling_cur_freq, cur);
429
430 static int __cpufreq_set_policy(struct cpufreq_policy *policy,
431 struct cpufreq_policy *new_policy);
432
433 /**
434 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
435 */
436 #define store_one(file_name, object) \
437 static ssize_t store_##file_name \
438 (struct cpufreq_policy *policy, const char *buf, size_t count) \
439 { \
440 unsigned int ret; \
441 struct cpufreq_policy new_policy; \
442 \
443 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
444 if (ret) \
445 return -EINVAL; \
446 \
447 ret = sscanf(buf, "%u", &new_policy.object); \
448 if (ret != 1) \
449 return -EINVAL; \
450 \
451 ret = __cpufreq_set_policy(policy, &new_policy); \
452 policy->user_policy.object = policy->object; \
453 \
454 return ret ? ret : count; \
455 }
456
457 store_one(scaling_min_freq, min);
458 store_one(scaling_max_freq, max);
459
460 /**
461 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
462 */
463 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
464 char *buf)
465 {
466 unsigned int cur_freq = __cpufreq_get(policy->cpu);
467 if (!cur_freq)
468 return sprintf(buf, "<unknown>");
469 return sprintf(buf, "%u\n", cur_freq);
470 }
471
472 /**
473 * show_scaling_governor - show the current policy for the specified CPU
474 */
475 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
476 {
477 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
478 return sprintf(buf, "powersave\n");
479 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
480 return sprintf(buf, "performance\n");
481 else if (policy->governor)
482 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
483 policy->governor->name);
484 return -EINVAL;
485 }
486
487 /**
488 * store_scaling_governor - store policy for the specified CPU
489 */
490 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
491 const char *buf, size_t count)
492 {
493 unsigned int ret;
494 char str_governor[16];
495 struct cpufreq_policy new_policy;
496
497 ret = cpufreq_get_policy(&new_policy, policy->cpu);
498 if (ret)
499 return ret;
500
501 ret = sscanf(buf, "%15s", str_governor);
502 if (ret != 1)
503 return -EINVAL;
504
505 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
506 &new_policy.governor))
507 return -EINVAL;
508
509 /*
510 * Do not use cpufreq_set_policy here or the user_policy.max
511 * will be wrongly overridden
512 */
513 ret = __cpufreq_set_policy(policy, &new_policy);
514
515 policy->user_policy.policy = policy->policy;
516 policy->user_policy.governor = policy->governor;
517
518 if (ret)
519 return ret;
520 else
521 return count;
522 }
523
524 /**
525 * show_scaling_driver - show the cpufreq driver currently loaded
526 */
527 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
528 {
529 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
530 }
531
532 /**
533 * show_scaling_available_governors - show the available CPUfreq governors
534 */
535 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
536 char *buf)
537 {
538 ssize_t i = 0;
539 struct cpufreq_governor *t;
540
541 if (!cpufreq_driver->target) {
542 i += sprintf(buf, "performance powersave");
543 goto out;
544 }
545
546 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
547 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
548 - (CPUFREQ_NAME_LEN + 2)))
549 goto out;
550 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
551 }
552 out:
553 i += sprintf(&buf[i], "\n");
554 return i;
555 }
556
557 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
558 {
559 ssize_t i = 0;
560 unsigned int cpu;
561
562 for_each_cpu(cpu, mask) {
563 if (i)
564 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
565 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
566 if (i >= (PAGE_SIZE - 5))
567 break;
568 }
569 i += sprintf(&buf[i], "\n");
570 return i;
571 }
572 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
573
574 /**
575 * show_related_cpus - show the CPUs affected by each transition even if
576 * hw coordination is in use
577 */
578 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
579 {
580 return cpufreq_show_cpus(policy->related_cpus, buf);
581 }
582
583 /**
584 * show_affected_cpus - show the CPUs affected by each transition
585 */
586 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
587 {
588 return cpufreq_show_cpus(policy->cpus, buf);
589 }
590
591 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
592 const char *buf, size_t count)
593 {
594 unsigned int freq = 0;
595 unsigned int ret;
596
597 if (!policy->governor || !policy->governor->store_setspeed)
598 return -EINVAL;
599
600 ret = sscanf(buf, "%u", &freq);
601 if (ret != 1)
602 return -EINVAL;
603
604 policy->governor->store_setspeed(policy, freq);
605
606 return count;
607 }
608
609 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
610 {
611 if (!policy->governor || !policy->governor->show_setspeed)
612 return sprintf(buf, "<unsupported>\n");
613
614 return policy->governor->show_setspeed(policy, buf);
615 }
616
617 /**
618 * show_bios_limit - show the current cpufreq HW/BIOS limitation
619 */
620 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
621 {
622 unsigned int limit;
623 int ret;
624 if (cpufreq_driver->bios_limit) {
625 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
626 if (!ret)
627 return sprintf(buf, "%u\n", limit);
628 }
629 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
630 }
631
632 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
633 cpufreq_freq_attr_ro(cpuinfo_min_freq);
634 cpufreq_freq_attr_ro(cpuinfo_max_freq);
635 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
636 cpufreq_freq_attr_ro(scaling_available_governors);
637 cpufreq_freq_attr_ro(scaling_driver);
638 cpufreq_freq_attr_ro(scaling_cur_freq);
639 cpufreq_freq_attr_ro(bios_limit);
640 cpufreq_freq_attr_ro(related_cpus);
641 cpufreq_freq_attr_ro(affected_cpus);
642 cpufreq_freq_attr_rw(scaling_min_freq);
643 cpufreq_freq_attr_rw(scaling_max_freq);
644 cpufreq_freq_attr_rw(scaling_governor);
645 cpufreq_freq_attr_rw(scaling_setspeed);
646
647 static struct attribute *default_attrs[] = {
648 &cpuinfo_min_freq.attr,
649 &cpuinfo_max_freq.attr,
650 &cpuinfo_transition_latency.attr,
651 &scaling_min_freq.attr,
652 &scaling_max_freq.attr,
653 &affected_cpus.attr,
654 &related_cpus.attr,
655 &scaling_governor.attr,
656 &scaling_driver.attr,
657 &scaling_available_governors.attr,
658 &scaling_setspeed.attr,
659 NULL
660 };
661
662 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
663 #define to_attr(a) container_of(a, struct freq_attr, attr)
664
665 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
666 {
667 struct cpufreq_policy *policy = to_policy(kobj);
668 struct freq_attr *fattr = to_attr(attr);
669 ssize_t ret = -EINVAL;
670
671 if (!down_read_trylock(&cpufreq_rwsem))
672 goto exit;
673
674 if (lock_policy_rwsem_read(policy->cpu) < 0)
675 goto up_read;
676
677 if (fattr->show)
678 ret = fattr->show(policy, buf);
679 else
680 ret = -EIO;
681
682 unlock_policy_rwsem_read(policy->cpu);
683
684 up_read:
685 up_read(&cpufreq_rwsem);
686 exit:
687 return ret;
688 }
689
690 static ssize_t store(struct kobject *kobj, struct attribute *attr,
691 const char *buf, size_t count)
692 {
693 struct cpufreq_policy *policy = to_policy(kobj);
694 struct freq_attr *fattr = to_attr(attr);
695 ssize_t ret = -EINVAL;
696
697 if (!down_read_trylock(&cpufreq_rwsem))
698 goto exit;
699
700 if (lock_policy_rwsem_write(policy->cpu) < 0)
701 goto up_read;
702
703 if (fattr->store)
704 ret = fattr->store(policy, buf, count);
705 else
706 ret = -EIO;
707
708 unlock_policy_rwsem_write(policy->cpu);
709
710 up_read:
711 up_read(&cpufreq_rwsem);
712 exit:
713 return ret;
714 }
715
716 static void cpufreq_sysfs_release(struct kobject *kobj)
717 {
718 struct cpufreq_policy *policy = to_policy(kobj);
719 pr_debug("last reference is dropped\n");
720 complete(&policy->kobj_unregister);
721 }
722
723 static const struct sysfs_ops sysfs_ops = {
724 .show = show,
725 .store = store,
726 };
727
728 static struct kobj_type ktype_cpufreq = {
729 .sysfs_ops = &sysfs_ops,
730 .default_attrs = default_attrs,
731 .release = cpufreq_sysfs_release,
732 };
733
734 struct kobject *cpufreq_global_kobject;
735 EXPORT_SYMBOL(cpufreq_global_kobject);
736
737 static int cpufreq_global_kobject_usage;
738
739 int cpufreq_get_global_kobject(void)
740 {
741 if (!cpufreq_global_kobject_usage++)
742 return kobject_add(cpufreq_global_kobject,
743 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
744
745 return 0;
746 }
747 EXPORT_SYMBOL(cpufreq_get_global_kobject);
748
749 void cpufreq_put_global_kobject(void)
750 {
751 if (!--cpufreq_global_kobject_usage)
752 kobject_del(cpufreq_global_kobject);
753 }
754 EXPORT_SYMBOL(cpufreq_put_global_kobject);
755
756 int cpufreq_sysfs_create_file(const struct attribute *attr)
757 {
758 int ret = cpufreq_get_global_kobject();
759
760 if (!ret) {
761 ret = sysfs_create_file(cpufreq_global_kobject, attr);
762 if (ret)
763 cpufreq_put_global_kobject();
764 }
765
766 return ret;
767 }
768 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
769
770 void cpufreq_sysfs_remove_file(const struct attribute *attr)
771 {
772 sysfs_remove_file(cpufreq_global_kobject, attr);
773 cpufreq_put_global_kobject();
774 }
775 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
776
777 /* symlink affected CPUs */
778 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
779 {
780 unsigned int j;
781 int ret = 0;
782
783 for_each_cpu(j, policy->cpus) {
784 struct device *cpu_dev;
785
786 if (j == policy->cpu)
787 continue;
788
789 pr_debug("Adding link for CPU: %u\n", j);
790 cpu_dev = get_cpu_device(j);
791 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
792 "cpufreq");
793 if (ret)
794 break;
795 }
796 return ret;
797 }
798
799 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
800 struct device *dev)
801 {
802 struct freq_attr **drv_attr;
803 int ret = 0;
804
805 /* prepare interface data */
806 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
807 &dev->kobj, "cpufreq");
808 if (ret)
809 return ret;
810
811 /* set up files for this cpu device */
812 drv_attr = cpufreq_driver->attr;
813 while ((drv_attr) && (*drv_attr)) {
814 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
815 if (ret)
816 goto err_out_kobj_put;
817 drv_attr++;
818 }
819 if (cpufreq_driver->get) {
820 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
821 if (ret)
822 goto err_out_kobj_put;
823 }
824 if (cpufreq_driver->target) {
825 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
826 if (ret)
827 goto err_out_kobj_put;
828 }
829 if (cpufreq_driver->bios_limit) {
830 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
831 if (ret)
832 goto err_out_kobj_put;
833 }
834
835 ret = cpufreq_add_dev_symlink(policy);
836 if (ret)
837 goto err_out_kobj_put;
838
839 return ret;
840
841 err_out_kobj_put:
842 kobject_put(&policy->kobj);
843 wait_for_completion(&policy->kobj_unregister);
844 return ret;
845 }
846
847 static void cpufreq_init_policy(struct cpufreq_policy *policy)
848 {
849 struct cpufreq_policy new_policy;
850 int ret = 0;
851
852 memcpy(&new_policy, policy, sizeof(*policy));
853 /* assure that the starting sequence is run in __cpufreq_set_policy */
854 policy->governor = NULL;
855
856 /* set default policy */
857 ret = __cpufreq_set_policy(policy, &new_policy);
858 policy->user_policy.policy = policy->policy;
859 policy->user_policy.governor = policy->governor;
860
861 if (ret) {
862 pr_debug("setting policy failed\n");
863 if (cpufreq_driver->exit)
864 cpufreq_driver->exit(policy);
865 }
866 }
867
868 #ifdef CONFIG_HOTPLUG_CPU
869 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
870 unsigned int cpu, struct device *dev,
871 bool frozen)
872 {
873 int ret = 0, has_target = !!cpufreq_driver->target;
874 unsigned long flags;
875
876 if (has_target) {
877 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
878 if (ret) {
879 pr_err("%s: Failed to stop governor\n", __func__);
880 return ret;
881 }
882 }
883
884 lock_policy_rwsem_write(policy->cpu);
885
886 write_lock_irqsave(&cpufreq_driver_lock, flags);
887
888 cpumask_set_cpu(cpu, policy->cpus);
889 per_cpu(cpufreq_cpu_data, cpu) = policy;
890 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
891
892 unlock_policy_rwsem_write(policy->cpu);
893
894 if (has_target) {
895 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
896 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
897 pr_err("%s: Failed to start governor\n", __func__);
898 return ret;
899 }
900 }
901
902 /* Don't touch sysfs links during light-weight init */
903 if (!frozen)
904 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
905
906 return ret;
907 }
908 #endif
909
910 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
911 {
912 struct cpufreq_policy *policy;
913 unsigned long flags;
914
915 write_lock_irqsave(&cpufreq_driver_lock, flags);
916
917 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
918
919 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
920
921 return policy;
922 }
923
924 static struct cpufreq_policy *cpufreq_policy_alloc(void)
925 {
926 struct cpufreq_policy *policy;
927
928 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
929 if (!policy)
930 return NULL;
931
932 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
933 goto err_free_policy;
934
935 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
936 goto err_free_cpumask;
937
938 INIT_LIST_HEAD(&policy->policy_list);
939 return policy;
940
941 err_free_cpumask:
942 free_cpumask_var(policy->cpus);
943 err_free_policy:
944 kfree(policy);
945
946 return NULL;
947 }
948
949 static void cpufreq_policy_free(struct cpufreq_policy *policy)
950 {
951 free_cpumask_var(policy->related_cpus);
952 free_cpumask_var(policy->cpus);
953 kfree(policy);
954 }
955
956 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif,
957 bool frozen)
958 {
959 unsigned int j, cpu = dev->id;
960 int ret = -ENOMEM;
961 struct cpufreq_policy *policy;
962 unsigned long flags;
963 #ifdef CONFIG_HOTPLUG_CPU
964 struct cpufreq_policy *tpolicy;
965 struct cpufreq_governor *gov;
966 #endif
967
968 if (cpu_is_offline(cpu))
969 return 0;
970
971 pr_debug("adding CPU %u\n", cpu);
972
973 #ifdef CONFIG_SMP
974 /* check whether a different CPU already registered this
975 * CPU because it is in the same boat. */
976 policy = cpufreq_cpu_get(cpu);
977 if (unlikely(policy)) {
978 cpufreq_cpu_put(policy);
979 return 0;
980 }
981 #endif
982
983 if (!down_read_trylock(&cpufreq_rwsem))
984 return 0;
985
986 #ifdef CONFIG_HOTPLUG_CPU
987 /* Check if this cpu was hot-unplugged earlier and has siblings */
988 read_lock_irqsave(&cpufreq_driver_lock, flags);
989 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
990 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
991 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
992 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen);
993 up_read(&cpufreq_rwsem);
994 return ret;
995 }
996 }
997 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
998 #endif
999
1000 if (frozen)
1001 /* Restore the saved policy when doing light-weight init */
1002 policy = cpufreq_policy_restore(cpu);
1003 else
1004 policy = cpufreq_policy_alloc();
1005
1006 if (!policy)
1007 goto nomem_out;
1008
1009 policy->cpu = cpu;
1010 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1011 cpumask_copy(policy->cpus, cpumask_of(cpu));
1012
1013 init_completion(&policy->kobj_unregister);
1014 INIT_WORK(&policy->update, handle_update);
1015
1016 /* call driver. From then on the cpufreq must be able
1017 * to accept all calls to ->verify and ->setpolicy for this CPU
1018 */
1019 ret = cpufreq_driver->init(policy);
1020 if (ret) {
1021 pr_debug("initialization failed\n");
1022 goto err_set_policy_cpu;
1023 }
1024
1025 /* related cpus should atleast have policy->cpus */
1026 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1027
1028 /*
1029 * affected cpus must always be the one, which are online. We aren't
1030 * managing offline cpus here.
1031 */
1032 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1033
1034 policy->user_policy.min = policy->min;
1035 policy->user_policy.max = policy->max;
1036
1037 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1038 CPUFREQ_START, policy);
1039
1040 #ifdef CONFIG_HOTPLUG_CPU
1041 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
1042 if (gov) {
1043 policy->governor = gov;
1044 pr_debug("Restoring governor %s for cpu %d\n",
1045 policy->governor->name, cpu);
1046 }
1047 #endif
1048
1049 write_lock_irqsave(&cpufreq_driver_lock, flags);
1050 for_each_cpu(j, policy->cpus)
1051 per_cpu(cpufreq_cpu_data, j) = policy;
1052 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1053
1054 if (!frozen) {
1055 ret = cpufreq_add_dev_interface(policy, dev);
1056 if (ret)
1057 goto err_out_unregister;
1058 }
1059
1060 write_lock_irqsave(&cpufreq_driver_lock, flags);
1061 list_add(&policy->policy_list, &cpufreq_policy_list);
1062 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1063
1064 cpufreq_init_policy(policy);
1065
1066 kobject_uevent(&policy->kobj, KOBJ_ADD);
1067 up_read(&cpufreq_rwsem);
1068
1069 pr_debug("initialization complete\n");
1070
1071 return 0;
1072
1073 err_out_unregister:
1074 write_lock_irqsave(&cpufreq_driver_lock, flags);
1075 for_each_cpu(j, policy->cpus)
1076 per_cpu(cpufreq_cpu_data, j) = NULL;
1077 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1078
1079 err_set_policy_cpu:
1080 cpufreq_policy_free(policy);
1081 nomem_out:
1082 up_read(&cpufreq_rwsem);
1083
1084 return ret;
1085 }
1086
1087 /**
1088 * cpufreq_add_dev - add a CPU device
1089 *
1090 * Adds the cpufreq interface for a CPU device.
1091 *
1092 * The Oracle says: try running cpufreq registration/unregistration concurrently
1093 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1094 * mess up, but more thorough testing is needed. - Mathieu
1095 */
1096 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1097 {
1098 return __cpufreq_add_dev(dev, sif, false);
1099 }
1100
1101 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1102 {
1103 policy->last_cpu = policy->cpu;
1104 policy->cpu = cpu;
1105
1106 #ifdef CONFIG_CPU_FREQ_TABLE
1107 cpufreq_frequency_table_update_policy_cpu(policy);
1108 #endif
1109 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1110 CPUFREQ_UPDATE_POLICY_CPU, policy);
1111 }
1112
1113 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1114 unsigned int old_cpu, bool frozen)
1115 {
1116 struct device *cpu_dev;
1117 int ret;
1118
1119 /* first sibling now owns the new sysfs dir */
1120 cpu_dev = get_cpu_device(cpumask_first(policy->cpus));
1121
1122 /* Don't touch sysfs files during light-weight tear-down */
1123 if (frozen)
1124 return cpu_dev->id;
1125
1126 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1127 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1128 if (ret) {
1129 pr_err("%s: Failed to move kobj: %d", __func__, ret);
1130
1131 WARN_ON(lock_policy_rwsem_write(old_cpu));
1132 cpumask_set_cpu(old_cpu, policy->cpus);
1133 unlock_policy_rwsem_write(old_cpu);
1134
1135 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1136 "cpufreq");
1137
1138 return -EINVAL;
1139 }
1140
1141 return cpu_dev->id;
1142 }
1143
1144 /**
1145 * __cpufreq_remove_dev - remove a CPU device
1146 *
1147 * Removes the cpufreq interface for a CPU device.
1148 * Caller should already have policy_rwsem in write mode for this CPU.
1149 * This routine frees the rwsem before returning.
1150 */
1151 static int __cpufreq_remove_dev(struct device *dev,
1152 struct subsys_interface *sif, bool frozen)
1153 {
1154 unsigned int cpu = dev->id, cpus;
1155 int new_cpu, ret;
1156 unsigned long flags;
1157 struct cpufreq_policy *policy;
1158 struct kobject *kobj;
1159 struct completion *cmp;
1160
1161 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1162
1163 write_lock_irqsave(&cpufreq_driver_lock, flags);
1164
1165 policy = per_cpu(cpufreq_cpu_data, cpu);
1166
1167 /* Save the policy somewhere when doing a light-weight tear-down */
1168 if (frozen)
1169 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1170
1171 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1172
1173 if (!policy) {
1174 pr_debug("%s: No cpu_data found\n", __func__);
1175 return -EINVAL;
1176 }
1177
1178 if (cpufreq_driver->target) {
1179 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1180 if (ret) {
1181 pr_err("%s: Failed to stop governor\n", __func__);
1182 return ret;
1183 }
1184 }
1185
1186 #ifdef CONFIG_HOTPLUG_CPU
1187 if (!cpufreq_driver->setpolicy)
1188 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1189 policy->governor->name, CPUFREQ_NAME_LEN);
1190 #endif
1191
1192 WARN_ON(lock_policy_rwsem_write(cpu));
1193 cpus = cpumask_weight(policy->cpus);
1194
1195 if (cpus > 1)
1196 cpumask_clear_cpu(cpu, policy->cpus);
1197 unlock_policy_rwsem_write(cpu);
1198
1199 if (cpu != policy->cpu && !frozen) {
1200 sysfs_remove_link(&dev->kobj, "cpufreq");
1201 } else if (cpus > 1) {
1202
1203 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen);
1204 if (new_cpu >= 0) {
1205 WARN_ON(lock_policy_rwsem_write(cpu));
1206 update_policy_cpu(policy, new_cpu);
1207 unlock_policy_rwsem_write(cpu);
1208
1209 if (!frozen) {
1210 pr_debug("%s: policy Kobject moved to cpu: %d "
1211 "from: %d\n",__func__, new_cpu, cpu);
1212 }
1213 }
1214 }
1215
1216 /* If cpu is last user of policy, free policy */
1217 if (cpus == 1) {
1218 if (cpufreq_driver->target) {
1219 ret = __cpufreq_governor(policy,
1220 CPUFREQ_GOV_POLICY_EXIT);
1221 if (ret) {
1222 pr_err("%s: Failed to exit governor\n",
1223 __func__);
1224 return ret;
1225 }
1226 }
1227
1228 if (!frozen) {
1229 lock_policy_rwsem_read(cpu);
1230 kobj = &policy->kobj;
1231 cmp = &policy->kobj_unregister;
1232 unlock_policy_rwsem_read(cpu);
1233 kobject_put(kobj);
1234
1235 /*
1236 * We need to make sure that the underlying kobj is
1237 * actually not referenced anymore by anybody before we
1238 * proceed with unloading.
1239 */
1240 pr_debug("waiting for dropping of refcount\n");
1241 wait_for_completion(cmp);
1242 pr_debug("wait complete\n");
1243 }
1244
1245 /*
1246 * Perform the ->exit() even during light-weight tear-down,
1247 * since this is a core component, and is essential for the
1248 * subsequent light-weight ->init() to succeed.
1249 */
1250 if (cpufreq_driver->exit)
1251 cpufreq_driver->exit(policy);
1252
1253 /* Remove policy from list of active policies */
1254 write_lock_irqsave(&cpufreq_driver_lock, flags);
1255 list_del(&policy->policy_list);
1256 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1257
1258 if (!frozen)
1259 cpufreq_policy_free(policy);
1260 } else {
1261 if (cpufreq_driver->target) {
1262 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
1263 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
1264 pr_err("%s: Failed to start governor\n",
1265 __func__);
1266 return ret;
1267 }
1268 }
1269 }
1270
1271 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1272 return 0;
1273 }
1274
1275 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1276 {
1277 unsigned int cpu = dev->id;
1278 int retval;
1279
1280 if (cpu_is_offline(cpu))
1281 return 0;
1282
1283 retval = __cpufreq_remove_dev(dev, sif, false);
1284 return retval;
1285 }
1286
1287 static void handle_update(struct work_struct *work)
1288 {
1289 struct cpufreq_policy *policy =
1290 container_of(work, struct cpufreq_policy, update);
1291 unsigned int cpu = policy->cpu;
1292 pr_debug("handle_update for cpu %u called\n", cpu);
1293 cpufreq_update_policy(cpu);
1294 }
1295
1296 /**
1297 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1298 * in deep trouble.
1299 * @cpu: cpu number
1300 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1301 * @new_freq: CPU frequency the CPU actually runs at
1302 *
1303 * We adjust to current frequency first, and need to clean up later.
1304 * So either call to cpufreq_update_policy() or schedule handle_update()).
1305 */
1306 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1307 unsigned int new_freq)
1308 {
1309 struct cpufreq_policy *policy;
1310 struct cpufreq_freqs freqs;
1311 unsigned long flags;
1312
1313 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1314 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1315
1316 freqs.old = old_freq;
1317 freqs.new = new_freq;
1318
1319 read_lock_irqsave(&cpufreq_driver_lock, flags);
1320 policy = per_cpu(cpufreq_cpu_data, cpu);
1321 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1322
1323 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
1324 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
1325 }
1326
1327 /**
1328 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1329 * @cpu: CPU number
1330 *
1331 * This is the last known freq, without actually getting it from the driver.
1332 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1333 */
1334 unsigned int cpufreq_quick_get(unsigned int cpu)
1335 {
1336 struct cpufreq_policy *policy;
1337 unsigned int ret_freq = 0;
1338
1339 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1340 return cpufreq_driver->get(cpu);
1341
1342 policy = cpufreq_cpu_get(cpu);
1343 if (policy) {
1344 ret_freq = policy->cur;
1345 cpufreq_cpu_put(policy);
1346 }
1347
1348 return ret_freq;
1349 }
1350 EXPORT_SYMBOL(cpufreq_quick_get);
1351
1352 /**
1353 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1354 * @cpu: CPU number
1355 *
1356 * Just return the max possible frequency for a given CPU.
1357 */
1358 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1359 {
1360 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1361 unsigned int ret_freq = 0;
1362
1363 if (policy) {
1364 ret_freq = policy->max;
1365 cpufreq_cpu_put(policy);
1366 }
1367
1368 return ret_freq;
1369 }
1370 EXPORT_SYMBOL(cpufreq_quick_get_max);
1371
1372 static unsigned int __cpufreq_get(unsigned int cpu)
1373 {
1374 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1375 unsigned int ret_freq = 0;
1376
1377 if (!cpufreq_driver->get)
1378 return ret_freq;
1379
1380 ret_freq = cpufreq_driver->get(cpu);
1381
1382 if (ret_freq && policy->cur &&
1383 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1384 /* verify no discrepancy between actual and
1385 saved value exists */
1386 if (unlikely(ret_freq != policy->cur)) {
1387 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1388 schedule_work(&policy->update);
1389 }
1390 }
1391
1392 return ret_freq;
1393 }
1394
1395 /**
1396 * cpufreq_get - get the current CPU frequency (in kHz)
1397 * @cpu: CPU number
1398 *
1399 * Get the CPU current (static) CPU frequency
1400 */
1401 unsigned int cpufreq_get(unsigned int cpu)
1402 {
1403 unsigned int ret_freq = 0;
1404
1405 if (!down_read_trylock(&cpufreq_rwsem))
1406 return 0;
1407
1408 if (unlikely(lock_policy_rwsem_read(cpu)))
1409 goto out_policy;
1410
1411 ret_freq = __cpufreq_get(cpu);
1412
1413 unlock_policy_rwsem_read(cpu);
1414
1415 out_policy:
1416 up_read(&cpufreq_rwsem);
1417
1418 return ret_freq;
1419 }
1420 EXPORT_SYMBOL(cpufreq_get);
1421
1422 static struct subsys_interface cpufreq_interface = {
1423 .name = "cpufreq",
1424 .subsys = &cpu_subsys,
1425 .add_dev = cpufreq_add_dev,
1426 .remove_dev = cpufreq_remove_dev,
1427 };
1428
1429 /**
1430 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1431 *
1432 * This function is only executed for the boot processor. The other CPUs
1433 * have been put offline by means of CPU hotplug.
1434 */
1435 static int cpufreq_bp_suspend(void)
1436 {
1437 int ret = 0;
1438
1439 int cpu = smp_processor_id();
1440 struct cpufreq_policy *policy;
1441
1442 pr_debug("suspending cpu %u\n", cpu);
1443
1444 /* If there's no policy for the boot CPU, we have nothing to do. */
1445 policy = cpufreq_cpu_get(cpu);
1446 if (!policy)
1447 return 0;
1448
1449 if (cpufreq_driver->suspend) {
1450 ret = cpufreq_driver->suspend(policy);
1451 if (ret)
1452 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1453 "step on CPU %u\n", policy->cpu);
1454 }
1455
1456 cpufreq_cpu_put(policy);
1457 return ret;
1458 }
1459
1460 /**
1461 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1462 *
1463 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1464 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1465 * restored. It will verify that the current freq is in sync with
1466 * what we believe it to be. This is a bit later than when it
1467 * should be, but nonethteless it's better than calling
1468 * cpufreq_driver->get() here which might re-enable interrupts...
1469 *
1470 * This function is only executed for the boot CPU. The other CPUs have not
1471 * been turned on yet.
1472 */
1473 static void cpufreq_bp_resume(void)
1474 {
1475 int ret = 0;
1476
1477 int cpu = smp_processor_id();
1478 struct cpufreq_policy *policy;
1479
1480 pr_debug("resuming cpu %u\n", cpu);
1481
1482 /* If there's no policy for the boot CPU, we have nothing to do. */
1483 policy = cpufreq_cpu_get(cpu);
1484 if (!policy)
1485 return;
1486
1487 if (cpufreq_driver->resume) {
1488 ret = cpufreq_driver->resume(policy);
1489 if (ret) {
1490 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1491 "step on CPU %u\n", policy->cpu);
1492 goto fail;
1493 }
1494 }
1495
1496 schedule_work(&policy->update);
1497
1498 fail:
1499 cpufreq_cpu_put(policy);
1500 }
1501
1502 static struct syscore_ops cpufreq_syscore_ops = {
1503 .suspend = cpufreq_bp_suspend,
1504 .resume = cpufreq_bp_resume,
1505 };
1506
1507 /**
1508 * cpufreq_get_current_driver - return current driver's name
1509 *
1510 * Return the name string of the currently loaded cpufreq driver
1511 * or NULL, if none.
1512 */
1513 const char *cpufreq_get_current_driver(void)
1514 {
1515 if (cpufreq_driver)
1516 return cpufreq_driver->name;
1517
1518 return NULL;
1519 }
1520 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1521
1522 /*********************************************************************
1523 * NOTIFIER LISTS INTERFACE *
1524 *********************************************************************/
1525
1526 /**
1527 * cpufreq_register_notifier - register a driver with cpufreq
1528 * @nb: notifier function to register
1529 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1530 *
1531 * Add a driver to one of two lists: either a list of drivers that
1532 * are notified about clock rate changes (once before and once after
1533 * the transition), or a list of drivers that are notified about
1534 * changes in cpufreq policy.
1535 *
1536 * This function may sleep, and has the same return conditions as
1537 * blocking_notifier_chain_register.
1538 */
1539 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1540 {
1541 int ret;
1542
1543 if (cpufreq_disabled())
1544 return -EINVAL;
1545
1546 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1547
1548 switch (list) {
1549 case CPUFREQ_TRANSITION_NOTIFIER:
1550 ret = srcu_notifier_chain_register(
1551 &cpufreq_transition_notifier_list, nb);
1552 break;
1553 case CPUFREQ_POLICY_NOTIFIER:
1554 ret = blocking_notifier_chain_register(
1555 &cpufreq_policy_notifier_list, nb);
1556 break;
1557 default:
1558 ret = -EINVAL;
1559 }
1560
1561 return ret;
1562 }
1563 EXPORT_SYMBOL(cpufreq_register_notifier);
1564
1565 /**
1566 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1567 * @nb: notifier block to be unregistered
1568 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1569 *
1570 * Remove a driver from the CPU frequency notifier list.
1571 *
1572 * This function may sleep, and has the same return conditions as
1573 * blocking_notifier_chain_unregister.
1574 */
1575 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1576 {
1577 int ret;
1578
1579 if (cpufreq_disabled())
1580 return -EINVAL;
1581
1582 switch (list) {
1583 case CPUFREQ_TRANSITION_NOTIFIER:
1584 ret = srcu_notifier_chain_unregister(
1585 &cpufreq_transition_notifier_list, nb);
1586 break;
1587 case CPUFREQ_POLICY_NOTIFIER:
1588 ret = blocking_notifier_chain_unregister(
1589 &cpufreq_policy_notifier_list, nb);
1590 break;
1591 default:
1592 ret = -EINVAL;
1593 }
1594
1595 return ret;
1596 }
1597 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1598
1599
1600 /*********************************************************************
1601 * GOVERNORS *
1602 *********************************************************************/
1603
1604 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1605 unsigned int target_freq,
1606 unsigned int relation)
1607 {
1608 int retval = -EINVAL;
1609 unsigned int old_target_freq = target_freq;
1610
1611 if (cpufreq_disabled())
1612 return -ENODEV;
1613 if (policy->transition_ongoing)
1614 return -EBUSY;
1615
1616 /* Make sure that target_freq is within supported range */
1617 if (target_freq > policy->max)
1618 target_freq = policy->max;
1619 if (target_freq < policy->min)
1620 target_freq = policy->min;
1621
1622 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1623 policy->cpu, target_freq, relation, old_target_freq);
1624
1625 if (target_freq == policy->cur)
1626 return 0;
1627
1628 if (cpufreq_driver->target)
1629 retval = cpufreq_driver->target(policy, target_freq, relation);
1630
1631 return retval;
1632 }
1633 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1634
1635 int cpufreq_driver_target(struct cpufreq_policy *policy,
1636 unsigned int target_freq,
1637 unsigned int relation)
1638 {
1639 int ret = -EINVAL;
1640
1641 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1642 goto fail;
1643
1644 ret = __cpufreq_driver_target(policy, target_freq, relation);
1645
1646 unlock_policy_rwsem_write(policy->cpu);
1647
1648 fail:
1649 return ret;
1650 }
1651 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1652
1653 /*
1654 * when "event" is CPUFREQ_GOV_LIMITS
1655 */
1656
1657 static int __cpufreq_governor(struct cpufreq_policy *policy,
1658 unsigned int event)
1659 {
1660 int ret;
1661
1662 /* Only must be defined when default governor is known to have latency
1663 restrictions, like e.g. conservative or ondemand.
1664 That this is the case is already ensured in Kconfig
1665 */
1666 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1667 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1668 #else
1669 struct cpufreq_governor *gov = NULL;
1670 #endif
1671
1672 if (policy->governor->max_transition_latency &&
1673 policy->cpuinfo.transition_latency >
1674 policy->governor->max_transition_latency) {
1675 if (!gov)
1676 return -EINVAL;
1677 else {
1678 printk(KERN_WARNING "%s governor failed, too long"
1679 " transition latency of HW, fallback"
1680 " to %s governor\n",
1681 policy->governor->name,
1682 gov->name);
1683 policy->governor = gov;
1684 }
1685 }
1686
1687 if (event == CPUFREQ_GOV_POLICY_INIT)
1688 if (!try_module_get(policy->governor->owner))
1689 return -EINVAL;
1690
1691 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1692 policy->cpu, event);
1693
1694 mutex_lock(&cpufreq_governor_lock);
1695 if ((!policy->governor_enabled && (event == CPUFREQ_GOV_STOP)) ||
1696 (policy->governor_enabled && (event == CPUFREQ_GOV_START))) {
1697 mutex_unlock(&cpufreq_governor_lock);
1698 return -EBUSY;
1699 }
1700
1701 if (event == CPUFREQ_GOV_STOP)
1702 policy->governor_enabled = false;
1703 else if (event == CPUFREQ_GOV_START)
1704 policy->governor_enabled = true;
1705
1706 mutex_unlock(&cpufreq_governor_lock);
1707
1708 ret = policy->governor->governor(policy, event);
1709
1710 if (!ret) {
1711 if (event == CPUFREQ_GOV_POLICY_INIT)
1712 policy->governor->initialized++;
1713 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1714 policy->governor->initialized--;
1715 } else {
1716 /* Restore original values */
1717 mutex_lock(&cpufreq_governor_lock);
1718 if (event == CPUFREQ_GOV_STOP)
1719 policy->governor_enabled = true;
1720 else if (event == CPUFREQ_GOV_START)
1721 policy->governor_enabled = false;
1722 mutex_unlock(&cpufreq_governor_lock);
1723 }
1724
1725 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1726 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1727 module_put(policy->governor->owner);
1728
1729 return ret;
1730 }
1731
1732 int cpufreq_register_governor(struct cpufreq_governor *governor)
1733 {
1734 int err;
1735
1736 if (!governor)
1737 return -EINVAL;
1738
1739 if (cpufreq_disabled())
1740 return -ENODEV;
1741
1742 mutex_lock(&cpufreq_governor_mutex);
1743
1744 governor->initialized = 0;
1745 err = -EBUSY;
1746 if (__find_governor(governor->name) == NULL) {
1747 err = 0;
1748 list_add(&governor->governor_list, &cpufreq_governor_list);
1749 }
1750
1751 mutex_unlock(&cpufreq_governor_mutex);
1752 return err;
1753 }
1754 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1755
1756 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1757 {
1758 #ifdef CONFIG_HOTPLUG_CPU
1759 int cpu;
1760 #endif
1761
1762 if (!governor)
1763 return;
1764
1765 if (cpufreq_disabled())
1766 return;
1767
1768 #ifdef CONFIG_HOTPLUG_CPU
1769 for_each_present_cpu(cpu) {
1770 if (cpu_online(cpu))
1771 continue;
1772 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1773 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1774 }
1775 #endif
1776
1777 mutex_lock(&cpufreq_governor_mutex);
1778 list_del(&governor->governor_list);
1779 mutex_unlock(&cpufreq_governor_mutex);
1780 return;
1781 }
1782 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1783
1784
1785 /*********************************************************************
1786 * POLICY INTERFACE *
1787 *********************************************************************/
1788
1789 /**
1790 * cpufreq_get_policy - get the current cpufreq_policy
1791 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1792 * is written
1793 *
1794 * Reads the current cpufreq policy.
1795 */
1796 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1797 {
1798 struct cpufreq_policy *cpu_policy;
1799 if (!policy)
1800 return -EINVAL;
1801
1802 cpu_policy = cpufreq_cpu_get(cpu);
1803 if (!cpu_policy)
1804 return -EINVAL;
1805
1806 memcpy(policy, cpu_policy, sizeof(*policy));
1807
1808 cpufreq_cpu_put(cpu_policy);
1809 return 0;
1810 }
1811 EXPORT_SYMBOL(cpufreq_get_policy);
1812
1813 /*
1814 * data : current policy.
1815 * policy : policy to be set.
1816 */
1817 static int __cpufreq_set_policy(struct cpufreq_policy *policy,
1818 struct cpufreq_policy *new_policy)
1819 {
1820 int ret = 0, failed = 1;
1821
1822 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu,
1823 new_policy->min, new_policy->max);
1824
1825 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
1826
1827 if (new_policy->min > policy->max || new_policy->max < policy->min) {
1828 ret = -EINVAL;
1829 goto error_out;
1830 }
1831
1832 /* verify the cpu speed can be set within this limit */
1833 ret = cpufreq_driver->verify(new_policy);
1834 if (ret)
1835 goto error_out;
1836
1837 /* adjust if necessary - all reasons */
1838 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1839 CPUFREQ_ADJUST, new_policy);
1840
1841 /* adjust if necessary - hardware incompatibility*/
1842 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1843 CPUFREQ_INCOMPATIBLE, new_policy);
1844
1845 /*
1846 * verify the cpu speed can be set within this limit, which might be
1847 * different to the first one
1848 */
1849 ret = cpufreq_driver->verify(new_policy);
1850 if (ret)
1851 goto error_out;
1852
1853 /* notification of the new policy */
1854 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1855 CPUFREQ_NOTIFY, new_policy);
1856
1857 policy->min = new_policy->min;
1858 policy->max = new_policy->max;
1859
1860 pr_debug("new min and max freqs are %u - %u kHz\n",
1861 policy->min, policy->max);
1862
1863 if (cpufreq_driver->setpolicy) {
1864 policy->policy = new_policy->policy;
1865 pr_debug("setting range\n");
1866 ret = cpufreq_driver->setpolicy(new_policy);
1867 } else {
1868 if (new_policy->governor != policy->governor) {
1869 /* save old, working values */
1870 struct cpufreq_governor *old_gov = policy->governor;
1871
1872 pr_debug("governor switch\n");
1873
1874 /* end old governor */
1875 if (policy->governor) {
1876 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1877 unlock_policy_rwsem_write(new_policy->cpu);
1878 __cpufreq_governor(policy,
1879 CPUFREQ_GOV_POLICY_EXIT);
1880 lock_policy_rwsem_write(new_policy->cpu);
1881 }
1882
1883 /* start new governor */
1884 policy->governor = new_policy->governor;
1885 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
1886 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) {
1887 failed = 0;
1888 } else {
1889 unlock_policy_rwsem_write(new_policy->cpu);
1890 __cpufreq_governor(policy,
1891 CPUFREQ_GOV_POLICY_EXIT);
1892 lock_policy_rwsem_write(new_policy->cpu);
1893 }
1894 }
1895
1896 if (failed) {
1897 /* new governor failed, so re-start old one */
1898 pr_debug("starting governor %s failed\n",
1899 policy->governor->name);
1900 if (old_gov) {
1901 policy->governor = old_gov;
1902 __cpufreq_governor(policy,
1903 CPUFREQ_GOV_POLICY_INIT);
1904 __cpufreq_governor(policy,
1905 CPUFREQ_GOV_START);
1906 }
1907 ret = -EINVAL;
1908 goto error_out;
1909 }
1910 /* might be a policy change, too, so fall through */
1911 }
1912 pr_debug("governor: change or update limits\n");
1913 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1914 }
1915
1916 error_out:
1917 return ret;
1918 }
1919
1920 /**
1921 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1922 * @cpu: CPU which shall be re-evaluated
1923 *
1924 * Useful for policy notifiers which have different necessities
1925 * at different times.
1926 */
1927 int cpufreq_update_policy(unsigned int cpu)
1928 {
1929 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1930 struct cpufreq_policy new_policy;
1931 int ret;
1932
1933 if (!policy) {
1934 ret = -ENODEV;
1935 goto no_policy;
1936 }
1937
1938 if (unlikely(lock_policy_rwsem_write(cpu))) {
1939 ret = -EINVAL;
1940 goto fail;
1941 }
1942
1943 pr_debug("updating policy for CPU %u\n", cpu);
1944 memcpy(&new_policy, policy, sizeof(*policy));
1945 new_policy.min = policy->user_policy.min;
1946 new_policy.max = policy->user_policy.max;
1947 new_policy.policy = policy->user_policy.policy;
1948 new_policy.governor = policy->user_policy.governor;
1949
1950 /*
1951 * BIOS might change freq behind our back
1952 * -> ask driver for current freq and notify governors about a change
1953 */
1954 if (cpufreq_driver->get) {
1955 new_policy.cur = cpufreq_driver->get(cpu);
1956 if (!policy->cur) {
1957 pr_debug("Driver did not initialize current freq");
1958 policy->cur = new_policy.cur;
1959 } else {
1960 if (policy->cur != new_policy.cur && cpufreq_driver->target)
1961 cpufreq_out_of_sync(cpu, policy->cur,
1962 new_policy.cur);
1963 }
1964 }
1965
1966 ret = __cpufreq_set_policy(policy, &new_policy);
1967
1968 unlock_policy_rwsem_write(cpu);
1969
1970 fail:
1971 cpufreq_cpu_put(policy);
1972 no_policy:
1973 return ret;
1974 }
1975 EXPORT_SYMBOL(cpufreq_update_policy);
1976
1977 static int cpufreq_cpu_callback(struct notifier_block *nfb,
1978 unsigned long action, void *hcpu)
1979 {
1980 unsigned int cpu = (unsigned long)hcpu;
1981 struct device *dev;
1982 bool frozen = false;
1983
1984 dev = get_cpu_device(cpu);
1985 if (dev) {
1986
1987 if (action & CPU_TASKS_FROZEN)
1988 frozen = true;
1989
1990 switch (action & ~CPU_TASKS_FROZEN) {
1991 case CPU_ONLINE:
1992 __cpufreq_add_dev(dev, NULL, frozen);
1993 cpufreq_update_policy(cpu);
1994 break;
1995
1996 case CPU_DOWN_PREPARE:
1997 __cpufreq_remove_dev(dev, NULL, frozen);
1998 break;
1999
2000 case CPU_DOWN_FAILED:
2001 __cpufreq_add_dev(dev, NULL, frozen);
2002 break;
2003 }
2004 }
2005 return NOTIFY_OK;
2006 }
2007
2008 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2009 .notifier_call = cpufreq_cpu_callback,
2010 };
2011
2012 /*********************************************************************
2013 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2014 *********************************************************************/
2015
2016 /**
2017 * cpufreq_register_driver - register a CPU Frequency driver
2018 * @driver_data: A struct cpufreq_driver containing the values#
2019 * submitted by the CPU Frequency driver.
2020 *
2021 * Registers a CPU Frequency driver to this core code. This code
2022 * returns zero on success, -EBUSY when another driver got here first
2023 * (and isn't unregistered in the meantime).
2024 *
2025 */
2026 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2027 {
2028 unsigned long flags;
2029 int ret;
2030
2031 if (cpufreq_disabled())
2032 return -ENODEV;
2033
2034 if (!driver_data || !driver_data->verify || !driver_data->init ||
2035 ((!driver_data->setpolicy) && (!driver_data->target)))
2036 return -EINVAL;
2037
2038 pr_debug("trying to register driver %s\n", driver_data->name);
2039
2040 if (driver_data->setpolicy)
2041 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2042
2043 write_lock_irqsave(&cpufreq_driver_lock, flags);
2044 if (cpufreq_driver) {
2045 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2046 return -EBUSY;
2047 }
2048 cpufreq_driver = driver_data;
2049 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2050
2051 ret = subsys_interface_register(&cpufreq_interface);
2052 if (ret)
2053 goto err_null_driver;
2054
2055 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2056 int i;
2057 ret = -ENODEV;
2058
2059 /* check for at least one working CPU */
2060 for (i = 0; i < nr_cpu_ids; i++)
2061 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2062 ret = 0;
2063 break;
2064 }
2065
2066 /* if all ->init() calls failed, unregister */
2067 if (ret) {
2068 pr_debug("no CPU initialized for driver %s\n",
2069 driver_data->name);
2070 goto err_if_unreg;
2071 }
2072 }
2073
2074 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2075 pr_debug("driver %s up and running\n", driver_data->name);
2076
2077 return 0;
2078 err_if_unreg:
2079 subsys_interface_unregister(&cpufreq_interface);
2080 err_null_driver:
2081 write_lock_irqsave(&cpufreq_driver_lock, flags);
2082 cpufreq_driver = NULL;
2083 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2084 return ret;
2085 }
2086 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2087
2088 /**
2089 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2090 *
2091 * Unregister the current CPUFreq driver. Only call this if you have
2092 * the right to do so, i.e. if you have succeeded in initialising before!
2093 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2094 * currently not initialised.
2095 */
2096 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2097 {
2098 unsigned long flags;
2099
2100 if (!cpufreq_driver || (driver != cpufreq_driver))
2101 return -EINVAL;
2102
2103 pr_debug("unregistering driver %s\n", driver->name);
2104
2105 subsys_interface_unregister(&cpufreq_interface);
2106 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2107
2108 down_write(&cpufreq_rwsem);
2109 write_lock_irqsave(&cpufreq_driver_lock, flags);
2110
2111 cpufreq_driver = NULL;
2112
2113 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2114 up_write(&cpufreq_rwsem);
2115
2116 return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2119
2120 static int __init cpufreq_core_init(void)
2121 {
2122 int cpu;
2123
2124 if (cpufreq_disabled())
2125 return -ENODEV;
2126
2127 for_each_possible_cpu(cpu)
2128 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
2129
2130 cpufreq_global_kobject = kobject_create();
2131 BUG_ON(!cpufreq_global_kobject);
2132 register_syscore_ops(&cpufreq_syscore_ops);
2133
2134 return 0;
2135 }
2136 core_initcall(cpufreq_core_init);