]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/cpufreq/cpufreq.c
Merge tag 'stable/for-linus-3.4-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31 #include <linux/syscore_ops.h>
32
33 #include <trace/events/power.h>
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 * - Lock should not be held across
65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66 */
67 static DEFINE_PER_CPU(int, cpufreq_policy_cpu);
68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
69
70 #define lock_policy_rwsem(mode, cpu) \
71 static int lock_policy_rwsem_##mode \
72 (int cpu) \
73 { \
74 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \
75 BUG_ON(policy_cpu == -1); \
76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 if (unlikely(!cpu_online(cpu))) { \
78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
79 return -1; \
80 } \
81 \
82 return 0; \
83 }
84
85 lock_policy_rwsem(read, cpu);
86
87 lock_policy_rwsem(write, cpu);
88
89 static void unlock_policy_rwsem_read(int cpu)
90 {
91 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95
96 static void unlock_policy_rwsem_write(int cpu)
97 {
98 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu);
99 BUG_ON(policy_cpu == -1);
100 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
101 }
102
103
104 /* internal prototypes */
105 static int __cpufreq_governor(struct cpufreq_policy *policy,
106 unsigned int event);
107 static unsigned int __cpufreq_get(unsigned int cpu);
108 static void handle_update(struct work_struct *work);
109
110 /**
111 * Two notifier lists: the "policy" list is involved in the
112 * validation process for a new CPU frequency policy; the
113 * "transition" list for kernel code that needs to handle
114 * changes to devices when the CPU clock speed changes.
115 * The mutex locks both lists.
116 */
117 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
118 static struct srcu_notifier_head cpufreq_transition_notifier_list;
119
120 static bool init_cpufreq_transition_notifier_list_called;
121 static int __init init_cpufreq_transition_notifier_list(void)
122 {
123 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124 init_cpufreq_transition_notifier_list_called = true;
125 return 0;
126 }
127 pure_initcall(init_cpufreq_transition_notifier_list);
128
129 static LIST_HEAD(cpufreq_governor_list);
130 static DEFINE_MUTEX(cpufreq_governor_mutex);
131
132 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
133 {
134 struct cpufreq_policy *data;
135 unsigned long flags;
136
137 if (cpu >= nr_cpu_ids)
138 goto err_out;
139
140 /* get the cpufreq driver */
141 spin_lock_irqsave(&cpufreq_driver_lock, flags);
142
143 if (!cpufreq_driver)
144 goto err_out_unlock;
145
146 if (!try_module_get(cpufreq_driver->owner))
147 goto err_out_unlock;
148
149
150 /* get the CPU */
151 data = per_cpu(cpufreq_cpu_data, cpu);
152
153 if (!data)
154 goto err_out_put_module;
155
156 if (!kobject_get(&data->kobj))
157 goto err_out_put_module;
158
159 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
160 return data;
161
162 err_out_put_module:
163 module_put(cpufreq_driver->owner);
164 err_out_unlock:
165 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
166 err_out:
167 return NULL;
168 }
169 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
170
171
172 void cpufreq_cpu_put(struct cpufreq_policy *data)
173 {
174 kobject_put(&data->kobj);
175 module_put(cpufreq_driver->owner);
176 }
177 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
178
179
180 /*********************************************************************
181 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
182 *********************************************************************/
183
184 /**
185 * adjust_jiffies - adjust the system "loops_per_jiffy"
186 *
187 * This function alters the system "loops_per_jiffy" for the clock
188 * speed change. Note that loops_per_jiffy cannot be updated on SMP
189 * systems as each CPU might be scaled differently. So, use the arch
190 * per-CPU loops_per_jiffy value wherever possible.
191 */
192 #ifndef CONFIG_SMP
193 static unsigned long l_p_j_ref;
194 static unsigned int l_p_j_ref_freq;
195
196 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
197 {
198 if (ci->flags & CPUFREQ_CONST_LOOPS)
199 return;
200
201 if (!l_p_j_ref_freq) {
202 l_p_j_ref = loops_per_jiffy;
203 l_p_j_ref_freq = ci->old;
204 pr_debug("saving %lu as reference value for loops_per_jiffy; "
205 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
206 }
207 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) ||
208 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
209 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
210 ci->new);
211 pr_debug("scaling loops_per_jiffy to %lu "
212 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
213 }
214 }
215 #else
216 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
217 {
218 return;
219 }
220 #endif
221
222
223 /**
224 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
225 * on frequency transition.
226 *
227 * This function calls the transition notifiers and the "adjust_jiffies"
228 * function. It is called twice on all CPU frequency changes that have
229 * external effects.
230 */
231 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
232 {
233 struct cpufreq_policy *policy;
234
235 BUG_ON(irqs_disabled());
236
237 freqs->flags = cpufreq_driver->flags;
238 pr_debug("notification %u of frequency transition to %u kHz\n",
239 state, freqs->new);
240
241 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
242 switch (state) {
243
244 case CPUFREQ_PRECHANGE:
245 /* detect if the driver reported a value as "old frequency"
246 * which is not equal to what the cpufreq core thinks is
247 * "old frequency".
248 */
249 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
250 if ((policy) && (policy->cpu == freqs->cpu) &&
251 (policy->cur) && (policy->cur != freqs->old)) {
252 pr_debug("Warning: CPU frequency is"
253 " %u, cpufreq assumed %u kHz.\n",
254 freqs->old, policy->cur);
255 freqs->old = policy->cur;
256 }
257 }
258 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
259 CPUFREQ_PRECHANGE, freqs);
260 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
261 break;
262
263 case CPUFREQ_POSTCHANGE:
264 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
265 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
266 (unsigned long)freqs->cpu);
267 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu);
268 trace_cpu_frequency(freqs->new, freqs->cpu);
269 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
270 CPUFREQ_POSTCHANGE, freqs);
271 if (likely(policy) && likely(policy->cpu == freqs->cpu))
272 policy->cur = freqs->new;
273 break;
274 }
275 }
276 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
277
278
279
280 /*********************************************************************
281 * SYSFS INTERFACE *
282 *********************************************************************/
283
284 static struct cpufreq_governor *__find_governor(const char *str_governor)
285 {
286 struct cpufreq_governor *t;
287
288 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
289 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
290 return t;
291
292 return NULL;
293 }
294
295 /**
296 * cpufreq_parse_governor - parse a governor string
297 */
298 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
299 struct cpufreq_governor **governor)
300 {
301 int err = -EINVAL;
302
303 if (!cpufreq_driver)
304 goto out;
305
306 if (cpufreq_driver->setpolicy) {
307 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
308 *policy = CPUFREQ_POLICY_PERFORMANCE;
309 err = 0;
310 } else if (!strnicmp(str_governor, "powersave",
311 CPUFREQ_NAME_LEN)) {
312 *policy = CPUFREQ_POLICY_POWERSAVE;
313 err = 0;
314 }
315 } else if (cpufreq_driver->target) {
316 struct cpufreq_governor *t;
317
318 mutex_lock(&cpufreq_governor_mutex);
319
320 t = __find_governor(str_governor);
321
322 if (t == NULL) {
323 int ret;
324
325 mutex_unlock(&cpufreq_governor_mutex);
326 ret = request_module("cpufreq_%s", str_governor);
327 mutex_lock(&cpufreq_governor_mutex);
328
329 if (ret == 0)
330 t = __find_governor(str_governor);
331 }
332
333 if (t != NULL) {
334 *governor = t;
335 err = 0;
336 }
337
338 mutex_unlock(&cpufreq_governor_mutex);
339 }
340 out:
341 return err;
342 }
343
344
345 /**
346 * cpufreq_per_cpu_attr_read() / show_##file_name() -
347 * print out cpufreq information
348 *
349 * Write out information from cpufreq_driver->policy[cpu]; object must be
350 * "unsigned int".
351 */
352
353 #define show_one(file_name, object) \
354 static ssize_t show_##file_name \
355 (struct cpufreq_policy *policy, char *buf) \
356 { \
357 return sprintf(buf, "%u\n", policy->object); \
358 }
359
360 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
361 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
362 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
363 show_one(scaling_min_freq, min);
364 show_one(scaling_max_freq, max);
365 show_one(scaling_cur_freq, cur);
366
367 static int __cpufreq_set_policy(struct cpufreq_policy *data,
368 struct cpufreq_policy *policy);
369
370 /**
371 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
372 */
373 #define store_one(file_name, object) \
374 static ssize_t store_##file_name \
375 (struct cpufreq_policy *policy, const char *buf, size_t count) \
376 { \
377 unsigned int ret = -EINVAL; \
378 struct cpufreq_policy new_policy; \
379 \
380 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
381 if (ret) \
382 return -EINVAL; \
383 \
384 ret = sscanf(buf, "%u", &new_policy.object); \
385 if (ret != 1) \
386 return -EINVAL; \
387 \
388 ret = __cpufreq_set_policy(policy, &new_policy); \
389 policy->user_policy.object = policy->object; \
390 \
391 return ret ? ret : count; \
392 }
393
394 store_one(scaling_min_freq, min);
395 store_one(scaling_max_freq, max);
396
397 /**
398 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
399 */
400 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
401 char *buf)
402 {
403 unsigned int cur_freq = __cpufreq_get(policy->cpu);
404 if (!cur_freq)
405 return sprintf(buf, "<unknown>");
406 return sprintf(buf, "%u\n", cur_freq);
407 }
408
409
410 /**
411 * show_scaling_governor - show the current policy for the specified CPU
412 */
413 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
414 {
415 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
416 return sprintf(buf, "powersave\n");
417 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
418 return sprintf(buf, "performance\n");
419 else if (policy->governor)
420 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
421 policy->governor->name);
422 return -EINVAL;
423 }
424
425
426 /**
427 * store_scaling_governor - store policy for the specified CPU
428 */
429 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
430 const char *buf, size_t count)
431 {
432 unsigned int ret = -EINVAL;
433 char str_governor[16];
434 struct cpufreq_policy new_policy;
435
436 ret = cpufreq_get_policy(&new_policy, policy->cpu);
437 if (ret)
438 return ret;
439
440 ret = sscanf(buf, "%15s", str_governor);
441 if (ret != 1)
442 return -EINVAL;
443
444 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
445 &new_policy.governor))
446 return -EINVAL;
447
448 /* Do not use cpufreq_set_policy here or the user_policy.max
449 will be wrongly overridden */
450 ret = __cpufreq_set_policy(policy, &new_policy);
451
452 policy->user_policy.policy = policy->policy;
453 policy->user_policy.governor = policy->governor;
454
455 if (ret)
456 return ret;
457 else
458 return count;
459 }
460
461 /**
462 * show_scaling_driver - show the cpufreq driver currently loaded
463 */
464 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
465 {
466 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
467 }
468
469 /**
470 * show_scaling_available_governors - show the available CPUfreq governors
471 */
472 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
473 char *buf)
474 {
475 ssize_t i = 0;
476 struct cpufreq_governor *t;
477
478 if (!cpufreq_driver->target) {
479 i += sprintf(buf, "performance powersave");
480 goto out;
481 }
482
483 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
484 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
485 - (CPUFREQ_NAME_LEN + 2)))
486 goto out;
487 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
488 }
489 out:
490 i += sprintf(&buf[i], "\n");
491 return i;
492 }
493
494 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
495 {
496 ssize_t i = 0;
497 unsigned int cpu;
498
499 for_each_cpu(cpu, mask) {
500 if (i)
501 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
502 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
503 if (i >= (PAGE_SIZE - 5))
504 break;
505 }
506 i += sprintf(&buf[i], "\n");
507 return i;
508 }
509
510 /**
511 * show_related_cpus - show the CPUs affected by each transition even if
512 * hw coordination is in use
513 */
514 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
515 {
516 if (cpumask_empty(policy->related_cpus))
517 return show_cpus(policy->cpus, buf);
518 return show_cpus(policy->related_cpus, buf);
519 }
520
521 /**
522 * show_affected_cpus - show the CPUs affected by each transition
523 */
524 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
525 {
526 return show_cpus(policy->cpus, buf);
527 }
528
529 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
530 const char *buf, size_t count)
531 {
532 unsigned int freq = 0;
533 unsigned int ret;
534
535 if (!policy->governor || !policy->governor->store_setspeed)
536 return -EINVAL;
537
538 ret = sscanf(buf, "%u", &freq);
539 if (ret != 1)
540 return -EINVAL;
541
542 policy->governor->store_setspeed(policy, freq);
543
544 return count;
545 }
546
547 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
548 {
549 if (!policy->governor || !policy->governor->show_setspeed)
550 return sprintf(buf, "<unsupported>\n");
551
552 return policy->governor->show_setspeed(policy, buf);
553 }
554
555 /**
556 * show_scaling_driver - show the current cpufreq HW/BIOS limitation
557 */
558 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
559 {
560 unsigned int limit;
561 int ret;
562 if (cpufreq_driver->bios_limit) {
563 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
564 if (!ret)
565 return sprintf(buf, "%u\n", limit);
566 }
567 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
568 }
569
570 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
571 cpufreq_freq_attr_ro(cpuinfo_min_freq);
572 cpufreq_freq_attr_ro(cpuinfo_max_freq);
573 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
574 cpufreq_freq_attr_ro(scaling_available_governors);
575 cpufreq_freq_attr_ro(scaling_driver);
576 cpufreq_freq_attr_ro(scaling_cur_freq);
577 cpufreq_freq_attr_ro(bios_limit);
578 cpufreq_freq_attr_ro(related_cpus);
579 cpufreq_freq_attr_ro(affected_cpus);
580 cpufreq_freq_attr_rw(scaling_min_freq);
581 cpufreq_freq_attr_rw(scaling_max_freq);
582 cpufreq_freq_attr_rw(scaling_governor);
583 cpufreq_freq_attr_rw(scaling_setspeed);
584
585 static struct attribute *default_attrs[] = {
586 &cpuinfo_min_freq.attr,
587 &cpuinfo_max_freq.attr,
588 &cpuinfo_transition_latency.attr,
589 &scaling_min_freq.attr,
590 &scaling_max_freq.attr,
591 &affected_cpus.attr,
592 &related_cpus.attr,
593 &scaling_governor.attr,
594 &scaling_driver.attr,
595 &scaling_available_governors.attr,
596 &scaling_setspeed.attr,
597 NULL
598 };
599
600 struct kobject *cpufreq_global_kobject;
601 EXPORT_SYMBOL(cpufreq_global_kobject);
602
603 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
604 #define to_attr(a) container_of(a, struct freq_attr, attr)
605
606 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
607 {
608 struct cpufreq_policy *policy = to_policy(kobj);
609 struct freq_attr *fattr = to_attr(attr);
610 ssize_t ret = -EINVAL;
611 policy = cpufreq_cpu_get(policy->cpu);
612 if (!policy)
613 goto no_policy;
614
615 if (lock_policy_rwsem_read(policy->cpu) < 0)
616 goto fail;
617
618 if (fattr->show)
619 ret = fattr->show(policy, buf);
620 else
621 ret = -EIO;
622
623 unlock_policy_rwsem_read(policy->cpu);
624 fail:
625 cpufreq_cpu_put(policy);
626 no_policy:
627 return ret;
628 }
629
630 static ssize_t store(struct kobject *kobj, struct attribute *attr,
631 const char *buf, size_t count)
632 {
633 struct cpufreq_policy *policy = to_policy(kobj);
634 struct freq_attr *fattr = to_attr(attr);
635 ssize_t ret = -EINVAL;
636 policy = cpufreq_cpu_get(policy->cpu);
637 if (!policy)
638 goto no_policy;
639
640 if (lock_policy_rwsem_write(policy->cpu) < 0)
641 goto fail;
642
643 if (fattr->store)
644 ret = fattr->store(policy, buf, count);
645 else
646 ret = -EIO;
647
648 unlock_policy_rwsem_write(policy->cpu);
649 fail:
650 cpufreq_cpu_put(policy);
651 no_policy:
652 return ret;
653 }
654
655 static void cpufreq_sysfs_release(struct kobject *kobj)
656 {
657 struct cpufreq_policy *policy = to_policy(kobj);
658 pr_debug("last reference is dropped\n");
659 complete(&policy->kobj_unregister);
660 }
661
662 static const struct sysfs_ops sysfs_ops = {
663 .show = show,
664 .store = store,
665 };
666
667 static struct kobj_type ktype_cpufreq = {
668 .sysfs_ops = &sysfs_ops,
669 .default_attrs = default_attrs,
670 .release = cpufreq_sysfs_release,
671 };
672
673 /*
674 * Returns:
675 * Negative: Failure
676 * 0: Success
677 * Positive: When we have a managed CPU and the sysfs got symlinked
678 */
679 static int cpufreq_add_dev_policy(unsigned int cpu,
680 struct cpufreq_policy *policy,
681 struct device *dev)
682 {
683 int ret = 0;
684 #ifdef CONFIG_SMP
685 unsigned long flags;
686 unsigned int j;
687 #ifdef CONFIG_HOTPLUG_CPU
688 struct cpufreq_governor *gov;
689
690 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
691 if (gov) {
692 policy->governor = gov;
693 pr_debug("Restoring governor %s for cpu %d\n",
694 policy->governor->name, cpu);
695 }
696 #endif
697
698 for_each_cpu(j, policy->cpus) {
699 struct cpufreq_policy *managed_policy;
700
701 if (cpu == j)
702 continue;
703
704 /* Check for existing affected CPUs.
705 * They may not be aware of it due to CPU Hotplug.
706 * cpufreq_cpu_put is called when the device is removed
707 * in __cpufreq_remove_dev()
708 */
709 managed_policy = cpufreq_cpu_get(j);
710 if (unlikely(managed_policy)) {
711
712 /* Set proper policy_cpu */
713 unlock_policy_rwsem_write(cpu);
714 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu;
715
716 if (lock_policy_rwsem_write(cpu) < 0) {
717 /* Should not go through policy unlock path */
718 if (cpufreq_driver->exit)
719 cpufreq_driver->exit(policy);
720 cpufreq_cpu_put(managed_policy);
721 return -EBUSY;
722 }
723
724 spin_lock_irqsave(&cpufreq_driver_lock, flags);
725 cpumask_copy(managed_policy->cpus, policy->cpus);
726 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
727 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
728
729 pr_debug("CPU already managed, adding link\n");
730 ret = sysfs_create_link(&dev->kobj,
731 &managed_policy->kobj,
732 "cpufreq");
733 if (ret)
734 cpufreq_cpu_put(managed_policy);
735 /*
736 * Success. We only needed to be added to the mask.
737 * Call driver->exit() because only the cpu parent of
738 * the kobj needed to call init().
739 */
740 if (cpufreq_driver->exit)
741 cpufreq_driver->exit(policy);
742
743 if (!ret)
744 return 1;
745 else
746 return ret;
747 }
748 }
749 #endif
750 return ret;
751 }
752
753
754 /* symlink affected CPUs */
755 static int cpufreq_add_dev_symlink(unsigned int cpu,
756 struct cpufreq_policy *policy)
757 {
758 unsigned int j;
759 int ret = 0;
760
761 for_each_cpu(j, policy->cpus) {
762 struct cpufreq_policy *managed_policy;
763 struct device *cpu_dev;
764
765 if (j == cpu)
766 continue;
767 if (!cpu_online(j))
768 continue;
769
770 pr_debug("CPU %u already managed, adding link\n", j);
771 managed_policy = cpufreq_cpu_get(cpu);
772 cpu_dev = get_cpu_device(j);
773 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
774 "cpufreq");
775 if (ret) {
776 cpufreq_cpu_put(managed_policy);
777 return ret;
778 }
779 }
780 return ret;
781 }
782
783 static int cpufreq_add_dev_interface(unsigned int cpu,
784 struct cpufreq_policy *policy,
785 struct device *dev)
786 {
787 struct cpufreq_policy new_policy;
788 struct freq_attr **drv_attr;
789 unsigned long flags;
790 int ret = 0;
791 unsigned int j;
792
793 /* prepare interface data */
794 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
795 &dev->kobj, "cpufreq");
796 if (ret)
797 return ret;
798
799 /* set up files for this cpu device */
800 drv_attr = cpufreq_driver->attr;
801 while ((drv_attr) && (*drv_attr)) {
802 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
803 if (ret)
804 goto err_out_kobj_put;
805 drv_attr++;
806 }
807 if (cpufreq_driver->get) {
808 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
809 if (ret)
810 goto err_out_kobj_put;
811 }
812 if (cpufreq_driver->target) {
813 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
814 if (ret)
815 goto err_out_kobj_put;
816 }
817 if (cpufreq_driver->bios_limit) {
818 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
819 if (ret)
820 goto err_out_kobj_put;
821 }
822
823 spin_lock_irqsave(&cpufreq_driver_lock, flags);
824 for_each_cpu(j, policy->cpus) {
825 if (!cpu_online(j))
826 continue;
827 per_cpu(cpufreq_cpu_data, j) = policy;
828 per_cpu(cpufreq_policy_cpu, j) = policy->cpu;
829 }
830 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
831
832 ret = cpufreq_add_dev_symlink(cpu, policy);
833 if (ret)
834 goto err_out_kobj_put;
835
836 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
837 /* assure that the starting sequence is run in __cpufreq_set_policy */
838 policy->governor = NULL;
839
840 /* set default policy */
841 ret = __cpufreq_set_policy(policy, &new_policy);
842 policy->user_policy.policy = policy->policy;
843 policy->user_policy.governor = policy->governor;
844
845 if (ret) {
846 pr_debug("setting policy failed\n");
847 if (cpufreq_driver->exit)
848 cpufreq_driver->exit(policy);
849 }
850 return ret;
851
852 err_out_kobj_put:
853 kobject_put(&policy->kobj);
854 wait_for_completion(&policy->kobj_unregister);
855 return ret;
856 }
857
858
859 /**
860 * cpufreq_add_dev - add a CPU device
861 *
862 * Adds the cpufreq interface for a CPU device.
863 *
864 * The Oracle says: try running cpufreq registration/unregistration concurrently
865 * with with cpu hotplugging and all hell will break loose. Tried to clean this
866 * mess up, but more thorough testing is needed. - Mathieu
867 */
868 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
869 {
870 unsigned int cpu = dev->id;
871 int ret = 0, found = 0;
872 struct cpufreq_policy *policy;
873 unsigned long flags;
874 unsigned int j;
875 #ifdef CONFIG_HOTPLUG_CPU
876 int sibling;
877 #endif
878
879 if (cpu_is_offline(cpu))
880 return 0;
881
882 pr_debug("adding CPU %u\n", cpu);
883
884 #ifdef CONFIG_SMP
885 /* check whether a different CPU already registered this
886 * CPU because it is in the same boat. */
887 policy = cpufreq_cpu_get(cpu);
888 if (unlikely(policy)) {
889 cpufreq_cpu_put(policy);
890 return 0;
891 }
892 #endif
893
894 if (!try_module_get(cpufreq_driver->owner)) {
895 ret = -EINVAL;
896 goto module_out;
897 }
898
899 ret = -ENOMEM;
900 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
901 if (!policy)
902 goto nomem_out;
903
904 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
905 goto err_free_policy;
906
907 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
908 goto err_free_cpumask;
909
910 policy->cpu = cpu;
911 cpumask_copy(policy->cpus, cpumask_of(cpu));
912
913 /* Initially set CPU itself as the policy_cpu */
914 per_cpu(cpufreq_policy_cpu, cpu) = cpu;
915 ret = (lock_policy_rwsem_write(cpu) < 0);
916 WARN_ON(ret);
917
918 init_completion(&policy->kobj_unregister);
919 INIT_WORK(&policy->update, handle_update);
920
921 /* Set governor before ->init, so that driver could check it */
922 #ifdef CONFIG_HOTPLUG_CPU
923 for_each_online_cpu(sibling) {
924 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling);
925 if (cp && cp->governor &&
926 (cpumask_test_cpu(cpu, cp->related_cpus))) {
927 policy->governor = cp->governor;
928 found = 1;
929 break;
930 }
931 }
932 #endif
933 if (!found)
934 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
935 /* call driver. From then on the cpufreq must be able
936 * to accept all calls to ->verify and ->setpolicy for this CPU
937 */
938 ret = cpufreq_driver->init(policy);
939 if (ret) {
940 pr_debug("initialization failed\n");
941 goto err_unlock_policy;
942 }
943 policy->user_policy.min = policy->min;
944 policy->user_policy.max = policy->max;
945
946 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
947 CPUFREQ_START, policy);
948
949 ret = cpufreq_add_dev_policy(cpu, policy, dev);
950 if (ret) {
951 if (ret > 0)
952 /* This is a managed cpu, symlink created,
953 exit with 0 */
954 ret = 0;
955 goto err_unlock_policy;
956 }
957
958 ret = cpufreq_add_dev_interface(cpu, policy, dev);
959 if (ret)
960 goto err_out_unregister;
961
962 unlock_policy_rwsem_write(cpu);
963
964 kobject_uevent(&policy->kobj, KOBJ_ADD);
965 module_put(cpufreq_driver->owner);
966 pr_debug("initialization complete\n");
967
968 return 0;
969
970
971 err_out_unregister:
972 spin_lock_irqsave(&cpufreq_driver_lock, flags);
973 for_each_cpu(j, policy->cpus)
974 per_cpu(cpufreq_cpu_data, j) = NULL;
975 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
976
977 kobject_put(&policy->kobj);
978 wait_for_completion(&policy->kobj_unregister);
979
980 err_unlock_policy:
981 unlock_policy_rwsem_write(cpu);
982 free_cpumask_var(policy->related_cpus);
983 err_free_cpumask:
984 free_cpumask_var(policy->cpus);
985 err_free_policy:
986 kfree(policy);
987 nomem_out:
988 module_put(cpufreq_driver->owner);
989 module_out:
990 return ret;
991 }
992
993
994 /**
995 * __cpufreq_remove_dev - remove a CPU device
996 *
997 * Removes the cpufreq interface for a CPU device.
998 * Caller should already have policy_rwsem in write mode for this CPU.
999 * This routine frees the rwsem before returning.
1000 */
1001 static int __cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1002 {
1003 unsigned int cpu = dev->id;
1004 unsigned long flags;
1005 struct cpufreq_policy *data;
1006 struct kobject *kobj;
1007 struct completion *cmp;
1008 #ifdef CONFIG_SMP
1009 struct device *cpu_dev;
1010 unsigned int j;
1011 #endif
1012
1013 pr_debug("unregistering CPU %u\n", cpu);
1014
1015 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1016 data = per_cpu(cpufreq_cpu_data, cpu);
1017
1018 if (!data) {
1019 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1020 unlock_policy_rwsem_write(cpu);
1021 return -EINVAL;
1022 }
1023 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1024
1025
1026 #ifdef CONFIG_SMP
1027 /* if this isn't the CPU which is the parent of the kobj, we
1028 * only need to unlink, put and exit
1029 */
1030 if (unlikely(cpu != data->cpu)) {
1031 pr_debug("removing link\n");
1032 cpumask_clear_cpu(cpu, data->cpus);
1033 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1034 kobj = &dev->kobj;
1035 cpufreq_cpu_put(data);
1036 unlock_policy_rwsem_write(cpu);
1037 sysfs_remove_link(kobj, "cpufreq");
1038 return 0;
1039 }
1040 #endif
1041
1042 #ifdef CONFIG_SMP
1043
1044 #ifdef CONFIG_HOTPLUG_CPU
1045 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name,
1046 CPUFREQ_NAME_LEN);
1047 #endif
1048
1049 /* if we have other CPUs still registered, we need to unlink them,
1050 * or else wait_for_completion below will lock up. Clean the
1051 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1052 * the sysfs links afterwards.
1053 */
1054 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1055 for_each_cpu(j, data->cpus) {
1056 if (j == cpu)
1057 continue;
1058 per_cpu(cpufreq_cpu_data, j) = NULL;
1059 }
1060 }
1061
1062 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1063
1064 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1065 for_each_cpu(j, data->cpus) {
1066 if (j == cpu)
1067 continue;
1068 pr_debug("removing link for cpu %u\n", j);
1069 #ifdef CONFIG_HOTPLUG_CPU
1070 strncpy(per_cpu(cpufreq_cpu_governor, j),
1071 data->governor->name, CPUFREQ_NAME_LEN);
1072 #endif
1073 cpu_dev = get_cpu_device(j);
1074 kobj = &cpu_dev->kobj;
1075 unlock_policy_rwsem_write(cpu);
1076 sysfs_remove_link(kobj, "cpufreq");
1077 lock_policy_rwsem_write(cpu);
1078 cpufreq_cpu_put(data);
1079 }
1080 }
1081 #else
1082 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1083 #endif
1084
1085 if (cpufreq_driver->target)
1086 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1087
1088 kobj = &data->kobj;
1089 cmp = &data->kobj_unregister;
1090 unlock_policy_rwsem_write(cpu);
1091 kobject_put(kobj);
1092
1093 /* we need to make sure that the underlying kobj is actually
1094 * not referenced anymore by anybody before we proceed with
1095 * unloading.
1096 */
1097 pr_debug("waiting for dropping of refcount\n");
1098 wait_for_completion(cmp);
1099 pr_debug("wait complete\n");
1100
1101 lock_policy_rwsem_write(cpu);
1102 if (cpufreq_driver->exit)
1103 cpufreq_driver->exit(data);
1104 unlock_policy_rwsem_write(cpu);
1105
1106 #ifdef CONFIG_HOTPLUG_CPU
1107 /* when the CPU which is the parent of the kobj is hotplugged
1108 * offline, check for siblings, and create cpufreq sysfs interface
1109 * and symlinks
1110 */
1111 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1112 /* first sibling now owns the new sysfs dir */
1113 cpumask_clear_cpu(cpu, data->cpus);
1114 cpufreq_add_dev(get_cpu_device(cpumask_first(data->cpus)), NULL);
1115
1116 /* finally remove our own symlink */
1117 lock_policy_rwsem_write(cpu);
1118 __cpufreq_remove_dev(dev, sif);
1119 }
1120 #endif
1121
1122 free_cpumask_var(data->related_cpus);
1123 free_cpumask_var(data->cpus);
1124 kfree(data);
1125
1126 return 0;
1127 }
1128
1129
1130 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1131 {
1132 unsigned int cpu = dev->id;
1133 int retval;
1134
1135 if (cpu_is_offline(cpu))
1136 return 0;
1137
1138 if (unlikely(lock_policy_rwsem_write(cpu)))
1139 BUG();
1140
1141 retval = __cpufreq_remove_dev(dev, sif);
1142 return retval;
1143 }
1144
1145
1146 static void handle_update(struct work_struct *work)
1147 {
1148 struct cpufreq_policy *policy =
1149 container_of(work, struct cpufreq_policy, update);
1150 unsigned int cpu = policy->cpu;
1151 pr_debug("handle_update for cpu %u called\n", cpu);
1152 cpufreq_update_policy(cpu);
1153 }
1154
1155 /**
1156 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1157 * @cpu: cpu number
1158 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1159 * @new_freq: CPU frequency the CPU actually runs at
1160 *
1161 * We adjust to current frequency first, and need to clean up later.
1162 * So either call to cpufreq_update_policy() or schedule handle_update()).
1163 */
1164 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1165 unsigned int new_freq)
1166 {
1167 struct cpufreq_freqs freqs;
1168
1169 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1170 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1171
1172 freqs.cpu = cpu;
1173 freqs.old = old_freq;
1174 freqs.new = new_freq;
1175 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1176 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1177 }
1178
1179
1180 /**
1181 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1182 * @cpu: CPU number
1183 *
1184 * This is the last known freq, without actually getting it from the driver.
1185 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1186 */
1187 unsigned int cpufreq_quick_get(unsigned int cpu)
1188 {
1189 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1190 unsigned int ret_freq = 0;
1191
1192 if (policy) {
1193 ret_freq = policy->cur;
1194 cpufreq_cpu_put(policy);
1195 }
1196
1197 return ret_freq;
1198 }
1199 EXPORT_SYMBOL(cpufreq_quick_get);
1200
1201 /**
1202 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1203 * @cpu: CPU number
1204 *
1205 * Just return the max possible frequency for a given CPU.
1206 */
1207 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1208 {
1209 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1210 unsigned int ret_freq = 0;
1211
1212 if (policy) {
1213 ret_freq = policy->max;
1214 cpufreq_cpu_put(policy);
1215 }
1216
1217 return ret_freq;
1218 }
1219 EXPORT_SYMBOL(cpufreq_quick_get_max);
1220
1221
1222 static unsigned int __cpufreq_get(unsigned int cpu)
1223 {
1224 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1225 unsigned int ret_freq = 0;
1226
1227 if (!cpufreq_driver->get)
1228 return ret_freq;
1229
1230 ret_freq = cpufreq_driver->get(cpu);
1231
1232 if (ret_freq && policy->cur &&
1233 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1234 /* verify no discrepancy between actual and
1235 saved value exists */
1236 if (unlikely(ret_freq != policy->cur)) {
1237 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1238 schedule_work(&policy->update);
1239 }
1240 }
1241
1242 return ret_freq;
1243 }
1244
1245 /**
1246 * cpufreq_get - get the current CPU frequency (in kHz)
1247 * @cpu: CPU number
1248 *
1249 * Get the CPU current (static) CPU frequency
1250 */
1251 unsigned int cpufreq_get(unsigned int cpu)
1252 {
1253 unsigned int ret_freq = 0;
1254 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1255
1256 if (!policy)
1257 goto out;
1258
1259 if (unlikely(lock_policy_rwsem_read(cpu)))
1260 goto out_policy;
1261
1262 ret_freq = __cpufreq_get(cpu);
1263
1264 unlock_policy_rwsem_read(cpu);
1265
1266 out_policy:
1267 cpufreq_cpu_put(policy);
1268 out:
1269 return ret_freq;
1270 }
1271 EXPORT_SYMBOL(cpufreq_get);
1272
1273 static struct subsys_interface cpufreq_interface = {
1274 .name = "cpufreq",
1275 .subsys = &cpu_subsys,
1276 .add_dev = cpufreq_add_dev,
1277 .remove_dev = cpufreq_remove_dev,
1278 };
1279
1280
1281 /**
1282 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1283 *
1284 * This function is only executed for the boot processor. The other CPUs
1285 * have been put offline by means of CPU hotplug.
1286 */
1287 static int cpufreq_bp_suspend(void)
1288 {
1289 int ret = 0;
1290
1291 int cpu = smp_processor_id();
1292 struct cpufreq_policy *cpu_policy;
1293
1294 pr_debug("suspending cpu %u\n", cpu);
1295
1296 /* If there's no policy for the boot CPU, we have nothing to do. */
1297 cpu_policy = cpufreq_cpu_get(cpu);
1298 if (!cpu_policy)
1299 return 0;
1300
1301 if (cpufreq_driver->suspend) {
1302 ret = cpufreq_driver->suspend(cpu_policy);
1303 if (ret)
1304 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1305 "step on CPU %u\n", cpu_policy->cpu);
1306 }
1307
1308 cpufreq_cpu_put(cpu_policy);
1309 return ret;
1310 }
1311
1312 /**
1313 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1314 *
1315 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1316 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1317 * restored. It will verify that the current freq is in sync with
1318 * what we believe it to be. This is a bit later than when it
1319 * should be, but nonethteless it's better than calling
1320 * cpufreq_driver->get() here which might re-enable interrupts...
1321 *
1322 * This function is only executed for the boot CPU. The other CPUs have not
1323 * been turned on yet.
1324 */
1325 static void cpufreq_bp_resume(void)
1326 {
1327 int ret = 0;
1328
1329 int cpu = smp_processor_id();
1330 struct cpufreq_policy *cpu_policy;
1331
1332 pr_debug("resuming cpu %u\n", cpu);
1333
1334 /* If there's no policy for the boot CPU, we have nothing to do. */
1335 cpu_policy = cpufreq_cpu_get(cpu);
1336 if (!cpu_policy)
1337 return;
1338
1339 if (cpufreq_driver->resume) {
1340 ret = cpufreq_driver->resume(cpu_policy);
1341 if (ret) {
1342 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1343 "step on CPU %u\n", cpu_policy->cpu);
1344 goto fail;
1345 }
1346 }
1347
1348 schedule_work(&cpu_policy->update);
1349
1350 fail:
1351 cpufreq_cpu_put(cpu_policy);
1352 }
1353
1354 static struct syscore_ops cpufreq_syscore_ops = {
1355 .suspend = cpufreq_bp_suspend,
1356 .resume = cpufreq_bp_resume,
1357 };
1358
1359
1360 /*********************************************************************
1361 * NOTIFIER LISTS INTERFACE *
1362 *********************************************************************/
1363
1364 /**
1365 * cpufreq_register_notifier - register a driver with cpufreq
1366 * @nb: notifier function to register
1367 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1368 *
1369 * Add a driver to one of two lists: either a list of drivers that
1370 * are notified about clock rate changes (once before and once after
1371 * the transition), or a list of drivers that are notified about
1372 * changes in cpufreq policy.
1373 *
1374 * This function may sleep, and has the same return conditions as
1375 * blocking_notifier_chain_register.
1376 */
1377 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1378 {
1379 int ret;
1380
1381 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1382
1383 switch (list) {
1384 case CPUFREQ_TRANSITION_NOTIFIER:
1385 ret = srcu_notifier_chain_register(
1386 &cpufreq_transition_notifier_list, nb);
1387 break;
1388 case CPUFREQ_POLICY_NOTIFIER:
1389 ret = blocking_notifier_chain_register(
1390 &cpufreq_policy_notifier_list, nb);
1391 break;
1392 default:
1393 ret = -EINVAL;
1394 }
1395
1396 return ret;
1397 }
1398 EXPORT_SYMBOL(cpufreq_register_notifier);
1399
1400
1401 /**
1402 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1403 * @nb: notifier block to be unregistered
1404 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1405 *
1406 * Remove a driver from the CPU frequency notifier list.
1407 *
1408 * This function may sleep, and has the same return conditions as
1409 * blocking_notifier_chain_unregister.
1410 */
1411 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1412 {
1413 int ret;
1414
1415 switch (list) {
1416 case CPUFREQ_TRANSITION_NOTIFIER:
1417 ret = srcu_notifier_chain_unregister(
1418 &cpufreq_transition_notifier_list, nb);
1419 break;
1420 case CPUFREQ_POLICY_NOTIFIER:
1421 ret = blocking_notifier_chain_unregister(
1422 &cpufreq_policy_notifier_list, nb);
1423 break;
1424 default:
1425 ret = -EINVAL;
1426 }
1427
1428 return ret;
1429 }
1430 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1431
1432
1433 /*********************************************************************
1434 * GOVERNORS *
1435 *********************************************************************/
1436
1437
1438 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1439 unsigned int target_freq,
1440 unsigned int relation)
1441 {
1442 int retval = -EINVAL;
1443
1444 pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1445 target_freq, relation);
1446 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1447 retval = cpufreq_driver->target(policy, target_freq, relation);
1448
1449 return retval;
1450 }
1451 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1452
1453 int cpufreq_driver_target(struct cpufreq_policy *policy,
1454 unsigned int target_freq,
1455 unsigned int relation)
1456 {
1457 int ret = -EINVAL;
1458
1459 policy = cpufreq_cpu_get(policy->cpu);
1460 if (!policy)
1461 goto no_policy;
1462
1463 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1464 goto fail;
1465
1466 ret = __cpufreq_driver_target(policy, target_freq, relation);
1467
1468 unlock_policy_rwsem_write(policy->cpu);
1469
1470 fail:
1471 cpufreq_cpu_put(policy);
1472 no_policy:
1473 return ret;
1474 }
1475 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1476
1477 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1478 {
1479 int ret = 0;
1480
1481 policy = cpufreq_cpu_get(policy->cpu);
1482 if (!policy)
1483 return -EINVAL;
1484
1485 if (cpu_online(cpu) && cpufreq_driver->getavg)
1486 ret = cpufreq_driver->getavg(policy, cpu);
1487
1488 cpufreq_cpu_put(policy);
1489 return ret;
1490 }
1491 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1492
1493 /*
1494 * when "event" is CPUFREQ_GOV_LIMITS
1495 */
1496
1497 static int __cpufreq_governor(struct cpufreq_policy *policy,
1498 unsigned int event)
1499 {
1500 int ret;
1501
1502 /* Only must be defined when default governor is known to have latency
1503 restrictions, like e.g. conservative or ondemand.
1504 That this is the case is already ensured in Kconfig
1505 */
1506 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1507 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1508 #else
1509 struct cpufreq_governor *gov = NULL;
1510 #endif
1511
1512 if (policy->governor->max_transition_latency &&
1513 policy->cpuinfo.transition_latency >
1514 policy->governor->max_transition_latency) {
1515 if (!gov)
1516 return -EINVAL;
1517 else {
1518 printk(KERN_WARNING "%s governor failed, too long"
1519 " transition latency of HW, fallback"
1520 " to %s governor\n",
1521 policy->governor->name,
1522 gov->name);
1523 policy->governor = gov;
1524 }
1525 }
1526
1527 if (!try_module_get(policy->governor->owner))
1528 return -EINVAL;
1529
1530 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1531 policy->cpu, event);
1532 ret = policy->governor->governor(policy, event);
1533
1534 /* we keep one module reference alive for
1535 each CPU governed by this CPU */
1536 if ((event != CPUFREQ_GOV_START) || ret)
1537 module_put(policy->governor->owner);
1538 if ((event == CPUFREQ_GOV_STOP) && !ret)
1539 module_put(policy->governor->owner);
1540
1541 return ret;
1542 }
1543
1544
1545 int cpufreq_register_governor(struct cpufreq_governor *governor)
1546 {
1547 int err;
1548
1549 if (!governor)
1550 return -EINVAL;
1551
1552 mutex_lock(&cpufreq_governor_mutex);
1553
1554 err = -EBUSY;
1555 if (__find_governor(governor->name) == NULL) {
1556 err = 0;
1557 list_add(&governor->governor_list, &cpufreq_governor_list);
1558 }
1559
1560 mutex_unlock(&cpufreq_governor_mutex);
1561 return err;
1562 }
1563 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1564
1565
1566 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1567 {
1568 #ifdef CONFIG_HOTPLUG_CPU
1569 int cpu;
1570 #endif
1571
1572 if (!governor)
1573 return;
1574
1575 #ifdef CONFIG_HOTPLUG_CPU
1576 for_each_present_cpu(cpu) {
1577 if (cpu_online(cpu))
1578 continue;
1579 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1580 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1581 }
1582 #endif
1583
1584 mutex_lock(&cpufreq_governor_mutex);
1585 list_del(&governor->governor_list);
1586 mutex_unlock(&cpufreq_governor_mutex);
1587 return;
1588 }
1589 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1590
1591
1592
1593 /*********************************************************************
1594 * POLICY INTERFACE *
1595 *********************************************************************/
1596
1597 /**
1598 * cpufreq_get_policy - get the current cpufreq_policy
1599 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1600 * is written
1601 *
1602 * Reads the current cpufreq policy.
1603 */
1604 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1605 {
1606 struct cpufreq_policy *cpu_policy;
1607 if (!policy)
1608 return -EINVAL;
1609
1610 cpu_policy = cpufreq_cpu_get(cpu);
1611 if (!cpu_policy)
1612 return -EINVAL;
1613
1614 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1615
1616 cpufreq_cpu_put(cpu_policy);
1617 return 0;
1618 }
1619 EXPORT_SYMBOL(cpufreq_get_policy);
1620
1621
1622 /*
1623 * data : current policy.
1624 * policy : policy to be set.
1625 */
1626 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1627 struct cpufreq_policy *policy)
1628 {
1629 int ret = 0;
1630
1631 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1632 policy->min, policy->max);
1633
1634 memcpy(&policy->cpuinfo, &data->cpuinfo,
1635 sizeof(struct cpufreq_cpuinfo));
1636
1637 if (policy->min > data->max || policy->max < data->min) {
1638 ret = -EINVAL;
1639 goto error_out;
1640 }
1641
1642 /* verify the cpu speed can be set within this limit */
1643 ret = cpufreq_driver->verify(policy);
1644 if (ret)
1645 goto error_out;
1646
1647 /* adjust if necessary - all reasons */
1648 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1649 CPUFREQ_ADJUST, policy);
1650
1651 /* adjust if necessary - hardware incompatibility*/
1652 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1653 CPUFREQ_INCOMPATIBLE, policy);
1654
1655 /* verify the cpu speed can be set within this limit,
1656 which might be different to the first one */
1657 ret = cpufreq_driver->verify(policy);
1658 if (ret)
1659 goto error_out;
1660
1661 /* notification of the new policy */
1662 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1663 CPUFREQ_NOTIFY, policy);
1664
1665 data->min = policy->min;
1666 data->max = policy->max;
1667
1668 pr_debug("new min and max freqs are %u - %u kHz\n",
1669 data->min, data->max);
1670
1671 if (cpufreq_driver->setpolicy) {
1672 data->policy = policy->policy;
1673 pr_debug("setting range\n");
1674 ret = cpufreq_driver->setpolicy(policy);
1675 } else {
1676 if (policy->governor != data->governor) {
1677 /* save old, working values */
1678 struct cpufreq_governor *old_gov = data->governor;
1679
1680 pr_debug("governor switch\n");
1681
1682 /* end old governor */
1683 if (data->governor)
1684 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1685
1686 /* start new governor */
1687 data->governor = policy->governor;
1688 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1689 /* new governor failed, so re-start old one */
1690 pr_debug("starting governor %s failed\n",
1691 data->governor->name);
1692 if (old_gov) {
1693 data->governor = old_gov;
1694 __cpufreq_governor(data,
1695 CPUFREQ_GOV_START);
1696 }
1697 ret = -EINVAL;
1698 goto error_out;
1699 }
1700 /* might be a policy change, too, so fall through */
1701 }
1702 pr_debug("governor: change or update limits\n");
1703 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1704 }
1705
1706 error_out:
1707 return ret;
1708 }
1709
1710 /**
1711 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1712 * @cpu: CPU which shall be re-evaluated
1713 *
1714 * Useful for policy notifiers which have different necessities
1715 * at different times.
1716 */
1717 int cpufreq_update_policy(unsigned int cpu)
1718 {
1719 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1720 struct cpufreq_policy policy;
1721 int ret;
1722
1723 if (!data) {
1724 ret = -ENODEV;
1725 goto no_policy;
1726 }
1727
1728 if (unlikely(lock_policy_rwsem_write(cpu))) {
1729 ret = -EINVAL;
1730 goto fail;
1731 }
1732
1733 pr_debug("updating policy for CPU %u\n", cpu);
1734 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1735 policy.min = data->user_policy.min;
1736 policy.max = data->user_policy.max;
1737 policy.policy = data->user_policy.policy;
1738 policy.governor = data->user_policy.governor;
1739
1740 /* BIOS might change freq behind our back
1741 -> ask driver for current freq and notify governors about a change */
1742 if (cpufreq_driver->get) {
1743 policy.cur = cpufreq_driver->get(cpu);
1744 if (!data->cur) {
1745 pr_debug("Driver did not initialize current freq");
1746 data->cur = policy.cur;
1747 } else {
1748 if (data->cur != policy.cur)
1749 cpufreq_out_of_sync(cpu, data->cur,
1750 policy.cur);
1751 }
1752 }
1753
1754 ret = __cpufreq_set_policy(data, &policy);
1755
1756 unlock_policy_rwsem_write(cpu);
1757
1758 fail:
1759 cpufreq_cpu_put(data);
1760 no_policy:
1761 return ret;
1762 }
1763 EXPORT_SYMBOL(cpufreq_update_policy);
1764
1765 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1766 unsigned long action, void *hcpu)
1767 {
1768 unsigned int cpu = (unsigned long)hcpu;
1769 struct device *dev;
1770
1771 dev = get_cpu_device(cpu);
1772 if (dev) {
1773 switch (action) {
1774 case CPU_ONLINE:
1775 case CPU_ONLINE_FROZEN:
1776 cpufreq_add_dev(dev, NULL);
1777 break;
1778 case CPU_DOWN_PREPARE:
1779 case CPU_DOWN_PREPARE_FROZEN:
1780 if (unlikely(lock_policy_rwsem_write(cpu)))
1781 BUG();
1782
1783 __cpufreq_remove_dev(dev, NULL);
1784 break;
1785 case CPU_DOWN_FAILED:
1786 case CPU_DOWN_FAILED_FROZEN:
1787 cpufreq_add_dev(dev, NULL);
1788 break;
1789 }
1790 }
1791 return NOTIFY_OK;
1792 }
1793
1794 static struct notifier_block __refdata cpufreq_cpu_notifier = {
1795 .notifier_call = cpufreq_cpu_callback,
1796 };
1797
1798 /*********************************************************************
1799 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1800 *********************************************************************/
1801
1802 /**
1803 * cpufreq_register_driver - register a CPU Frequency driver
1804 * @driver_data: A struct cpufreq_driver containing the values#
1805 * submitted by the CPU Frequency driver.
1806 *
1807 * Registers a CPU Frequency driver to this core code. This code
1808 * returns zero on success, -EBUSY when another driver got here first
1809 * (and isn't unregistered in the meantime).
1810 *
1811 */
1812 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1813 {
1814 unsigned long flags;
1815 int ret;
1816
1817 if (!driver_data || !driver_data->verify || !driver_data->init ||
1818 ((!driver_data->setpolicy) && (!driver_data->target)))
1819 return -EINVAL;
1820
1821 pr_debug("trying to register driver %s\n", driver_data->name);
1822
1823 if (driver_data->setpolicy)
1824 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1825
1826 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1827 if (cpufreq_driver) {
1828 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1829 return -EBUSY;
1830 }
1831 cpufreq_driver = driver_data;
1832 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1833
1834 ret = subsys_interface_register(&cpufreq_interface);
1835 if (ret)
1836 goto err_null_driver;
1837
1838 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1839 int i;
1840 ret = -ENODEV;
1841
1842 /* check for at least one working CPU */
1843 for (i = 0; i < nr_cpu_ids; i++)
1844 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1845 ret = 0;
1846 break;
1847 }
1848
1849 /* if all ->init() calls failed, unregister */
1850 if (ret) {
1851 pr_debug("no CPU initialized for driver %s\n",
1852 driver_data->name);
1853 goto err_if_unreg;
1854 }
1855 }
1856
1857 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1858 pr_debug("driver %s up and running\n", driver_data->name);
1859
1860 return 0;
1861 err_if_unreg:
1862 subsys_interface_unregister(&cpufreq_interface);
1863 err_null_driver:
1864 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1865 cpufreq_driver = NULL;
1866 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1867 return ret;
1868 }
1869 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1870
1871
1872 /**
1873 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1874 *
1875 * Unregister the current CPUFreq driver. Only call this if you have
1876 * the right to do so, i.e. if you have succeeded in initialising before!
1877 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1878 * currently not initialised.
1879 */
1880 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1881 {
1882 unsigned long flags;
1883
1884 if (!cpufreq_driver || (driver != cpufreq_driver))
1885 return -EINVAL;
1886
1887 pr_debug("unregistering driver %s\n", driver->name);
1888
1889 subsys_interface_unregister(&cpufreq_interface);
1890 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1891
1892 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1893 cpufreq_driver = NULL;
1894 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1895
1896 return 0;
1897 }
1898 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1899
1900 static int __init cpufreq_core_init(void)
1901 {
1902 int cpu;
1903
1904 for_each_possible_cpu(cpu) {
1905 per_cpu(cpufreq_policy_cpu, cpu) = -1;
1906 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1907 }
1908
1909 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
1910 BUG_ON(!cpufreq_global_kobject);
1911 register_syscore_ops(&cpufreq_syscore_ops);
1912
1913 return 0;
1914 }
1915 core_initcall(cpufreq_core_init);