]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/cpufreq_governor.c
UBUNTU: [Config] Set CONFIG_PWM_PCA9685=m for amd64 and i386
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23
24 #include "cpufreq_governor.h"
25
26 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
27
28 static DEFINE_MUTEX(gov_dbs_data_mutex);
29
30 /* Common sysfs tunables */
31 /**
32 * store_sampling_rate - update sampling rate effective immediately if needed.
33 *
34 * If new rate is smaller than the old, simply updating
35 * dbs.sampling_rate might not be appropriate. For example, if the
36 * original sampling_rate was 1 second and the requested new sampling rate is 10
37 * ms because the user needs immediate reaction from ondemand governor, but not
38 * sure if higher frequency will be required or not, then, the governor may
39 * change the sampling rate too late; up to 1 second later. Thus, if we are
40 * reducing the sampling rate, we need to make the new value effective
41 * immediately.
42 *
43 * This must be called with dbs_data->mutex held, otherwise traversing
44 * policy_dbs_list isn't safe.
45 */
46 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
47 size_t count)
48 {
49 struct dbs_data *dbs_data = to_dbs_data(attr_set);
50 struct policy_dbs_info *policy_dbs;
51 unsigned int rate;
52 int ret;
53 ret = sscanf(buf, "%u", &rate);
54 if (ret != 1)
55 return -EINVAL;
56
57 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
58
59 /*
60 * We are operating under dbs_data->mutex and so the list and its
61 * entries can't be freed concurrently.
62 */
63 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
64 mutex_lock(&policy_dbs->update_mutex);
65 /*
66 * On 32-bit architectures this may race with the
67 * sample_delay_ns read in dbs_update_util_handler(), but that
68 * really doesn't matter. If the read returns a value that's
69 * too big, the sample will be skipped, but the next invocation
70 * of dbs_update_util_handler() (when the update has been
71 * completed) will take a sample.
72 *
73 * If this runs in parallel with dbs_work_handler(), we may end
74 * up overwriting the sample_delay_ns value that it has just
75 * written, but it will be corrected next time a sample is
76 * taken, so it shouldn't be significant.
77 */
78 gov_update_sample_delay(policy_dbs, 0);
79 mutex_unlock(&policy_dbs->update_mutex);
80 }
81
82 return count;
83 }
84 EXPORT_SYMBOL_GPL(store_sampling_rate);
85
86 /**
87 * gov_update_cpu_data - Update CPU load data.
88 * @dbs_data: Top-level governor data pointer.
89 *
90 * Update CPU load data for all CPUs in the domain governed by @dbs_data
91 * (that may be a single policy or a bunch of them if governor tunables are
92 * system-wide).
93 *
94 * Call under the @dbs_data mutex.
95 */
96 void gov_update_cpu_data(struct dbs_data *dbs_data)
97 {
98 struct policy_dbs_info *policy_dbs;
99
100 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
101 unsigned int j;
102
103 for_each_cpu(j, policy_dbs->policy->cpus) {
104 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
105
106 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
107 dbs_data->io_is_busy);
108 if (dbs_data->ignore_nice_load)
109 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
110 }
111 }
112 }
113 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
114
115 unsigned int dbs_update(struct cpufreq_policy *policy)
116 {
117 struct policy_dbs_info *policy_dbs = policy->governor_data;
118 struct dbs_data *dbs_data = policy_dbs->dbs_data;
119 unsigned int ignore_nice = dbs_data->ignore_nice_load;
120 unsigned int max_load = 0, idle_periods = UINT_MAX;
121 unsigned int sampling_rate, io_busy, j;
122
123 /*
124 * Sometimes governors may use an additional multiplier to increase
125 * sample delays temporarily. Apply that multiplier to sampling_rate
126 * so as to keep the wake-up-from-idle detection logic a bit
127 * conservative.
128 */
129 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
130 /*
131 * For the purpose of ondemand, waiting for disk IO is an indication
132 * that you're performance critical, and not that the system is actually
133 * idle, so do not add the iowait time to the CPU idle time then.
134 */
135 io_busy = dbs_data->io_is_busy;
136
137 /* Get Absolute Load */
138 for_each_cpu(j, policy->cpus) {
139 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
140 u64 update_time, cur_idle_time;
141 unsigned int idle_time, time_elapsed;
142 unsigned int load;
143
144 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
145
146 time_elapsed = update_time - j_cdbs->prev_update_time;
147 j_cdbs->prev_update_time = update_time;
148
149 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
150 j_cdbs->prev_cpu_idle = cur_idle_time;
151
152 if (ignore_nice) {
153 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
154
155 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
156 j_cdbs->prev_cpu_nice = cur_nice;
157 }
158
159 if (unlikely(!time_elapsed)) {
160 /*
161 * That can only happen when this function is called
162 * twice in a row with a very short interval between the
163 * calls, so the previous load value can be used then.
164 */
165 load = j_cdbs->prev_load;
166 } else if (unlikely(time_elapsed > 2 * sampling_rate &&
167 j_cdbs->prev_load)) {
168 /*
169 * If the CPU had gone completely idle and a task has
170 * just woken up on this CPU now, it would be unfair to
171 * calculate 'load' the usual way for this elapsed
172 * time-window, because it would show near-zero load,
173 * irrespective of how CPU intensive that task actually
174 * was. This is undesirable for latency-sensitive bursty
175 * workloads.
176 *
177 * To avoid this, reuse the 'load' from the previous
178 * time-window and give this task a chance to start with
179 * a reasonably high CPU frequency. However, that
180 * shouldn't be over-done, lest we get stuck at a high
181 * load (high frequency) for too long, even when the
182 * current system load has actually dropped down, so
183 * clear prev_load to guarantee that the load will be
184 * computed again next time.
185 *
186 * Detecting this situation is easy: the governor's
187 * utilization update handler would not have run during
188 * CPU-idle periods. Hence, an unusually large
189 * 'time_elapsed' (as compared to the sampling rate)
190 * indicates this scenario.
191 */
192 load = j_cdbs->prev_load;
193 j_cdbs->prev_load = 0;
194 } else {
195 if (time_elapsed >= idle_time) {
196 load = 100 * (time_elapsed - idle_time) / time_elapsed;
197 } else {
198 /*
199 * That can happen if idle_time is returned by
200 * get_cpu_idle_time_jiffy(). In that case
201 * idle_time is roughly equal to the difference
202 * between time_elapsed and "busy time" obtained
203 * from CPU statistics. Then, the "busy time"
204 * can end up being greater than time_elapsed
205 * (for example, if jiffies_64 and the CPU
206 * statistics are updated by different CPUs),
207 * so idle_time may in fact be negative. That
208 * means, though, that the CPU was busy all
209 * the time (on the rough average) during the
210 * last sampling interval and 100 can be
211 * returned as the load.
212 */
213 load = (int)idle_time < 0 ? 100 : 0;
214 }
215 j_cdbs->prev_load = load;
216 }
217
218 if (time_elapsed > 2 * sampling_rate) {
219 unsigned int periods = time_elapsed / sampling_rate;
220
221 if (periods < idle_periods)
222 idle_periods = periods;
223 }
224
225 if (load > max_load)
226 max_load = load;
227 }
228
229 policy_dbs->idle_periods = idle_periods;
230
231 return max_load;
232 }
233 EXPORT_SYMBOL_GPL(dbs_update);
234
235 static void dbs_work_handler(struct work_struct *work)
236 {
237 struct policy_dbs_info *policy_dbs;
238 struct cpufreq_policy *policy;
239 struct dbs_governor *gov;
240
241 policy_dbs = container_of(work, struct policy_dbs_info, work);
242 policy = policy_dbs->policy;
243 gov = dbs_governor_of(policy);
244
245 /*
246 * Make sure cpufreq_governor_limits() isn't evaluating load or the
247 * ondemand governor isn't updating the sampling rate in parallel.
248 */
249 mutex_lock(&policy_dbs->update_mutex);
250 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
251 mutex_unlock(&policy_dbs->update_mutex);
252
253 /* Allow the utilization update handler to queue up more work. */
254 atomic_set(&policy_dbs->work_count, 0);
255 /*
256 * If the update below is reordered with respect to the sample delay
257 * modification, the utilization update handler may end up using a stale
258 * sample delay value.
259 */
260 smp_wmb();
261 policy_dbs->work_in_progress = false;
262 }
263
264 static void dbs_irq_work(struct irq_work *irq_work)
265 {
266 struct policy_dbs_info *policy_dbs;
267
268 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
269 schedule_work_on(smp_processor_id(), &policy_dbs->work);
270 }
271
272 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
273 unsigned int flags)
274 {
275 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
276 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
277 u64 delta_ns, lst;
278
279 /*
280 * The work may not be allowed to be queued up right now.
281 * Possible reasons:
282 * - Work has already been queued up or is in progress.
283 * - It is too early (too little time from the previous sample).
284 */
285 if (policy_dbs->work_in_progress)
286 return;
287
288 /*
289 * If the reads below are reordered before the check above, the value
290 * of sample_delay_ns used in the computation may be stale.
291 */
292 smp_rmb();
293 lst = READ_ONCE(policy_dbs->last_sample_time);
294 delta_ns = time - lst;
295 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
296 return;
297
298 /*
299 * If the policy is not shared, the irq_work may be queued up right away
300 * at this point. Otherwise, we need to ensure that only one of the
301 * CPUs sharing the policy will do that.
302 */
303 if (policy_dbs->is_shared) {
304 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
305 return;
306
307 /*
308 * If another CPU updated last_sample_time in the meantime, we
309 * shouldn't be here, so clear the work counter and bail out.
310 */
311 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
312 atomic_set(&policy_dbs->work_count, 0);
313 return;
314 }
315 }
316
317 policy_dbs->last_sample_time = time;
318 policy_dbs->work_in_progress = true;
319 irq_work_queue(&policy_dbs->irq_work);
320 }
321
322 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
323 unsigned int delay_us)
324 {
325 struct cpufreq_policy *policy = policy_dbs->policy;
326 int cpu;
327
328 gov_update_sample_delay(policy_dbs, delay_us);
329 policy_dbs->last_sample_time = 0;
330
331 for_each_cpu(cpu, policy->cpus) {
332 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
333
334 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
335 dbs_update_util_handler);
336 }
337 }
338
339 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
340 {
341 int i;
342
343 for_each_cpu(i, policy->cpus)
344 cpufreq_remove_update_util_hook(i);
345
346 synchronize_sched();
347 }
348
349 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
350 struct dbs_governor *gov)
351 {
352 struct policy_dbs_info *policy_dbs;
353 int j;
354
355 /* Allocate memory for per-policy governor data. */
356 policy_dbs = gov->alloc();
357 if (!policy_dbs)
358 return NULL;
359
360 policy_dbs->policy = policy;
361 mutex_init(&policy_dbs->update_mutex);
362 atomic_set(&policy_dbs->work_count, 0);
363 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
364 INIT_WORK(&policy_dbs->work, dbs_work_handler);
365
366 /* Set policy_dbs for all CPUs, online+offline */
367 for_each_cpu(j, policy->related_cpus) {
368 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
369
370 j_cdbs->policy_dbs = policy_dbs;
371 }
372 return policy_dbs;
373 }
374
375 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
376 struct dbs_governor *gov)
377 {
378 int j;
379
380 mutex_destroy(&policy_dbs->update_mutex);
381
382 for_each_cpu(j, policy_dbs->policy->related_cpus) {
383 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
384
385 j_cdbs->policy_dbs = NULL;
386 j_cdbs->update_util.func = NULL;
387 }
388 gov->free(policy_dbs);
389 }
390
391 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
392 {
393 struct dbs_governor *gov = dbs_governor_of(policy);
394 struct dbs_data *dbs_data;
395 struct policy_dbs_info *policy_dbs;
396 unsigned int latency;
397 int ret = 0;
398
399 /* State should be equivalent to EXIT */
400 if (policy->governor_data)
401 return -EBUSY;
402
403 policy_dbs = alloc_policy_dbs_info(policy, gov);
404 if (!policy_dbs)
405 return -ENOMEM;
406
407 /* Protect gov->gdbs_data against concurrent updates. */
408 mutex_lock(&gov_dbs_data_mutex);
409
410 dbs_data = gov->gdbs_data;
411 if (dbs_data) {
412 if (WARN_ON(have_governor_per_policy())) {
413 ret = -EINVAL;
414 goto free_policy_dbs_info;
415 }
416 policy_dbs->dbs_data = dbs_data;
417 policy->governor_data = policy_dbs;
418
419 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
420 goto out;
421 }
422
423 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
424 if (!dbs_data) {
425 ret = -ENOMEM;
426 goto free_policy_dbs_info;
427 }
428
429 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
430
431 ret = gov->init(dbs_data);
432 if (ret)
433 goto free_policy_dbs_info;
434
435 /* policy latency is in ns. Convert it to us first */
436 latency = policy->cpuinfo.transition_latency / 1000;
437 if (latency == 0)
438 latency = 1;
439
440 /* Bring kernel and HW constraints together */
441 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
442 MIN_LATENCY_MULTIPLIER * latency);
443 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
444 LATENCY_MULTIPLIER * latency);
445
446 if (!have_governor_per_policy())
447 gov->gdbs_data = dbs_data;
448
449 policy_dbs->dbs_data = dbs_data;
450 policy->governor_data = policy_dbs;
451
452 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
453 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
454 get_governor_parent_kobj(policy),
455 "%s", gov->gov.name);
456 if (!ret)
457 goto out;
458
459 /* Failure, so roll back. */
460 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
461
462 policy->governor_data = NULL;
463
464 if (!have_governor_per_policy())
465 gov->gdbs_data = NULL;
466 gov->exit(dbs_data);
467 kfree(dbs_data);
468
469 free_policy_dbs_info:
470 free_policy_dbs_info(policy_dbs, gov);
471
472 out:
473 mutex_unlock(&gov_dbs_data_mutex);
474 return ret;
475 }
476 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
477
478 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
479 {
480 struct dbs_governor *gov = dbs_governor_of(policy);
481 struct policy_dbs_info *policy_dbs = policy->governor_data;
482 struct dbs_data *dbs_data = policy_dbs->dbs_data;
483 unsigned int count;
484
485 /* Protect gov->gdbs_data against concurrent updates. */
486 mutex_lock(&gov_dbs_data_mutex);
487
488 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
489
490 policy->governor_data = NULL;
491
492 if (!count) {
493 if (!have_governor_per_policy())
494 gov->gdbs_data = NULL;
495
496 gov->exit(dbs_data);
497 kfree(dbs_data);
498 }
499
500 free_policy_dbs_info(policy_dbs, gov);
501
502 mutex_unlock(&gov_dbs_data_mutex);
503 }
504 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
505
506 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
507 {
508 struct dbs_governor *gov = dbs_governor_of(policy);
509 struct policy_dbs_info *policy_dbs = policy->governor_data;
510 struct dbs_data *dbs_data = policy_dbs->dbs_data;
511 unsigned int sampling_rate, ignore_nice, j;
512 unsigned int io_busy;
513
514 if (!policy->cur)
515 return -EINVAL;
516
517 policy_dbs->is_shared = policy_is_shared(policy);
518 policy_dbs->rate_mult = 1;
519
520 sampling_rate = dbs_data->sampling_rate;
521 ignore_nice = dbs_data->ignore_nice_load;
522 io_busy = dbs_data->io_is_busy;
523
524 for_each_cpu(j, policy->cpus) {
525 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
526
527 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
528 /*
529 * Make the first invocation of dbs_update() compute the load.
530 */
531 j_cdbs->prev_load = 0;
532
533 if (ignore_nice)
534 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
535 }
536
537 gov->start(policy);
538
539 gov_set_update_util(policy_dbs, sampling_rate);
540 return 0;
541 }
542 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
543
544 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
545 {
546 struct policy_dbs_info *policy_dbs = policy->governor_data;
547
548 gov_clear_update_util(policy_dbs->policy);
549 irq_work_sync(&policy_dbs->irq_work);
550 cancel_work_sync(&policy_dbs->work);
551 atomic_set(&policy_dbs->work_count, 0);
552 policy_dbs->work_in_progress = false;
553 }
554 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
555
556 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
557 {
558 struct policy_dbs_info *policy_dbs = policy->governor_data;
559
560 mutex_lock(&policy_dbs->update_mutex);
561 cpufreq_policy_apply_limits(policy);
562 gov_update_sample_delay(policy_dbs, 0);
563
564 mutex_unlock(&policy_dbs->update_mutex);
565 }
566 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);