]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/cpufreq_governor.c
cpufreq: governor: Get rid of the ->gov_check_cpu callback
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 DEFINE_MUTEX(dbs_data_mutex);
26 EXPORT_SYMBOL_GPL(dbs_data_mutex);
27
28 /* Common sysfs tunables */
29 /**
30 * store_sampling_rate - update sampling rate effective immediately if needed.
31 *
32 * If new rate is smaller than the old, simply updating
33 * dbs.sampling_rate might not be appropriate. For example, if the
34 * original sampling_rate was 1 second and the requested new sampling rate is 10
35 * ms because the user needs immediate reaction from ondemand governor, but not
36 * sure if higher frequency will be required or not, then, the governor may
37 * change the sampling rate too late; up to 1 second later. Thus, if we are
38 * reducing the sampling rate, we need to make the new value effective
39 * immediately.
40 *
41 * On the other hand, if new rate is larger than the old, then we may evaluate
42 * the load too soon, and it might we worth updating sample_delay_ns then as
43 * well.
44 *
45 * This must be called with dbs_data->mutex held, otherwise traversing
46 * policy_dbs_list isn't safe.
47 */
48 ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
49 size_t count)
50 {
51 struct policy_dbs_info *policy_dbs;
52 unsigned int rate;
53 int ret;
54 ret = sscanf(buf, "%u", &rate);
55 if (ret != 1)
56 return -EINVAL;
57
58 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
59
60 /*
61 * We are operating under dbs_data->mutex and so the list and its
62 * entries can't be freed concurrently.
63 */
64 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
65 mutex_lock(&policy_dbs->timer_mutex);
66 /*
67 * On 32-bit architectures this may race with the
68 * sample_delay_ns read in dbs_update_util_handler(), but that
69 * really doesn't matter. If the read returns a value that's
70 * too big, the sample will be skipped, but the next invocation
71 * of dbs_update_util_handler() (when the update has been
72 * completed) will take a sample. If the returned value is too
73 * small, the sample will be taken immediately, but that isn't a
74 * problem, as we want the new rate to take effect immediately
75 * anyway.
76 *
77 * If this runs in parallel with dbs_work_handler(), we may end
78 * up overwriting the sample_delay_ns value that it has just
79 * written, but the difference should not be too big and it will
80 * be corrected next time a sample is taken, so it shouldn't be
81 * significant.
82 */
83 gov_update_sample_delay(policy_dbs, dbs_data->sampling_rate);
84 mutex_unlock(&policy_dbs->timer_mutex);
85 }
86
87 return count;
88 }
89 EXPORT_SYMBOL_GPL(store_sampling_rate);
90
91 static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
92 {
93 return container_of(kobj, struct dbs_data, kobj);
94 }
95
96 static inline struct governor_attr *to_gov_attr(struct attribute *attr)
97 {
98 return container_of(attr, struct governor_attr, attr);
99 }
100
101 static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
102 char *buf)
103 {
104 struct dbs_data *dbs_data = to_dbs_data(kobj);
105 struct governor_attr *gattr = to_gov_attr(attr);
106 int ret = -EIO;
107
108 if (gattr->show)
109 ret = gattr->show(dbs_data, buf);
110
111 return ret;
112 }
113
114 static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
115 const char *buf, size_t count)
116 {
117 struct dbs_data *dbs_data = to_dbs_data(kobj);
118 struct governor_attr *gattr = to_gov_attr(attr);
119 int ret = -EIO;
120
121 mutex_lock(&dbs_data->mutex);
122
123 if (gattr->store)
124 ret = gattr->store(dbs_data, buf, count);
125
126 mutex_unlock(&dbs_data->mutex);
127
128 return ret;
129 }
130
131 /*
132 * Sysfs Ops for accessing governor attributes.
133 *
134 * All show/store invocations for governor specific sysfs attributes, will first
135 * call the below show/store callbacks and the attribute specific callback will
136 * be called from within it.
137 */
138 static const struct sysfs_ops governor_sysfs_ops = {
139 .show = governor_show,
140 .store = governor_store,
141 };
142
143 unsigned int dbs_update(struct cpufreq_policy *policy)
144 {
145 struct dbs_governor *gov = dbs_governor_of(policy);
146 struct policy_dbs_info *policy_dbs = policy->governor_data;
147 struct dbs_data *dbs_data = policy_dbs->dbs_data;
148 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
149 unsigned int sampling_rate = dbs_data->sampling_rate;
150 unsigned int ignore_nice = dbs_data->ignore_nice_load;
151 unsigned int max_load = 0;
152 unsigned int j;
153
154 if (gov->governor == GOV_ONDEMAND) {
155 struct od_cpu_dbs_info_s *od_dbs_info =
156 gov->get_cpu_dbs_info_s(policy->cpu);
157
158 /*
159 * Sometimes, the ondemand governor uses an additional
160 * multiplier to give long delays. So apply this multiplier to
161 * the 'sampling_rate', so as to keep the wake-up-from-idle
162 * detection logic a bit conservative.
163 */
164 sampling_rate *= od_dbs_info->rate_mult;
165
166 }
167
168 /* Get Absolute Load */
169 for_each_cpu(j, policy->cpus) {
170 struct cpu_dbs_info *j_cdbs;
171 u64 cur_wall_time, cur_idle_time;
172 unsigned int idle_time, wall_time;
173 unsigned int load;
174 int io_busy = 0;
175
176 j_cdbs = gov->get_cpu_cdbs(j);
177
178 /*
179 * For the purpose of ondemand, waiting for disk IO is
180 * an indication that you're performance critical, and
181 * not that the system is actually idle. So do not add
182 * the iowait time to the cpu idle time.
183 */
184 if (gov->governor == GOV_ONDEMAND)
185 io_busy = od_tuners->io_is_busy;
186 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
187
188 wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
189 j_cdbs->prev_cpu_wall = cur_wall_time;
190
191 if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
192 idle_time = 0;
193 } else {
194 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
195 j_cdbs->prev_cpu_idle = cur_idle_time;
196 }
197
198 if (ignore_nice) {
199 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
200
201 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
202 j_cdbs->prev_cpu_nice = cur_nice;
203 }
204
205 if (unlikely(!wall_time || wall_time < idle_time))
206 continue;
207
208 /*
209 * If the CPU had gone completely idle, and a task just woke up
210 * on this CPU now, it would be unfair to calculate 'load' the
211 * usual way for this elapsed time-window, because it will show
212 * near-zero load, irrespective of how CPU intensive that task
213 * actually is. This is undesirable for latency-sensitive bursty
214 * workloads.
215 *
216 * To avoid this, we reuse the 'load' from the previous
217 * time-window and give this task a chance to start with a
218 * reasonably high CPU frequency. (However, we shouldn't over-do
219 * this copy, lest we get stuck at a high load (high frequency)
220 * for too long, even when the current system load has actually
221 * dropped down. So we perform the copy only once, upon the
222 * first wake-up from idle.)
223 *
224 * Detecting this situation is easy: the governor's utilization
225 * update handler would not have run during CPU-idle periods.
226 * Hence, an unusually large 'wall_time' (as compared to the
227 * sampling rate) indicates this scenario.
228 *
229 * prev_load can be zero in two cases and we must recalculate it
230 * for both cases:
231 * - during long idle intervals
232 * - explicitly set to zero
233 */
234 if (unlikely(wall_time > (2 * sampling_rate) &&
235 j_cdbs->prev_load)) {
236 load = j_cdbs->prev_load;
237
238 /*
239 * Perform a destructive copy, to ensure that we copy
240 * the previous load only once, upon the first wake-up
241 * from idle.
242 */
243 j_cdbs->prev_load = 0;
244 } else {
245 load = 100 * (wall_time - idle_time) / wall_time;
246 j_cdbs->prev_load = load;
247 }
248
249 if (load > max_load)
250 max_load = load;
251 }
252 return max_load;
253 }
254 EXPORT_SYMBOL_GPL(dbs_update);
255
256 void gov_set_update_util(struct policy_dbs_info *policy_dbs,
257 unsigned int delay_us)
258 {
259 struct cpufreq_policy *policy = policy_dbs->policy;
260 struct dbs_governor *gov = dbs_governor_of(policy);
261 int cpu;
262
263 gov_update_sample_delay(policy_dbs, delay_us);
264 policy_dbs->last_sample_time = 0;
265
266 for_each_cpu(cpu, policy->cpus) {
267 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
268
269 cpufreq_set_update_util_data(cpu, &cdbs->update_util);
270 }
271 }
272 EXPORT_SYMBOL_GPL(gov_set_update_util);
273
274 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
275 {
276 int i;
277
278 for_each_cpu(i, policy->cpus)
279 cpufreq_set_update_util_data(i, NULL);
280
281 synchronize_rcu();
282 }
283
284 static void gov_cancel_work(struct cpufreq_policy *policy)
285 {
286 struct policy_dbs_info *policy_dbs = policy->governor_data;
287
288 gov_clear_update_util(policy_dbs->policy);
289 irq_work_sync(&policy_dbs->irq_work);
290 cancel_work_sync(&policy_dbs->work);
291 atomic_set(&policy_dbs->work_count, 0);
292 policy_dbs->work_in_progress = false;
293 }
294
295 static void dbs_work_handler(struct work_struct *work)
296 {
297 struct policy_dbs_info *policy_dbs;
298 struct cpufreq_policy *policy;
299 struct dbs_governor *gov;
300 unsigned int delay;
301
302 policy_dbs = container_of(work, struct policy_dbs_info, work);
303 policy = policy_dbs->policy;
304 gov = dbs_governor_of(policy);
305
306 /*
307 * Make sure cpufreq_governor_limits() isn't evaluating load or the
308 * ondemand governor isn't updating the sampling rate in parallel.
309 */
310 mutex_lock(&policy_dbs->timer_mutex);
311 delay = gov->gov_dbs_timer(policy);
312 policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay);
313 mutex_unlock(&policy_dbs->timer_mutex);
314
315 /* Allow the utilization update handler to queue up more work. */
316 atomic_set(&policy_dbs->work_count, 0);
317 /*
318 * If the update below is reordered with respect to the sample delay
319 * modification, the utilization update handler may end up using a stale
320 * sample delay value.
321 */
322 smp_wmb();
323 policy_dbs->work_in_progress = false;
324 }
325
326 static void dbs_irq_work(struct irq_work *irq_work)
327 {
328 struct policy_dbs_info *policy_dbs;
329
330 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
331 schedule_work(&policy_dbs->work);
332 }
333
334 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
335 unsigned long util, unsigned long max)
336 {
337 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
338 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
339 u64 delta_ns;
340
341 /*
342 * The work may not be allowed to be queued up right now.
343 * Possible reasons:
344 * - Work has already been queued up or is in progress.
345 * - It is too early (too little time from the previous sample).
346 */
347 if (policy_dbs->work_in_progress)
348 return;
349
350 /*
351 * If the reads below are reordered before the check above, the value
352 * of sample_delay_ns used in the computation may be stale.
353 */
354 smp_rmb();
355 delta_ns = time - policy_dbs->last_sample_time;
356 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
357 return;
358
359 /*
360 * If the policy is not shared, the irq_work may be queued up right away
361 * at this point. Otherwise, we need to ensure that only one of the
362 * CPUs sharing the policy will do that.
363 */
364 if (policy_dbs->is_shared &&
365 !atomic_add_unless(&policy_dbs->work_count, 1, 1))
366 return;
367
368 policy_dbs->last_sample_time = time;
369 policy_dbs->work_in_progress = true;
370 irq_work_queue(&policy_dbs->irq_work);
371 }
372
373 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
374 struct dbs_governor *gov)
375 {
376 struct policy_dbs_info *policy_dbs;
377 int j;
378
379 /* Allocate memory for the common information for policy->cpus */
380 policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
381 if (!policy_dbs)
382 return NULL;
383
384 policy_dbs->policy = policy;
385 mutex_init(&policy_dbs->timer_mutex);
386 atomic_set(&policy_dbs->work_count, 0);
387 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
388 INIT_WORK(&policy_dbs->work, dbs_work_handler);
389
390 /* Set policy_dbs for all CPUs, online+offline */
391 for_each_cpu(j, policy->related_cpus) {
392 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
393
394 j_cdbs->policy_dbs = policy_dbs;
395 j_cdbs->update_util.func = dbs_update_util_handler;
396 }
397 return policy_dbs;
398 }
399
400 static void free_policy_dbs_info(struct cpufreq_policy *policy,
401 struct dbs_governor *gov)
402 {
403 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
404 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
405 int j;
406
407 mutex_destroy(&policy_dbs->timer_mutex);
408
409 for_each_cpu(j, policy->related_cpus) {
410 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
411
412 j_cdbs->policy_dbs = NULL;
413 j_cdbs->update_util.func = NULL;
414 }
415 kfree(policy_dbs);
416 }
417
418 static int cpufreq_governor_init(struct cpufreq_policy *policy)
419 {
420 struct dbs_governor *gov = dbs_governor_of(policy);
421 struct dbs_data *dbs_data = gov->gdbs_data;
422 struct policy_dbs_info *policy_dbs;
423 unsigned int latency;
424 int ret;
425
426 /* State should be equivalent to EXIT */
427 if (policy->governor_data)
428 return -EBUSY;
429
430 policy_dbs = alloc_policy_dbs_info(policy, gov);
431 if (!policy_dbs)
432 return -ENOMEM;
433
434 if (dbs_data) {
435 if (WARN_ON(have_governor_per_policy())) {
436 ret = -EINVAL;
437 goto free_policy_dbs_info;
438 }
439 policy_dbs->dbs_data = dbs_data;
440 policy->governor_data = policy_dbs;
441
442 mutex_lock(&dbs_data->mutex);
443 dbs_data->usage_count++;
444 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
445 mutex_unlock(&dbs_data->mutex);
446
447 return 0;
448 }
449
450 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
451 if (!dbs_data) {
452 ret = -ENOMEM;
453 goto free_policy_dbs_info;
454 }
455
456 INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
457 mutex_init(&dbs_data->mutex);
458
459 ret = gov->init(dbs_data, !policy->governor->initialized);
460 if (ret)
461 goto free_policy_dbs_info;
462
463 /* policy latency is in ns. Convert it to us first */
464 latency = policy->cpuinfo.transition_latency / 1000;
465 if (latency == 0)
466 latency = 1;
467
468 /* Bring kernel and HW constraints together */
469 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
470 MIN_LATENCY_MULTIPLIER * latency);
471 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
472 LATENCY_MULTIPLIER * latency);
473
474 if (!have_governor_per_policy())
475 gov->gdbs_data = dbs_data;
476
477 policy->governor_data = policy_dbs;
478
479 policy_dbs->dbs_data = dbs_data;
480 dbs_data->usage_count = 1;
481 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
482
483 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
484 ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
485 get_governor_parent_kobj(policy),
486 "%s", gov->gov.name);
487 if (!ret)
488 return 0;
489
490 /* Failure, so roll back. */
491 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
492
493 policy->governor_data = NULL;
494
495 if (!have_governor_per_policy())
496 gov->gdbs_data = NULL;
497 gov->exit(dbs_data, !policy->governor->initialized);
498 kfree(dbs_data);
499
500 free_policy_dbs_info:
501 free_policy_dbs_info(policy, gov);
502 return ret;
503 }
504
505 static int cpufreq_governor_exit(struct cpufreq_policy *policy)
506 {
507 struct dbs_governor *gov = dbs_governor_of(policy);
508 struct policy_dbs_info *policy_dbs = policy->governor_data;
509 struct dbs_data *dbs_data = policy_dbs->dbs_data;
510 int count;
511
512 mutex_lock(&dbs_data->mutex);
513 list_del(&policy_dbs->list);
514 count = --dbs_data->usage_count;
515 mutex_unlock(&dbs_data->mutex);
516
517 if (!count) {
518 kobject_put(&dbs_data->kobj);
519
520 policy->governor_data = NULL;
521
522 if (!have_governor_per_policy())
523 gov->gdbs_data = NULL;
524
525 gov->exit(dbs_data, policy->governor->initialized == 1);
526 mutex_destroy(&dbs_data->mutex);
527 kfree(dbs_data);
528 } else {
529 policy->governor_data = NULL;
530 }
531
532 free_policy_dbs_info(policy, gov);
533 return 0;
534 }
535
536 static int cpufreq_governor_start(struct cpufreq_policy *policy)
537 {
538 struct dbs_governor *gov = dbs_governor_of(policy);
539 struct policy_dbs_info *policy_dbs = policy->governor_data;
540 struct dbs_data *dbs_data = policy_dbs->dbs_data;
541 unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
542 int io_busy = 0;
543
544 if (!policy->cur)
545 return -EINVAL;
546
547 policy_dbs->is_shared = policy_is_shared(policy);
548
549 sampling_rate = dbs_data->sampling_rate;
550 ignore_nice = dbs_data->ignore_nice_load;
551
552 if (gov->governor == GOV_ONDEMAND) {
553 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
554
555 io_busy = od_tuners->io_is_busy;
556 }
557
558 for_each_cpu(j, policy->cpus) {
559 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
560 unsigned int prev_load;
561
562 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
563
564 prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
565 j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
566
567 if (ignore_nice)
568 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
569 }
570
571 if (gov->governor == GOV_CONSERVATIVE) {
572 struct cs_cpu_dbs_info_s *cs_dbs_info =
573 gov->get_cpu_dbs_info_s(cpu);
574
575 cs_dbs_info->down_skip = 0;
576 cs_dbs_info->requested_freq = policy->cur;
577 } else {
578 struct od_ops *od_ops = gov->gov_ops;
579 struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
580
581 od_dbs_info->rate_mult = 1;
582 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
583 od_ops->powersave_bias_init_cpu(cpu);
584 }
585
586 gov_set_update_util(policy_dbs, sampling_rate);
587 return 0;
588 }
589
590 static int cpufreq_governor_stop(struct cpufreq_policy *policy)
591 {
592 gov_cancel_work(policy);
593
594 return 0;
595 }
596
597 static int cpufreq_governor_limits(struct cpufreq_policy *policy)
598 {
599 struct policy_dbs_info *policy_dbs = policy->governor_data;
600
601 mutex_lock(&policy_dbs->timer_mutex);
602
603 if (policy->max < policy->cur)
604 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
605 else if (policy->min > policy->cur)
606 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
607
608 gov_update_sample_delay(policy_dbs, 0);
609
610 mutex_unlock(&policy_dbs->timer_mutex);
611
612 return 0;
613 }
614
615 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
616 {
617 int ret = -EINVAL;
618
619 /* Lock governor to block concurrent initialization of governor */
620 mutex_lock(&dbs_data_mutex);
621
622 if (event == CPUFREQ_GOV_POLICY_INIT) {
623 ret = cpufreq_governor_init(policy);
624 } else if (policy->governor_data) {
625 switch (event) {
626 case CPUFREQ_GOV_POLICY_EXIT:
627 ret = cpufreq_governor_exit(policy);
628 break;
629 case CPUFREQ_GOV_START:
630 ret = cpufreq_governor_start(policy);
631 break;
632 case CPUFREQ_GOV_STOP:
633 ret = cpufreq_governor_stop(policy);
634 break;
635 case CPUFREQ_GOV_LIMITS:
636 ret = cpufreq_governor_limits(policy);
637 break;
638 }
639 }
640
641 mutex_unlock(&dbs_data_mutex);
642 return ret;
643 }
644 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);