]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/cpufreq/cpufreq_governor.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[mirror_ubuntu-artful-kernel.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
26
27 static DEFINE_MUTEX(gov_dbs_data_mutex);
28
29 /* Common sysfs tunables */
30 /**
31 * store_sampling_rate - update sampling rate effective immediately if needed.
32 *
33 * If new rate is smaller than the old, simply updating
34 * dbs.sampling_rate might not be appropriate. For example, if the
35 * original sampling_rate was 1 second and the requested new sampling rate is 10
36 * ms because the user needs immediate reaction from ondemand governor, but not
37 * sure if higher frequency will be required or not, then, the governor may
38 * change the sampling rate too late; up to 1 second later. Thus, if we are
39 * reducing the sampling rate, we need to make the new value effective
40 * immediately.
41 *
42 * This must be called with dbs_data->mutex held, otherwise traversing
43 * policy_dbs_list isn't safe.
44 */
45 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
46 size_t count)
47 {
48 struct dbs_data *dbs_data = to_dbs_data(attr_set);
49 struct policy_dbs_info *policy_dbs;
50 unsigned int rate;
51 int ret;
52 ret = sscanf(buf, "%u", &rate);
53 if (ret != 1)
54 return -EINVAL;
55
56 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
57
58 /*
59 * We are operating under dbs_data->mutex and so the list and its
60 * entries can't be freed concurrently.
61 */
62 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
63 mutex_lock(&policy_dbs->update_mutex);
64 /*
65 * On 32-bit architectures this may race with the
66 * sample_delay_ns read in dbs_update_util_handler(), but that
67 * really doesn't matter. If the read returns a value that's
68 * too big, the sample will be skipped, but the next invocation
69 * of dbs_update_util_handler() (when the update has been
70 * completed) will take a sample.
71 *
72 * If this runs in parallel with dbs_work_handler(), we may end
73 * up overwriting the sample_delay_ns value that it has just
74 * written, but it will be corrected next time a sample is
75 * taken, so it shouldn't be significant.
76 */
77 gov_update_sample_delay(policy_dbs, 0);
78 mutex_unlock(&policy_dbs->update_mutex);
79 }
80
81 return count;
82 }
83 EXPORT_SYMBOL_GPL(store_sampling_rate);
84
85 /**
86 * gov_update_cpu_data - Update CPU load data.
87 * @dbs_data: Top-level governor data pointer.
88 *
89 * Update CPU load data for all CPUs in the domain governed by @dbs_data
90 * (that may be a single policy or a bunch of them if governor tunables are
91 * system-wide).
92 *
93 * Call under the @dbs_data mutex.
94 */
95 void gov_update_cpu_data(struct dbs_data *dbs_data)
96 {
97 struct policy_dbs_info *policy_dbs;
98
99 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
100 unsigned int j;
101
102 for_each_cpu(j, policy_dbs->policy->cpus) {
103 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
104
105 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
106 dbs_data->io_is_busy);
107 if (dbs_data->ignore_nice_load)
108 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
109 }
110 }
111 }
112 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
113
114 unsigned int dbs_update(struct cpufreq_policy *policy)
115 {
116 struct policy_dbs_info *policy_dbs = policy->governor_data;
117 struct dbs_data *dbs_data = policy_dbs->dbs_data;
118 unsigned int ignore_nice = dbs_data->ignore_nice_load;
119 unsigned int max_load = 0, idle_periods = UINT_MAX;
120 unsigned int sampling_rate, io_busy, j;
121
122 /*
123 * Sometimes governors may use an additional multiplier to increase
124 * sample delays temporarily. Apply that multiplier to sampling_rate
125 * so as to keep the wake-up-from-idle detection logic a bit
126 * conservative.
127 */
128 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
129 /*
130 * For the purpose of ondemand, waiting for disk IO is an indication
131 * that you're performance critical, and not that the system is actually
132 * idle, so do not add the iowait time to the CPU idle time then.
133 */
134 io_busy = dbs_data->io_is_busy;
135
136 /* Get Absolute Load */
137 for_each_cpu(j, policy->cpus) {
138 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
139 u64 update_time, cur_idle_time;
140 unsigned int idle_time, time_elapsed;
141 unsigned int load;
142
143 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
144
145 time_elapsed = update_time - j_cdbs->prev_update_time;
146 j_cdbs->prev_update_time = update_time;
147
148 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
149 j_cdbs->prev_cpu_idle = cur_idle_time;
150
151 if (ignore_nice) {
152 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
153
154 idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
155 j_cdbs->prev_cpu_nice = cur_nice;
156 }
157
158 if (unlikely(!time_elapsed)) {
159 /*
160 * That can only happen when this function is called
161 * twice in a row with a very short interval between the
162 * calls, so the previous load value can be used then.
163 */
164 load = j_cdbs->prev_load;
165 } else if (unlikely(time_elapsed > 2 * sampling_rate &&
166 j_cdbs->prev_load)) {
167 /*
168 * If the CPU had gone completely idle and a task has
169 * just woken up on this CPU now, it would be unfair to
170 * calculate 'load' the usual way for this elapsed
171 * time-window, because it would show near-zero load,
172 * irrespective of how CPU intensive that task actually
173 * was. This is undesirable for latency-sensitive bursty
174 * workloads.
175 *
176 * To avoid this, reuse the 'load' from the previous
177 * time-window and give this task a chance to start with
178 * a reasonably high CPU frequency. However, that
179 * shouldn't be over-done, lest we get stuck at a high
180 * load (high frequency) for too long, even when the
181 * current system load has actually dropped down, so
182 * clear prev_load to guarantee that the load will be
183 * computed again next time.
184 *
185 * Detecting this situation is easy: the governor's
186 * utilization update handler would not have run during
187 * CPU-idle periods. Hence, an unusually large
188 * 'time_elapsed' (as compared to the sampling rate)
189 * indicates this scenario.
190 */
191 load = j_cdbs->prev_load;
192 j_cdbs->prev_load = 0;
193 } else {
194 if (time_elapsed >= idle_time) {
195 load = 100 * (time_elapsed - idle_time) / time_elapsed;
196 } else {
197 /*
198 * That can happen if idle_time is returned by
199 * get_cpu_idle_time_jiffy(). In that case
200 * idle_time is roughly equal to the difference
201 * between time_elapsed and "busy time" obtained
202 * from CPU statistics. Then, the "busy time"
203 * can end up being greater than time_elapsed
204 * (for example, if jiffies_64 and the CPU
205 * statistics are updated by different CPUs),
206 * so idle_time may in fact be negative. That
207 * means, though, that the CPU was busy all
208 * the time (on the rough average) during the
209 * last sampling interval and 100 can be
210 * returned as the load.
211 */
212 load = (int)idle_time < 0 ? 100 : 0;
213 }
214 j_cdbs->prev_load = load;
215 }
216
217 if (time_elapsed > 2 * sampling_rate) {
218 unsigned int periods = time_elapsed / sampling_rate;
219
220 if (periods < idle_periods)
221 idle_periods = periods;
222 }
223
224 if (load > max_load)
225 max_load = load;
226 }
227
228 policy_dbs->idle_periods = idle_periods;
229
230 return max_load;
231 }
232 EXPORT_SYMBOL_GPL(dbs_update);
233
234 static void dbs_work_handler(struct work_struct *work)
235 {
236 struct policy_dbs_info *policy_dbs;
237 struct cpufreq_policy *policy;
238 struct dbs_governor *gov;
239
240 policy_dbs = container_of(work, struct policy_dbs_info, work);
241 policy = policy_dbs->policy;
242 gov = dbs_governor_of(policy);
243
244 /*
245 * Make sure cpufreq_governor_limits() isn't evaluating load or the
246 * ondemand governor isn't updating the sampling rate in parallel.
247 */
248 mutex_lock(&policy_dbs->update_mutex);
249 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
250 mutex_unlock(&policy_dbs->update_mutex);
251
252 /* Allow the utilization update handler to queue up more work. */
253 atomic_set(&policy_dbs->work_count, 0);
254 /*
255 * If the update below is reordered with respect to the sample delay
256 * modification, the utilization update handler may end up using a stale
257 * sample delay value.
258 */
259 smp_wmb();
260 policy_dbs->work_in_progress = false;
261 }
262
263 static void dbs_irq_work(struct irq_work *irq_work)
264 {
265 struct policy_dbs_info *policy_dbs;
266
267 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
268 schedule_work_on(smp_processor_id(), &policy_dbs->work);
269 }
270
271 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
272 unsigned int flags)
273 {
274 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
275 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
276 u64 delta_ns, lst;
277
278 /*
279 * The work may not be allowed to be queued up right now.
280 * Possible reasons:
281 * - Work has already been queued up or is in progress.
282 * - It is too early (too little time from the previous sample).
283 */
284 if (policy_dbs->work_in_progress)
285 return;
286
287 /*
288 * If the reads below are reordered before the check above, the value
289 * of sample_delay_ns used in the computation may be stale.
290 */
291 smp_rmb();
292 lst = READ_ONCE(policy_dbs->last_sample_time);
293 delta_ns = time - lst;
294 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
295 return;
296
297 /*
298 * If the policy is not shared, the irq_work may be queued up right away
299 * at this point. Otherwise, we need to ensure that only one of the
300 * CPUs sharing the policy will do that.
301 */
302 if (policy_dbs->is_shared) {
303 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
304 return;
305
306 /*
307 * If another CPU updated last_sample_time in the meantime, we
308 * shouldn't be here, so clear the work counter and bail out.
309 */
310 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
311 atomic_set(&policy_dbs->work_count, 0);
312 return;
313 }
314 }
315
316 policy_dbs->last_sample_time = time;
317 policy_dbs->work_in_progress = true;
318 irq_work_queue(&policy_dbs->irq_work);
319 }
320
321 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
322 unsigned int delay_us)
323 {
324 struct cpufreq_policy *policy = policy_dbs->policy;
325 int cpu;
326
327 gov_update_sample_delay(policy_dbs, delay_us);
328 policy_dbs->last_sample_time = 0;
329
330 for_each_cpu(cpu, policy->cpus) {
331 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
332
333 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
334 dbs_update_util_handler);
335 }
336 }
337
338 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
339 {
340 int i;
341
342 for_each_cpu(i, policy->cpus)
343 cpufreq_remove_update_util_hook(i);
344
345 synchronize_sched();
346 }
347
348 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
349 struct dbs_governor *gov)
350 {
351 struct policy_dbs_info *policy_dbs;
352 int j;
353
354 /* Allocate memory for per-policy governor data. */
355 policy_dbs = gov->alloc();
356 if (!policy_dbs)
357 return NULL;
358
359 policy_dbs->policy = policy;
360 mutex_init(&policy_dbs->update_mutex);
361 atomic_set(&policy_dbs->work_count, 0);
362 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
363 INIT_WORK(&policy_dbs->work, dbs_work_handler);
364
365 /* Set policy_dbs for all CPUs, online+offline */
366 for_each_cpu(j, policy->related_cpus) {
367 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
368
369 j_cdbs->policy_dbs = policy_dbs;
370 }
371 return policy_dbs;
372 }
373
374 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
375 struct dbs_governor *gov)
376 {
377 int j;
378
379 mutex_destroy(&policy_dbs->update_mutex);
380
381 for_each_cpu(j, policy_dbs->policy->related_cpus) {
382 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
383
384 j_cdbs->policy_dbs = NULL;
385 j_cdbs->update_util.func = NULL;
386 }
387 gov->free(policy_dbs);
388 }
389
390 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
391 {
392 struct dbs_governor *gov = dbs_governor_of(policy);
393 struct dbs_data *dbs_data;
394 struct policy_dbs_info *policy_dbs;
395 unsigned int latency;
396 int ret = 0;
397
398 /* State should be equivalent to EXIT */
399 if (policy->governor_data)
400 return -EBUSY;
401
402 policy_dbs = alloc_policy_dbs_info(policy, gov);
403 if (!policy_dbs)
404 return -ENOMEM;
405
406 /* Protect gov->gdbs_data against concurrent updates. */
407 mutex_lock(&gov_dbs_data_mutex);
408
409 dbs_data = gov->gdbs_data;
410 if (dbs_data) {
411 if (WARN_ON(have_governor_per_policy())) {
412 ret = -EINVAL;
413 goto free_policy_dbs_info;
414 }
415 policy_dbs->dbs_data = dbs_data;
416 policy->governor_data = policy_dbs;
417
418 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
419 goto out;
420 }
421
422 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
423 if (!dbs_data) {
424 ret = -ENOMEM;
425 goto free_policy_dbs_info;
426 }
427
428 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
429
430 ret = gov->init(dbs_data);
431 if (ret)
432 goto free_policy_dbs_info;
433
434 /* policy latency is in ns. Convert it to us first */
435 latency = policy->cpuinfo.transition_latency / 1000;
436 if (latency == 0)
437 latency = 1;
438
439 /* Bring kernel and HW constraints together */
440 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
441 MIN_LATENCY_MULTIPLIER * latency);
442 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
443 LATENCY_MULTIPLIER * latency);
444
445 if (!have_governor_per_policy())
446 gov->gdbs_data = dbs_data;
447
448 policy_dbs->dbs_data = dbs_data;
449 policy->governor_data = policy_dbs;
450
451 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
452 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
453 get_governor_parent_kobj(policy),
454 "%s", gov->gov.name);
455 if (!ret)
456 goto out;
457
458 /* Failure, so roll back. */
459 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
460
461 policy->governor_data = NULL;
462
463 if (!have_governor_per_policy())
464 gov->gdbs_data = NULL;
465 gov->exit(dbs_data);
466 kfree(dbs_data);
467
468 free_policy_dbs_info:
469 free_policy_dbs_info(policy_dbs, gov);
470
471 out:
472 mutex_unlock(&gov_dbs_data_mutex);
473 return ret;
474 }
475 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
476
477 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
478 {
479 struct dbs_governor *gov = dbs_governor_of(policy);
480 struct policy_dbs_info *policy_dbs = policy->governor_data;
481 struct dbs_data *dbs_data = policy_dbs->dbs_data;
482 unsigned int count;
483
484 /* Protect gov->gdbs_data against concurrent updates. */
485 mutex_lock(&gov_dbs_data_mutex);
486
487 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
488
489 policy->governor_data = NULL;
490
491 if (!count) {
492 if (!have_governor_per_policy())
493 gov->gdbs_data = NULL;
494
495 gov->exit(dbs_data);
496 kfree(dbs_data);
497 }
498
499 free_policy_dbs_info(policy_dbs, gov);
500
501 mutex_unlock(&gov_dbs_data_mutex);
502 }
503 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
504
505 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
506 {
507 struct dbs_governor *gov = dbs_governor_of(policy);
508 struct policy_dbs_info *policy_dbs = policy->governor_data;
509 struct dbs_data *dbs_data = policy_dbs->dbs_data;
510 unsigned int sampling_rate, ignore_nice, j;
511 unsigned int io_busy;
512
513 if (!policy->cur)
514 return -EINVAL;
515
516 policy_dbs->is_shared = policy_is_shared(policy);
517 policy_dbs->rate_mult = 1;
518
519 sampling_rate = dbs_data->sampling_rate;
520 ignore_nice = dbs_data->ignore_nice_load;
521 io_busy = dbs_data->io_is_busy;
522
523 for_each_cpu(j, policy->cpus) {
524 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
525
526 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
527 /*
528 * Make the first invocation of dbs_update() compute the load.
529 */
530 j_cdbs->prev_load = 0;
531
532 if (ignore_nice)
533 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
534 }
535
536 gov->start(policy);
537
538 gov_set_update_util(policy_dbs, sampling_rate);
539 return 0;
540 }
541 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
542
543 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
544 {
545 struct policy_dbs_info *policy_dbs = policy->governor_data;
546
547 gov_clear_update_util(policy_dbs->policy);
548 irq_work_sync(&policy_dbs->irq_work);
549 cancel_work_sync(&policy_dbs->work);
550 atomic_set(&policy_dbs->work_count, 0);
551 policy_dbs->work_in_progress = false;
552 }
553 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
554
555 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
556 {
557 struct policy_dbs_info *policy_dbs = policy->governor_data;
558
559 mutex_lock(&policy_dbs->update_mutex);
560 cpufreq_policy_apply_limits(policy);
561 gov_update_sample_delay(policy_dbs, 0);
562
563 mutex_unlock(&policy_dbs->update_mutex);
564 }
565 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);