]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/cpufreq/cpufreq_governor.c
Merge branch 'drm-fixes-4.5' of git://people.freedesktop.org/~agd5f/linux into drm...
[mirror_ubuntu-zesty-kernel.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27 if (have_governor_per_policy())
28 return dbs_data->cdata->attr_group_gov_pol;
29 else
30 return dbs_data->cdata->attr_group_gov_sys;
31 }
32
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35 struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38 struct cpufreq_policy *policy = cdbs->shared->policy;
39 unsigned int sampling_rate;
40 unsigned int max_load = 0;
41 unsigned int ignore_nice;
42 unsigned int j;
43
44 if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45 struct od_cpu_dbs_info_s *od_dbs_info =
46 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48 /*
49 * Sometimes, the ondemand governor uses an additional
50 * multiplier to give long delays. So apply this multiplier to
51 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 * detection logic a bit conservative.
53 */
54 sampling_rate = od_tuners->sampling_rate;
55 sampling_rate *= od_dbs_info->rate_mult;
56
57 ignore_nice = od_tuners->ignore_nice_load;
58 } else {
59 sampling_rate = cs_tuners->sampling_rate;
60 ignore_nice = cs_tuners->ignore_nice_load;
61 }
62
63 /* Get Absolute Load */
64 for_each_cpu(j, policy->cpus) {
65 struct cpu_dbs_info *j_cdbs;
66 u64 cur_wall_time, cur_idle_time;
67 unsigned int idle_time, wall_time;
68 unsigned int load;
69 int io_busy = 0;
70
71 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72
73 /*
74 * For the purpose of ondemand, waiting for disk IO is
75 * an indication that you're performance critical, and
76 * not that the system is actually idle. So do not add
77 * the iowait time to the cpu idle time.
78 */
79 if (dbs_data->cdata->governor == GOV_ONDEMAND)
80 io_busy = od_tuners->io_is_busy;
81 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82
83 wall_time = (unsigned int)
84 (cur_wall_time - j_cdbs->prev_cpu_wall);
85 j_cdbs->prev_cpu_wall = cur_wall_time;
86
87 if (cur_idle_time < j_cdbs->prev_cpu_idle)
88 cur_idle_time = j_cdbs->prev_cpu_idle;
89
90 idle_time = (unsigned int)
91 (cur_idle_time - j_cdbs->prev_cpu_idle);
92 j_cdbs->prev_cpu_idle = cur_idle_time;
93
94 if (ignore_nice) {
95 u64 cur_nice;
96 unsigned long cur_nice_jiffies;
97
98 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
99 cdbs->prev_cpu_nice;
100 /*
101 * Assumption: nice time between sampling periods will
102 * be less than 2^32 jiffies for 32 bit sys
103 */
104 cur_nice_jiffies = (unsigned long)
105 cputime64_to_jiffies64(cur_nice);
106
107 cdbs->prev_cpu_nice =
108 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
109 idle_time += jiffies_to_usecs(cur_nice_jiffies);
110 }
111
112 if (unlikely(!wall_time || wall_time < idle_time))
113 continue;
114
115 /*
116 * If the CPU had gone completely idle, and a task just woke up
117 * on this CPU now, it would be unfair to calculate 'load' the
118 * usual way for this elapsed time-window, because it will show
119 * near-zero load, irrespective of how CPU intensive that task
120 * actually is. This is undesirable for latency-sensitive bursty
121 * workloads.
122 *
123 * To avoid this, we reuse the 'load' from the previous
124 * time-window and give this task a chance to start with a
125 * reasonably high CPU frequency. (However, we shouldn't over-do
126 * this copy, lest we get stuck at a high load (high frequency)
127 * for too long, even when the current system load has actually
128 * dropped down. So we perform the copy only once, upon the
129 * first wake-up from idle.)
130 *
131 * Detecting this situation is easy: the governor's deferrable
132 * timer would not have fired during CPU-idle periods. Hence
133 * an unusually large 'wall_time' (as compared to the sampling
134 * rate) indicates this scenario.
135 *
136 * prev_load can be zero in two cases and we must recalculate it
137 * for both cases:
138 * - during long idle intervals
139 * - explicitly set to zero
140 */
141 if (unlikely(wall_time > (2 * sampling_rate) &&
142 j_cdbs->prev_load)) {
143 load = j_cdbs->prev_load;
144
145 /*
146 * Perform a destructive copy, to ensure that we copy
147 * the previous load only once, upon the first wake-up
148 * from idle.
149 */
150 j_cdbs->prev_load = 0;
151 } else {
152 load = 100 * (wall_time - idle_time) / wall_time;
153 j_cdbs->prev_load = load;
154 }
155
156 if (load > max_load)
157 max_load = load;
158 }
159
160 dbs_data->cdata->gov_check_cpu(cpu, max_load);
161 }
162 EXPORT_SYMBOL_GPL(dbs_check_cpu);
163
164 void gov_add_timers(struct cpufreq_policy *policy, unsigned int delay)
165 {
166 struct dbs_data *dbs_data = policy->governor_data;
167 struct cpu_dbs_info *cdbs;
168 int cpu;
169
170 for_each_cpu(cpu, policy->cpus) {
171 cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
172 cdbs->timer.expires = jiffies + delay;
173 add_timer_on(&cdbs->timer, cpu);
174 }
175 }
176 EXPORT_SYMBOL_GPL(gov_add_timers);
177
178 static inline void gov_cancel_timers(struct cpufreq_policy *policy)
179 {
180 struct dbs_data *dbs_data = policy->governor_data;
181 struct cpu_dbs_info *cdbs;
182 int i;
183
184 for_each_cpu(i, policy->cpus) {
185 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
186 del_timer_sync(&cdbs->timer);
187 }
188 }
189
190 void gov_cancel_work(struct cpu_common_dbs_info *shared)
191 {
192 /* Tell dbs_timer_handler() to skip queuing up work items. */
193 atomic_inc(&shared->skip_work);
194 /*
195 * If dbs_timer_handler() is already running, it may not notice the
196 * incremented skip_work, so wait for it to complete to prevent its work
197 * item from being queued up after the cancel_work_sync() below.
198 */
199 gov_cancel_timers(shared->policy);
200 /*
201 * In case dbs_timer_handler() managed to run and spawn a work item
202 * before the timers have been canceled, wait for that work item to
203 * complete and then cancel all of the timers set up by it. If
204 * dbs_timer_handler() runs again at that point, it will see the
205 * positive value of skip_work and won't spawn any more work items.
206 */
207 cancel_work_sync(&shared->work);
208 gov_cancel_timers(shared->policy);
209 atomic_set(&shared->skip_work, 0);
210 }
211 EXPORT_SYMBOL_GPL(gov_cancel_work);
212
213 /* Will return if we need to evaluate cpu load again or not */
214 static bool need_load_eval(struct cpu_common_dbs_info *shared,
215 unsigned int sampling_rate)
216 {
217 if (policy_is_shared(shared->policy)) {
218 ktime_t time_now = ktime_get();
219 s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
220
221 /* Do nothing if we recently have sampled */
222 if (delta_us < (s64)(sampling_rate / 2))
223 return false;
224 else
225 shared->time_stamp = time_now;
226 }
227
228 return true;
229 }
230
231 static void dbs_work_handler(struct work_struct *work)
232 {
233 struct cpu_common_dbs_info *shared = container_of(work, struct
234 cpu_common_dbs_info, work);
235 struct cpufreq_policy *policy;
236 struct dbs_data *dbs_data;
237 unsigned int sampling_rate, delay;
238 bool eval_load;
239
240 policy = shared->policy;
241 dbs_data = policy->governor_data;
242
243 /* Kill all timers */
244 gov_cancel_timers(policy);
245
246 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
247 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
248
249 sampling_rate = cs_tuners->sampling_rate;
250 } else {
251 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
252
253 sampling_rate = od_tuners->sampling_rate;
254 }
255
256 eval_load = need_load_eval(shared, sampling_rate);
257
258 /*
259 * Make sure cpufreq_governor_limits() isn't evaluating load in
260 * parallel.
261 */
262 mutex_lock(&shared->timer_mutex);
263 delay = dbs_data->cdata->gov_dbs_timer(policy, eval_load);
264 mutex_unlock(&shared->timer_mutex);
265
266 atomic_dec(&shared->skip_work);
267
268 gov_add_timers(policy, delay);
269 }
270
271 static void dbs_timer_handler(unsigned long data)
272 {
273 struct cpu_dbs_info *cdbs = (struct cpu_dbs_info *)data;
274 struct cpu_common_dbs_info *shared = cdbs->shared;
275
276 /*
277 * Timer handler may not be allowed to queue the work at the moment,
278 * because:
279 * - Another timer handler has done that
280 * - We are stopping the governor
281 * - Or we are updating the sampling rate of the ondemand governor
282 */
283 if (atomic_inc_return(&shared->skip_work) > 1)
284 atomic_dec(&shared->skip_work);
285 else
286 queue_work(system_wq, &shared->work);
287 }
288
289 static void set_sampling_rate(struct dbs_data *dbs_data,
290 unsigned int sampling_rate)
291 {
292 if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
293 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
294 cs_tuners->sampling_rate = sampling_rate;
295 } else {
296 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
297 od_tuners->sampling_rate = sampling_rate;
298 }
299 }
300
301 static int alloc_common_dbs_info(struct cpufreq_policy *policy,
302 struct common_dbs_data *cdata)
303 {
304 struct cpu_common_dbs_info *shared;
305 int j;
306
307 /* Allocate memory for the common information for policy->cpus */
308 shared = kzalloc(sizeof(*shared), GFP_KERNEL);
309 if (!shared)
310 return -ENOMEM;
311
312 /* Set shared for all CPUs, online+offline */
313 for_each_cpu(j, policy->related_cpus)
314 cdata->get_cpu_cdbs(j)->shared = shared;
315
316 mutex_init(&shared->timer_mutex);
317 atomic_set(&shared->skip_work, 0);
318 INIT_WORK(&shared->work, dbs_work_handler);
319 return 0;
320 }
321
322 static void free_common_dbs_info(struct cpufreq_policy *policy,
323 struct common_dbs_data *cdata)
324 {
325 struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
326 struct cpu_common_dbs_info *shared = cdbs->shared;
327 int j;
328
329 mutex_destroy(&shared->timer_mutex);
330
331 for_each_cpu(j, policy->cpus)
332 cdata->get_cpu_cdbs(j)->shared = NULL;
333
334 kfree(shared);
335 }
336
337 static int cpufreq_governor_init(struct cpufreq_policy *policy,
338 struct dbs_data *dbs_data,
339 struct common_dbs_data *cdata)
340 {
341 unsigned int latency;
342 int ret;
343
344 /* State should be equivalent to EXIT */
345 if (policy->governor_data)
346 return -EBUSY;
347
348 if (dbs_data) {
349 if (WARN_ON(have_governor_per_policy()))
350 return -EINVAL;
351
352 ret = alloc_common_dbs_info(policy, cdata);
353 if (ret)
354 return ret;
355
356 dbs_data->usage_count++;
357 policy->governor_data = dbs_data;
358 return 0;
359 }
360
361 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
362 if (!dbs_data)
363 return -ENOMEM;
364
365 ret = alloc_common_dbs_info(policy, cdata);
366 if (ret)
367 goto free_dbs_data;
368
369 dbs_data->cdata = cdata;
370 dbs_data->usage_count = 1;
371
372 ret = cdata->init(dbs_data, !policy->governor->initialized);
373 if (ret)
374 goto free_common_dbs_info;
375
376 /* policy latency is in ns. Convert it to us first */
377 latency = policy->cpuinfo.transition_latency / 1000;
378 if (latency == 0)
379 latency = 1;
380
381 /* Bring kernel and HW constraints together */
382 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
383 MIN_LATENCY_MULTIPLIER * latency);
384 set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
385 latency * LATENCY_MULTIPLIER));
386
387 if (!have_governor_per_policy())
388 cdata->gdbs_data = dbs_data;
389
390 ret = sysfs_create_group(get_governor_parent_kobj(policy),
391 get_sysfs_attr(dbs_data));
392 if (ret)
393 goto reset_gdbs_data;
394
395 policy->governor_data = dbs_data;
396
397 return 0;
398
399 reset_gdbs_data:
400 if (!have_governor_per_policy())
401 cdata->gdbs_data = NULL;
402 cdata->exit(dbs_data, !policy->governor->initialized);
403 free_common_dbs_info:
404 free_common_dbs_info(policy, cdata);
405 free_dbs_data:
406 kfree(dbs_data);
407 return ret;
408 }
409
410 static int cpufreq_governor_exit(struct cpufreq_policy *policy,
411 struct dbs_data *dbs_data)
412 {
413 struct common_dbs_data *cdata = dbs_data->cdata;
414 struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
415
416 /* State should be equivalent to INIT */
417 if (!cdbs->shared || cdbs->shared->policy)
418 return -EBUSY;
419
420 policy->governor_data = NULL;
421 if (!--dbs_data->usage_count) {
422 sysfs_remove_group(get_governor_parent_kobj(policy),
423 get_sysfs_attr(dbs_data));
424
425 if (!have_governor_per_policy())
426 cdata->gdbs_data = NULL;
427
428 cdata->exit(dbs_data, policy->governor->initialized == 1);
429 kfree(dbs_data);
430 }
431
432 free_common_dbs_info(policy, cdata);
433 return 0;
434 }
435
436 static int cpufreq_governor_start(struct cpufreq_policy *policy,
437 struct dbs_data *dbs_data)
438 {
439 struct common_dbs_data *cdata = dbs_data->cdata;
440 unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
441 struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
442 struct cpu_common_dbs_info *shared = cdbs->shared;
443 int io_busy = 0;
444
445 if (!policy->cur)
446 return -EINVAL;
447
448 /* State should be equivalent to INIT */
449 if (!shared || shared->policy)
450 return -EBUSY;
451
452 if (cdata->governor == GOV_CONSERVATIVE) {
453 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
454
455 sampling_rate = cs_tuners->sampling_rate;
456 ignore_nice = cs_tuners->ignore_nice_load;
457 } else {
458 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
459
460 sampling_rate = od_tuners->sampling_rate;
461 ignore_nice = od_tuners->ignore_nice_load;
462 io_busy = od_tuners->io_is_busy;
463 }
464
465 shared->policy = policy;
466 shared->time_stamp = ktime_get();
467
468 for_each_cpu(j, policy->cpus) {
469 struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
470 unsigned int prev_load;
471
472 j_cdbs->prev_cpu_idle =
473 get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
474
475 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
476 j_cdbs->prev_cpu_idle);
477 j_cdbs->prev_load = 100 * prev_load /
478 (unsigned int)j_cdbs->prev_cpu_wall;
479
480 if (ignore_nice)
481 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
482
483 __setup_timer(&j_cdbs->timer, dbs_timer_handler,
484 (unsigned long)j_cdbs,
485 TIMER_DEFERRABLE | TIMER_IRQSAFE);
486 }
487
488 if (cdata->governor == GOV_CONSERVATIVE) {
489 struct cs_cpu_dbs_info_s *cs_dbs_info =
490 cdata->get_cpu_dbs_info_s(cpu);
491
492 cs_dbs_info->down_skip = 0;
493 cs_dbs_info->requested_freq = policy->cur;
494 } else {
495 struct od_ops *od_ops = cdata->gov_ops;
496 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
497
498 od_dbs_info->rate_mult = 1;
499 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
500 od_ops->powersave_bias_init_cpu(cpu);
501 }
502
503 gov_add_timers(policy, delay_for_sampling_rate(sampling_rate));
504 return 0;
505 }
506
507 static int cpufreq_governor_stop(struct cpufreq_policy *policy,
508 struct dbs_data *dbs_data)
509 {
510 struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
511 struct cpu_common_dbs_info *shared = cdbs->shared;
512
513 /* State should be equivalent to START */
514 if (!shared || !shared->policy)
515 return -EBUSY;
516
517 gov_cancel_work(shared);
518 shared->policy = NULL;
519
520 return 0;
521 }
522
523 static int cpufreq_governor_limits(struct cpufreq_policy *policy,
524 struct dbs_data *dbs_data)
525 {
526 struct common_dbs_data *cdata = dbs_data->cdata;
527 unsigned int cpu = policy->cpu;
528 struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
529
530 /* State should be equivalent to START */
531 if (!cdbs->shared || !cdbs->shared->policy)
532 return -EBUSY;
533
534 mutex_lock(&cdbs->shared->timer_mutex);
535 if (policy->max < cdbs->shared->policy->cur)
536 __cpufreq_driver_target(cdbs->shared->policy, policy->max,
537 CPUFREQ_RELATION_H);
538 else if (policy->min > cdbs->shared->policy->cur)
539 __cpufreq_driver_target(cdbs->shared->policy, policy->min,
540 CPUFREQ_RELATION_L);
541 dbs_check_cpu(dbs_data, cpu);
542 mutex_unlock(&cdbs->shared->timer_mutex);
543
544 return 0;
545 }
546
547 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
548 struct common_dbs_data *cdata, unsigned int event)
549 {
550 struct dbs_data *dbs_data;
551 int ret;
552
553 /* Lock governor to block concurrent initialization of governor */
554 mutex_lock(&cdata->mutex);
555
556 if (have_governor_per_policy())
557 dbs_data = policy->governor_data;
558 else
559 dbs_data = cdata->gdbs_data;
560
561 if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
562 ret = -EINVAL;
563 goto unlock;
564 }
565
566 switch (event) {
567 case CPUFREQ_GOV_POLICY_INIT:
568 ret = cpufreq_governor_init(policy, dbs_data, cdata);
569 break;
570 case CPUFREQ_GOV_POLICY_EXIT:
571 ret = cpufreq_governor_exit(policy, dbs_data);
572 break;
573 case CPUFREQ_GOV_START:
574 ret = cpufreq_governor_start(policy, dbs_data);
575 break;
576 case CPUFREQ_GOV_STOP:
577 ret = cpufreq_governor_stop(policy, dbs_data);
578 break;
579 case CPUFREQ_GOV_LIMITS:
580 ret = cpufreq_governor_limits(policy, dbs_data);
581 break;
582 default:
583 ret = -EINVAL;
584 }
585
586 unlock:
587 mutex_unlock(&cdata->mutex);
588
589 return ret;
590 }
591 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);